Diff for /imach/src/imach.c between versions 1.187 and 1.288

version 1.187, 2015/04/29 09:11:15 version 1.288, 2018/05/02 20:58:27
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.288  2018/05/02 20:58:27  brouard
     Summary: Some bugs fixed
   
     Revision 1.287  2018/05/01 17:57:25  brouard
     Summary: Bug fixed by providing frequencies only for non missing covariates
   
     Revision 1.286  2018/04/27 14:27:04  brouard
     Summary: some minor bugs
   
     Revision 1.285  2018/04/21 21:02:16  brouard
     Summary: Some bugs fixed, valgrind tested
   
     Revision 1.284  2018/04/20 05:22:13  brouard
     Summary: Computing mean and stdeviation of fixed quantitative variables
   
     Revision 1.283  2018/04/19 14:49:16  brouard
     Summary: Some minor bugs fixed
   
     Revision 1.282  2018/02/27 22:50:02  brouard
     *** empty log message ***
   
     Revision 1.281  2018/02/27 19:25:23  brouard
     Summary: Adding second argument for quitting
   
     Revision 1.280  2018/02/21 07:58:13  brouard
     Summary: 0.99r15
   
     New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c
   
     Revision 1.279  2017/07/20 13:35:01  brouard
     Summary: temporary working
   
     Revision 1.278  2017/07/19 14:09:02  brouard
     Summary: Bug for mobil_average=0 and prevforecast fixed(?)
   
     Revision 1.277  2017/07/17 08:53:49  brouard
     Summary: BOM files can be read now
   
     Revision 1.276  2017/06/30 15:48:31  brouard
     Summary: Graphs improvements
   
     Revision 1.275  2017/06/30 13:39:33  brouard
     Summary: Saito's color
   
     Revision 1.274  2017/06/29 09:47:08  brouard
     Summary: Version 0.99r14
   
     Revision 1.273  2017/06/27 11:06:02  brouard
     Summary: More documentation on projections
   
     Revision 1.272  2017/06/27 10:22:40  brouard
     Summary: Color of backprojection changed from 6 to 5(yellow)
   
     Revision 1.271  2017/06/27 10:17:50  brouard
     Summary: Some bug with rint
   
     Revision 1.270  2017/05/24 05:45:29  brouard
     *** empty log message ***
   
     Revision 1.269  2017/05/23 08:39:25  brouard
     Summary: Code into subroutine, cleanings
   
     Revision 1.268  2017/05/18 20:09:32  brouard
     Summary: backprojection and confidence intervals of backprevalence
   
     Revision 1.267  2017/05/13 10:25:05  brouard
     Summary: temporary save for backprojection
   
     Revision 1.266  2017/05/13 07:26:12  brouard
     Summary: Version 0.99r13 (improvements and bugs fixed)
   
     Revision 1.265  2017/04/26 16:22:11  brouard
     Summary: imach 0.99r13 Some bugs fixed
   
     Revision 1.264  2017/04/26 06:01:29  brouard
     Summary: Labels in graphs
   
     Revision 1.263  2017/04/24 15:23:15  brouard
     Summary: to save
   
     Revision 1.262  2017/04/18 16:48:12  brouard
     *** empty log message ***
   
     Revision 1.261  2017/04/05 10:14:09  brouard
     Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1
   
     Revision 1.260  2017/04/04 17:46:59  brouard
     Summary: Gnuplot indexations fixed (humm)
   
     Revision 1.259  2017/04/04 13:01:16  brouard
     Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3
   
     Revision 1.258  2017/04/03 10:17:47  brouard
     Summary: Version 0.99r12
   
     Some cleanings, conformed with updated documentation.
   
     Revision 1.257  2017/03/29 16:53:30  brouard
     Summary: Temp
   
     Revision 1.256  2017/03/27 05:50:23  brouard
     Summary: Temporary
   
     Revision 1.255  2017/03/08 16:02:28  brouard
     Summary: IMaCh version 0.99r10 bugs in gnuplot fixed
   
     Revision 1.254  2017/03/08 07:13:00  brouard
     Summary: Fixing data parameter line
   
     Revision 1.253  2016/12/15 11:59:41  brouard
     Summary: 0.99 in progress
   
     Revision 1.252  2016/09/15 21:15:37  brouard
     *** empty log message ***
   
     Revision 1.251  2016/09/15 15:01:13  brouard
     Summary: not working
   
     Revision 1.250  2016/09/08 16:07:27  brouard
     Summary: continue
   
     Revision 1.249  2016/09/07 17:14:18  brouard
     Summary: Starting values from frequencies
   
     Revision 1.248  2016/09/07 14:10:18  brouard
     *** empty log message ***
   
     Revision 1.247  2016/09/02 11:11:21  brouard
     *** empty log message ***
   
     Revision 1.246  2016/09/02 08:49:22  brouard
     *** empty log message ***
   
     Revision 1.245  2016/09/02 07:25:01  brouard
     *** empty log message ***
   
     Revision 1.244  2016/09/02 07:17:34  brouard
     *** empty log message ***
   
     Revision 1.243  2016/09/02 06:45:35  brouard
     *** empty log message ***
   
     Revision 1.242  2016/08/30 15:01:20  brouard
     Summary: Fixing a lots
   
     Revision 1.241  2016/08/29 17:17:25  brouard
     Summary: gnuplot problem in Back projection to fix
   
     Revision 1.240  2016/08/29 07:53:18  brouard
     Summary: Better
   
     Revision 1.239  2016/08/26 15:51:03  brouard
     Summary: Improvement in Powell output in order to copy and paste
   
     Author:
   
     Revision 1.238  2016/08/26 14:23:35  brouard
     Summary: Starting tests of 0.99
   
     Revision 1.237  2016/08/26 09:20:19  brouard
     Summary: to valgrind
   
     Revision 1.236  2016/08/25 10:50:18  brouard
     *** empty log message ***
   
     Revision 1.235  2016/08/25 06:59:23  brouard
     *** empty log message ***
   
     Revision 1.234  2016/08/23 16:51:20  brouard
     *** empty log message ***
   
     Revision 1.233  2016/08/23 07:40:50  brouard
     Summary: not working
   
     Revision 1.232  2016/08/22 14:20:21  brouard
     Summary: not working
   
     Revision 1.231  2016/08/22 07:17:15  brouard
     Summary: not working
   
     Revision 1.230  2016/08/22 06:55:53  brouard
     Summary: Not working
   
     Revision 1.229  2016/07/23 09:45:53  brouard
     Summary: Completing for func too
   
     Revision 1.228  2016/07/22 17:45:30  brouard
     Summary: Fixing some arrays, still debugging
   
     Revision 1.226  2016/07/12 18:42:34  brouard
     Summary: temp
   
     Revision 1.225  2016/07/12 08:40:03  brouard
     Summary: saving but not running
   
     Revision 1.224  2016/07/01 13:16:01  brouard
     Summary: Fixes
   
     Revision 1.223  2016/02/19 09:23:35  brouard
     Summary: temporary
   
     Revision 1.222  2016/02/17 08:14:50  brouard
     Summary: Probably last 0.98 stable version 0.98r6
   
     Revision 1.221  2016/02/15 23:35:36  brouard
     Summary: minor bug
   
     Revision 1.219  2016/02/15 00:48:12  brouard
     *** empty log message ***
   
     Revision 1.218  2016/02/12 11:29:23  brouard
     Summary: 0.99 Back projections
   
     Revision 1.217  2015/12/23 17:18:31  brouard
     Summary: Experimental backcast
   
     Revision 1.216  2015/12/18 17:32:11  brouard
     Summary: 0.98r4 Warning and status=-2
   
     Version 0.98r4 is now:
      - displaying an error when status is -1, date of interview unknown and date of death known;
      - permitting a status -2 when the vital status is unknown at a known date of right truncation.
     Older changes concerning s=-2, dating from 2005 have been supersed.
   
     Revision 1.215  2015/12/16 08:52:24  brouard
     Summary: 0.98r4 working
   
     Revision 1.214  2015/12/16 06:57:54  brouard
     Summary: temporary not working
   
     Revision 1.213  2015/12/11 18:22:17  brouard
     Summary: 0.98r4
   
     Revision 1.212  2015/11/21 12:47:24  brouard
     Summary: minor typo
   
     Revision 1.211  2015/11/21 12:41:11  brouard
     Summary: 0.98r3 with some graph of projected cross-sectional
   
     Author: Nicolas Brouard
   
     Revision 1.210  2015/11/18 17:41:20  brouard
     Summary: Start working on projected prevalences  Revision 1.209  2015/11/17 22:12:03  brouard
     Summary: Adding ftolpl parameter
     Author: N Brouard
   
     We had difficulties to get smoothed confidence intervals. It was due
     to the period prevalence which wasn't computed accurately. The inner
     parameter ftolpl is now an outer parameter of the .imach parameter
     file after estepm. If ftolpl is small 1.e-4 and estepm too,
     computation are long.
   
     Revision 1.208  2015/11/17 14:31:57  brouard
     Summary: temporary
   
     Revision 1.207  2015/10/27 17:36:57  brouard
     *** empty log message ***
   
     Revision 1.206  2015/10/24 07:14:11  brouard
     *** empty log message ***
   
     Revision 1.205  2015/10/23 15:50:53  brouard
     Summary: 0.98r3 some clarification for graphs on likelihood contributions
   
     Revision 1.204  2015/10/01 16:20:26  brouard
     Summary: Some new graphs of contribution to likelihood
   
     Revision 1.203  2015/09/30 17:45:14  brouard
     Summary: looking at better estimation of the hessian
   
     Also a better criteria for convergence to the period prevalence And
     therefore adding the number of years needed to converge. (The
     prevalence in any alive state shold sum to one
   
     Revision 1.202  2015/09/22 19:45:16  brouard
     Summary: Adding some overall graph on contribution to likelihood. Might change
   
     Revision 1.201  2015/09/15 17:34:58  brouard
     Summary: 0.98r0
   
     - Some new graphs like suvival functions
     - Some bugs fixed like model=1+age+V2.
   
     Revision 1.200  2015/09/09 16:53:55  brouard
     Summary: Big bug thanks to Flavia
   
     Even model=1+age+V2. did not work anymore
   
     Revision 1.199  2015/09/07 14:09:23  brouard
     Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   
     Revision 1.198  2015/09/03 07:14:39  brouard
     Summary: 0.98q5 Flavia
   
     Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
   
     Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
   
     Revision 1.195  2015/08/18 16:28:39  brouard
     Summary: Adding a hack for testing purpose
   
     After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
     permits to run test files in batch with ctest. The former workaround was
     $ echo q | imach foo.imach
   
     Revision 1.194  2015/08/18 13:32:00  brouard
     Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   
     Revision 1.193  2015/08/04 07:17:42  brouard
     Summary: 0.98q4
   
     Revision 1.192  2015/07/16 16:49:02  brouard
     Summary: Fixing some outputs
   
     Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
   
     Revision 1.190  2015/05/05 08:51:13  brouard
     Summary: Adding digits in output parameters (7 digits instead of 6)
   
     Fix 1+age+.
   
     Revision 1.189  2015/04/30 14:45:16  brouard
     Summary: 0.98q2
   
     Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
   
   Revision 1.187  2015/04/29 09:11:15  brouard    Revision 1.187  2015/04/29 09:11:15  brouard
   *** empty log message ***    *** empty log message ***
   
Line 495 Line 826
   
   Short summary of the programme:    Short summary of the programme:
       
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies or State-specific
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (if states aren't health statuses) Expectancies from
   first survey ("cross") where individuals from different ages are    cross-longitudinal data. Cross-longitudinal data consist in: 
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    -1- a first survey ("cross") where individuals from different ages
   second wave of interviews ("longitudinal") which measure each change    are interviewed on their health status or degree of disability (in
   (if any) in individual health status.  Health expectancies are    the case of a health survey which is our main interest)
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    -2- at least a second wave of interviews ("longitudinal") which
   Maximum Likelihood of the parameters involved in the model.  The    measure each change (if any) in individual health status.  Health
   simplest model is the multinomial logistic model where pij is the    expectancies are computed from the time spent in each health state
   probability to be observed in state j at the second wave    according to a model. More health states you consider, more time is
   conditional to be observed in state i at the first wave. Therefore    necessary to reach the Maximum Likelihood of the parameters involved
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    in the model.  The simplest model is the multinomial logistic model
   'age' is age and 'sex' is a covariate. If you want to have a more    where pij is the probability to be observed in state j at the second
   complex model than "constant and age", you should modify the program    wave conditional to be observed in state i at the first
   where the markup *Covariates have to be included here again* invites    wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
   you to do it.  More covariates you add, slower the    etc , where 'age' is age and 'sex' is a covariate. If you want to
     have a more complex model than "constant and age", you should modify
     the program where the markup *Covariates have to be included here
     again* invites you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
Line 531 Line 865
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.     of the life expectancies. It also computes the period (stable) prevalence.
   
   Back prevalence and projections:
   
    - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
      double agemaxpar, double ftolpl, int *ncvyearp, double
      dateprev1,double dateprev2, int firstpass, int lastpass, int
      mobilavproj)
   
       Computes the back prevalence limit for any combination of
       covariate values k at any age between ageminpar and agemaxpar and
       returns it in **bprlim. In the loops,
   
      - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
          **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
   
      - hBijx Back Probability to be in state i at age x-h being in j at x
      Computes for any combination of covariates k and any age between bage and fage 
      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                           oldm=oldms;savm=savms;
   
      - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);
        Computes the transition matrix starting at age 'age' over
        'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
        nhstepm*hstepm matrices. 
   
        Returns p3mat[i][j][h] after calling
        p3mat[i][j][h]=matprod2(newm,
        bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
        dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
        oldm);
   
   Important routines
   
   - func (or funcone), computes logit (pij) distinguishing
     o fixed variables (single or product dummies or quantitative);
     o varying variables by:
      (1) wave (single, product dummies, quantitative), 
      (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
          % fixed dummy (treated) or quantitative (not done because time-consuming);
          % varying dummy (not done) or quantitative (not done);
   - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
     and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
   - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
     o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
       race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
   
   
       
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
Line 590 Line 972
   
 /* #define DEBUG */  /* #define DEBUG */
 /* #define DEBUGBRENT */  /* #define DEBUGBRENT */
   /* #define DEBUGLINMIN */
   /* #define DEBUGHESS */
   #define DEBUGHESSIJ
   /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
 #define POWELL /* Instead of NLOPT */  #define POWELL /* Instead of NLOPT */
   #define POWELLNOF3INFF1TEST /* Skip test */
 /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
   
Line 598 Line 985
 #include <stdio.h>  #include <stdio.h>
 #include <stdlib.h>  #include <stdlib.h>
 #include <string.h>  #include <string.h>
   #include <ctype.h>
   
 #ifdef _WIN32  #ifdef _WIN32
 #include <io.h>  #include <io.h>
Line 643  typedef struct { Line 1031  typedef struct {
 /* #include <libintl.h> */  /* #include <libintl.h> */
 /* #define _(String) gettext (String) */  /* #define _(String) gettext (String) */
   
 #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */  #define MAXLINE 2048 /* Was 256 and 1024. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   
 #define GNUPLOTPROGRAM "gnuplot"  #define GNUPLOTPROGRAM "gnuplot"
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
Line 659  typedef struct { Line 1047  typedef struct {
 #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 #define codtabm(h,k)  1 & (h-1) >> (k-1) ;  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
   /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
   #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
 #define MAXN 20000  #define MAXN 20000
 #define YEARM 12. /**< Number of months per year */  #define YEARM 12. /**< Number of months per year */
 #define AGESUP 130  /* #define AGESUP 130 */
   /* #define AGESUP 150 */
   #define AGESUP 200
   #define AGEINF 0
   #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
 #define AGEBASE 40  #define AGEBASE 40
   #define AGEOVERFLOW 1.e20
 #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 #ifdef _WIN32  #ifdef _WIN32
 #define DIRSEPARATOR '\\'  #define DIRSEPARATOR '\\'
Line 677  typedef struct { Line 1072  typedef struct {
   
 /* $Id$ */  /* $Id$ */
 /* $State$ */  /* $State$ */
   #include "version.h"
 char version[]="Imach version 0.98q1, April 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";  char version[]=__IMACH_VERSION__;
   char copyright[]="April 2018,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";
 char fullversion[]="$Revision$ $Date$";   char fullversion[]="$Revision$ $Date$"; 
 char strstart[80];  char strstart[80];
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
Line 687  int nagesqr=0, nforce=0; /* nagesqr=1 if Line 1083  int nagesqr=0, nforce=0; /* nagesqr=1 if
 /* Number of covariates model=V2+V1+ V3*age+V2*V4 */  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */  int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */
   int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */
 int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 int cptcovprodnoage=0; /**< Number of covariate products without age */     int cptcovprodnoage=0; /**< Number of covariate products without age */   
 int cptcoveff=0; /* Total number of covariates to vary for printing results */  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
   int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
   int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */
   int nsd=0; /**< Total number of single dummy variables (output) */
   int nsq=0; /**< Total number of single quantitative variables (output) */
   int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
   int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
   int ntveff=0; /**< ntveff number of effective time varying variables */
   int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
 int cptcov=0; /* Working variable */  int cptcov=0; /* Working variable */
   int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
 int npar=NPARMAX;  int npar=NPARMAX;
 int nlstate=2; /* Number of live states */  int nlstate=2; /* Number of live states */
 int ndeath=1; /* Number of dead states */  int ndeath=1; /* Number of dead states */
 int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int  nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ 
 int popbased=0;  int popbased=0;
   
 int *wav; /* Number of waves for this individuual 0 is possible */  int *wav; /* Number of waves for this individuual 0 is possible */
Line 710  int **dh; /* dh[mi][i] is number of step Line 1118  int **dh; /* dh[mi][i] is number of step
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
            * wave mi and wave mi+1 is not an exact multiple of stepm. */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 int countcallfunc=0;  /* Count the number of calls to func */  int countcallfunc=0;  /* Count the number of calls to func */
   int selected(int kvar); /* Is covariate kvar selected for printing results */
   
 double jmean=1; /* Mean space between 2 waves */  double jmean=1; /* Mean space between 2 waves */
 double **matprod2(); /* test */  double **matprod2(); /* test */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double   **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
   
 /*FILE *fic ; */ /* Used in readdata only */  /*FILE *fic ; */ /* Used in readdata only */
 FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
 FILE *ficlog, *ficrespow;  FILE *ficlog, *ficrespow;
 int globpr=0; /* Global variable for printing or not */  int globpr=0; /* Global variable for printing or not */
 double fretone; /* Only one call to likelihood */  double fretone; /* Only one call to likelihood */
Line 735  FILE *ficrescveij; Line 1147  FILE *ficrescveij;
 char filerescve[FILENAMELENGTH];  char filerescve[FILENAMELENGTH];
 FILE  *ficresvij;  FILE  *ficresvij;
 char fileresv[FILENAMELENGTH];  char fileresv[FILENAMELENGTH];
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];  char title[MAXLINE];
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char model[MAXLINE]; /**< The model line */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 char command[FILENAMELENGTH];  char command[FILENAMELENGTH];
 int  outcmd=0;  int  outcmd=0;
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char fileresu[FILENAMELENGTH]; /* fileres without r in front */
 char filelog[FILENAMELENGTH]; /* Log file */  char filelog[FILENAMELENGTH]; /* Log file */
 char filerest[FILENAMELENGTH];  char filerest[FILENAMELENGTH];
 char fileregp[FILENAMELENGTH];  char fileregp[FILENAMELENGTH];
Line 775  double dval; Line 1187  double dval;
 #define FTOL 1.0e-10  #define FTOL 1.0e-10
   
 #define NRANSI   #define NRANSI 
 #define ITMAX 200   #define ITMAX 200
   #define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ 
   
 #define TOL 2.0e-4   #define TOL 2.0e-4 
   
Line 813  int estepm; Line 1226  int estepm;
   
 int m,nb;  int m,nb;
 long *num;  long *num;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  int firstpass=0, lastpass=4,*cod, *cens;
   int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
                      covariate for which somebody answered excluding 
                      undefined. Usually 2: 0 and 1. */
   int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **pmmij, ***probs;  double **pmmij, ***probs; /* Global pointer */
   double ***mobaverage, ***mobaverages; /* New global variable */
 double *ageexmed,*agecens;  double *ageexmed,*agecens;
 double dateintmean=0;  double dateintmean=0;
   
Line 825  double *agedc; Line 1245  double *agedc;
 double  **covar; /**< covar[j,i], value of jth covariate for individual i,  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
                   * covar=matrix(0,NCOVMAX,1,n);                     * covar=matrix(0,NCOVMAX,1,n); 
                   * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   double **coqvar; /* Fixed quantitative covariate nqv */
   double ***cotvar; /* Time varying covariate ntv */
   double ***cotqvar; /* Time varying quantitative covariate itqv */
 double  idx;   double  idx; 
 int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   /*           V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   /*k          1  2   3   4     5    6    7     8    9 */
   /*Tvar[k]=   5  4   3   6     5    2    7     1    1 */
   /* Tndvar[k]    1   2   3               4          5 */
   /*TDvar         4   3   6               7          1 */ /* For outputs only; combination of dummies fixed or varying */
   /* Tns[k]    1  2   2              4               5 */ /* Number of single cova */
   /* TvarsD[k]    1   2                              3 */ /* Number of single dummy cova */
   /* TvarsDind    2   3                              9 */ /* position K of single dummy cova */
   /* TvarsQ[k] 1                     2                 */ /* Number of single quantitative cova */
   /* TvarsQind 1                     6                 */ /* position K of single quantitative cova */
   /* Tprod[i]=k           4               7            */
   /* Tage[i]=k                  5               8      */
   /* */
   /* Type                    */
   /* V         1  2  3  4  5 */
   /*           F  F  V  V  V */
   /*           D  Q  D  D  Q */
   /*                         */
   int *TvarsD;
   int *TvarsDind;
   int *TvarsQ;
   int *TvarsQind;
   
   #define MAXRESULTLINES 10
   int nresult=0;
   int parameterline=0; /* # of the parameter (type) line */
   int TKresult[MAXRESULTLINES];
   int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
   int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
   int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */
   double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
   double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
   int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */
   
   /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
   int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
   int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
   
   int *Tvarsel; /**< Selected covariates for output */
   double *Tvalsel; /**< Selected modality value of covariate for output */
   int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
   int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
   int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
   int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
   int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
   int *Tage;
   int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
   int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
   int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
 int *Ndum; /** Freq of modality (tricode */  int *Ndum; /** Freq of modality (tricode */
 int **codtab; /**< codtab=imatrix(1,100,1,10); */  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
 int **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **Tvard;
   int *Tprod;/**< Gives the k position of the k1 product */
   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
   int *Tposprod; /**< Gives the k1 product from the k position */
      /* if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2) */
      /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
   int cptcovprod, *Tvaraff, *invalidvarcomb;
 double *lsurv, *lpop, *tpop;  double *lsurv, *lpop, *tpop;
   
   #define FD 1; /* Fixed dummy covariate */
   #define FQ 2; /* Fixed quantitative covariate */
   #define FP 3; /* Fixed product covariate */
   #define FPDD 7; /* Fixed product dummy*dummy covariate */
   #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
   #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
   #define VD 10; /* Varying dummy covariate */
   #define VQ 11; /* Varying quantitative covariate */
   #define VP 12; /* Varying product covariate */
   #define VPDD 13; /* Varying product dummy*dummy covariate */
   #define VPDQ 14; /* Varying product dummy*quantitative covariate */
   #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
   #define APFD 16; /* Age product * fixed dummy covariate */
   #define APFQ 17; /* Age product * fixed quantitative covariate */
   #define APVD 18; /* Age product * varying dummy covariate */
   #define APVQ 19; /* Age product * varying quantitative covariate */
   
   #define FTYPE 1; /* Fixed covariate */
   #define VTYPE 2; /* Varying covariate (loop in wave) */
   #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
   
   struct kmodel{
           int maintype; /* main type */
           int subtype; /* subtype */
   };
   struct kmodel modell[NCOVMAX];
   
 double ftol=FTOL; /**< Tolerance for computing Max Likelihood */  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 double ftolhess; /**< Tolerance for computing hessian */  double ftolhess; /**< Tolerance for computing hessian */
   
Line 862  static int split( char *path, char *dirc Line 1380  static int split( char *path, char *dirc
     }      }
     /* got dirc from getcwd*/      /* got dirc from getcwd*/
     printf(" DIRC = %s \n",dirc);      printf(" DIRC = %s \n",dirc);
   } else {                              /* strip direcotry from path */    } else {                              /* strip directory from path */
     ss++;                               /* after this, the filename */      ss++;                               /* after this, the filename */
     l2 = strlen( ss );                  /* length of filename */      l2 = strlen( ss );                  /* length of filename */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
Line 1027  int nbocc(char *s, char occ) Line 1545  int nbocc(char *s, char occ)
   i=0;    i=0;
   lg=strlen(s);    lg=strlen(s);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
   if  (s[i] == occ ) j++;      if  (s[i] == occ ) j++;
   }    }
   return j;    return j;
 }  }
Line 1270  char *subdirf3(char fileres[], char *pre Line 1788  char *subdirf3(char fileres[], char *pre
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
    
   /*************** function subdirfext ***********/
   char *subdirfext(char fileres[], char *preop, char *postop)
   {
     
     strcpy(tmpout,preop);
     strcat(tmpout,fileres);
     strcat(tmpout,postop);
     return tmpout;
   }
   
   /*************** function subdirfext3 ***********/
   char *subdirfext3(char fileres[], char *preop, char *postop)
   {
     
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     strcat(tmpout,preop);
     strcat(tmpout,fileres);
     strcat(tmpout,postop);
     return tmpout;
   }
    
 char *asc_diff_time(long time_sec, char ascdiff[])  char *asc_diff_time(long time_sec, char ascdiff[])
 {  {
   long sec_left, days, hours, minutes;    long sec_left, days, hours, minutes;
Line 1348  double brent(double ax, double bx, doubl Line 1889  double brent(double ax, double bx, doubl
       etemp=e;         etemp=e; 
       e=d;         e=d; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));                                   d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       else {         else { 
         d=p/q;                                   d=p/q; 
         u=x+d;                                   u=x+d; 
         if (u-a < tol2 || b-u < tol2)                                   if (u-a < tol2 || b-u < tol2) 
           d=SIGN(tol1,xm-x);                                           d=SIGN(tol1,xm-x); 
       }         } 
     } else {       } else { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
Line 1367  double brent(double ax, double bx, doubl Line 1908  double brent(double ax, double bx, doubl
     } else {       } else { 
       if (u < x) a=u; else b=u;         if (u < x) a=u; else b=u; 
       if (fu <= fw || w == x) {         if (fu <= fw || w == x) { 
         v=w;                                   v=w; 
         w=u;                                   w=u; 
         fv=fw;                                   fv=fw; 
         fw=fu;                                   fw=fu; 
       } else if (fu <= fv || v == x || v == w) {         } else if (fu <= fv || v == x || v == w) { 
         v=u;                                   v=u; 
         fv=fu;                                   fv=fu; 
       }         } 
     }       } 
   }     } 
Line 1414  values at the three points, fa, fb , and Line 1955  values at the three points, fa, fb , and
   *cx=(*bx)+GOLD*(*bx-*ax);     *cx=(*bx)+GOLD*(*bx-*ax); 
   *fc=(*func)(*cx);     *fc=(*func)(*cx); 
 #ifdef DEBUG  #ifdef DEBUG
   printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);    printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
   fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);    fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
 #endif  #endif
   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
     r=(*bx-*ax)*(*fb-*fc);       r=(*bx-*ax)*(*fb-*fc); 
     q=(*bx-*cx)*(*fb-*fa);       q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
Line 1430  values at the three points, fa, fb , and Line 1971  values at the three points, fa, fb , and
       double A, fparabu;         double A, fparabu; 
       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       fparabu= *fa - A*(*ax-u)*(*ax-u);        fparabu= *fa - A*(*ax-u)*(*ax-u);
       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);        printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);        fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
       /* And thus,it can be that fu > *fc even if fparabu < *fc */        /* And thus,it can be that fu > *fc even if fparabu < *fc */
       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
Line 1439  values at the three points, fa, fb , and Line 1980  values at the three points, fa, fb , and
 #endif   #endif 
 #ifdef MNBRAKORIGINAL  #ifdef MNBRAKORIGINAL
 #else  #else
       if (fu > *fc) {  /*       if (fu > *fc) { */
 #ifdef DEBUG  /* #ifdef DEBUG */
       printf("mnbrak4  fu > fc \n");  /*       printf("mnbrak4  fu > fc \n"); */
       fprintf(ficlog, "mnbrak4 fu > fc\n");  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
 #endif  /* #endif */
         /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
         /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
         dum=u; /* Shifting c and u */  /*      dum=u; /\* Shifting c and u *\/ */
         u = *cx;  /*      u = *cx; */
         *cx = dum;  /*      *cx = dum; */
         dum = fu;  /*      dum = fu; */
         fu = *fc;  /*      fu = *fc; */
         *fc =dum;  /*      *fc =dum; */
       } else { /* end */  /*       } else { /\* end *\/ */
 #ifdef DEBUG  /* #ifdef DEBUG */
       printf("mnbrak3  fu < fc \n");  /*       printf("mnbrak3  fu < fc \n"); */
       fprintf(ficlog, "mnbrak3 fu < fc\n");  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
 #endif  /* #endif */
         dum=u; /* Shifting c and u */  /*      dum=u; /\* Shifting c and u *\/ */
         u = *cx;  /*      u = *cx; */
         *cx = dum;  /*      *cx = dum; */
         dum = fu;  /*      dum = fu; */
         fu = *fc;  /*      fu = *fc; */
         *fc =dum;  /*      *fc =dum; */
       }  /*       } */
   #ifdef DEBUGMNBRAK
                    double A, fparabu; 
        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
        fparabu= *fa - A*(*ax-u)*(*ax-u);
        printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
        fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
   #endif
         dum=u; /* Shifting c and u */
         u = *cx;
         *cx = dum;
         dum = fu;
         fu = *fc;
         *fc =dum;
 #endif  #endif
     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2  u after c but before ulim\n");        printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
       fprintf(ficlog, "mnbrak2 u after c but before ulim\n");        fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
 #endif  #endif
       fu=(*func)(u);         fu=(*func)(u); 
       if (fu < *fc) {         if (fu < *fc) { 
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2  u after c but before ulim AND fu < fc\n");                                  printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
       fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");                            fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
   #endif
                             SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                                   SHFT(*fb,*fc,fu,(*func)(u)) 
   #ifdef DEBUG
                                           printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
 #endif  #endif
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   
         SHFT(*fb,*fc,fu,(*func)(u))   
       }         } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");        printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
       fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");        fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
 #endif  #endif
       u=ulim;         u=ulim; 
       fu=(*func)(u);         fu=(*func)(u); 
     } else { /* u could be left to b (if r > q parabola has a maximum) */      } else { /* u could be left to b (if r > q parabola has a maximum) */
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");        printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
       fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");        fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
 #endif  #endif
       u=(*cx)+GOLD*(*cx-*bx);         u=(*cx)+GOLD*(*cx-*bx); 
       fu=(*func)(u);         fu=(*func)(u); 
   #ifdef DEBUG
         printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
         fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
   #endif
     } /* end tests */      } /* end tests */
     SHFT(*ax,*bx,*cx,u)       SHFT(*ax,*bx,*cx,u) 
     SHFT(*fa,*fb,*fc,fu)       SHFT(*fa,*fb,*fc,fu) 
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);        printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
       fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);        fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
 #endif  #endif
   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
 }   } 
Line 1513  int ncom; Line 2074  int ncom;
 double *pcom,*xicom;  double *pcom,*xicom;
 double (*nrfunc)(double []);   double (*nrfunc)(double []); 
     
   #ifdef LINMINORIGINAL
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   #else
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
   #endif
 {   { 
   double brent(double ax, double bx, double cx,     double brent(double ax, double bx, double cx, 
                double (*f)(double), double tol, double *xmin);                  double (*f)(double), double tol, double *xmin); 
Line 1524  void linmin(double p[], double xi[], int Line 2089  void linmin(double p[], double xi[], int
   double xx,xmin,bx,ax;     double xx,xmin,bx,ax; 
   double fx,fb,fa;    double fx,fb,fa;
   
   double scale=10., axs, xxs, xxss; /* Scale added for infinity */  #ifdef LINMINORIGINAL
    #else
     double scale=10., axs, xxs; /* Scale added for infinity */
   #endif
     
   ncom=n;     ncom=n; 
   pcom=vector(1,n);     pcom=vector(1,n); 
   xicom=vector(1,n);     xicom=vector(1,n); 
   nrfunc=func;     nrfunc=func; 
   for (j=1;j<=n;j++) {     for (j=1;j<=n;j++) { 
     pcom[j]=p[j];       pcom[j]=p[j]; 
     xicom[j]=xi[j];       xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
   }     } 
   
   #ifdef LINMINORIGINAL
     xx=1.;
   #else
   axs=0.0;    axs=0.0;
   xxss=1; /* 1 and using scale */    xxs=1.;
   xxs=1;  
   do{    do{
     ax=0.;  
     xx= xxs;      xx= xxs;
   #endif
       ax=0.;
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
     /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
     /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
Line 1548  void linmin(double p[], double xi[], int Line 2119  void linmin(double p[], double xi[], int
     /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
     /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
     /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   #ifdef LINMINORIGINAL
   #else
     if (fx != fx){      if (fx != fx){
         xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */                          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
         printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);                          printf("|");
                           fprintf(ficlog,"|");
   #ifdef DEBUGLINMIN
                           printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
   #endif
     }      }
   }while(fx != fx);    }while(fx != fx && xxs > 1.e-5);
   #endif
     
   #ifdef DEBUGLINMIN
     printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
     fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   #endif
   #ifdef LINMINORIGINAL
   #else
           if(fb == fx){ /* Flat function in the direction */
                   xmin=xx;
       *flat=1;
           }else{
       *flat=0;
   #endif
                   /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
   /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
   /* fmin = f(p[j] + xmin * xi[j]) */    /* fmin = f(p[j] + xmin * xi[j]) */
   /* P+lambda n in that direction (lambdamin), with TOL between abscisses */    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
   /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
   #endif
   #ifdef LINMINORIGINAL
   #else
                           }
 #endif  #endif
   #ifdef DEBUGLINMIN
   printf("linmin end ");    printf("linmin end ");
     fprintf(ficlog,"linmin end ");
   #endif
   for (j=1;j<=n;j++) {     for (j=1;j<=n;j++) { 
     printf(" before xi[%d]=%12.8f", j,xi[j]);  #ifdef LINMINORIGINAL
     xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */      xi[j] *= xmin; 
   #else
   #ifdef DEBUGLINMIN
       if(xxs <1.0)
         printf(" before xi[%d]=%12.8f", j,xi[j]);
   #endif
       xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
   #ifdef DEBUGLINMIN
     if(xxs <1.0)      if(xxs <1.0)
       printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
   #endif
   #endif
     p[j] += xi[j]; /* Parameters values are updated accordingly */      p[j] += xi[j]; /* Parameters values are updated accordingly */
   }     } 
   #ifdef DEBUGLINMIN
   printf("\n");    printf("\n");
     printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     for (j=1;j<=n;j++) { 
       printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
       fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
       if(j % ncovmodel == 0){
         printf("\n");
         fprintf(ficlog,"\n");
       }
     }
   #else
   #endif
   free_vector(xicom,1,n);     free_vector(xicom,1,n); 
   free_vector(pcom,1,n);     free_vector(pcom,1,n); 
 }   } 
Line 1586  such that failure to decrease by more th Line 2206  such that failure to decrease by more th
 output, p is set to the best point found, xi is the then-current direction set, fret is the returned  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 function value at p , and iter is the number of iterations taken. The routine linmin is used.  function value at p , and iter is the number of iterations taken. The routine linmin is used.
  */   */
   #ifdef LINMINORIGINAL
   #else
           int *flatdir; /* Function is vanishing in that direction */
           int flat=0, flatd=0; /* Function is vanishing in that direction */
   #endif
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             double (*func)(double []))               double (*func)(double [])) 
 {   { 
   void linmin(double p[], double xi[], int n, double *fret,   #ifdef LINMINORIGINAL
    void linmin(double p[], double xi[], int n, double *fret, 
               double (*func)(double []));                 double (*func)(double [])); 
   int i,ibig,j;   #else 
    void linmin(double p[], double xi[], int n, double *fret,
                double (*func)(double []),int *flat); 
   #endif
    int i,ibig,j,jk,k; 
   double del,t,*pt,*ptt,*xit;    double del,t,*pt,*ptt,*xit;
   double directest;    double directest;
   double fp,fptt;    double fp,fptt;
   double *xits;    double *xits;
   int niterf, itmp;    int niterf, itmp;
   #ifdef LINMINORIGINAL
   #else
   
     flatdir=ivector(1,n); 
     for (j=1;j<=n;j++) flatdir[j]=0; 
   #endif
   
   pt=vector(1,n);     pt=vector(1,n); 
   ptt=vector(1,n);     ptt=vector(1,n); 
Line 1604  void powell(double p[], double **xi, int Line 2240  void powell(double p[], double **xi, int
   xits=vector(1,n);     xits=vector(1,n); 
   *fret=(*func)(p);     *fret=(*func)(p); 
   for (j=1;j<=n;j++) pt[j]=p[j];     for (j=1;j<=n;j++) pt[j]=p[j]; 
     rcurr_time = time(NULL);      rcurr_time = time(NULL);  
   for (*iter=1;;++(*iter)) {     for (*iter=1;;++(*iter)) { 
     fp=(*fret); /* From former iteration or initial value */      fp=(*fret); /* From former iteration or initial value */
     ibig=0;       ibig=0; 
Line 1616  void powell(double p[], double **xi, int Line 2252  void powell(double p[], double **xi, int
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
    for (i=1;i<=n;i++) {      for (i=1;i<=n;i++) {
       printf(" %d %.12f",i, p[i]);  
       fprintf(ficlog," %d %.12lf",i, p[i]);  
       fprintf(ficrespow," %.12lf", p[i]);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
       fprintf(ficrespow,"\n");fflush(ficrespow);
       printf("\n#model=  1      +     age ");
       fprintf(ficlog,"\n#model=  1      +     age ");
       if(nagesqr==1){
           printf("  + age*age  ");
           fprintf(ficlog,"  + age*age  ");
       }
       for(j=1;j <=ncovmodel-2;j++){
         if(Typevar[j]==0) {
           printf("  +      V%d  ",Tvar[j]);
           fprintf(ficlog,"  +      V%d  ",Tvar[j]);
         }else if(Typevar[j]==1) {
           printf("  +    V%d*age ",Tvar[j]);
           fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
         }else if(Typevar[j]==2) {
           printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
         }
       }
     printf("\n");      printf("\n");
   /*     printf("12   47.0114589    0.0154322   33.2424412    0.3279905    2.3731903  */
   /* 13  -21.5392400    0.1118147    1.2680506    1.2973408   -1.0663662  */
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
     fprintf(ficrespow,"\n");fflush(ficrespow);      for(i=1,jk=1; i <=nlstate; i++){
     if(*iter <=3){        for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
         }
       }
       if(*iter <=3 && *iter >1){
       tml = *localtime(&rcurr_time);        tml = *localtime(&rcurr_time);
       strcpy(strcurr,asctime(&tml));        strcpy(strcurr,asctime(&tml));
       rforecast_time=rcurr_time;         rforecast_time=rcurr_time; 
Line 1639  void powell(double p[], double **xi, int Line 2308  void powell(double p[], double **xi, int
         strcpy(strfor,asctime(&forecast_time));          strcpy(strfor,asctime(&forecast_time));
         itmp = strlen(strfor);          itmp = strlen(strfor);
         if(strfor[itmp-1]=='\n')          if(strfor[itmp-1]=='\n')
         strfor[itmp-1]='\0';            strfor[itmp-1]='\0';
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       }        }
Line 1648  void powell(double p[], double **xi, int Line 2317  void powell(double p[], double **xi, int
       for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
       fptt=(*fret);         fptt=(*fret); 
 #ifdef DEBUG  #ifdef DEBUG
           printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 #endif  #endif
           printf("%d",i);fflush(stdout); /* print direction (parameter) i */        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
       fprintf(ficlog,"%d",i);fflush(ficlog);        fprintf(ficlog,"%d",i);fflush(ficlog);
       linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input. Outputs are fret(new point p) p is updated and xit rescaled */  #ifdef LINMINORIGINAL
       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions         linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
                                        because that direction will be replaced unless the gain del is small  #else
                                       in comparison with the 'probable' gain, mu^2, with the last average direction.        linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
                                       Unless the n directions are conjugate some gain in the determinant may be obtained                          flatdir[i]=flat; /* Function is vanishing in that direction i */
                                       with the new direction.  #endif
                                       */                          /* Outputs are fret(new point p) p is updated and xit rescaled */
         del=fabs(fptt-(*fret));         if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
         ibig=i;                                   /* because that direction will be replaced unless the gain del is small */
                                   /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
                                   /* Unless the n directions are conjugate some gain in the determinant may be obtained */
                                   /* with the new direction. */
                                   del=fabs(fptt-(*fret)); 
                                   ibig=i; 
       }         } 
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %.12e",i,(*fret));        printf("%d %.12e",i,(*fret));
       fprintf(ficlog,"%d %.12e",i,(*fret));        fprintf(ficlog,"%d %.12e",i,(*fret));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);                                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         printf(" x(%d)=%.12e",j,xit[j]);                                  printf(" x(%d)=%.12e",j,xit[j]);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);                                  fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       for(j=1;j<=n;j++) {        for(j=1;j<=n;j++) {
         printf(" p(%d)=%.12e",j,p[j]);                                  printf(" p(%d)=%.12e",j,p[j]);
         fprintf(ficlog," p(%d)=%.12e",j,p[j]);                                  fprintf(ficlog," p(%d)=%.12e",j,p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
 #endif  #endif
     } /* end loop on each direction i */      } /* end loop on each direction i */
     /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */       /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
     /* But p and xit have been updated at the end of linmin and do not produce *fret any more! */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
     /* New value of last point Pn is not computed, P(n-1) */      /* New value of last point Pn is not computed, P(n-1) */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */        for(j=1;j<=n;j++) {
                                   if(flatdir[j] >0){
                                           printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                                           fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                                   }
                                   /* printf("\n"); */
                                   /* fprintf(ficlog,"\n"); */
                           }
       /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */
       if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */
         /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
         /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
         /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
         /* decreased of more than 3.84  */
         /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
         /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
         /* By adding 10 parameters more the gain should be 18.31 */
                           
         /* Starting the program with initial values given by a former maximization will simply change */
         /* the scales of the directions and the directions, because the are reset to canonical directions */
         /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
         /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
 #ifdef DEBUG  #ifdef DEBUG
       int k[2],l;        int k[2],l;
       k[0]=1;        k[0]=1;
Line 1706  void powell(double p[], double **xi, int Line 2401  void powell(double p[], double **xi, int
       }        }
 #endif  #endif
   
   #ifdef LINMINORIGINAL
   #else
         free_ivector(flatdir,1,n); 
   #endif
       free_vector(xit,1,n);         free_vector(xit,1,n); 
       free_vector(xits,1,n);         free_vector(xits,1,n); 
       free_vector(ptt,1,n);         free_vector(ptt,1,n); 
       free_vector(pt,1,n);         free_vector(pt,1,n); 
       return;         return; 
     }       } /* enough precision */ 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
       ptt[j]=2.0*p[j]-pt[j];         ptt[j]=2.0*p[j]-pt[j]; 
       xit[j]=p[j]-pt[j];         xit[j]=p[j]-pt[j]; 
       pt[j]=p[j];         pt[j]=p[j]; 
     }       } 
     fptt=(*func)(ptt); /* f_3 */      fptt=(*func)(ptt); /* f_3 */
   #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
                   if (*iter <=4) {
   #else
   #endif
   #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
   #else
     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   #endif
       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       /* From x1 (P0) distance of x2 is at h and x3 is 2h */        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
       /* Let f"(x2) be the 2nd derivative equal everywhere.  */        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
         /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
         /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
         /*  Even if f3 <f1, directest can be negative and t >0 */
         /* mu² and del² are equal when f3=f1 */
                           /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
                           /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
                           /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
                           /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
 #ifdef NRCORIGINAL  #ifdef NRCORIGINAL
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
 #else  #else
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
       t= t- del*SQR(fp-fptt);        t= t- del*SQR(fp-fptt);
 #endif  #endif
       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
 #ifdef DEBUG  #ifdef DEBUG
       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
Line 1749  void powell(double p[], double **xi, int Line 2462  void powell(double p[], double **xi, int
       if (t < 0.0) { /* Then we use it for new direction */        if (t < 0.0) { /* Then we use it for new direction */
 #else  #else
       if (directest*t < 0.0) { /* Contradiction between both tests */        if (directest*t < 0.0) { /* Contradiction between both tests */
       printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);                                  printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
       printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);          fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
       fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     }         } 
       if (directest < 0.0) { /* Then we use it for new direction */        if (directest < 0.0) { /* Then we use it for new direction */
 #endif  #endif
   #ifdef DEBUGLINMIN
           printf("Before linmin in direction P%d-P0\n",n);
           for (j=1;j<=n;j++) {
             printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             if(j % ncovmodel == 0){
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
   #endif
   #ifdef LINMINORIGINAL
         linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
   #else
           linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
           flatdir[i]=flat; /* Function is vanishing in that direction i */
   #endif
           
   #ifdef DEBUGLINMIN
           for (j=1;j<=n;j++) { 
             printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             if(j % ncovmodel == 0){
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
   #endif
         for (j=1;j<=n;j++) {           for (j=1;j<=n;j++) { 
           xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
           xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
         }          }
   #ifdef LINMINORIGINAL
   #else
           for (j=1, flatd=0;j<=n;j++) {
             if(flatdir[j]>0)
               flatd++;
           }
           if(flatd >0){
             printf("%d flat directions: ",flatd);
             fprintf(ficlog,"%d flat directions :",flatd);
             for (j=1;j<=n;j++) { 
               if(flatdir[j]>0){
                 printf("%d ",j);
                 fprintf(ficlog,"%d ",j);
               }
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
   #endif
         printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(j=1;j<=n;j++){          for(j=1;j<=n;j++){
           printf(" %.12e",xit[j]);            printf(" %lf",xit[j]);
           fprintf(ficlog," %.12e",xit[j]);            fprintf(ficlog," %lf",xit[j]);
         }          }
         printf("\n");          printf("\n");
         fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
 #endif  #endif
       } /* end of t negative */        } /* end of t or directest negative */
     } /* end if (fptt < fp)  */  #ifdef POWELLNOF3INFF1TEST
   }   #else
         } /* end if (fptt < fp)  */
   #endif
   #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
       } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
   #else
   #endif
                   } /* loop iteration */ 
 }   } 
     
 /**** Prevalence limit (stable or period prevalence)  ****************/  /**** Prevalence limit (stable or period prevalence)  ****************/
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  
       
     double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
     {
       /**< Computes the prevalence limit in each live state at age x and for covariate combination ij 
        *   (and selected quantitative values in nres)
        *  by left multiplying the unit
        *  matrix by transitions matrix until convergence is reached with precision ftolpl 
        * Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I
        * Wx is row vector: population in state 1, population in state 2, population dead
        * or prevalence in state 1, prevalence in state 2, 0
        * newm is the matrix after multiplications, its rows are identical at a factor.
        * Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl.
        * Output is prlim.
        * Initial matrix pimij 
        */
     /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
     /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
     /*  0,                   0                  , 1} */
     /*
      * and after some iteration: */
     /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
     /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
     /*  0,                   0                  , 1} */
     /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
     /* {0.51571254859325999, 0.4842874514067399, */
     /*  0.51326036147820708, 0.48673963852179264} */
     /* If we start from prlim again, prlim tends to a constant matrix */
       
   int i, ii,j,k;    int i, ii,j,k;
   double min, max, maxmin, maxmax,sumnew=0.;    double *min, *max, *meandiff, maxmax,sumnew=0.;
   /* double **matprod2(); */ /* test */    /* double **matprod2(); */ /* test */
   double **out, cov[NCOVMAX+1], **pmij();    double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
   double **newm;    double **newm;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
       int ncvloop=0;
     int first=0;
     
     min=vector(1,nlstate);
     max=vector(1,nlstate);
     meandiff=vector(1,nlstate);
   
           /* Starting with matrix unity */
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
Line 1801  double **prevalim(double **prlim, int nl Line 2596  double **prevalim(double **prlim, int nl
   cov[1]=1.;    cov[1]=1.;
       
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       ncvloop++;
     newm=savm;      newm=savm;
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
     cov[2]=agefin;      cov[2]=agefin;
     if(nagesqr==1)      if(nagesqr==1)
       cov[3]= agefin*agefin;;        cov[3]= agefin*agefin;;
     for (k=1; k<=cptcovn;k++) {      for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];                          /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
     }        /* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
     /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */      }
     for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];      for (k=1; k<=nsq;k++) { /* For single varying covariates only */
     for (k=1; k<=cptcovprod;k++) /* Useless */                          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
             /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
       }
       for (k=1; k<=cptcovage;k++){  /* For product with age */
         if(Dummy[Tvar[Tage[k]]]){
           cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         } else{
           cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
         }
         /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
       }
       for (k=1; k<=cptcovprod;k++){ /* For product without age */
         /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
         if(Dummy[Tvard[k][1]==0]){
           if(Dummy[Tvard[k][2]==0]){
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
           }else{
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];
           }
         }else{
           if(Dummy[Tvard[k][2]==0]){
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];
           }else{
             cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];
           }
         }
       }
     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
                   /* age and covariate values of ij are in 'cov' */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
           
     savm=oldm;      savm=oldm;
     oldm=newm;      oldm=newm;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){      for(j=1; j<=nlstate; j++){
       min=1.;        max[j]=0.;
       max=0.;        min[j]=1.;
       for(i=1; i<=nlstate; i++) {      }
         sumnew=0;      for(i=1;i<=nlstate;i++){
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        sumnew=0;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for(j=1; j<=nlstate; j++){ 
         prlim[i][j]= newm[i][j]/(1-sumnew);          prlim[i][j]= newm[i][j]/(1-sumnew);
         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/          max[j]=FMAX(max[j],prlim[i][j]);
         max=FMAX(max,prlim[i][j]);          min[j]=FMIN(min[j],prlim[i][j]);
         min=FMIN(min,prlim[i][j]);  
       }        }
       maxmin=max-min;      }
       maxmax=FMAX(maxmax,maxmin);  
       maxmax=0.;
       for(j=1; j<=nlstate; j++){
         meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
         maxmax=FMAX(maxmax,meandiff[j]);
         /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
     } /* j loop */      } /* j loop */
       *ncvyear= (int)age- (int)agefin;
       /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
     if(maxmax < ftolpl){      if(maxmax < ftolpl){
         /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
         free_vector(min,1,nlstate);
         free_vector(max,1,nlstate);
         free_vector(meandiff,1,nlstate);
       return prlim;        return prlim;
     }      }
   } /* age loop */    } /* agefin loop */
       /* After some age loop it doesn't converge */
     if(!first){
       first=1;
       printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
     }
     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
   
     /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     free_vector(min,1,nlstate);
     free_vector(max,1,nlstate);
     free_vector(meandiff,1,nlstate);
     
   return prlim; /* should not reach here */    return prlim; /* should not reach here */
 }  }
   
   
    /**** Back Prevalence limit (stable or period prevalence)  ****************/
   
    /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
    /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
     double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres)
   {
     /* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit
        matrix by transitions matrix until convergence is reached with precision ftolpl */
     /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
     /* Wx is row vector: population in state 1, population in state 2, population dead */
     /* or prevalence in state 1, prevalence in state 2, 0 */
     /* newm is the matrix after multiplications, its rows are identical at a factor */
     /* Initial matrix pimij */
     /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
     /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
     /*  0,                   0                  , 1} */
     /*
      * and after some iteration: */
     /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
     /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
     /*  0,                   0                  , 1} */
     /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
     /* {0.51571254859325999, 0.4842874514067399, */
     /*  0.51326036147820708, 0.48673963852179264} */
     /* If we start from prlim again, prlim tends to a constant matrix */
   
     int i, ii,j,k;
     int first=0;
     double *min, *max, *meandiff, maxmax,sumnew=0.;
     /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **bmij();
     double **newm;
     double         **dnewm, **doldm, **dsavm;  /* for use */
     double         **oldm, **savm;  /* for use */
   
     double agefin, delaymax=200. ; /* 100 Max number of years to converge */
     int ncvloop=0;
     
     min=vector(1,nlstate);
     max=vector(1,nlstate);
     meandiff=vector(1,nlstate);
   
     dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
     oldm=oldms; savm=savms;
     
     /* Starting with matrix unity */
     for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
     
     cov[1]=1.;
     
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
     /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
     /* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
     for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */
       ncvloop++;
       newm=savm; /* oldm should be kept from previous iteration or unity at start */
                   /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
       /* Covariates have to be included here again */
       cov[2]=agefin;
       if(nagesqr==1)
         cov[3]= agefin*agefin;;
       for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
                           /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
         cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
         /* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
       }
       /* for (k=1; k<=cptcovn;k++) { */
       /*   /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */
       /*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
       /*   /\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\/ */
       /* } */
       for (k=1; k<=nsq;k++) { /* For single varying covariates only */
                           /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
         cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
         /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
       }
       /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; */
       /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       /*   /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\/ */
       /*   cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */
       for (k=1; k<=cptcovage;k++){  /* For product with age */
         if(Dummy[Tvar[Tage[k]]]){
           cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         } else{
           cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
         }
         /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
       }
       for (k=1; k<=cptcovprod;k++){ /* For product without age */
         /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
         if(Dummy[Tvard[k][1]==0]){
           if(Dummy[Tvard[k][2]==0]){
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
           }else{
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];
           }
         }else{
           if(Dummy[Tvard[k][2]==0]){
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];
           }else{
             cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];
           }
         }
       }
       
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
                   /* ij should be linked to the correct index of cov */
                   /* age and covariate values ij are in 'cov', but we need to pass
                    * ij for the observed prevalence at age and status and covariate
                    * number:  prevacurrent[(int)agefin][ii][ij]
                    */
       /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
       /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
       /* if((int)age == 86 || (int)age == 87){ */
       /*   printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */
       /*   for(i=1; i<=nlstate+ndeath; i++) { */
       /*  printf("%d newm= ",i); */
       /*  for(j=1;j<=nlstate+ndeath;j++) { */
       /*    printf("%f ",newm[i][j]); */
       /*  } */
       /*  printf("oldm * "); */
       /*  for(j=1;j<=nlstate+ndeath;j++) { */
       /*    printf("%f ",oldm[i][j]); */
       /*  } */
       /*  printf(" bmmij "); */
       /*  for(j=1;j<=nlstate+ndeath;j++) { */
       /*    printf("%f ",pmmij[i][j]); */
       /*  } */
       /*  printf("\n"); */
       /*   } */
       /* } */
       savm=oldm;
       oldm=newm;
   
       for(j=1; j<=nlstate; j++){
         max[j]=0.;
         min[j]=1.;
       }
       for(j=1; j<=nlstate; j++){ 
         for(i=1;i<=nlstate;i++){
           /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
           bprlim[i][j]= newm[i][j];
           max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
           min[i]=FMIN(min[i],bprlim[i][j]);
         }
       }
                   
       maxmax=0.;
       for(i=1; i<=nlstate; i++){
         meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */
         maxmax=FMAX(maxmax,meandiff[i]);
         /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
       } /* i loop */
       *ncvyear= -( (int)age- (int)agefin);
       /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
       if(maxmax < ftolpl){
         /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
         free_vector(min,1,nlstate);
         free_vector(max,1,nlstate);
         free_vector(meandiff,1,nlstate);
         return bprlim;
       }
     } /* agefin loop */
       /* After some age loop it doesn't converge */
     if(!first){
       first=1;
       printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\
   Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     }
     fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
   Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     free_vector(min,1,nlstate);
     free_vector(max,1,nlstate);
     free_vector(meandiff,1,nlstate);
     
     return bprlim; /* should not reach here */
   }
   
 /*************** transition probabilities ***************/   /*************** transition probabilities ***************/ 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   /* According to parameters values stored in x and the covariate's values stored in cov,    /* According to parameters values stored in x and the covariate's values stored in cov,
      computes the probability to be observed in state j being in state i by appying the       computes the probability to be observed in state j (after stepm years) being in state i by appying the
      model to the ncovmodel covariates (including constant and age).       model to the ncovmodel covariates (including constant and age).
      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
      and, according on how parameters are entered, the position of the coefficient xij(nc) of the       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
Line 1861  double **pmij(double **ps, double *cov, Line 2897  double **pmij(double **ps, double *cov,
      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
      Outputs ps[i][j] the probability to be observed in j being in j according to       Outputs ps[i][j] or probability to be observed in j being in i according to
      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
        Sum on j ps[i][j] should equal to 1.
   */    */
   double s1, lnpijopii;    double s1, lnpijopii;
   /*double t34;*/    /*double t34;*/
   int i,j, nc, ii, jj;    int i,j, nc, ii, jj;
   
     for(i=1; i<= nlstate; i++){    for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){      for(j=1; j<i;j++){
         for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           /*lnpijopii += param[i][j][nc]*cov[nc];*/          /*lnpijopii += param[i][j][nc]*cov[nc];*/
           lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }        }
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       }      }
       for(j=i+1; j<=nlstate+ndeath;j++){      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }        }
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       }  
     }      }
         }
     for(i=1; i<= nlstate; i++){    
       s1=0;    for(i=1; i<= nlstate; i++){
       for(j=1; j<i; j++){      s1=0;
         s1+=exp(ps[i][j]); /* In fact sums pij/pii */      for(j=1; j<i; j++){
         /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       }        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(j=i+1; j<=nlstate+ndeath; j++){      }
         s1+=exp(ps[i][j]); /* In fact sums pij/pii */      for(j=i+1; j<=nlstate+ndeath; j++){
         /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       }        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */      }
       ps[i][i]=1./(s1+1.);      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       /* Computing other pijs */      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)      /* Computing other pijs */
         ps[i][j]= exp(ps[i][j])*ps[i][i];      for(j=1; j<i; j++)
       for(j=i+1; j<=nlstate+ndeath; j++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
         ps[i][j]= exp(ps[i][j])*ps[i][i];      for(j=i+1; j<=nlstate+ndeath; j++)
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        ps[i][j]= exp(ps[i][j])*ps[i][i];
     } /* end i */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         } /* end i */
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    
       for(jj=1; jj<= nlstate+ndeath; jj++){    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         ps[ii][jj]=0;      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][ii]=1;        ps[ii][jj]=0;
       }        ps[ii][ii]=1;
     }      }
         }
         
     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */    
     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     /*   } */    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     /*   printf("\n "); */    /*   } */
     /*   printf("\n "); */
     /* } */
     /* printf("\n ");printf("%lf ",cov[2]);*/
     /*
       for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   goto end;*/
     return ps; /* Pointer is unchanged since its call */
   }
   
   /*************** backward transition probabilities ***************/ 
   
    /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
   /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
    double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
   {
     /* Computes the backward probability at age agefin and covariate combination ij. In fact cov is already filled and x too.
      * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij.
      */
     int i, ii, j,k;
     
     double **out, **pmij();
     double sumnew=0.;
     double agefin;
     double k3=0.; /* constant of the w_x diagonal matrixe (in order for B to sum to 1 even for death state) */
     double **dnewm, **dsavm, **doldm;
     double **bbmij;
     
     doldm=ddoldms; /* global pointers */
     dnewm=ddnewms;
     dsavm=ddsavms;
     
     agefin=cov[2];
     /* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */
     /* bmij *//* age is cov[2], ij is included in cov, but we need for
        the observed prevalence (with this covariate ij) at beginning of transition */
     /* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   
     /* P_x */
     pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm */
     /* outputs pmmij which is a stochastic matrix in row */
   
     /* Diag(w_x) */
     /* Problem with prevacurrent which can be zero */
     sumnew=0.;
     /*for (ii=1;ii<=nlstate+ndeath;ii++){*/
     for (ii=1;ii<=nlstate;ii++){ /* Only on live states */
       /* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]);  */
       sumnew+=prevacurrent[(int)agefin][ii][ij];
     }
     if(sumnew >0.01){  /* At least some value in the prevalence */
       for (ii=1;ii<=nlstate+ndeath;ii++){
         for (j=1;j<=nlstate+ndeath;j++)
           doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0);
       }
     }else{
       for (ii=1;ii<=nlstate+ndeath;ii++){
         for (j=1;j<=nlstate+ndeath;j++)
         doldm[ii][j]=(ii==j ? 1./nlstate : 0.0);
       }
       /* if(sumnew <0.9){ */
       /*   printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */
     /* } */      /* } */
     /* printf("\n ");printf("%lf ",cov[2]);*/    }
     /*    k3=0.0;  /* We put the last diagonal to 0 */
       for(i=1; i<= npar; i++) printf("%f ",x[i]);    for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){
       goto end;*/        doldm[ii][ii]= k3;
     return ps;    }
     /* End doldm, At the end doldm is diag[(w_i)] */
     
     /* left Product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm) */
     bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* Bug Valgrind */
   
     /* Diag(Sum_i w^i_x p^ij_x */
     /* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */
     for (j=1;j<=nlstate+ndeath;j++){
       sumnew=0.;
       for (ii=1;ii<=nlstate;ii++){
         /* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */
         sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */
       } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
       for (ii=1;ii<=nlstate+ndeath;ii++){
           /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
           /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
           /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
           /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
           /* }else */
         dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0);
       } /*End ii */
     } /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */
   
     ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* Bug Valgrind */
     /* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
     /* end bmij */
     return ps; /*pointer is unchanged */
   }
   /*************** transition probabilities ***************/ 
   
   double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
     /* According to parameters values stored in x and the covariate's values stored in cov,
        computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        ncth covariate in the global vector x is given by the formula:
        j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
     double s1, lnpijopii;
     /*double t34;*/
     int i,j, nc, ii, jj;
   
     for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){
         for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           /*lnpijopii += param[i][j][nc]*cov[nc];*/
           lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       }
       for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       }
     }
     
     for(i=1; i<= nlstate; i++){
       s1=0;
       for(j=1; j<i; j++){
         s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       }
       for(j=i+1; j<=nlstate+ndeath; j++){
         s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       }
       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       ps[i][i]=1./(s1+1.);
       /* Computing other pijs */
       for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
     
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
         ps[ii][ii]=1;
       }
     }
     /* Added for backcast */ /* Transposed matrix too */
     for(jj=1; jj<= nlstate+ndeath; jj++){
       s1=0.;
       for(ii=1; ii<= nlstate+ndeath; ii++){
         s1+=ps[ii][jj];
       }
       for(ii=1; ii<= nlstate; ii++){
         ps[ii][jj]=ps[ii][jj]/s1;
       }
     }
     /* Transposition */
     for(jj=1; jj<= nlstate+ndeath; jj++){
       for(ii=jj; ii<= nlstate+ndeath; ii++){
         s1=ps[ii][jj];
         ps[ii][jj]=ps[jj][ii];
         ps[jj][ii]=s1;
       }
     }
     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     /*   } */
     /*   printf("\n "); */
     /* } */
     /* printf("\n ");printf("%lf ",cov[2]);*/
     /*
       for(i=1; i<= npar; i++) printf("%f ",x[i]);
       goto end;*/
     return ps;
 }  }
   
   
 /**************** Product of 2 matrices ******************/  /**************** Product of 2 matrices ******************/
   
 double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
Line 1951  double **matprod2(double **out, double * Line 3173  double **matprod2(double **out, double *
   
 /************* Higher Matrix Product ***************/  /************* Higher Matrix Product ***************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
 {  {
   /* Computes the transition matrix starting at age 'age' over     /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over 
      'nhstepm*hstepm*stepm' months (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
      nhstepm*hstepm matrices.        nhstepm*hstepm matrices. 
Line 1969  double ***hpxij(double ***po, int nhstep Line 3191  double ***hpxij(double ***po, int nhstep
   double **out, cov[NCOVMAX+1];    double **out, cov[NCOVMAX+1];
   double **newm;    double **newm;
   double agexact;    double agexact;
     double agebegin, ageend;
   
   /* Hstepm could be zero and should return the unit matrix */    /* Hstepm could be zero and should return the unit matrix */
   for (i=1;i<=nlstate+ndeath;i++)    for (i=1;i<=nlstate+ndeath;i++)
Line 1982  double ***hpxij(double ***po, int nhstep Line 3205  double ***hpxij(double ***po, int nhstep
       newm=savm;        newm=savm;
       /* Covariates have to be included here again */        /* Covariates have to be included here again */
       cov[1]=1.;        cov[1]=1.;
       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
       cov[2]=agexact;        cov[2]=agexact;
       if(nagesqr==1)        if(nagesqr==1)
         cov[3]= agexact*agexact;          cov[3]= agexact*agexact;
       for (k=1; k<=cptcovn;k++)         for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];                          /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
       for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */          cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
         /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */          /* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];        }
       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */        for (k=1; k<=nsq;k++) { /* For single varying covariates only */
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
           cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
           /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
         }
         for (k=1; k<=cptcovage;k++){
           if(Dummy[Tvar[Tage[k]]]){
             cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           } else{
             cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
           }
           /* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
         }
         for (k=1; k<=cptcovprod;k++){ /*  */
           /* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
         }
         /* for (k=1; k<=cptcovn;k++)  */
         /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
         /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
         /*        cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
         /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
         /*        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
         
         
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                           /* right multiplication of oldm by the current matrix */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         /* if((int)age == 70){ */
         /*        printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
         /*        for(i=1; i<=nlstate+ndeath; i++) { */
         /*          printf("%d pmmij ",i); */
         /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",pmmij[i][j]); */
         /*          } */
         /*          printf(" oldm "); */
         /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",oldm[i][j]); */
         /*          } */
         /*          printf("\n"); */
         /*        } */
         /* } */
       savm=oldm;        savm=oldm;
       oldm=newm;        oldm=newm;
     }      }
Line 2009  double ***hpxij(double ***po, int nhstep Line 3268  double ***hpxij(double ***po, int nhstep
       }        }
     /*printf("h=%d ",h);*/      /*printf("h=%d ",h);*/
   } /* end h */    } /* end h */
 /*     printf("\n H=%d \n",h); */    /*     printf("\n H=%d \n",h); */
     return po;
   }
   
   /************* Higher Back Matrix Product ***************/
   /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
   double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres )
   {
     /* For a combination of dummy covariate ij, computes the transition matrix starting at age 'age' over
        'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
        nhstepm*hstepm matrices.
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step
        (typically every 2 years instead of every month which is too big
        for the memory).
        Model is determined by parameters x and covariates have to be
        included manually here. Then we use a call to bmij(x and cov)
        The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output
     */
   
     int i, j, d, h, k;
     double **out, cov[NCOVMAX+1], **bmij();
     double **newm, ***newmm;
     double agexact;
     double agebegin, ageend;
     double **oldm, **savm;
   
     newmm=po; /* To be saved */
     oldm=oldms;savm=savms; /* Global pointers */
     /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
         newm=savm;
         /* Covariates have to be included here again */
         cov[1]=1.;
         agexact=age-( (h-1)*hstepm + (d)  )*stepm/YEARM; /* age just before transition, d or d-1? */
         /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
         cov[2]=agexact;
         if(nagesqr==1)
           cov[3]= agexact*agexact;
         for (k=1; k<=cptcovn;k++){
         /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
         /* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */
           cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
           /* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
         }
         for (k=1; k<=nsq;k++) { /* For single varying covariates only */
           /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
           cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
           /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
         }
         for (k=1; k<=cptcovage;k++){ /* Should start at cptcovn+1 */
           if(Dummy[Tvar[Tage[k]]]){
             cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           } else{
             cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
           }
           /* printf("hBxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
         }
         for (k=1; k<=cptcovprod;k++){ /* Useless because included in cptcovn */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
         }                 
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   
         /* Careful transposed matrix */
         /* age is in cov[2], prevacurrent at beginning of transition. */
         /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
         /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
         out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
                      1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         /* if((int)age == 70){ */
         /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
         /*        for(i=1; i<=nlstate+ndeath; i++) { */
         /*          printf("%d pmmij ",i); */
         /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",pmmij[i][j]); */
         /*          } */
         /*          printf(" oldm "); */
         /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",oldm[i][j]); */
         /*          } */
         /*          printf("\n"); */
         /*        } */
         /* } */
         savm=oldm;
         oldm=newm;
       }
       for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
           /* if(h==nhstepm) */
           /*   printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */
         }
       /* printf("h=%d %.1f ",h, agexact); */
     } /* end h */
     /* printf("\n H=%d nhs=%d \n",h, nhstepm); */
   return po;    return po;
 }  }
   
   
 #ifdef NLOPT  #ifdef NLOPT
   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
   double fret;    double fret;
Line 2037  double ***hpxij(double ***po, int nhstep Line 3399  double ***hpxij(double ***po, int nhstep
 double func( double *x)  double func( double *x)
 {  {
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk;
     int ioffset=0;
   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double **out;    double **out;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   int s1, s2;    int s1, s2;
     int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
   double bbh, survp;    double bbh, survp;
   long ipmx;    long ipmx;
   double agexact;    double agexact;
Line 2057  double func( double *x) Line 3420  double func( double *x)
   cov[1]=1.;    cov[1]=1.;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     ioffset=0;
   if(mle==1){    if(mle==1){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /* Computes the values of the ncovmodel covariates of the model        /* Computes the values of the ncovmodel covariates of the model
          depending if the covariates are fixed or variying (age dependent) and stores them in cov[]           depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
          Then computes with function pmij which return a matrix p[i][j] giving the elementary probability           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
          to be observed in j being in i according to the model.           to be observed in j being in i according to the model.
        */        */
       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */        ioffset=2+nagesqr ;
           cov[2+nagesqr+k]=covar[Tvar[k]][i];     /* Fixed */
         for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
           cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
       }        }
       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4]         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
          is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
          has been calculated etc */           has been calculated etc */
         /* For an individual i, wav[i] gives the number of effective waves */
         /* We compute the contribution to Likelihood of each effective transition
            mw[mi][i] is real wave of the mi th effectve wave */
         /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
            s2=s[mw[mi+1][i]][i];
            And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
            But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
            meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
         */
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
             /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */
             cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
           }
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
Line 2082  double func( double *x) Line 3460  double func( double *x)
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           cov[2]=agexact;            cov[2]=agexact;
           if(nagesqr==1)            if(nagesqr==1)
             cov[3]= agexact*agexact;              cov[3]= agexact*agexact;  /* Should be changed here */
           for (kk=1; kk<=cptcovage;kk++) {            for (kk=1; kk<=cptcovage;kk++) {
             if(!FixedV[Tvar[Tage[kk]]])
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
             else
               cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
           }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;            savm=oldm;
           oldm=newm;            oldm=newm;
         } /* end mult */          } /* end mult */
                 
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         /* But now since version 0.9 we anticipate for bias at large stepm.          /* But now since version 0.9 we anticipate for bias at large stepm.
          * If stepm is larger than one month (smallest stepm) and if the exact delay            * If stepm is larger than one month (smallest stepm) and if the exact delay 
Line 2100  double func( double *x) Line 3481  double func( double *x)
          * we keep into memory the bias bh[mi][i] and also the previous matrix product           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
          * probability in order to take into account the bias as a fraction of the way           * probability in order to take into account the bias as a fraction of the way
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies                                   * from savm to out if bh is negative or even beyond if bh is positive. bh varies
          * -stepm/2 to stepm/2 .                                   * -stepm/2 to stepm/2 .
          * For stepm=1 the results are the same as for previous versions of Imach.                                   * For stepm=1 the results are the same as for previous versions of Imach.
          * For stepm > 1 the results are less biased than in previous versions.                                    * For stepm > 1 the results are less biased than in previous versions. 
          */                                   */
         s1=s[mw[mi][i]][i];          s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;           bbh=(double)bh[mi][i]/(double)stepm; 
Line 2119  double func( double *x) Line 3500  double func( double *x)
              which is also equal to probability to die before dh                which is also equal to probability to die before dh 
              minus probability to die before dh-stepm .                minus probability to die before dh-stepm . 
              In version up to 0.92 likelihood was computed               In version up to 0.92 likelihood was computed
         as if date of death was unknown. Death was treated as any other               as if date of death was unknown. Death was treated as any other
         health state: the date of the interview describes the actual state               health state: the date of the interview describes the actual state
         and not the date of a change in health state. The former idea was               and not the date of a change in health state. The former idea was
         to consider that at each interview the state was recorded               to consider that at each interview the state was recorded
         (healthy, disable or death) and IMaCh was corrected; but when we               (healthy, disable or death) and IMaCh was corrected; but when we
         introduced the exact date of death then we should have modified               introduced the exact date of death then we should have modified
         the contribution of an exact death to the likelihood. This new               the contribution of an exact death to the likelihood. This new
         contribution is smaller and very dependent of the step unit               contribution is smaller and very dependent of the step unit
         stepm. It is no more the probability to die between last interview               stepm. It is no more the probability to die between last interview
         and month of death but the probability to survive from last               and month of death but the probability to survive from last
         interview up to one month before death multiplied by the               interview up to one month before death multiplied by the
         probability to die within a month. Thanks to Chris               probability to die within a month. Thanks to Chris
         Jackson for correcting this bug.  Former versions increased               Jackson for correcting this bug.  Former versions increased
         mortality artificially. The bad side is that we add another loop               mortality artificially. The bad side is that we add another loop
         which slows down the processing. The difference can be up to 10%               which slows down the processing. The difference can be up to 10%
         lower mortality.               lower mortality.
             */
             /* If, at the beginning of the maximization mostly, the
                cumulative probability or probability to be dead is
                constant (ie = 1) over time d, the difference is equal to
                0.  out[s1][3] = savm[s1][3]: probability, being at state
                s1 at precedent wave, to be dead a month before current
                wave is equal to probability, being at state s1 at
                precedent wave, to be dead at mont of the current
                wave. Then the observed probability (that this person died)
                is null according to current estimated parameter. In fact,
                it should be very low but not zero otherwise the log go to
                infinity.
           */            */
         /* If, at the beginning of the maximization mostly, the  
            cumulative probability or probability to be dead is  
            constant (ie = 1) over time d, the difference is equal to  
            0.  out[s1][3] = savm[s1][3]: probability, being at state  
            s1 at precedent wave, to be dead a month before current  
            wave is equal to probability, being at state s1 at  
            precedent wave, to be dead at mont of the current  
            wave. Then the observed probability (that this person died)  
            is null according to current estimated parameter. In fact,  
            it should be very low but not zero otherwise the log go to  
            infinity.  
         */  
 /* #ifdef INFINITYORIGINAL */  /* #ifdef INFINITYORIGINAL */
 /*          lli=log(out[s1][s2] - savm[s1][s2]); */  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 /* #else */  /* #else */
Line 2156  double func( double *x) Line 3537  double func( double *x)
 /*        else */  /*        else */
 /*          lli=log(out[s1][s2] - savm[s1][s2]); */  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 /* #endif */  /* #endif */
             lli=log(out[s1][s2] - savm[s1][s2]);            lli=log(out[s1][s2] - savm[s1][s2]);
             
         } else if  (s2==-2) {          } else if  ( s2==-1 ) { /* alive */
           for (j=1,survp=0. ; j<=nlstate; j++)             for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           /*survp += out[s1][j]; */            /*survp += out[s1][j]; */
           lli= log(survp);            lli= log(survp);
         }          }
                   else if  (s2==-4) { 
         else if  (s2==-4) {   
           for (j=3,survp=0. ; j<=nlstate; j++)              for (j=3,survp=0. ; j<=nlstate; j++)  
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);             lli= log(survp); 
         }           } 
           else if  (s2==-5) { 
         else if  (s2==-5) {             for (j=1,survp=0. ; j<=2; j++)  
           for (j=1,survp=0. ; j<=2; j++)    
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);             lli= log(survp); 
         }           } 
           
         else{          else{
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
Line 2184  double func( double *x) Line 3562  double func( double *x)
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         /*if(lli ==000.0)*/          /*if(lli ==000.0)*/
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         ipmx +=1;          ipmx +=1;
         sw += weight[i];          sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /* if (lli < log(mytinydouble)){ */          /* if (lli < log(mytinydouble)){ */
Line 2288  double func( double *x) Line 3666  double func( double *x)
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         if( s2 > nlstate){           if( s2 > nlstate){ 
           lli=log(out[s1][s2] - savm[s1][s2]);            lli=log(out[s1][s2] - savm[s1][s2]);
           } else if  ( s2==-1 ) { /* alive */
             for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
             lli= log(survp);
         }else{          }else{
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
Line 2341  double func( double *x) Line 3723  double func( double *x)
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double funcone( double *x)  double funcone( double *x)
 {  {
   /* Same as likeli but slower because of a lot of printf and if */    /* Same as func but slower because of a lot of printf and if */
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk;
     int ioffset=0;
   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double **out;    double **out;
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   double llt;    double llt;
   int s1, s2;    int s1, s2;
     int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
   
   double bbh, survp;    double bbh, survp;
   double agexact;    double agexact;
     double agebegin, ageend;
   /*extern weight */    /*extern weight */
   /* We are differentiating ll according to initial status */    /* We are differentiating ll according to initial status */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
Line 2359  double funcone( double *x) Line 3745  double funcone( double *x)
   cov[1]=1.;    cov[1]=1.;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     ioffset=0;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];      /* ioffset=2+nagesqr+cptcovage; */
     for(mi=1; mi<= wav[i]-1; mi++){      ioffset=2+nagesqr;
       /* Fixed */
       /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
       /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
       for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
         cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
   /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
   /*    cov[2+6]=covar[Tvar[6]][i];  */
   /*    cov[2+6]=covar[2][i]; V2  */
   /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
   /*    cov[2+7]=covar[Tvar[7]][i];  */
   /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
   /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
   /*    cov[2+9]=covar[Tvar[9]][i];  */
   /*    cov[2+9]=covar[1][i]; V1  */
       }
       /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
       /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
       /* } */
       /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
       /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
       /* } */
       
   
       for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
       /* Wave varying (but not age varying) */
         for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
           /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */
           cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
         }
         /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */
         /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */
         /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */
         /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */
         /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */
         /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */
         /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
         /*        iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
         /*        /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
         /*        cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
         /* } */
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (ii=1;ii<=nlstate+ndeath;ii++)
         for (j=1;j<=nlstate+ndeath;j++){          for (j=1;j<=nlstate+ndeath;j++){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           savm[ii][j]=(ii==j ? 1.0 : 0.0);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
       for(d=0; d<dh[mi][i]; d++){        
         agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
         ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
         for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
         /* for(d=0; d<=0; d++){  /\* Delay between two effective waves Only one matrix to speed up*\/ */
           /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             and mw[mi+1][i]. dh depends on stepm.*/
         newm=savm;          newm=savm;
         agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;  /* Here d is needed */
         cov[2]=agexact;          cov[2]=agexact;
         if(nagesqr==1)          if(nagesqr==1)
           cov[3]= agexact*agexact;            cov[3]= agexact*agexact;
         for (kk=1; kk<=cptcovage;kk++) {          for (kk=1; kk<=cptcovage;kk++) {
           cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;            if(!FixedV[Tvar[Tage[kk]]])
               cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             else
               cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
         }          }
           /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
         /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
Line 2389  double funcone( double *x) Line 3824  double funcone( double *x)
               
       s1=s[mw[mi][i]][i];        s1=s[mw[mi][i]][i];
       s2=s[mw[mi+1][i]][i];        s2=s[mw[mi+1][i]][i];
         /* if(s2==-1){ */
         /*        printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */
         /*        /\* exit(1); *\/ */
         /* } */
       bbh=(double)bh[mi][i]/(double)stepm;         bbh=(double)bh[mi][i]/(double)stepm; 
       /* bias is positive if real duration        /* bias is positive if real duration
        * is higher than the multiple of stepm and negative otherwise.         * is higher than the multiple of stepm and negative otherwise.
        */         */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         lli=log(out[s1][s2] - savm[s1][s2]);          lli=log(out[s1][s2] - savm[s1][s2]);
       } else if  (s2==-2) {        } else if  ( s2==-1 ) { /* alive */
         for (j=1,survp=0. ; j<=nlstate; j++)           for (j=1,survp=0. ; j<=nlstate; j++) 
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli= log(survp);          lli= log(survp);
Line 2416  double funcone( double *x) Line 3855  double funcone( double *x)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if(globpr){        if(globpr){
         fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\          fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
  %11.6f %11.6f %11.6f ", \   %11.6f %11.6f %11.6f ", \
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);                  2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2]));
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           llt +=ll[k]*gipmx/gsw;            llt +=ll[k]*gipmx/gsw;
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         }          }
         fprintf(ficresilk," %10.6f\n", -llt);          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
     } /* end of wave */          } /* end of wave */
   } /* end of individual */  } /* end of individual */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if(globpr==0){ /* First time we count the contributions and weights */  if(globpr==0){ /* First time we count the contributions and weights */
     gipmx=ipmx;          gipmx=ipmx;
     gsw=sw;          gsw=sw;
   }  }
   return -l;  return -l;
 }  }
   
   
Line 2450  void likelione(FILE *ficres,double p[], Line 3889  void likelione(FILE *ficres,double p[],
   int k;    int k;
   
   if(*globpri !=0){ /* Just counts and sums, no printings */    if(*globpri !=0){ /* Just counts and sums, no printings */
     strcpy(fileresilk,"ilk");       strcpy(fileresilk,"ILK_"); 
     strcat(fileresilk,fileres);      strcat(fileresilk,fileresu);
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresilk);        printf("Problem with resultfile: %s\n", fileresilk);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     }      }
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");      fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");      fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for(k=1; k<=nlstate; k++)       for(k=1; k<=nlstate; k++) 
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
Line 2467  void likelione(FILE *ficres,double p[], Line 3906  void likelione(FILE *ficres,double p[],
   *fretone=(*funcone)(p);    *fretone=(*funcone)(p);
   if(*globpri !=0){    if(*globpri !=0){
     fclose(ficresilk);      fclose(ficresilk);
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      if (mle ==0)
     fflush(fichtm);         fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
   }       else if(mle >=1)
         fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
       fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); 
         
       for (k=1; k<= nlstate ; k++) {
         fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
   <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
       }
       fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
   <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
   <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fflush(fichtm);
     }
   return;    return;
 }  }
   
Line 2500  void mlikeli(FILE *ficres,double p[], in Line 3953  void mlikeli(FILE *ficres,double p[], in
     for (j=1;j<=npar;j++)      for (j=1;j<=npar;j++)
       xi[i][j]=(i==j ? 1.0 : 0.0);        xi[i][j]=(i==j ? 1.0 : 0.0);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   strcpy(filerespow,"pow");     strcpy(filerespow,"POW_"); 
   strcat(filerespow,fileres);    strcat(filerespow,fileres);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", filerespow);      printf("Problem with resultfile: %s\n", filerespow);
Line 2543  void mlikeli(FILE *ficres,double p[], in Line 3996  void mlikeli(FILE *ficres,double p[], in
 #endif  #endif
   free_matrix(xi,1,npar,1,npar);    free_matrix(xi,1,npar,1,npar);
   fclose(ficrespow);    fclose(ficrespow);
   printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /**** Computes Hessian and covariance matrix ***/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 {  {
   double  **a,**y,*x,pd;    double  **a,**y,*x,pd;
   double **hess;    /* double **hess; */
   int i, j;    int i, j;
   int *indx;    int *indx;
   
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
   void lubksb(double **a, int npar, int *indx, double b[]) ;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double gompertz(double p[]);    double gompertz(double p[]);
   hess=matrix(1,npar,1,npar);    /* hess=matrix(1,npar,1,npar); */
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for (i=1;i<=npar;i++){    for (i=1;i<=npar;i++){
     printf("%d",i);fflush(stdout);      printf("%d-",i);fflush(stdout);
     fprintf(ficlog,"%d",i);fflush(ficlog);      fprintf(ficlog,"%d-",i);fflush(ficlog);
         
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           
Line 2579  void hesscov(double **matcov, double p[] Line 4032  void hesscov(double **matcov, double p[]
   for (i=1;i<=npar;i++) {    for (i=1;i<=npar;i++) {
     for (j=1;j<=npar;j++)  {      for (j=1;j<=npar;j++)  {
       if (j>i) {         if (j>i) { 
         printf(".%d%d",i,j);fflush(stdout);          printf(".%d-%d",i,j);fflush(stdout);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
         hess[i][j]=hessij(p,delti,i,j,func,npar);          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
                   
         hess[j][i]=hess[i][j];              hess[j][i]=hess[i][j];    
         /*printf(" %lf ",hess[i][j]);*/          /*printf(" %lf ",hess[i][j]);*/
Line 2615  void hesscov(double **matcov, double p[] Line 4068  void hesscov(double **matcov, double p[]
   fprintf(ficlog,"\n#Hessian matrix#\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
   for (i=1;i<=npar;i++) {     for (i=1;i<=npar;i++) { 
     for (j=1;j<=npar;j++) {       for (j=1;j<=npar;j++) { 
       printf("%.3e ",hess[i][j]);        printf("%.6e ",hess[i][j]);
       fprintf(ficlog,"%.3e ",hess[i][j]);        fprintf(ficlog,"%.6e ",hess[i][j]);
     }      }
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
   }    }
   
     /* printf("\n#Covariance matrix#\n"); */
     /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
     /* for (i=1;i<=npar;i++) {  */
     /*   for (j=1;j<=npar;j++) {  */
     /*     printf("%.6e ",matcov[i][j]); */
     /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
     /*   } */
     /*   printf("\n"); */
     /*   fprintf(ficlog,"\n"); */
     /* } */
   
   /* Recompute Inverse */    /* Recompute Inverse */
   for (i=1;i<=npar;i++)    /* for (i=1;i<=npar;i++) */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
   ludcmp(a,npar,indx,&pd);    /* ludcmp(a,npar,indx,&pd); */
   
     /*  printf("\n#Hessian matrix recomputed#\n"); */
   
     /* for (j=1;j<=npar;j++) { */
     /*   for (i=1;i<=npar;i++) x[i]=0; */
     /*   x[j]=1; */
     /*   lubksb(a,npar,indx,x); */
     /*   for (i=1;i<=npar;i++){  */
     /*     y[i][j]=x[i]; */
     /*     printf("%.3e ",y[i][j]); */
     /*     fprintf(ficlog,"%.3e ",y[i][j]); */
     /*   } */
     /*   printf("\n"); */
     /*   fprintf(ficlog,"\n"); */
     /* } */
   
     /* Verifying the inverse matrix */
   #ifdef DEBUGHESS
     y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
   
   /*  printf("\n#Hessian matrix recomputed#\n");     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
      fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
   
   for (j=1;j<=npar;j++) {    for (j=1;j<=npar;j++) {
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){       for (i=1;i<=npar;i++){ 
       y[i][j]=x[i];        printf("%.2f ",y[i][j]);
       printf("%.3e ",y[i][j]);        fprintf(ficlog,"%.2f ",y[i][j]);
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }      }
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
   }    }
   */  #endif
   
   free_matrix(a,1,npar,1,npar);    free_matrix(a,1,npar,1,npar);
   free_matrix(y,1,npar,1,npar);    free_matrix(y,1,npar,1,npar);
   free_vector(x,1,npar);    free_vector(x,1,npar);
   free_ivector(indx,1,npar);    free_ivector(indx,1,npar);
   free_matrix(hess,1,npar,1,npar);    /* free_matrix(hess,1,npar,1,npar); */
   
   
 }  }
   
 /*************** hessian matrix ****************/  /*************** hessian matrix ****************/
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 {  { /* Around values of x, computes the function func and returns the scales delti and hessian */
   int i;    int i;
   int l=1, lmax=20;    int l=1, lmax=20;
   double k1,k2;    double k1,k2, res, fx;
   double p2[MAXPARM+1]; /* identical to x */    double p2[MAXPARM+1]; /* identical to x */
   double res;  
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double fx;  
   int k=0,kmax=10;    int k=0,kmax=10;
   double l1;    double l1;
   
Line 2677  double hessii(double x[], double delta, Line 4155  double hessii(double x[], double delta,
       p2[theta]=x[theta]-delt;        p2[theta]=x[theta]-delt;
       k2=func(p2)-fx;        k2=func(p2)-fx;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        /*res= (k1-2.0*fx+k2)/delt/delt; */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
               
 #ifdef DEBUGHESS  #ifdef DEBUGHESSII
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #endif  #endif
Line 2693  double hessii(double x[], double delta, Line 4171  double hessii(double x[], double delta,
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         delts=delt;          delts=delt;
       }        }
     }      } /* End loop k */
   }    }
   delti[theta]=delts;    delti[theta]=delts;
   return res;     return res; 
       
 }  }
   
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 {  {
   int i;    int i;
   int l=1, lmax=20;    int l=1, lmax=20;
   double k1,k2,k3,k4,res,fx;    double k1,k2,k3,k4,res,fx;
   double p2[MAXPARM+1];    double p2[MAXPARM+1];
   int k;    int k, kmax=1;
     double v1, v2, cv12, lc1, lc2;
   
     int firstime=0;
     
   fx=func(x);    fx=func(x);
   for (k=1; k<=2; k++) {    for (k=1; k<=kmax; k=k+10) {
     for (i=1;i<=npar;i++) p2[i]=x[i];      for (i=1;i<=npar;i++) p2[i]=x[i];
     p2[thetai]=x[thetai]+delti[thetai]/k;      p2[thetai]=x[thetai]+delti[thetai]*k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
     k1=func(p2)-fx;      k1=func(p2)-fx;
       
     p2[thetai]=x[thetai]+delti[thetai]/k;      p2[thetai]=x[thetai]+delti[thetai]*k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
     k2=func(p2)-fx;      k2=func(p2)-fx;
       
     p2[thetai]=x[thetai]-delti[thetai]/k;      p2[thetai]=x[thetai]-delti[thetai]*k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
     k3=func(p2)-fx;      k3=func(p2)-fx;
       
     p2[thetai]=x[thetai]-delti[thetai]/k;      p2[thetai]=x[thetai]-delti[thetai]*k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
     k4=func(p2)-fx;      k4=func(p2)-fx;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
 #ifdef DEBUG      if(k1*k2*k3*k4 <0.){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        firstime=1;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        kmax=kmax+10;
       }
       if(kmax >=10 || firstime ==1){
         printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
         fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
         printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }
   #ifdef DEBUGHESSIJ
       v1=hess[thetai][thetai];
       v2=hess[thetaj][thetaj];
       cv12=res;
       /* Computing eigen value of Hessian matrix */
       lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       if ((lc2 <0) || (lc1 <0) ){
         printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
         fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
         printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }
 #endif  #endif
   }    }
   return res;    return res;
 }  }
   
       /* Not done yet: Was supposed to fix if not exactly at the maximum */
   /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
   /* { */
   /*   int i; */
   /*   int l=1, lmax=20; */
   /*   double k1,k2,k3,k4,res,fx; */
   /*   double p2[MAXPARM+1]; */
   /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
   /*   int k=0,kmax=10; */
   /*   double l1; */
     
   /*   fx=func(x); */
   /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
   /*     l1=pow(10,l); */
   /*     delts=delt; */
   /*     for(k=1 ; k <kmax; k=k+1){ */
   /*       delt = delti*(l1*k); */
   /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
   /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   /*       k1=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   /*       k2=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   /*       k3=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   /*       k4=func(p2)-fx; */
   /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
   /* #ifdef DEBUGHESSIJ */
   /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   /* #endif */
   /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
   /*      k=kmax; */
   /*       } */
   /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
   /*      k=kmax; l=lmax*10; */
   /*       } */
   /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
   /*      delts=delt; */
   /*       } */
   /*     } /\* End loop k *\/ */
   /*   } */
   /*   delti[theta]=delts; */
   /*   return res;  */
   /* } */
   
   
 /************** Inverse of matrix **************/  /************** Inverse of matrix **************/
 void ludcmp(double **a, int n, int *indx, double *d)   void ludcmp(double **a, int n, int *indx, double *d) 
 {   { 
Line 2748  void ludcmp(double **a, int n, int *indx Line 4303  void ludcmp(double **a, int n, int *indx
     big=0.0;       big=0.0; 
     for (j=1;j<=n;j++)       for (j=1;j<=n;j++) 
       if ((temp=fabs(a[i][j])) > big) big=temp;         if ((temp=fabs(a[i][j])) > big) big=temp; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       if (big == 0.0){
         printf(" Singular Hessian matrix at row %d:\n",i);
         for (j=1;j<=n;j++) {
           printf(" a[%d][%d]=%f,",i,j,a[i][j]);
           fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]);
         }
         fflush(ficlog);
         fclose(ficlog);
         nrerror("Singular matrix in routine ludcmp"); 
       }
     vv[i]=1.0/big;       vv[i]=1.0/big; 
   }     } 
   for (j=1;j<=n;j++) {     for (j=1;j<=n;j++) { 
Line 2811  void lubksb(double **a, int n, int *indx Line 4375  void lubksb(double **a, int n, int *indx
   
 void pstamp(FILE *fichier)  void pstamp(FILE *fichier)
 {  {
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
 }  }
   
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])  
 {  /* Some frequencies */  /************ Frequencies ********************/
     void  freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
   int i, m, jk, j1, bool, z1,j;                    int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
                     int firstpass,  int lastpass, int stepm, int weightopt, char model[])
   {  /* Some frequencies as well as proposing some starting values */
     
     int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1;
     int iind=0, iage=0;
     int mi; /* Effective wave */
   int first;    int first;
   double ***freq; /* Frequencies */    double ***freq; /* Frequencies */
   double *pp, **prop;    double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb);
   char fileresp[FILENAMELENGTH];    double *meanq, *stdq, *idq;
       double **meanqt;
     double *pp, **prop, *posprop, *pospropt;
     double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
     double agebegin, ageend;
       
   pp=vector(1,nlstate);    pp=vector(1,nlstate);
   prop=matrix(1,nlstate,iagemin,iagemax+3);    prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
   strcpy(fileresp,"p");    posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
   strcat(fileresp,fileres);    pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
     /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
     meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     meanqt=matrix(1,lastpass,1,nqtveff);
     strcpy(fileresp,"P_");
     strcat(fileresp,fileresu);
     /*strcat(fileresphtm,fileresu);*/
   if((ficresp=fopen(fileresp,"w"))==NULL) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     exit(0);      exit(0);
   }    }
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);    
     strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
     if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
       printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       fflush(ficlog);
       exit(70); 
     }
     else{
       fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
               fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
     fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm);
     
     strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
     if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
       printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
       fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
       fflush(ficlog);
       exit(70); 
     } else{
       fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
               fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
     fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
     
     y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
     x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE);
   j1=0;    j1=0;
       
   j=cptcoveff;    /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
     j=cptcoveff;  /* Only dummy covariates of the model */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     
     /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
        reference=low_education V1=0,V2=0
        med_educ                V1=1 V2=0, 
        high_educ               V1=0 V2=1
        Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff 
     */
     dateintsum=0;
     k2cpt=0;
   
   first=1;    if(cptcoveff == 0 )
       nl=1;  /* Constant and age model only */
     else
       nl=2;
   
   /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */    /* if a constant only model, one pass to compute frequency tables and to write it on ficresp */
   /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */    /* Loop on nj=1 or 2 if dummy covariates j!=0
   /*    j1++; */     *   Loop on j1(1 to 2**cptcoveff) covariate combination
   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){     *     freq[s1][s2][iage] =0.
      *     Loop on iind
      *       ++freq[s1][s2][iage] weighted
      *     end iind
      *     if covariate and j!0
      *       headers Variable on one line
      *     endif cov j!=0
      *     header of frequency table by age
      *     Loop on age
      *       pp[s1]+=freq[s1][s2][iage] weighted
      *       pos+=freq[s1][s2][iage] weighted
      *       Loop on s1 initial state
      *         fprintf(ficresp
      *       end s1
      *     end age
      *     if j!=0 computes starting values
      *     end compute starting values
      *   end j1
      * end nl 
      */
     for (nj = 1; nj <= nl; nj++){   /* nj= 1 constant model, nl number of loops. */
       if(nj==1)
         j=0;  /* First pass for the constant */
       else{
         j=cptcoveff; /* Other passes for the covariate values */
       }
       first=1;
       for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all covariates combination of the model, excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */
         posproptt=0.;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         scanf("%d", i);*/          scanf("%d", i);*/
       for (i=-5; i<=nlstate+ndeath; i++)          for (i=-5; i<=nlstate+ndeath; i++)  
         for (jk=-5; jk<=nlstate+ndeath; jk++)            for (s2=-5; s2<=nlstate+ndeath; s2++)  
           for(m=iagemin; m <= iagemax+3; m++)            for(m=iagemin; m <= iagemax+3; m++)
             freq[i][jk][m]=0;              freq[i][s2][m]=0;
               
       for (i=1; i<=nlstate; i++)          for (i=1; i<=nlstate; i++)  {
         for(m=iagemin; m <= iagemax+3; m++)          for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;            prop[i][m]=0;
           posprop[i]=0;
           pospropt[i]=0;
         }
         for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */
           idq[z1]=0.;
           meanq[z1]=0.;
           stdq[z1]=0.;
         }
         /* for (z1=1; z1<= nqtveff; z1++) { */
         /*   for(m=1;m<=lastpass;m++){ */
         /*          meanqt[m][z1]=0.; */
         /*        } */
         /* }       */
         /* dateintsum=0; */
         /* k2cpt=0; */
               
       dateintsum=0;        /* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */
       k2cpt=0;        for (iind=1; iind<=imx; iind++) { /* For each individual iind */
       for (i=1; i<=imx; i++) {  
         bool=1;          bool=1;
         if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */          if(j !=0){
           for (z1=1; z1<=cptcoveff; z1++)                   if(anyvaryingduminmodel==0){ /* If All fixed covariates */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){              if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                 /* Tests if the value of each of the covariates of i is equal to filter j1 */                for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */
               bool=0;                  /* if(Tvaraff[z1] ==-20){ */
               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n",                   /*       /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],                  /* }else  if(Tvaraff[z1] ==-10){ */
                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/                  /*       /\* sumnew+=coqvar[z1][iind]; *\/ */
               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/                  /* }else  */
             }                   if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ /* for combination j1 of covariates */
         }                    /* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */
                      bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */
         if (bool==1){                    /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
           for(m=firstpass; m<=lastpass; m++){                       bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
             k2=anint[m][i]+(mint[m][i]/12.);                       j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/                    /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                  } /* Onlyf fixed */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                } /* end z1 */
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];              } /* cptcovn > 0 */
               if (m<lastpass) {            } /* end any */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }/* end j==0 */
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];          if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */
               }            /* for(m=firstpass; m<=lastpass; m++){ */
                           for(mi=1; mi<wav[iind];mi++){ /* For each wave */
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {              m=mw[mi][iind];
                 dateintsum=dateintsum+k2;              if(j!=0){
                 if(anyvaryingduminmodel==1){ /* Some are varying covariates */
                   for (z1=1; z1<=cptcoveff; z1++) {
                     if( Fixed[Tmodelind[z1]]==1){
                       iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
                       if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality. If covariate's 
                                                                                         value is -1, we don't select. It differs from the 
                                                                                         constant and age model which counts them. */
                         bool=0; /* not selected */
                     }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
                       if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                         bool=0;
                       }
                     }
                   }
                 }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
               } /* end j==0 */
               /* bool =0 we keep that guy which corresponds to the combination of dummy values */
               if(bool==1){ /*Selected */
                 /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                    and mw[mi+1][iind]. dh depends on stepm. */
                 agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
                 ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
                 if(m >=firstpass && m <=lastpass){
                   k2=anint[m][iind]+(mint[m][iind]/12.);
                   /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
                   if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                   if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
                     prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
                   if (m<lastpass) {
                     /* if(s[m][iind]==4 && s[m+1][iind]==4) */
                     /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
                     if(s[m][iind]==-1)
                       printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
                     freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
                     for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean */
                       idq[z1]=idq[z1]+weight[iind];
                       meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /* Computes mean of quantitative with selected filter */
                       stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /* *weight[iind];*/  /* Computes mean of quantitative with selected filter */
                     }
                     /* if((int)agev[m][iind] == 55) */
                     /*   printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */
                     /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
                     freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
                   }
                 } /* end if between passes */  
                 if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) {
                   dateintsum=dateintsum+k2; /* on all covariates ?*/
                 k2cpt++;                  k2cpt++;
                   /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
               }                }
               /*}*/              }else{
           }                bool=1;
         }              }/* end bool 2 */
       } /* end i */            } /* end m */
                    /* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */
             /*   idq[z1]=idq[z1]+weight[iind]; */
             /*   meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /\* Computes mean of quantitative with selected filter *\/ */
             /*   stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/  /\* Computes mean of quantitative with selected filter *\/ */
             /* } */
           } /* end bool */
         } /* end iind = 1 to imx */
         /* prop[s][age] is feeded for any initial and valid live state as well as
            freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
         
         
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       pstamp(ficresp);        if(cptcoveff==0 && nj==1) /* no covariate and first pass */
       if  (cptcovn>0) {          pstamp(ficresp);
         if  (cptcoveff>0 && j!=0){
           pstamp(ficresp);
           printf( "\n#********** Variable "); 
         fprintf(ficresp, "\n#********** Variable ");           fprintf(ficresp, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
         fprintf(ficresp, "**********\n#");          fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
         fprintf(ficlog, "\n#********** Variable ");           fprintf(ficlog, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (z1=1; z1<=cptcoveff; z1++){
         fprintf(ficlog, "**********\n#");            if(!FixedV[Tvaraff[z1]]){
               printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
               fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
               fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
               fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
               fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             }else{
               printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
               fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
               fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
               fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
               fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             }
           }
           printf( "**********\n#");
           fprintf(ficresp, "**********\n#");
           fprintf(ficresphtm, "**********</h3>\n");
           fprintf(ficresphtmfr, "**********</h3>\n");
           fprintf(ficlog, "**********\n");
         }
         /*
           Printing means of quantitative variables if any
         */
         for (z1=1; z1<= nqfveff; z1++) {
           fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.0f individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]);
           fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]);
           if(weightopt==1){
             printf(" Weighted mean and standard deviation of");
             fprintf(ficlog," Weighted mean and standard deviation of");
             fprintf(ficresphtmfr," Weighted mean and standard deviation of");
           }
           printf(" fixed quantitative variable V%d on %.0f representatives of the population : %6.3g (%6.3g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt((stdq[z1]-meanq[z1]*meanq[z1]/idq[z1])/idq[z1]));
           fprintf(ficlog," fixed quantitative variable V%d on %.0f representatives of the population : %6.3g (%6.3g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt((stdq[z1]-meanq[z1]*meanq[z1]/idq[z1])/idq[z1]));
           fprintf(ficresphtmfr," fixed quantitative variable V%d on %.0f representatives of the population : %6.3g (%6.3g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt((stdq[z1]-meanq[z1]*meanq[z1]/idq[z1])/idq[z1]));
         }
         /* for (z1=1; z1<= nqtveff; z1++) { */
         /*        for(m=1;m<=lastpass;m++){ */
         /*          fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */
         /*   } */
         /* } */
   
         fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
         if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */
           fprintf(ficresp, " Age");
         if(nj==2) for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         for(i=1; i<=nlstate;i++) {
           if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d)  N(%d)  N  ",i,i);
           fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
       }        }
       for(i=1; i<=nlstate;i++)         if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n");
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        fprintf(ficresphtm, "\n");
       fprintf(ficresp, "\n");  
               
       for(i=iagemin; i <= iagemax+3; i++){        /* Header of frequency table by age */
         if(i==iagemax+3){        fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
         fprintf(ficresphtmfr,"<th>Age</th> ");
         for(s2=-1; s2 <=nlstate+ndeath; s2++){
           for(m=-1; m <=nlstate+ndeath; m++){
             if(s2!=0 && m!=0)
               fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m);
           }
         }
         fprintf(ficresphtmfr, "\n");
       
         /* For each age */
         for(iage=iagemin; iage <= iagemax+3; iage++){
           fprintf(ficresphtm,"<tr>");
           if(iage==iagemax+1){
             fprintf(ficlog,"1");
             fprintf(ficresphtmfr,"<tr><th>0</th> ");
           }else if(iage==iagemax+2){
             fprintf(ficlog,"0");
             fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
           }else if(iage==iagemax+3){
           fprintf(ficlog,"Total");            fprintf(ficlog,"Total");
             fprintf(ficresphtmfr,"<tr><th>Total</th> ");
         }else{          }else{
           if(first==1){            if(first==1){
             first=0;              first=0;
             printf("See log file for details...\n");              printf("See log file for details...\n");
           }            }
           fprintf(ficlog,"Age %d", i);            fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
             fprintf(ficlog,"Age %d", iage);
         }          }
         for(jk=1; jk <=nlstate ; jk++){          for(s1=1; s1 <=nlstate ; s1++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++)
             pp[jk] += freq[jk][m][i];               pp[s1] += freq[s1][m][iage]; 
         }          }
         for(jk=1; jk <=nlstate ; jk++){          for(s1=1; s1 <=nlstate ; s1++){
           for(m=-1, pos=0; m <=0 ; m++)            for(m=-1, pos=0; m <=0 ; m++)
             pos += freq[jk][m][i];              pos += freq[s1][m][iage];
           if(pp[jk]>=1.e-10){            if(pp[s1]>=1.e-10){
             if(first==1){              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);                printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
             }              }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
           }else{            }else{
             if(first==1)              if(first==1)
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
           }            }
         }          }
         
         for(jk=1; jk <=nlstate ; jk++){          for(s1=1; s1 <=nlstate ; s1++){ 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            /* posprop[s1]=0; */
             pp[jk] += freq[jk][m][i];            for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
         }                     pp[s1] += freq[s1][m][iage];
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          }       /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */
           pos += pp[jk];        
           posprop += prop[jk][i];          for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){
             pos += pp[s1]; /* pos is the total number of transitions until this age */
             posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state
                                               from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
             pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state
                                             from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
           }
           
           /* Writing ficresp */
           if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
             if( iage <= iagemax){
               fprintf(ficresp," %d",iage);
             }
           }else if( nj==2){
             if( iage <= iagemax){
               fprintf(ficresp," %d",iage);
               for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             }
         }          }
         for(jk=1; jk <=nlstate ; jk++){          for(s1=1; s1 <=nlstate ; s1++){
           if(pos>=1.e-5){            if(pos>=1.e-5){
             if(first==1)              if(first==1)
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
           }else{            }else{
             if(first==1)              if(first==1)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
           }            }
           if( i <= iagemax){            if( iage <= iagemax){
             if(pos>=1.e-5){              if(pos>=1.e-5){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);                if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
               /*probs[i][jk][j1]= pp[jk]/pos;*/                  fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/                }else if( nj==2){
                   fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                 }
                 fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                 /*probs[iage][s1][j1]= pp[s1]/pos;*/
                 /*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/
               } else{
                 if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta);
                 fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta);
             }              }
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);  
           }            }
         }            pospropt[s1] +=posprop[s1];
                   } /* end loop s1 */
         for(jk=-1; jk <=nlstate+ndeath; jk++)          /* pospropt=0.; */
           for(m=-1; m <=nlstate+ndeath; m++)          for(s1=-1; s1 <=nlstate+ndeath; s1++){
             if(freq[jk][m][i] !=0 ) {            for(m=-1; m <=nlstate+ndeath; m++){
             if(first==1)              if(freq[s1][m][iage] !=0 ) { /* minimizing output */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                if(first==1){
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);                  printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]);
                 }
                 /* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */
                 fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]);
             }              }
         if(i <= iagemax)              if(s1!=0 && m!=0)
           fprintf(ficresp,"\n");                fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]);
             }
           } /* end loop s1 */
           posproptt=0.; 
           for(s1=1; s1 <=nlstate; s1++){
             posproptt += pospropt[s1];
           }
           fprintf(ficresphtmfr,"</tr>\n ");
           fprintf(ficresphtm,"</tr>\n");
           if((cptcoveff==0 && nj==1)|| nj==2 ) {
             if(iage <= iagemax)
               fprintf(ficresp,"\n");
           }
         if(first==1)          if(first==1)
           printf("Others in log...\n");            printf("Others in log...\n");
         fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
         } /* end loop age iage */
         
         fprintf(ficresphtm,"<tr><th>Tot</th>");
         for(s1=1; s1 <=nlstate ; s1++){
           if(posproptt < 1.e-5){
             fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); 
           }else{
             fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt);  
           }
       }        }
       /*}*/        fprintf(ficresphtm,"</tr>\n");
   }        fprintf(ficresphtm,"</table>\n");
         fprintf(ficresphtmfr,"</table>\n");
         if(posproptt < 1.e-5){
           fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
           fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
           fprintf(ficlog,"#  This combination (%d) is not valid and no result will be produced\n",j1);
           printf("#  This combination (%d) is not valid and no result will be produced\n",j1);
           invalidvarcomb[j1]=1;
         }else{
           fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);
           invalidvarcomb[j1]=0;
         }
         fprintf(ficresphtmfr,"</table>\n");
         fprintf(ficlog,"\n");
         if(j!=0){
           printf("#Freqsummary: Starting values for combination j1=%d:\n", j1);
           for(i=1,s1=1; i <=nlstate; i++){
             for(k=1; k <=(nlstate+ndeath); k++){
               if (k != i) {
                 for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */
                   if(jj==1){  /* Constant case (in fact cste + age) */
                     if(j1==1){ /* All dummy covariates to zero */
                       freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */
                       freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */
                       printf("%d%d ",i,k);
                       fprintf(ficlog,"%d%d ",i,k);
                       printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]));
                       fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                       pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
                     }
                   }else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */
                     for(iage=iagemin; iage <= iagemax+3; iage++){
                       x[iage]= (double)iage;
                       y[iage]= log(freq[i][k][iage]/freq[i][i][iage]);
                       /* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */
                     }
                     /* Some are not finite, but linreg will ignore these ages */
                     no=0;
                     linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */
                     pstart[s1]=b;
                     pstart[s1-1]=a;
                   }else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj)  && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ 
                     printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
                     printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
                     pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]));
                     printf("%d%d ",i,k);
                     fprintf(ficlog,"%d%d ",i,k);
                     printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4]));
                   }else{ /* Other cases, like quantitative fixed or varying covariates */
                     ;
                   }
                   /* printf("%12.7f )", param[i][jj][k]); */
                   /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
                   s1++; 
                 } /* end jj */
               } /* end k!= i */
             } /* end k */
           } /* end i, s1 */
         } /* end j !=0 */
       } /* end selected combination of covariate j1 */
       if(j==0){ /* We can estimate starting values from the occurences in each case */
         printf("#Freqsummary: Starting values for the constants:\n");
         fprintf(ficlog,"\n");
         for(i=1,s1=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(jj=1; jj <=ncovmodel; jj++){
                 pstart[s1]=p[s1]; /* Setting pstart to p values by default */
                 if(jj==1){ /* Age has to be done */
                   pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
                   printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                   fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                 }
                 /* printf("%12.7f )", param[i][jj][k]); */
                 /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
                 s1++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         } /* end of state i */
         printf("#Freqsummary\n");
         fprintf(ficlog,"\n");
         for(s1=-1; s1 <=nlstate+ndeath; s1++){
           for(s2=-1; s2 <=nlstate+ndeath; s2++){
             /* param[i]|j][k]= freq[s1][s2][iagemax+3] */
             printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
             fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
             /* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */
             /*   printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
             /*   fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
             /* } */
           }
         } /* end loop s1 */
         
         printf("\n");
         fprintf(ficlog,"\n");
       } /* end j=0 */
     } /* end j */
   
     if(mle == -2){  /* We want to use these values as starting values */
       for(i=1, jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j!=i){
             /*ca[0]= k+'a'-1;ca[1]='\0';*/
             printf("%1d%1d",i,j);
             fprintf(ficparo,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               /*    printf(" %lf",param[i][j][k]); */
               /*    fprintf(ficparo," %lf",param[i][j][k]); */
               p[jk]=pstart[jk];
               printf(" %f ",pstart[jk]);
               fprintf(ficparo," %f ",pstart[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficparo,"\n");
           }
         }
       }
     } /* end mle=-2 */
   dateintmean=dateintsum/k2cpt;     dateintmean=dateintsum/k2cpt; 
      
   fclose(ficresp);    fclose(ficresp);
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);    fclose(ficresphtm);
     fclose(ficresphtmfr);
     free_vector(idq,1,nqfveff);
     free_vector(meanq,1,nqfveff);
     free_vector(stdq,1,nqfveff);
     free_matrix(meanqt,1,lastpass,1,nqtveff);
     free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
     free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
     free_vector(pospropt,1,nlstate);
     free_vector(posprop,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE);
   free_vector(pp,1,nlstate);    free_vector(pp,1,nlstate);
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    /* End of freqsummary */
   /* End of Freq */  }
   
   /* Simple linear regression */
   int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) {
   
     /* y=a+bx regression */
     double   sumx = 0.0;                        /* sum of x                      */
     double   sumx2 = 0.0;                       /* sum of x**2                   */
     double   sumxy = 0.0;                       /* sum of x * y                  */
     double   sumy = 0.0;                        /* sum of y                      */
     double   sumy2 = 0.0;                       /* sum of y**2                   */
     double   sume2 = 0.0;                       /* sum of square or residuals */
     double yhat;
     
     double denom=0;
     int i;
     int ne=*no;
     
     for ( i=ifi, ne=0;i<=ila;i++) {
       if(!isfinite(x[i]) || !isfinite(y[i])){
         /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
         continue;
       }
       ne=ne+1;
       sumx  += x[i];       
       sumx2 += x[i]*x[i];  
       sumxy += x[i] * y[i];
       sumy  += y[i];      
       sumy2 += y[i]*y[i]; 
       denom = (ne * sumx2 - sumx*sumx);
       /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
     } 
     
     denom = (ne * sumx2 - sumx*sumx);
     if (denom == 0) {
       // vertical, slope m is infinity
       *b = INFINITY;
       *a = 0;
       if (r) *r = 0;
       return 1;
     }
     
     *b = (ne * sumxy  -  sumx * sumy) / denom;
     *a = (sumy * sumx2  -  sumx * sumxy) / denom;
     if (r!=NULL) {
       *r = (sumxy - sumx * sumy / ne) /          /* compute correlation coeff     */
         sqrt((sumx2 - sumx*sumx/ne) *
              (sumy2 - sumy*sumy/ne));
     }
     *no=ne;
     for ( i=ifi, ne=0;i<=ila;i++) {
       if(!isfinite(x[i]) || !isfinite(y[i])){
         /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
         continue;
       }
       ne=ne+1;
       yhat = y[i] - *a -*b* x[i];
       sume2  += yhat * yhat ;       
       
       denom = (ne * sumx2 - sumx*sumx);
       /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
     } 
     *sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne));
     *sa= *sb * sqrt(sumx2/ne);
     
     return 0; 
 }  }
   
 /************ Prevalence ********************/  /************ Prevalence ********************/
Line 2998  void prevalence(double ***probs, double Line 5044  void prevalence(double ***probs, double
      We still use firstpass and lastpass as another selection.       We still use firstpass and lastpass as another selection.
   */    */
     
   int i, m, jk, j1, bool, z1,j;    int i, m, jk, j1, bool, z1,j, iv;
     int mi; /* Effective wave */
     int iage;
     double agebegin, ageend;
   
   double **prop;    double **prop;
   double posprop;     double posprop; 
Line 3009  void prevalence(double ***probs, double Line 5058  void prevalence(double ***probs, double
   iagemin= (int) agemin;    iagemin= (int) agemin;
   iagemax= (int) agemax;    iagemax= (int) agemax;
   /*pp=vector(1,nlstate);*/    /*pp=vector(1,nlstate);*/
   prop=matrix(1,nlstate,iagemin,iagemax+3);     prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   j1=0;    j1=0;
       
   /*j=cptcoveff;*/    /*j=cptcoveff;*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       
   first=1;    first=0;
   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */
     /*for(i1=1; i1<=ncodemax[k1];i1++){      for (i=1; i<=nlstate; i++)  
       j1++;*/        for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++)
                 prop[i][iage]=0.0;
       for (i=1; i<=nlstate; i++)        printf("Prevalence combination of varying and fixed dummies %d\n",j1);
         for(m=iagemin; m <= iagemax+3; m++)      /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
           prop[i][m]=0.0;      fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
            
       for (i=1; i<=imx; i++) { /* Each individual */      for (i=1; i<=imx; i++) { /* Each individual */
         bool=1;        bool=1;
         if  (cptcovn>0) {        /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
           for (z1=1; z1<=cptcoveff; z1++)         for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           m=mw[mi][i];
           /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
           /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
           for (z1=1; z1<=cptcoveff; z1++){
             if( Fixed[Tmodelind[z1]]==1){
               iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
               if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
               bool=0;                bool=0;
         }             }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
         if (bool==1) {               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/                bool=0;
               }
           }
           if(bool==1){ /* Otherwise we skip that wave/person */
             agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
             /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
             if(m >=firstpass && m <=lastpass){
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);                 if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){
               if (s[m][i]>0 && s[m][i]<=nlstate) {                   printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
                   exit(1);
                 }
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
                 prop[s[m][i]][iagemax+3] += weight[i];                   prop[s[m][i]][iagemax+3] += weight[i]; 
               }                 } /* end valid statuses */ 
             }              } /* end selection of dates */
           } /* end selection of waves */            } /* end selection of waves */
         }          } /* end bool */
       }        } /* end wave */
       for(i=iagemin; i <= iagemax+3; i++){        } /* end individual */
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {       for(i=iagemin; i <= iagemax+3; i++){  
           posprop += prop[jk][i];         for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         }           posprop += prop[jk][i]; 
                 } 
         for(jk=1; jk <=nlstate ; jk++){             
           if( i <=  iagemax){         for(jk=1; jk <=nlstate ; jk++){       
             if(posprop>=1.e-5){           if( i <=  iagemax){ 
               probs[i][jk][j1]= prop[jk][i]/posprop;            if(posprop>=1.e-5){ 
             } else{              probs[i][jk][j1]= prop[jk][i]/posprop;
               if(first==1){            } else{
                 first=0;              if(!first){
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);                first=1;
               }                printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);
               }else{
                 fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]);
             }              }
           }             }
         }/* end jk */           } 
       }/* end i */         }/* end jk */ 
     /*} *//* end i1 */      }/* end i */ 
        /*} *//* end i1 */
   } /* end j1 */    } /* end j1 */
       
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   /*free_vector(pp,1,nlstate);*/    /*free_vector(pp,1,nlstate);*/
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE);
 }  /* End of prevalence */  }  /* End of prevalence */
   
 /************* Waves Concatenation ***************/  /************* Waves Concatenation ***************/
Line 3083  void  concatwav(int wav[], int **dh, int Line 5150  void  concatwav(int wav[], int **dh, int
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      and mw[mi+1][i]. dh depends on stepm.       and mw[mi+1][i]. dh depends on stepm.
      */    */
   
   int i, mi, m;    int i=0, mi=0, m=0, mli=0;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      double sum=0., jmean=0.;*/       double sum=0., jmean=0.;*/
   int first;    int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
   int j, k=0,jk, ju, jl;    int j, k=0,jk, ju, jl;
   double sum=0.;    double sum=0.;
   first=0;    first=0;
     firstwo=0;
     firsthree=0;
     firstfour=0;
   jmin=100000;    jmin=100000;
   jmax=-1;    jmax=-1;
   jmean=0.;    jmean=0.;
   for(i=1; i<=imx; i++){  
     mi=0;  /* Treating live states */
     for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
       mi=0;  /* First valid wave */
       mli=0; /* Last valid wave */
     m=firstpass;      m=firstpass;
     while(s[m][i] <= nlstate){      while(s[m][i] <= nlstate){  /* a live state */
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)        if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
           mli=m-1;/* mw[++mi][i]=m-1; */
         }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
         mw[++mi][i]=m;          mw[++mi][i]=m;
       if(m >=lastpass)          mli=m;
         } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
         if(m < lastpass){ /* m < lastpass, standard case */
           m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
         }
         else{ /* m >= lastpass, eventual special issue with warning */
   #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
         break;          break;
       else  #else
         m++;          if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
             if(firsthree == 0){
               printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
               firsthree=1;
             }
             fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
             mw[++mi][i]=m;
             mli=m;
           }
           if(s[m][i]==-2){ /* Vital status is really unknown */
             nbwarn++;
             if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
               printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
               fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
             }
             break;
           }
           break;
   #endif
         }/* End m >= lastpass */
     }/* end while */      }/* end while */
     if (s[m][i] > nlstate){  
       /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
       /* After last pass */
   /* Treating death states */
       if (s[m][i] > nlstate){  /* In a death state */
         /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
         /* } */
       mi++;     /* Death is another wave */        mi++;     /* Death is another wave */
       /* if(mi==0)  never been interviewed correctly before death */        /* if(mi==0)  never been interviewed correctly before death */
          /* Only death is a correct wave */        /* Only death is a correct wave */
       mw[mi][i]=m;        mw[mi][i]=m;
     }      } /* else not in a death state */
   #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
     wav[i]=mi;      else if ((int) andc[i] != 9999) {  /* Date of death is known */
         if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
           if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */
             nbwarn++;
             if(firstfiv==0){
               printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
               firstfiv=1;
             }else{
               fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
             }
           }else{ /* Death occured afer last wave potential bias */
             nberr++;
             if(firstwo==0){
               printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
               firstwo=1;
             }
             fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
           }
         }else{ /* if date of interview is unknown */
           /* death is known but not confirmed by death status at any wave */
           if(firstfour==0){
             printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
             firstfour=1;
           }
           fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
         }
       } /* end if date of death is known */
   #endif
       wav[i]=mi; /* mi should be the last effective wave (or mli) */
       /* wav[i]=mw[mi][i]; */
     if(mi==0){      if(mi==0){
       nbwarn++;        nbwarn++;
       if(first==0){        if(first==0){
Line 3125  void  concatwav(int wav[], int **dh, int Line 5260  void  concatwav(int wav[], int **dh, int
       }        }
     } /* end mi==0 */      } /* end mi==0 */
   } /* End individuals */    } /* End individuals */
     /* wav and mw are no more changed */
           
     
   for(i=1; i<=imx; i++){    for(i=1; i<=imx; i++){
     for(mi=1; mi<wav[i];mi++){      for(mi=1; mi<wav[i];mi++){
       if (stepm <=0)        if (stepm <=0)
         dh[mi][i]=1;          dh[mi][i]=1;
       else{        else{
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */
           if (agedc[i] < 2*AGESUP) {            if (agedc[i] < 2*AGESUP) {
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             if(j==0) j=1;  /* Survives at least one month after exam */              if(j==0) j=1;  /* Survives at least one month after exam */
Line 3160  void  concatwav(int wav[], int **dh, int Line 5297  void  concatwav(int wav[], int **dh, int
         else{          else{
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                                           
           k=k+1;            k=k+1;
           if (j >= jmax) {            if (j >= jmax) {
             jmax=j;              jmax=j;
Line 3214  void  concatwav(int wav[], int **dh, int Line 5351  void  concatwav(int wav[], int **dh, int
   jmean=sum/k;    jmean=sum/k;
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
  }  }
   
 /*********** Tricode ****************************/  /*********** Tricode ****************************/
 void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)   void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
 {   {
   /**< Uses cptcovn+2*cptcovprod as the number of covariates */     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1      /*     Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
    * Boring subroutine which should only output nbcode[Tvar[j]][k]      * Boring subroutine which should only output nbcode[Tvar[j]][k]
    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)      * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
    * nbcode[Tvar[j]][1]=       * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
   */      */
   
   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   int modmaxcovj=0; /* Modality max of covariates j */     int modmaxcovj=0; /* Modality max of covariates j */
   int cptcode=0; /* Modality max of covariates j */     int cptcode=0; /* Modality max of covariates j */
   int modmincovj=0; /* Modality min of covariates j */     int modmincovj=0; /* Modality min of covariates j */
   
   
   cptcoveff=0;      /* cptcoveff=0;  */
      /* *cptcov=0; */
     
   for (k=-1; k < maxncov; k++) Ndum[k]=0;     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */     for (k=1; k <= maxncov; k++)
        for(j=1; j<=2; j++)
   /* Loop on covariates without age and products */         nbcode[k][j]=0; /* Valgrind */
   for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */  
     for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the      /* Loop on covariates without age and products and no quantitative variable */
                                modality of this covariate Vj*/      for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */
       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i       for (j=-1; (j < maxncov); j++) Ndum[j]=0;
                                     * If product of Vn*Vm, still boolean *:       if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
                                     * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables         switch(Fixed[k]) {
                                     * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */         case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the           for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
                                       modality of the nth covariate of individual i. */             ij=(int)(covar[Tvar[k]][i]);
       if (ij > modmaxcovj)             /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
         modmaxcovj=ij;               * If product of Vn*Vm, still boolean *:
       else if (ij < modmincovj)               * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
         modmincovj=ij;               * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
       if ((ij < -1) && (ij > NCOVMAX)){             /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
         printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );                modality of the nth covariate of individual i. */
         exit(1);             if (ij > modmaxcovj)
       }else               modmaxcovj=ij; 
       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/             else if (ij < modmincovj) 
       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */               modmincovj=ij; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/             if (ij <0 || ij >1 ){
       /* getting the maximum value of the modality of the covariate               printf("Information, IMaCh doesn't treat covariate with missing values (-1), individual %d will be skipped.\n",i);
          (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and               fprintf(ficlog,"Information, currently IMaCh doesn't treat covariate with missing values (-1), individual %d will be skipped.\n",i);
          female is 1, then modmaxcovj=1.*/             }
     } /* end for loop on individuals */             if ((ij < -1) || (ij > NCOVMAX)){
     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);               printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     cptcode=modmaxcovj;               exit(1);
     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */             }else
    /*for (i=0; i<=cptcode; i++) {*/               Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */             /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
       printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], i, Ndum[i]);             /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */             /* getting the maximum value of the modality of the covariate
         ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */                (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
       }                female ies 1, then modmaxcovj=1.
       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for             */
          historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */           } /* end for loop on individuals i */
     } /* Ndum[-1] number of undefined modalities */           printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
            fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */           cptcode=modmaxcovj;
     /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7.            /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
        If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;           /*for (i=0; i<=cptcode; i++) {*/
        modmincovj=3; modmaxcovj = 7;           for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
        There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;             printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
        which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;             fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
        defining two dummy variables: variables V1_1 and V1_2.             if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
        nbcode[Tvar[j]][ij]=k;               if( j != -1){
        nbcode[Tvar[j]][1]=0;                 ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
        nbcode[Tvar[j]][2]=1;                                    covariate for which somebody answered excluding 
        nbcode[Tvar[j]][3]=2;                                    undefined. Usually 2: 0 and 1. */
     */               }
     ij=1; /* ij is similar to i but can jumps over null modalities */               ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */                                       covariate for which somebody answered including 
       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */                                       undefined. Usually 3: -1, 0 and 1. */
         /*recode from 0 */             }    /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
         if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */                   * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           nbcode[Tvar[j]][ij]=k;  /* stores the modality k in an array nbcode.            } /* Ndum[-1] number of undefined modalities */
                                      k is a modality. If we have model=V1+V1*sex                           
                                      then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */           /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
           ij++;           /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
         }           /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
         if (ij > ncodemax[j]) break;            /* modmincovj=3; modmaxcovj = 7; */
       }  /* end of loop on */           /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
     } /* end of loop on modality */            /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/             /*              defining two dummy variables: variables V1_1 and V1_2.*/
              /* nbcode[Tvar[j]][ij]=k; */
  for (k=-1; k< maxncov; k++) Ndum[k]=0;            /* nbcode[Tvar[j]][1]=0; */
              /* nbcode[Tvar[j]][2]=1; */
   for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */            /* nbcode[Tvar[j]][3]=2; */
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/            /* To be continued (not working yet). */
    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */            ij=0; /* ij is similar to i but can jump over null modalities */
    Ndum[ij]++; /* Might be supersed V1 + V1*age */  
  }            /* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
            /* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */
  ij=1;           /* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of
  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */            * nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */
    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/           /*, could be restored in the future */
    if((Ndum[i]!=0) && (i<=ncovcol)){           for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/             if (Ndum[i] == 0) { /* If nobody responded to this modality k */
      Tvaraff[ij]=i; /*For printing (unclear) */               break;
      ij++;             }
    }else             ij++;
        Tvaraff[ij]=0;             nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/
              cptcode = ij; /* New max modality for covar j */
            } /* end of loop on modality i=-1 to 1 or more */
            break;
          case 1: /* Testing on varying covariate, could be simple and
                   * should look at waves or product of fixed *
                   * varying. No time to test -1, assuming 0 and 1 only */
            ij=0;
            for(i=0; i<=1;i++){
              nbcode[Tvar[k]][++ij]=i;
            }
            break;
          default:
            break;
          } /* end switch */
        } /* end dummy test */
      } /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/  
     
      for (k=-1; k< maxncov; k++) Ndum[k]=0; 
      /* Look at fixed dummy (single or product) covariates to check empty modalities */
      for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
        /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
        ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
        Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
        /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
      } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
     
      ij=0;
      /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
      for (k=1; k<=  cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
        /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
        /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
        if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy and non empty in the model */
          /* If product not in single variable we don't print results */
          /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
          ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */
          Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
          Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
          TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
          if(Fixed[k]!=0)
            anyvaryingduminmodel=1;
          /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
          /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
          /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
          /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
          /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
          /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
        } 
      } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
      /* ij--; */
      /* cptcoveff=ij; /\*Number of total covariates*\/ */
      *cptcov=ij; /*Number of total real effective covariates: effective
                   * because they can be excluded from the model and real
                   * if in the model but excluded because missing values, but how to get k from ij?*/
      for(j=ij+1; j<= cptcovt; j++){
        Tvaraff[j]=0;
        Tmodelind[j]=0;
      }
      for(j=ntveff+1; j<= cptcovt; j++){
        TmodelInvind[j]=0;
      }
      /* To be sorted */
      ;
  }   }
  ij--;  
  cptcoveff=ij; /*Number of total covariates*/  
   
 }  
   
   
 /*********** Health Expectancies ****************/  /*********** Health Expectancies ****************/
   
 void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
   
 {  {
   /* Health expectancies, no variances */    /* Health expectancies, no variances */
Line 3338  void evsij(double ***eij, double x[], in Line 5534  void evsij(double ***eij, double x[], in
   double ***p3mat;    double ***p3mat;
   double eip;    double eip;
   
   pstamp(ficreseij);    /* pstamp(ficreseij); */
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fprintf(ficreseij,"# Age");    fprintf(ficreseij,"# Age");
   for(i=1; i<=nlstate;i++){    for(i=1; i<=nlstate;i++){
Line 3369  void evsij(double ***eij, double x[], in Line 5565  void evsij(double ***eij, double x[], in
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      nhstepm is the number of hstepm from age to agelim        nhstepm is the number of hstepm from age to agelim 
      nstepm is the number of stepm from age to agelin.        nstepm is the number of stepm from age to agelin. 
      Look at hpijx to understand the reason of that which relies in memory size       Look at hpijx to understand the reason which relies in memory size consideration
      and note for a fixed period like estepm months */       and note for a fixed period like estepm months */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      survival function given by stepm (the optimization length). Unfortunately it       survival function given by stepm (the optimization length). Unfortunately it
Line 3401  void evsij(double ***eij, double x[], in Line 5597  void evsij(double ***eij, double x[], in
     /* Computed by stepm unit matrices, product of hstepma matrices, stored      /* Computed by stepm unit matrices, product of hstepma matrices, stored
        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           
     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           
Line 3436  void evsij(double ***eij, double x[], in Line 5632  void evsij(double ***eij, double x[], in
       
 }  }
   
 void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
   
 {  {
   /* Covariances of health expectancies eij and of total life expectancies according    /* Covariances of health expectancies eij and of total life expectancies according
    to initial status i, ei. .       to initial status i, ei. .
   */    */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   int nhstepma, nstepma; /* Decreasing with age */    int nhstepma, nstepma; /* Decreasing with age */
Line 3534  void cvevsij(double ***eij, double x[], Line 5730  void cvevsij(double ***eij, double x[],
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/      /* if (stepm >= YEARM) hstepm=1;*/
     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   
     /* If stepm=6 months */      /* If stepm=6 months */
     /* Computed by stepm unit matrices, product of hstepma matrices, stored      /* Computed by stepm unit matrices, product of hstepma matrices, stored
        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   
     /* Computing  Variances of health expectancies */      /* Computing  Variances of health expectancies */
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
        decrease memory allocation */         decrease memory allocation */
Line 3549  void cvevsij(double ***eij, double x[], Line 5745  void cvevsij(double ***eij, double x[],
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         xm[i] = x[i] - (i==theta ?delti[theta]:0);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       }        }
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
                             
       for(j=1; j<= nlstate; j++){        for(j=1; j<= nlstate; j++){
         for(i=1; i<=nlstate; i++){          for(i=1; i<=nlstate; i++){
           for(h=0; h<=nhstepm-1; h++){            for(h=0; h<=nhstepm-1; h++){
Line 3560  void cvevsij(double ***eij, double x[], Line 5756  void cvevsij(double ***eij, double x[],
           }            }
         }          }
       }        }
                                
       for(ij=1; ij<= nlstate*nlstate; ij++)        for(ij=1; ij<= nlstate*nlstate; ij++)
         for(h=0; h<=nhstepm-1; h++){          for(h=0; h<=nhstepm-1; h++){
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
Line 3573  void cvevsij(double ***eij, double x[], Line 5769  void cvevsij(double ***eij, double x[],
         for(theta=1; theta <=npar; theta++)          for(theta=1; theta <=npar; theta++)
           trgradg[h][j][theta]=gradg[h][theta][j];            trgradg[h][j][theta]=gradg[h][theta][j];
           
                   
      for(ij=1;ij<=nlstate*nlstate;ij++)      for(ij=1;ij<=nlstate*nlstate;ij++)
       for(ji=1;ji<=nlstate*nlstate;ji++)        for(ji=1;ji<=nlstate*nlstate;ji++)
         varhe[ij][ji][(int)age] =0.;          varhe[ij][ji][(int)age] =0.;
                   
      printf("%d|",(int)age);fflush(stdout);      printf("%d|",(int)age);fflush(stdout);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      for(h=0;h<=nhstepm-1;h++){      for(h=0;h<=nhstepm-1;h++){
       for(k=0;k<=nhstepm-1;k++){        for(k=0;k<=nhstepm-1;k++){
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
Line 3589  void cvevsij(double ***eij, double x[], Line 5785  void cvevsij(double ***eij, double x[],
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       }        }
     }      }
                   
     /* Computing expectancies */      /* Computing expectancies */
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)        for(j=1; j<=nlstate;j++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                                                     
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                                           
         }          }
   
       /* Standard deviation of expectancies ij */         
     fprintf(ficresstdeij,"%3.0f",age );      fprintf(ficresstdeij,"%3.0f",age );
     for(i=1; i<=nlstate;i++){      for(i=1; i<=nlstate;i++){
       eip=0.;        eip=0.;
Line 3614  void cvevsij(double ***eij, double x[], Line 5811  void cvevsij(double ***eij, double x[],
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     }      }
     fprintf(ficresstdeij,"\n");      fprintf(ficresstdeij,"\n");
                   
       /* Variance of expectancies ij */           
     fprintf(ficrescveij,"%3.0f",age );      fprintf(ficrescveij,"%3.0f",age );
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){        for(j=1; j<=nlstate;j++){
Line 3627  void cvevsij(double ***eij, double x[], Line 5825  void cvevsij(double ***eij, double x[],
           }            }
       }        }
     fprintf(ficrescveij,"\n");      fprintf(ficrescveij,"\n");
                      
   }    }
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
Line 3637  void cvevsij(double ***eij, double x[], Line 5835  void cvevsij(double ***eij, double x[],
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("\n");    printf("\n");
   fprintf(ficlog,"\n");    fprintf(ficlog,"\n");
           
   free_vector(xm,1,npar);    free_vector(xm,1,npar);
   free_vector(xp,1,npar);    free_vector(xp,1,npar);
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 }  }
    
 /************ Variance ******************/  /************ Variance ******************/
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
 {   {
   /* Variance of health expectancies */     /** Variance of health expectancies 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      *  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);
   /* double **newm;*/      * double **newm;
   /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/      * int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) 
       */
       
   int movingaverage();     /* int movingaverage(); */
   double **dnewm,**doldm;     double **dnewm,**doldm;
   double **dnewmp,**doldmp;     double **dnewmp,**doldmp;
   int i, j, nhstepm, hstepm, h, nstepm ;     int i, j, nhstepm, hstepm, h, nstepm ;
   int k;     int first=0;
   double *xp;     int k;
   double **gp, **gm;  /* for var eij */     double *xp;
   double ***gradg, ***trgradg; /*for var eij */     double **gp, **gm;  /**< for var eij */
   double **gradgp, **trgradgp; /* for var p point j */     double ***gradg, ***trgradg; /**< for var eij */
   double *gpp, *gmp; /* for var p point j */     double **gradgp, **trgradgp; /**< for var p point j */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */     double *gpp, *gmp; /**< for var p point j */
   double ***p3mat;     double **varppt; /**< for var p point j nlstate to nlstate+ndeath */
   double age,agelim, hf;     double ***p3mat;
   double ***mobaverage;     double age,agelim, hf;
   int theta;     /* double ***mobaverage; */
   char digit[4];     int theta;
   char digitp[25];     char digit[4];
      char digitp[25];
   
      char fileresprobmorprev[FILENAMELENGTH];
   
      if(popbased==1){
        if(mobilav!=0)
          strcpy(digitp,"-POPULBASED-MOBILAV_");
        else strcpy(digitp,"-POPULBASED-NOMOBIL_");
      }
      else 
        strcpy(digitp,"-STABLBASED_");
   
   char fileresprobmorprev[FILENAMELENGTH];     /* if (mobilav!=0) { */
      /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
      /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
      /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
      /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
      /*   } */
      /* } */
   
      strcpy(fileresprobmorprev,"PRMORPREV-"); 
      sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileresu);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
      for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
        fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
      }
      for(j=1;j<=cptcoveff;j++) 
        fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]);
      fprintf(ficresprobmorprev,"\n");
   
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
      fprintf(ficresprobmorprev,"\n");
     
      fprintf(ficgp,"\n# Routine varevsij");
      fprintf(ficgp,"\nunset title \n");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if(popbased==1)
        fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   
      xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
      }
      else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelim. 
         Look at function hpijx to understand why because of memory size limitations, 
         we decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
      */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
                   
                   
        for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
          /**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and 
           * returns into prlim .
           */
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
   
   if(popbased==1){         /* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */
     if(mobilav!=0)         if (popbased==1) {
       strcpy(digitp,"-populbased-mobilav-");           if(mobilav ==0){
     else strcpy(digitp,"-populbased-nomobil-");             for(i=1; i<=nlstate;i++)
   }               prlim[i][i]=probs[(int)age][i][ij];
   else            }else{ /* mobilav */ 
     strcpy(digitp,"-stablbased-");             for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   if (mobilav!=0) {           }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         }
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){         /**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}_x\f$ at horizon h.
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          */                      
       printf(" Error in movingaverage mobilav=%d\n",mobilav);         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=0 to nhstepm */
     }         /**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}_x\f$, which are the probability
   }          * at horizon h in state j including mortality.
           */
          for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* Next for computing shifted+ probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 .
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }
          
          /* Again with minus shift */
                           
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);
                           
          if (popbased==1) {
            if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
                           
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
                           
          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
            for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
              gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end shifting computations */
   
   strcpy(fileresprobmorprev,"prmorprev");          /**< Computing gradient matrix at horizon h 
   sprintf(digit,"%-d",ij);          */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/         for(j=1; j<= nlstate; j++) /* vareij */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */           for(h=0; h<=nhstepm; h++){
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   strcat(fileresprobmorprev,fileres);           }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {         /**< Gradient of overall mortality p.3 (or p.j) 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */
   }           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);         }
                            
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);       } /* End theta */
   pstamp(ficresprobmorprev);       
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);       /* We got the gradient matrix for each theta and state j */                
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){                  
     fprintf(ficresprobmorprev," p.%-d SE",j);       for(h=0; h<=nhstepm; h++) /* veij */
     for(i=1; i<=nlstate;i++)         for(j=1; j<=nlstate;j++)
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);           for(theta=1; theta <=npar; theta++)
   }               trgradg[h][j][theta]=gradg[h][theta][j];
   fprintf(ficresprobmorprev,"\n");                  
   fprintf(ficgp,"\n# Routine varevsij");       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/         for(theta=1; theta <=npar; theta++)
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");           trgradgp[j][theta]=gradgp[theta][j];
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);       /**< as well as its transposed matrix 
 /*   } */        */                
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                  
   pstamp(ficresvij);       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");       for(i=1;i<=nlstate;i++)
   if(popbased==1)         for(j=1;j<=nlstate;j++)
     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);           vareij[i][j][(int)age] =0.;
   else  
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");       /* Computing trgradg by matcov by gradg at age and summing over h
   fprintf(ficresvij,"# Age");        * and k (nhstepm) formula 15 of article
   for(i=1; i<=nlstate;i++)        * Lievre-Brouard-Heathcote
     for(j=1; j<=nlstate;j++)        */
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);       
   fprintf(ficresvij,"\n");       for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
        }
                   
        /* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of
         * p.j overall mortality formula 49 but computed directly because
         * we compute the grad (wix pijx) instead of grad (pijx),even if
         * wix is independent of theta.
         */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
        /* end ppptj */
        /*  x centered again */
                   
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
                   
        if (popbased==1) {
          if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
          }
        }
                   
        /* This for computing probability of death (h=1 means
           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
        */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
        /* end probability of death */
                   
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
        } 
        fprintf(ficresprobmorprev,"\n");
                   
        fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
        fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
      fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
       */
      /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
   xp=vector(1,npar);     free_vector(xp,1,npar);
   dnewm=matrix(1,nlstate,1,npar);     free_matrix(doldm,1,nlstate,1,nlstate);
   doldm=matrix(1,nlstate,1,nlstate);     free_matrix(dnewm,1,nlstate,1,npar);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
      fclose(ficresprobmorprev);
      fflush(ficgp);
      fflush(fichtm); 
    }  /* end varevsij */
   
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  /************ Variance of prevlim ******************/
   gpp=vector(nlstate+1,nlstate+ndeath);   void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
   gmp=vector(nlstate+1,nlstate+ndeath);  {
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
       /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    double **dnewmpar,**doldm;
   }    int i, j, nhstepm, hstepm;
   else  hstepm=estepm;       double *xp;
   /* For example we decided to compute the life expectancy with the smallest unit */    double *gp, *gm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     double **gradg, **trgradg;
      nhstepm is the number of hstepm from age to agelim     double **mgm, **mgp;
      nstepm is the number of stepm from age to agelin.     double age,agelim;
      Look at function hpijx to understand why (it is linked to memory size questions) */    int theta;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    
      survival function given by stepm (the optimization length). Unfortunately it    pstamp(ficresvpl);
      means that if the survival funtion is printed every two years of age and if    fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     fprintf(ficresvpl,"# Age ");
      results. So we changed our mind and took the option of the best precision.    if(nresult >=1)
   */      fprintf(ficresvpl," Result# ");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewmpar=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   agelim = AGESUP;    agelim = AGESUP;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      if (stepm >= YEARM) hstepm=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      gradg=matrix(1,npar,1,nlstate);
     gp=matrix(0,nhstepm,1,nlstate);      mgp=matrix(1,npar,1,nlstate);
     gm=matrix(0,nhstepm,1,nlstate);      mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
     for(theta=1; theta <=npar; theta++){      for(theta=1; theta <=npar; theta++){
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/        for(i=1; i<=npar; i++){ /* Computes gradient */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /*        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
         /* else */
       if (popbased==1) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
         if(mobilav ==0){        for(i=1;i<=nlstate;i++){
           for(i=1; i<=nlstate;i++)          gp[i] = prlim[i][i];
             prlim[i][i]=probs[(int)age][i][ij];          mgp[theta][i] = prlim[i][i];
         }else{ /* mobilav */   
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }  
       }  
     
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }        }
       /* This for computing probability of death (h=1 means        for(i=1; i<=npar; i++) /* Computes gradient */
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.  
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gpp[j]=0.; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  
       }      
       /* end probability of death */  
   
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /*        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
          /* else */
       if (popbased==1) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
         if(mobilav ==0){        for(i=1;i<=nlstate;i++){
           for(i=1; i<=nlstate;i++)          gm[i] = prlim[i][i];
             prlim[i][i]=probs[(int)age][i][ij];          mgm[theta][i] = prlim[i][i];
         }else{ /* mobilav */   
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }  
       }  
   
       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */  
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }  
       /* This for computing probability of death (h=1 means  
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.  
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gmp[j]=0.; i<= nlstate; i++)  
          gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }      
       /* end probability of death */  
   
       for(j=1; j<= nlstate; j++) /* vareij */  
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  
   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  
       }        }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
     } /* End theta */      } /* End theta */
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      trgradg =matrix(1,nlstate,1,npar);
   
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  
   
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      for(j=1; j<=nlstate;j++)
       for(theta=1; theta <=npar; theta++)        for(theta=1; theta <=npar; theta++)
         trgradgp[j][theta]=gradgp[theta][j];          trgradg[j][theta]=gradg[theta][j];
         /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate;j++)        varpl[i][(int)age] =0.;
         vareij[i][j][(int)age] =0.;      if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
     for(h=0;h<=nhstepm;h++){      matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
       for(k=0;k<=nhstepm;k++){      }else{
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  
     }  
     
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  
         varppt[j][i]=doldmp[j][i];  
     /* end ppptj */  
     /*  x centered again */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  
    
     if (popbased==1) {  
       if(mobilav ==0){  
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  
       }else{ /* mobilav */   
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=mobaverage[(int)age][i][ij];  
       }  
     }      }
                    for(i=1;i<=nlstate;i++)
     /* This for computing probability of death (h=1 means        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)   
        as a weighted average of prlim.  
     */  
     for(j=nlstate+1;j<=nlstate+ndeath;j++){  
       for(i=1,gmp[j]=0.;i<= nlstate; i++)   
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }      
     /* end probability of death */  
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  
       for(i=1; i<=nlstate;i++){  
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }  
     }   
     fprintf(ficresprobmorprev,"\n");  
   
     fprintf(ficresvij,"%.0f ",age );      fprintf(ficresvpl,"%.0f ",age );
     for(i=1; i<=nlstate;i++)      if(nresult >=1)
       for(j=1; j<=nlstate;j++){        fprintf(ficresvpl,"%d ",nres );
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for(i=1; i<=nlstate;i++){
       }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     fprintf(ficresvij,"\n");        /* for(j=1;j<=nlstate;j++) */
     free_matrix(gp,0,nhstepm,1,nlstate);        /*        fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */
     free_matrix(gm,0,nhstepm,1,nlstate);      }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      fprintf(ficresvpl,"\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      free_vector(gp,1,nlstate);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   } /* End age */    } /* End age */
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);  
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");  
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  
   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */  
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));  
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);  
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
 */  
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */  
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);  
   
   free_vector(xp,1,npar);    free_vector(xp,1,npar);
   free_matrix(doldm,1,nlstate,1,nlstate);    free_matrix(doldm,1,nlstate,1,npar);
   free_matrix(dnewm,1,nlstate,1,npar);    free_matrix(dnewmpar,1,nlstate,1,nlstate);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficresprobmorprev);  
   fflush(ficgp);  
   fflush(fichtm);   
 }  /* end varevsij */  
   
 /************ Variance of prevlim ******************/  }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])  
   
   /************ Variance of backprevalence limit ******************/
    void varbrevlim(char fileresvbl[], FILE  *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres)
 {  {
   /* Variance of prevalence limit */    /* Variance of backward prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
   double **dnewm,**doldm;    double **dnewmpar,**doldm;
   int i, j, nhstepm, hstepm;    int i, j, nhstepm, hstepm;
   double *xp;    double *xp;
   double *gp, *gm;    double *gp, *gm;
   double **gradg, **trgradg;    double **gradg, **trgradg;
     double **mgm, **mgp;
   double age,agelim;    double age,agelim;
   int theta;    int theta;
       
   pstamp(ficresvpl);    pstamp(ficresvbl);
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");    fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n");
   fprintf(ficresvpl,"# Age");    fprintf(ficresvbl,"# Age ");
     if(nresult >=1)
       fprintf(ficresvbl," Result# ");
   for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
       fprintf(ficresvpl," %1d-%1d",i,i);        fprintf(ficresvbl," %1d-%1d",i,i);
   fprintf(ficresvpl,"\n");    fprintf(ficresvbl,"\n");
   
   xp=vector(1,npar);    xp=vector(1,npar);
   dnewm=matrix(1,nlstate,1,npar);    dnewmpar=matrix(1,nlstate,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    doldm=matrix(1,nlstate,1,nlstate);
       
   hstepm=1*YEARM; /* Every year of age */    hstepm=1*YEARM; /* Every year of age */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   agelim = AGESUP;    agelim = AGEINF;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (age=fage; age>=bage; age --){ /* If stepm=6 months */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     if (stepm >= YEARM) hstepm=1;      if (stepm >= YEARM) hstepm=1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     gradg=matrix(1,npar,1,nlstate);      gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
     gp=vector(1,nlstate);      gp=vector(1,nlstate);
     gm=vector(1,nlstate);      gm=vector(1,nlstate);
   
Line 3992  void varprevlim(char fileres[], double * Line 6362  void varprevlim(char fileres[], double *
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(i=1; i<=npar; i++){ /* Computes gradient */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if(mobilavproj > 0 )
       for(i=1;i<=nlstate;i++)          bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
         gp[i] = prlim[i][i];        else
               bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
       for(i=1; i<=npar; i++) /* Computes gradient */        for(i=1;i<=nlstate;i++){
           gp[i] = bprlim[i][i];
           mgp[theta][i] = bprlim[i][i];
         }
        for(i=1; i<=npar; i++) /* Computes gradient */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);         if(mobilavproj > 0 )
       for(i=1;i<=nlstate;i++)          bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
         gm[i] = prlim[i][i];         else
           bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
         for(i=1;i<=nlstate;i++){
           gm[i] = bprlim[i][i];
           mgm[theta][i] = bprlim[i][i];
         }
       for(i=1;i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
     } /* End theta */      } /* End theta */
   
     trgradg =matrix(1,nlstate,1,npar);      trgradg =matrix(1,nlstate,1,npar);
Line 4011  void varprevlim(char fileres[], double * Line 6390  void varprevlim(char fileres[], double *
     for(j=1; j<=nlstate;j++)      for(j=1; j<=nlstate;j++)
       for(theta=1; theta <=npar; theta++)        for(theta=1; theta <=npar; theta++)
         trgradg[j][theta]=gradg[theta][j];          trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
     for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
       varpl[i][(int)age] =0.;        varbpl[i][(int)age] =0.;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      if((int)age==79 ||(int)age== 80  ||(int)age== 81){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
       }
     for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
     fprintf(ficresvpl,"%.0f ",age );      fprintf(ficresvbl,"%.0f ",age );
       if(nresult >=1)
         fprintf(ficresvbl,"%d ",nres );
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age]));
     fprintf(ficresvpl,"\n");      fprintf(ficresvbl,"\n");
     free_vector(gp,1,nlstate);      free_vector(gp,1,nlstate);
     free_vector(gm,1,nlstate);      free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
     free_matrix(gradg,1,npar,1,nlstate);      free_matrix(gradg,1,npar,1,nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);      free_matrix(trgradg,1,nlstate,1,npar);
   } /* End age */    } /* End age */
   
   free_vector(xp,1,npar);    free_vector(xp,1,npar);
   free_matrix(doldm,1,nlstate,1,npar);    free_matrix(doldm,1,nlstate,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    free_matrix(dnewmpar,1,nlstate,1,nlstate);
   
 }  }
   
 /************ Variance of one-step probabilities  ******************/  /************ Variance of one-step probabilities  ******************/
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 {   {
   int i, j=0,  k1, l1, tj;     int i, j=0,  k1, l1, tj;
   int k2, l2, j1,  z1;     int k2, l2, j1,  z1;
   int k=0, l;     int k=0, l;
   int first=1, first1, first2;     int first=1, first1, first2;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   double **dnewm,**doldm;     double **dnewm,**doldm;
   double *xp;     double *xp;
   double *gp, *gm;     double *gp, *gm;
   double **gradg, **trgradg;     double **gradg, **trgradg;
   double **mu;     double **mu;
   double age, cov[NCOVMAX+1];     double age, cov[NCOVMAX+1];
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   int theta;     int theta;
   char fileresprob[FILENAMELENGTH];     char fileresprob[FILENAMELENGTH];
   char fileresprobcov[FILENAMELENGTH];     char fileresprobcov[FILENAMELENGTH];
   char fileresprobcor[FILENAMELENGTH];     char fileresprobcor[FILENAMELENGTH];
   double ***varpij;     double ***varpij;
   
   strcpy(fileresprob,"prob");      strcpy(fileresprob,"PROB_"); 
   strcat(fileresprob,fileres);     strcat(fileresprob,fileres);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", fileresprob);       printf("Problem with resultfile: %s\n", fileresprob);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }     }
   strcpy(fileresprobcov,"probcov");      strcpy(fileresprobcov,"PROBCOV_"); 
   strcat(fileresprobcov,fileres);     strcat(fileresprobcov,fileresu);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", fileresprobcov);       printf("Problem with resultfile: %s\n", fileresprobcov);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }     }
   strcpy(fileresprobcor,"probcor");      strcpy(fileresprobcor,"PROBCOR_"); 
   strcat(fileresprobcor,fileres);     strcat(fileresprobcor,fileresu);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", fileresprobcor);       printf("Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }     }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   pstamp(ficresprob);     pstamp(ficresprob);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fprintf(ficresprob,"# Age");     fprintf(ficresprob,"# Age");
   pstamp(ficresprobcov);     pstamp(ficresprobcov);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   fprintf(ficresprobcov,"# Age");     fprintf(ficresprobcov,"# Age");
   pstamp(ficresprobcor);     pstamp(ficresprobcor);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   fprintf(ficresprobcor,"# Age");     fprintf(ficresprobcor,"# Age");
   
   
   for(i=1; i<=nlstate;i++)     for(i=1; i<=nlstate;i++)
     for(j=1; j<=(nlstate+ndeath);j++){       for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);         fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);         fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }         }  
  /* fprintf(ficresprob,"\n");     /* fprintf(ficresprob,"\n");
   fprintf(ficresprobcov,"\n");        fprintf(ficresprobcov,"\n");
   fprintf(ficresprobcor,"\n");        fprintf(ficresprobcor,"\n");
  */     */
   xp=vector(1,npar);     xp=vector(1,npar);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   first=1;     first=1;
   fprintf(ficgp,"\n# Routine varprob");     fprintf(ficgp,"\n# Routine varprob");
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   fprintf(fichtm,"\n");     fprintf(fichtm,"\n");
   
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov);
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
   file %s<br>\n",optionfilehtmcov);     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\  
 and drawn. It helps understanding how is the covariance between two incidences.\  and drawn. It helps understanding how is the covariance between two incidences.\
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 standard deviations wide on each axis. <br>\  standard deviations wide on each axis. <br>\
Line 4125  standard deviations wide on each axis. < Line 6530  standard deviations wide on each axis. <
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
   cov[1]=1;     cov[1]=1;
   /* tj=cptcoveff; */     /* tj=cptcoveff; */
   tj = (int) pow(2,cptcoveff);     tj = (int) pow(2,cptcoveff);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   j1=0;     j1=0;
   for(j1=1; j1<=tj;j1++){     for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/
     /*for(i1=1; i1<=ncodemax[t];i1++){ */       if  (cptcovn>0) {
     /*j1++;*/         fprintf(ficresprob, "\n#********** Variable "); 
       if  (cptcovn>0) {         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficresprob, "\n#********** Variable ");          fprintf(ficresprob, "**********\n#\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);         fprintf(ficresprobcov, "\n#********** Variable "); 
         fprintf(ficresprob, "**********\n#\n");         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficresprobcov, "\n#********** Variable ");          fprintf(ficresprobcov, "**********\n#\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                          
         fprintf(ficresprobcov, "**********\n#\n");         fprintf(ficgp, "\n#********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficgp, "\n#********** Variable ");          fprintf(ficgp, "**********\n#\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                          
         fprintf(ficgp, "**********\n#\n");                          
                  fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                          
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(ficresprobcor, "\n#********** Variable ");    
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficresprobcor, "\n#********** Variable ");             fprintf(ficresprobcor, "**********\n#");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);         if(invalidvarcomb[j1]){
         fprintf(ficresprobcor, "**********\n#");               fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
       }           fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
                  continue;
       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));         }
       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       }
       gp=vector(1,(nlstate)*(nlstate+ndeath));       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       gm=vector(1,(nlstate)*(nlstate+ndeath));       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for (age=bage; age<=fage; age ++){        gp=vector(1,(nlstate)*(nlstate+ndeath));
         cov[2]=age;       gm=vector(1,(nlstate)*(nlstate+ndeath));
         if(nagesqr==1)       for (age=bage; age<=fage; age ++){ 
           cov[3]= age*age;         cov[2]=age;
         for (k=1; k<=cptcovn;k++) {         if(nagesqr==1)
           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4           cov[3]= age*age;
                                                          * 1  1 1 1 1         for (k=1; k<=cptcovn;k++) {
                                                          * 2  2 1 1 1           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
                                                          * 3  1 2 1 1           /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                          */                                                                      * 1  1 1 1 1
           /* nbcode[1][1]=0 nbcode[1][2]=1;*/                                                                      * 2  2 1 1 1
         }                                                                      * 3  1 2 1 1
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */                                                                      */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];           /* nbcode[1][1]=0 nbcode[1][2]=1;*/
         for (k=1; k<=cptcovprod;k++)         }
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
                  for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
              for (k=1; k<=cptcovprod;k++)
         for(theta=1; theta <=npar; theta++){           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           for(i=1; i<=npar; i++)                          
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);                          
                    for(theta=1; theta <=npar; theta++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);           for(i=1; i<=npar; i++)
                        xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           k=0;                                  
           for(i=1; i<= (nlstate); i++){           pmij(pmmij,cov,ncovmodel,xp,nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){                                  
               k=k+1;           k=0;
               gp[k]=pmmij[i][j];           for(i=1; i<= (nlstate); i++){
             }             for(j=1; j<=(nlstate+ndeath);j++){
           }               k=k+1;
                          gp[k]=pmmij[i][j];
           for(i=1; i<=npar; i++)             }
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);           }
                                       
           pmij(pmmij,cov,ncovmodel,xp,nlstate);           for(i=1; i<=npar; i++)
           k=0;             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           for(i=1; i<=(nlstate); i++){                                  
             for(j=1; j<=(nlstate+ndeath);j++){           pmij(pmmij,cov,ncovmodel,xp,nlstate);
               k=k+1;           k=0;
               gm[k]=pmmij[i][j];           for(i=1; i<=(nlstate); i++){
             }             for(j=1; j<=(nlstate+ndeath);j++){
           }               k=k+1;
                     gm[k]=pmmij[i][j];
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              }
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];             }
         }                                  
            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           for(theta=1; theta <=npar; theta++)         }
             trgradg[j][theta]=gradg[theta][j];  
           
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
   
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
           
         k=0;  
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];  
           }  
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];  
   
         /*printf("\n%d ",(int)age);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           }*/  
   
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);  
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }  
         i=0;  
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){   
             i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){  
               /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }  
           }  
         }/* end of loop for state */  
       } /* end of loop for age */  
       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
         
       /* Confidence intervalle of pij  */  
       /*  
         fprintf(ficgp,"\nunset parametric;unset label");  
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */  
   
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;first2=2;  
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){   
           if(l2==k2) continue;  
           j=(k2-1)*(nlstate+ndeath)+l2;  
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){   
               if(l1==k1) continue;  
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;  
               for (age=bage; age<=fage; age ++){   
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   c12=cv12/sqrt(v1*v2);  
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   if ((lc2 <0) || (lc1 <0) ){  
                     if(first2==1){  
                       first1=0;  
                     printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);  
                     }  
                     fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);  
                     /* lc1=fabs(lc1); */ /* If we want to have them positive */  
                     /* lc2=fabs(lc2); */  
                   }  
   
                   /* Eigen vectors */         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));           for(theta=1; theta <=npar; theta++)
                   /*v21=sqrt(1.-v11*v11); *//* error */             trgradg[j][theta]=gradg[theta][j];
                   v21=(lc1-v1)/cv12*v11;                          
                   v12=-v21;         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   v22=v11;         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                   tnalp=v21/v11;                          
                   if(first1==1){         pmij(pmmij,cov,ncovmodel,x,nlstate);
                     first1=0;                          
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);         k=0;
                   }         for(i=1; i<=(nlstate); i++){
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);           for(j=1; j<=(nlstate+ndeath);j++){
                   /*printf(fignu*/             k=k+1;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */             mu[k][(int) age]=pmmij[i][j];
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */           }
                   if(first==1){         }
                     first=0;         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                     fprintf(ficgp,"\nset parametric;unset label");           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);             varpij[i][j][(int)age] = doldm[i][j];
                     fprintf(ficgp,"\nset ter png small size 320, 240");                          
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\         /*printf("\n%d ",(int)age);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);           }*/
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                          
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);         fprintf(ficresprob,"\n%d ",(int)age);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);         fprintf(ficresprobcov,"\n%d ",(int)age);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);         fprintf(ficresprobcor,"\n%d ",(int)age);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                          
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   }else{           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                     first=0;           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);         }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);         i=0;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);         for (k=1; k<=(nlstate);k++){
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\           for (l=1; l<=(nlstate+ndeath);l++){ 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\             i++;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   }/* if first */             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                 } /* age mod 5 */             for (j=1; j<=i;j++){
               } /* end loop age */               /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
               first=1;               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
             } /*l12 */             }
           } /* k12 */           }
         } /*l1 */         }/* end of loop for state */
       }/* k1 */       } /* end of loop for age */
       /* } */ /* loop covariates */       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   }       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);       /* Confidence intervalle of pij  */
   free_vector(xp,1,npar);       /*
   fclose(ficresprob);         fprintf(ficgp,"\nunset parametric;unset label");
   fclose(ficresprobcov);         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   fclose(ficresprobcor);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fflush(ficgp);         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fflush(fichtmcov);         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 }         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
        */
                   
        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
        first1=1;first2=2;
        for (k2=1; k2<=(nlstate);k2++){
          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
            if(l2==k2) continue;
            j=(k2-1)*(nlstate+ndeath)+l2;
            for (k1=1; k1<=(nlstate);k1++){
              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                if(l1==k1) continue;
                i=(k1-1)*(nlstate+ndeath)+l1;
                if(i<=j) continue;
                for (age=bage; age<=fage; age ++){ 
                  if ((int)age %5==0){
                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    mu1=mu[i][(int) age]/stepm*YEARM ;
                    mu2=mu[j][(int) age]/stepm*YEARM;
                    c12=cv12/sqrt(v1*v2);
                    /* Computing eigen value of matrix of covariance */
                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    if ((lc2 <0) || (lc1 <0) ){
                      if(first2==1){
                        first1=0;
                        printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                      }
                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
                      /* lc2=fabs(lc2); */
                    }
                                                                   
                    /* Eigen vectors */
                    if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){
                      printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                      fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                      v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12)));
                    }else
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                    /*v21=sqrt(1.-v11*v11); *//* error */
                    v21=(lc1-v1)/cv12*v11;
                    v12=-v21;
                    v22=v11;
                    tnalp=v21/v11;
                    if(first1==1){
                      first1=0;
                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    }
                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    /*printf(fignu*/
                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                    if(first==1){
                      first=0;
                      fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                      fprintf(ficgp,"\nset parametric;unset label");
                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                      fprintf(ficgp,"\nset ter svg size 640, 480");
                      fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                           \
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                      fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
                              mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \
                              mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */
                    }else{
                      first=0;
                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
                              mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)),   \
                              mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2)));
                    }/* if first */
                  } /* age mod 5 */
                } /* end loop age */
                fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                first=1;
              } /*l12 */
            } /* k12 */
          } /*l1 */
        }/* k1 */
      }  /* loop on combination of covariates j1 */
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      free_vector(xp,1,npar);
      fclose(ficresprob);
      fclose(ficresprobcov);
      fclose(ficresprobcor);
      fflush(ficgp);
      fflush(fichtmcov);
    }
   
   
 /******************* Printing html file ***********/  /******************* Printing html file ***********/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                   int lastpass, int stepm, int weightopt, char model[],\                    int lastpass, int stepm, int weightopt, char model[],\
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   int popforecast, int estepm ,\                    int popforecast, int mobilav, int prevfcast, int mobilavproj, int backcast, int estepm , \
                   double jprev1, double mprev1,double anprev1, \                    double jprev1, double mprev1,double anprev1, double dateprev1, double dateproj1, double dateback1, \
                   double jprev2, double mprev2,double anprev2){                    double jprev2, double mprev2,double anprev2, double dateprev2, double dateproj2, double dateback2){
   int jj1, k1, i1, cpt;    int jj1, k1, i1, cpt, k4, nres;
   
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 </ul>");  </ul>");
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \     fprintf(fichtm,"<ul><li> model=1+age+%s\n \
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",  </ul>", model);
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
      fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
      fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
      fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));             stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",   - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));             stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \   - Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
    <a href=\"%s\">%s</a> <br>\n",             subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));     fprintf(fichtm,"\
    - Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Population projections by age and states: \   - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));     <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      if(prevfcast==1){
        fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");     m=pow(2,cptcoveff);
      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
  m=pow(2,cptcoveff);     fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
   
  jj1=0;     jj1=0;
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){     fprintf(fichtm," \n<ul>");
      for(nres=1; nres <= nresult; nres++) /* For each resultline */
      for(k1=1; k1<=m;k1++){ /* For each combination of covariate */
        if(m != 1 && TKresult[nres]!= k1)
          continue;
      jj1++;       jj1++;
      if (cptcovn > 0) {       if (cptcovn > 0) {
          fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescov");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
          }
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
            fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]);
          }
          fprintf(fichtm,"\">");
          
          /* if(nqfveff+nqtveff 0) */ /* Test to be done */
          fprintf(fichtm,"************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
          }
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
            fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
          }
          if(invalidvarcomb[k1]){
            fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
            continue;
          }
          fprintf(fichtm,"</a></li>");
        } /* cptcovn >0 */
      }
        fprintf(fichtm," \n</ul>");
   
      jj1=0;
   
      for(nres=1; nres <= nresult; nres++) /* For each resultline */
      for(k1=1; k1<=m;k1++){ /* For each combination of covariate */
        if(m != 1 && TKresult[nres]!= k1)
          continue;
   
        /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"\n<p><a name=\"rescov");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
          }
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
            fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]);
          }
          fprintf(fichtm,"\"</a>");
    
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        for (cpt=1; cpt<=cptcoveff;cpt++)          for (cpt=1; cpt<=cptcoveff;cpt++){ 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);           fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
            printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout);
            /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
            /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
          }
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout);
         }
          
          /* if(nqfveff+nqtveff 0) */ /* Test to be done */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
            printf("\nCombination (%d) ignored because no cases \n",k1); 
            continue;
          }
      }       }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \
   <img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
      /* Pij */       /* Pij */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \       fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \
 <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       <img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);     
      /* Quasi-incidences */       /* Quasi-incidences */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\       fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
 <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
        /* Period (stable) prevalence in each health state */  divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \
   <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.     \
    <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
        }
        /* Period (forward stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
        }
        if(backcast==1){
          /* Backward prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
          }
        }
        if(prevfcast==1){
          /* Projection of prevalence up to period (forward stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateproj1, dateproj2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
          }
        }
        if(backcast==1){
         /* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){         for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \           fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \
 <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);   from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \
    account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \
   with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
    <img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
        }         }
        }
            
      for(cpt=1; cpt<=nlstate;cpt++) {       for(cpt=1; cpt<=nlstate;cpt++) {
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a> <br> \
 <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);  <img src=\"%s_%d-%d-%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
      }       }
    } /* end i1 */       /* } /\* end i1 *\/ */
  }/* End k1 */     }/* End k1 */
  fprintf(fichtm,"</ul>");     fprintf(fichtm,"</ul>");
   
      fprintf(fichtm,"\
  fprintf(fichtm,"\  
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",     fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));             subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));             subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));             subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
    <a href=\"%s\">%s</a> <br>\n</li>",     <a href=\"%s\">%s</a> <br>\n</li>",
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));             estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
    <a href=\"%s\">%s</a> <br>\n</li>",     <a href=\"%s\">%s</a> <br>\n</li>",
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));             estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));             estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
          estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));             estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\   - Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));             subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
 /*  if(popforecast==1) fprintf(fichtm,"\n */  /*  if(popforecast==1) fprintf(fichtm,"\n */
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
Line 4472  fprintf(fichtm," \n<ul><li><b>Graphs</b> Line 7011  fprintf(fichtm," \n<ul><li><b>Graphs</b>
 /*      <br>",fileres,fileres,fileres,fileres); */  /*      <br>",fileres,fileres,fileres,fileres); */
 /*  else  */  /*  else  */
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
  fflush(fichtm);     fflush(fichtm);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
      m=pow(2,cptcoveff);
      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
  m=pow(2,cptcoveff);     jj1=0;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
   
  jj1=0;     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
  for(k1=1; k1<=m;k1++){     for(k1=1; k1<=m;k1++){
    for(i1=1; i1<=ncodemax[k1];i1++){       if(m != 1 && TKresult[nres]!= k1)
          continue;
        /* for(i1=1; i1<=ncodemax[k1];i1++){ */
      jj1++;       jj1++;
      if (cptcovn > 0) {       if (cptcovn > 0) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        for (cpt=1; cpt<=cptcoveff;cpt++)          for (cpt=1; cpt<=cptcoveff;cpt++)  /**< cptcoveff number of variables */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);           fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);
            /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
   
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
            continue;
          }
      }       }
      for(cpt=1; cpt<=nlstate;cpt++) {       for(cpt=1; cpt<=nlstate;cpt++) {
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \         fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \
 prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\  prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>\n <br>\
 <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);    <img src=\"%s_%d-%d-%d.svg\">",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);  
      }       }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 true period expectancies (those weighted with period prevalences are also\  true period expectancies (those weighted with period prevalences are also\
  drawn in addition to the population based expectancies computed using\   drawn in addition to the population based expectancies computed using\
  observed and cahotic prevalences: %s%d.png<br>\   observed and cahotic prevalences:  <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>\n<br>\
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);  <img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);
    } /* end i1 */       /* } /\* end i1 *\/ */
  }/* End k1 */     }/* End k1 */
  fprintf(fichtm,"</ul>");    }/* End nres */
  fflush(fichtm);     fprintf(fichtm,"</ul>");
      fflush(fichtm);
 }  }
   
 /******************* Gnuplot file **************/  /******************* Gnuplot file **************/
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int backcast, char pathc[], double p[], int offyear, int offbyear){
   
   char dirfileres[132],optfileres[132];    char dirfileres[132],optfileres[132];
   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;    char gplotcondition[132], gplotlabel[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0;
     int lv=0, vlv=0, kl=0;
   int ng=0;    int ng=0;
     int vpopbased;
     int ioffset; /* variable offset for columns */
     int iyearc=1; /* variable column for year of projection  */
     int iagec=1; /* variable column for age of projection  */
     int nres=0; /* Index of resultline */
     int istart=1; /* For starting graphs in projections */
   
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 /*     printf("Problem with file %s",optionfilegnuplot); */  /*     printf("Problem with file %s",optionfilegnuplot); */
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
Line 4518  void printinggnuplot(char fileres[], cha Line 7081  void printinggnuplot(char fileres[], cha
   
   /*#ifdef windows */    /*#ifdef windows */
   fprintf(ficgp,"cd \"%s\" \n",pathc);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     /*#endif */    /*#endif */
   m=pow(2,cptcoveff);    m=pow(2,cptcoveff);
   
     /* diagram of the model */
     fprintf(ficgp,"\n#Diagram of the model \n");
     fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n");
     fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate);
     fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
   
     fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0)  ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
     fprintf(ficgp,"\n#show arrow\nunset label\n");
     fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
     fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0.  font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate);
     fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n");
     fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_"));
     fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n");
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
     fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
     /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
     fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
     /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
     fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
     fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
     for (i=1; i<= nlstate ; i ++) {
       fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
       fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
       fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
       for (j=2; j<= nlstate+ndeath ; j ++) {
         fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
       }
       fprintf(ficgp,";\nset out; unset ylabel;\n"); 
     }
     /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */                
     /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
     /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
     fprintf(ficgp,"\nset out;unset log\n");
     /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
   strcpy(dirfileres,optionfilefiname);    strcpy(dirfileres,optionfilefiname);
   strcpy(optfileres,"vpl");    strcpy(optfileres,"vpl");
  /* 1eme*/    /* 1eme*/
   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");    for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */
     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */        for(nres=1; nres <= nresult; nres++){ /* For each resultline */
      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);          /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);          if(m != 1 && TKresult[nres]!= k1)
      fprintf(ficgp,"set xlabel \"Age\" \n\            continue;
 set ylabel \"Probability\" \n\          /* We are interested in selected combination by the resultline */
 set ter png small size 320, 240\n\          /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);          fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
           strcpy(gplotlabel,"(");
      for (i=1; i<= nlstate ; i ++) {          for (k=1; k<=cptcoveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */
        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");            lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */
        else        fprintf(ficgp," %%*lf (%%*lf)");            /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
      }            /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);            /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
      for (i=1; i<= nlstate ; i ++) {            vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");            /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
        else fprintf(ficgp," %%*lf (%%*lf)");            /* printf(" V%d=%d ",Tvaraff[k],vlv); */
      }             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
      fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
      for (i=1; i<= nlstate ; i ++) {          }
        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
        else fprintf(ficgp," %%*lf (%%*lf)");            /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
      }              fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
    }          }
   }          strcpy(gplotlabel+strlen(gplotlabel),")");
   /*2 eme*/          /* printf("\n#\n"); */
   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");          fprintf(ficgp,"\n#\n");
   for (k1=1; k1<= m ; k1 ++) {           if(invalidvarcomb[k1]){
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);            /*k1=k1-1;*/ /* To be checked */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);            fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                 continue;
     for (i=1; i<= nlstate+1 ; i ++) {          }
       k=2*i;        
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);
         if (j==i) fprintf(ficgp," %%lf (%%lf)");          /* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */
         else fprintf(ficgp," %%*lf (%%*lf)");          fprintf(ficgp,"set title \"Alive state %d %s\" font \"Helvetica,12\"\n",cpt,gplotlabel);
       }             fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          /* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        /* k1-1 error should be nres-1*/
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          for (i=1; i<= nlstate ; i ++) {
       for (j=1; j<= nlstate+1 ; j ++) {            if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
         if (j==i) fprintf(ficgp," %%lf (%%lf)");            else        fprintf(ficgp," %%*lf (%%*lf)");
         else fprintf(ficgp," %%*lf (%%*lf)");          }
       }             fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
       fprintf(ficgp,"\" t\"\" w l lt 0,");          for (i=1; i<= nlstate ; i ++) {
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);            if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
       for (j=1; j<= nlstate+1 ; j ++) {            else fprintf(ficgp," %%*lf (%%*lf)");
         if (j==i) fprintf(ficgp," %%lf (%%lf)");          } 
         else fprintf(ficgp," %%*lf (%%*lf)");          fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); 
       }             for (i=1; i<= nlstate ; i ++) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");            if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
       else fprintf(ficgp,"\" t\"\" w l lt 0,");            else fprintf(ficgp," %%*lf (%%*lf)");
     }          }  
   }          /* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */
             
   /*3eme*/          fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_"));
           if(cptcoveff ==0){
             fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3",      2+3*(cpt-1),  cpt );
           }else{
             kl=0;
             for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
               lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
               /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
               /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
               /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
               vlv= nbcode[Tvaraff[k]][lv];
               kl++;
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(k==cptcoveff){
                 fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                         2+cptcoveff*2+3*(cpt-1),  cpt );  /* 4 or 6 ?*/
               }else{
                 fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                 kl++;
               }
             } /* end covariate */
           } /* end if no covariate */
   
           if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
             /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
             fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */
             if(cptcoveff ==0){
               fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3",    2+(cpt-1),  cpt );
             }else{
               kl=0;
               for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv];
                 kl++;
                 /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                 /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                 /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                 /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                 if(k==cptcoveff){
                   fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                           2+cptcoveff*2+(cpt-1),  cpt );  /* 4 or 6 ?*/
                 }else{
                   fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                   kl++;
                 }
               } /* end covariate */
             } /* end if no covariate */
             if(backcast == 1){
               fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
               /* k1-1 error should be nres-1*/
               for (i=1; i<= nlstate ; i ++) {
                 if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                 else        fprintf(ficgp," %%*lf (%%*lf)");
               }
               fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
               for (i=1; i<= nlstate ; i ++) {
                 if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                 else fprintf(ficgp," %%*lf (%%*lf)");
               } 
               fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); 
               for (i=1; i<= nlstate ; i ++) {
                 if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                 else fprintf(ficgp," %%*lf (%%*lf)");
               } 
               fprintf(ficgp,"\" t\"\" w l lt 4");
             } /* end if backprojcast */
           } /* end if backcast */
           /* fprintf(ficgp,"\nset out ;unset label;\n"); */
           fprintf(ficgp,"\nset out ;unset title;\n");
         } /* nres */
       } /* k1 */
     } /* cpt */
   
       
   for (k1=1; k1<= m ; k1 ++) {     /*2 eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {    for (k1=1; k1<= m ; k1 ++){  
       /*       k=2+nlstate*(2*cpt-2); */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       k=2+(nlstate+1)*(cpt-1);        if(m != 1 && TKresult[nres]!= k1)
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);          continue;
       fprintf(ficgp,"set ter png small size 320, 240\n\        fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);        strcpy(gplotlabel,"(");
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
         }
         /* for(k=1; k <= ncovds; k++){ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
                           
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres);
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel);
           if(vpopbased==0){
             fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
           }else
             fprintf(ficgp,"\nreplot ");
           for (i=1; i<= nlstate+1 ; i ++) {
             k=2*i;
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
             else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             fprintf(ficgp,"\" t\"\" w l lt 0,");
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
             else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
           } /* state */
         } /* vpopbased */
         fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */
       } /* end nres */
     } /* k1 end 2 eme*/
                   
       */  
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);  
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/  
                   
       }     /*3eme*/
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);    for (k1=1; k1<= m ; k1 ++){
     }      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
   }        if(m != 1 && TKresult[nres]!= k1)
             continue;
   /* CV preval stable (period) */  
   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */        for (cpt=1; cpt<= nlstate ; cpt ++) {
     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */          fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
       k=3;          strcpy(gplotlabel,"(");
       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);          for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);            lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
                           
           /*       k=2+nlstate*(2*cpt-2); */
           k=2+(nlstate+1)*(cpt-1);
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel);
           fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt);
           /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                                   
           */
           for (i=1; i< nlstate ; i ++) {
             fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1);
             /*    fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                                   
           } 
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt);
         }
         fprintf(ficgp,"\nunset label;\n");
       } /* end nres */
     } /* end kl 3eme */
     
     /* 4eme */
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<=m; k1++){    /* For each covariate and each value */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
           strcpy(gplotlabel,"(");
           fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3;
           for (i=1; i<= nlstate ; i ++){
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
             }else{
               fprintf(ficgp,", '' ");
             }
             l=(nlstate+ndeath)*(i-1)+1;
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
             for (j=2; j<= nlstate+ndeath ; j ++)
               fprintf(ficgp,"+$%d",k+l+j-1);
             fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/ 
       } /* end nres */
     } /* end covariate k1 */  
   
   /* 5eme */
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
           strcpy(gplotlabel,"(");
           fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3;
           for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
             if(j==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
             else
               fprintf(ficgp,", '' ");
             l=(nlstate+ndeath)*(cpt-1) +j;
             fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
             /* for (i=2; i<= nlstate+ndeath ; i ++) */
             /*   fprintf(ficgp,"+$%d",k+l+i-1); */
             fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
           } /* nlstate */
           fprintf(ficgp,", '' ");
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
           for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
             l=(nlstate+ndeath)*(cpt-1) +j;
             if(j < nlstate)
               fprintf(ficgp,"$%d +",k+l);
             else
               fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
           }
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* end nres */
     
   /* 6eme */
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)
         continue;
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */
         strcpy(gplotlabel,"(");      
         fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
         }
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         } 
         strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
         
         fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
         fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 set ter png small size 320, 240\n\  set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
 unset log y\n\        k=3; /* Offset */
 plot [%.f:%.f]  ", ageminpar, agemaxpar);        for (i=1; i<= nlstate ; i ++){ /* State of origin */
       for (i=1; i<= nlstate ; i ++){  
         if(i==1)          if(i==1)
           fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
         else          else
           fprintf(ficgp,", '' ");            fprintf(ficgp,", '' ");
         l=(nlstate+ndeath)*(i-1)+1;          l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
         fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
         for (j=1; j<= (nlstate-1) ; j ++)          for (j=2; j<= nlstate ; j ++)
           fprintf(ficgp,"+$%d",k+l+j);            fprintf(ficgp,"+$%d",k+l+j-1);
         fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);          fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
       } /* nlstate */        } /* nlstate */
       fprintf(ficgp,"\n");        fprintf(ficgp,"\nset out; unset label;\n");
     } /* end cpt state*/       } /* end cpt state*/ 
   } /* end covariate */      } /* end covariate */  
       
   /* proba elementaires */    
   fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");  /* 7eme */
     if(backcast == 1){
       /* CV backward prevalence  for each covariate */
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */
           strcpy(gplotlabel,"(");      
           fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3; /* Offset */
           for (i=1; i<= nlstate ; i ++){ /* State of arrival */
             if(i==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
             else
               fprintf(ficgp,", '' ");
             /* l=(nlstate+ndeath)*(i-1)+1; */
             l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */
             /* for (j=2; j<= nlstate ; j ++) */
             /*    fprintf(ficgp,"+$%d",k+l+j-1); */
             /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
             fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i);
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* End if backcast */
     
     /* 8eme */
     if(prevfcast==1){
       /* Projection from cross-sectional to forward stable (period) prevalence for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           strcpy(gplotlabel,"(");      
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
   
           /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
           istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
           /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
           for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==istart){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               ioffset=2; /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               fprintf(ficgp," u %d:(", ioffset); 
               if(i==nlstate+1){
                 fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ",        \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",ioffset); 
                 fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \
                        offyear,                           \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate );
               }else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{ /* more than 2 covariates */
               ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               iyearc=ioffset-1;
               iagec=ioffset;
               fprintf(ficgp," u %d:(",ioffset); 
               kl=0;
               strcpy(gplotcondition,"(");
               for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                 kl++;
                 sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                 kl++;
                 if(k <cptcoveff && cptcoveff>1)
                   sprintf(gplotcondition+strlen(gplotcondition)," && ");
               }
               strcpy(gplotcondition+strlen(gplotcondition),")");
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(i==nlstate+1){
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",iagec); 
                 fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \
                         iyearc, iagec, offyear,                           \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc );
   /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
               }else{
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
               }
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
     
     if(backcast==1){
       /* Back projection from cross-sectional to stable (mixed) for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           strcpy(gplotlabel,"(");      
           fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
   
           /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
           istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
           /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
           for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==istart){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               ioffset=2; /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               fprintf(ficgp," u %d:(", ioffset); 
               if(i==nlstate+1){
                 fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",ioffset); 
                 fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \
                        offbyear,                          \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1) );
               }else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i );
             }else{ /* more than 2 covariates */
               ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               iyearc=ioffset-1;
               iagec=ioffset;
               fprintf(ficgp," u %d:(",ioffset); 
               kl=0;
               strcpy(gplotcondition,"(");
               for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                 kl++;
                 sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                 kl++;
                 if(k <cptcoveff && cptcoveff>1)
                   sprintf(gplotcondition+strlen(gplotcondition)," && ");
               }
               strcpy(gplotcondition+strlen(gplotcondition),")");
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(i==nlstate+1){
                 fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",iagec); 
                 /* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */
                 fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \
                         iyearc,iagec,offbyear,                            \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc );
   /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
               }else{
                 /* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */
                 fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i );
               }
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if backcast */
     
     
     /* 9eme writing MLE parameters */
     fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n");
   for(i=1,jk=1; i <=nlstate; i++){    for(i=1,jk=1; i <=nlstate; i++){
     fprintf(ficgp,"# initial state %d\n",i);      fprintf(ficgp,"# initial state %d\n",i);
     for(k=1; k <=(nlstate+ndeath); k++){      for(k=1; k <=(nlstate+ndeath); k++){
Line 4647  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 7846  plot [%.f:%.f]  ", ageminpar, agemaxpar)
         fprintf(ficgp,"\n");          fprintf(ficgp,"\n");
       }        }
     }      }
    }    }
   fprintf(ficgp,"##############\n#\n");    fprintf(ficgp,"##############\n#\n");
     
   /*goto avoid;*/    /*goto avoid;*/
   fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");    /* 10eme Graphics of probabilities or incidences using written MLE parameters */
     fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n");
   fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");    fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
   fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");    fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
   fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");    fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
Line 4665  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 7865  plot [%.f:%.f]  ", ageminpar, agemaxpar)
   fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");    fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
   fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");    fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
   fprintf(ficgp,"#\n");    fprintf(ficgp,"#\n");
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
      fprintf(ficgp,"# ng=%d\n",ng);      fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
      fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);      fprintf(ficgp,"#model=%s \n",model);
      for(jk=1; jk <=m; jk++) {      fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
        fprintf(ficgp,"#    jk=%d\n",jk);      fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);       for(k1=1; k1 <=m; k1++)  /* For each combination of covariate */
        if (ng==2)      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        if(m != 1 && TKresult[nres]!= k1)
        else          continue;
          fprintf(ficgp,"\nset title \"Probability\"\n");        fprintf(ficgp,"\n\n# Combination of dummy  k1=%d which is ",k1);
        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        strcpy(gplotlabel,"(");
        i=1;        /*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/
        for(k2=1; k2<=nlstate; k2++) {        for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
          k3=i;          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
          for(k=1; k<=(nlstate+ndeath); k++) {          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
            if (k != k2){          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
              if(ng==2)          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                if(nagesqr==0)          vlv= nbcode[Tvaraff[k]][lv];
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
                else /* nagesqr =1 */          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
                  fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);        }
              else        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                if(nagesqr==0)          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                else /* nagesqr =1 */        } 
                  fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);        strcpy(gplotlabel+strlen(gplotlabel),")");
              ij=1;/* To be checked else nbcode[0][0] wrong */        fprintf(ficgp,"\n#\n");
              for(j=3; j <=ncovmodel-nagesqr; j++) {        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */        fprintf(ficgp,"\nset key outside ");
                  fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        /* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */
                  ij++;        fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel);
                }        fprintf(ficgp,"\nset ter svg size 640, 480 ");
                else        if (ng==1){
                  fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
              }          fprintf(ficgp,"\nunset log y");
              fprintf(ficgp,")/(1");        }else if (ng==2){
                        fprintf(ficgp,"\nset ylabel \"Probability\"\n");
              for(k1=1; k1 <=nlstate; k1++){           fprintf(ficgp,"\nset log y");
                if(nagesqr==0)        }else if (ng==3){
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                else /* nagesqr =1 */          fprintf(ficgp,"\nset log y");
                  fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);        }else
             fprintf(ficgp,"\nunset title ");
                ij=1;        fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                for(j=3; j <=ncovmodel-nagesqr; j++){        i=1;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(k2=1; k2<=nlstate; k2++) {
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          k3=i;
                    ij++;          for(k=1; k<=(nlstate+ndeath); k++) {
                  }            if (k != k2){
                  else              switch( ng) {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              case 1:
                }                if(nagesqr==0)
                fprintf(ficgp,")");                  fprintf(ficgp," p%d+p%d*x",i,i+1);
              }                else /* nagesqr =1 */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                  fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                break;
              i=i+ncovmodel;              case 2: /* ng=2 */
            }                if(nagesqr==0)
          } /* end k */                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
        } /* end k2 */                else /* nagesqr =1 */
      } /* end jk */                  fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
    } /* end ng */                break;
  /* avoid: */              case 3:
    fflush(ficgp);                 if(nagesqr==0)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                 break;
               }
               ij=1;/* To be checked else nbcode[0][0] wrong */
               ijp=1; /* product no age */
               /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
               for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
                 /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                 if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                   if(j==Tage[ij]) { /* Product by age  To be looked at!!*/
                     if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                       if(DummyV[j]==0){
                         fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                       }else{ /* quantitative */
                         fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                         /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                       }
                       ij++;
                     }
                   } 
                 }else if(cptcovprod >0){
                   if(j==Tprod[ijp]) { /* */ 
                     /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                     if(ijp <=cptcovprod) { /* Product */
                       if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                         if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                           /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                           fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                         }else{ /* Vn is dummy and Vm is quanti */
                           /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                           fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                         }
                       }else{ /* Vn*Vm Vn is quanti */
                         if(DummyV[Tvard[ijp][2]]==0){
                           fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                         }else{ /* Both quanti */
                           fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                         }
                       }
                       ijp++;
                     }
                   } /* end Tprod */
                 } else{  /* simple covariate */
                   /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
                   if(Dummy[j]==0){
                     fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
                   }else{ /* quantitative */
                     fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   }
                 } /* end simple */
               } /* end j */
             }else{
               i=i-ncovmodel;
               if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */
                 fprintf(ficgp," (1.");
             }
             
             if(ng != 1){
               fprintf(ficgp,")/(1");
               
               for(cpt=1; cpt <=nlstate; cpt++){ 
                 if(nagesqr==0)
                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr);
                  
                 ij=1;
                 for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(cptcovage >0){ 
                      if((j-2)==Tage[ij]) { /* Bug valgrind */
                        if(ij <=cptcovage) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                    }else
                      fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/* Valgrind bug nbcode */
                 }
                 fprintf(ficgp,")");
               }
               fprintf(ficgp,")");
               if(ng ==2)
                 fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
               else /* ng= 3 */
                 fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
             }else{ /* end ng <> 1 */
               if( k !=k2) /* logit p11 is hard to draw */
                 fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
             }
             if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
               fprintf(ficgp,",");
             if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
               fprintf(ficgp,",");
             i=i+ncovmodel;
           } /* end k */
         } /* end k2 */
         /* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */
         fprintf(ficgp,"\n set out; unset title;set key default;\n");
       } /* end k1 */
     } /* end ng */
     /* avoid: */
     fflush(ficgp); 
 }  /* end gnuplot */  }  /* end gnuplot */
   
   
 /*************** Moving average **************/  /*************** Moving average **************/
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){  /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
    int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
      
      int i, cpt, cptcod;
      int modcovmax =1;
      int mobilavrange, mob;
      int iage=0;
      int firstA1=0, firstA2=0;
   
      double sum=0., sumr=0.;
      double age;
      double *sumnewp, *sumnewm, *sumnewmr;
      double *agemingood, *agemaxgood; 
      double *agemingoodr, *agemaxgoodr; 
     
     
      /* modcovmax=2*cptcoveff;  Max number of modalities. We suppose  */
      /*              a covariate has 2 modalities, should be equal to ncovcombmax   */
   
      sumnewp = vector(1,ncovcombmax);
      sumnewm = vector(1,ncovcombmax);
      sumnewmr = vector(1,ncovcombmax);
      agemingood = vector(1,ncovcombmax);  
      agemingoodr = vector(1,ncovcombmax); 
      agemaxgood = vector(1,ncovcombmax);
      agemaxgoodr = vector(1,ncovcombmax);
   
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.;
        sumnewp[cptcod]=0.;
        agemingood[cptcod]=0, agemingoodr[cptcod]=0;
        agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0;
      }
      if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
     
      if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
        if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
          for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
        */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
              sumnewm[cptcod]=0.;
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
              } /* end i */
              if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */
            } /* end cptcod */
          }/* end age */
        }/* end mob */
      }else{
        printf("Error internal in movingaverage, mobilav=%d.\n",mobilav);
        return -1;
      }
   
   int i, cpt, cptcod;     for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */
   int modcovmax =1;       /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
   int mobilavrange, mob;       if(invalidvarcomb[cptcod]){
   double age;         printf("\nCombination (%d) ignored because no cases \n",cptcod); 
          continue;
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose        }
                            a covariate has 2 modalities */  
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */       for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */
          sumnewm[cptcod]=0.;
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){         sumnewmr[cptcod]=0.;
     if(mobilav==1) mobilavrange=5; /* default */         for (i=1; i<=nlstate;i++){
     else mobilavrange=mobilav;           sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
     for (age=bage; age<=fage; age++)           sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
       for (i=1; i<=nlstate;i++)         }
         for (cptcod=1;cptcod<=modcovmax;cptcod++)         if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];           agemingoodr[cptcod]=age;
     /* We keep the original values on the extreme ages bage, fage and for          }
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
        we use a 5 terms etc. until the borders are no more concerned.              agemingood[cptcod]=age;
     */          }
     for (mob=3;mob <=mobilavrange;mob=mob+2){       } /* age */
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */
         for (i=1; i<=nlstate;i++){         sumnewm[cptcod]=0.;
           for (cptcod=1;cptcod<=modcovmax;cptcod++){         sumnewmr[cptcod]=0.;
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];         for (i=1; i<=nlstate;i++){
               for (cpt=1;cpt<=(mob-1)/2;cpt++){           sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];           sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];         }
               }         if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;           agemaxgoodr[cptcod]=age;
           }         }
         }         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
       }/* end age */           agemaxgood[cptcod]=age;
     }/* end mob */         }
   }else return -1;       } /* age */
   return 0;       /* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */
 }/* End movingaverage */       /* but they will change */
        firstA1=0;firstA2=0;
        for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */
          sumnewm[cptcod]=0.;
          sumnewmr[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
          }
          if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
            if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
              agemaxgoodr[cptcod]=age;  /* age min */
              for (i=1; i<=nlstate;i++)
                mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            }else{ /* bad we change the value with the values of good ages */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }else{
            if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
              agemaxgood[cptcod]=age;
            }else{ /* bad we change the value with the values of good ages */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }/* end else */
          sum=0.;sumr=0.;
          for (i=1; i<=nlstate;i++){
            sum+=mobaverage[(int)age][i][cptcod];
            sumr+=probs[(int)age][i][cptcod];
          }
          if(fabs(sum - 1.) > 1.e-3) { /* bad */
            if(!firstA1){
              firstA1=1;
              printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
            }
            fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
          } /* end bad */
          /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
          if(fabs(sumr - 1.) > 1.e-3) { /* bad */
            if(!firstA2){
              firstA2=1;
              printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
            }
            fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
          } /* end bad */
        }/* age */
   
        for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */
          sumnewm[cptcod]=0.;
          sumnewmr[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
          } 
          if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
            if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */
              agemingoodr[cptcod]=age;
              for (i=1; i<=nlstate;i++)
                mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            }else{ /* bad we change the value with the values of good ages */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }else{
            if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
              agemingood[cptcod]=age;
            }else{ /* bad */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }/* end else */
          sum=0.;sumr=0.;
          for (i=1; i<=nlstate;i++){
            sum+=mobaverage[(int)age][i][cptcod];
            sumr+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sum - 1.) > 1.e-3) { /* bad */
            printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage);
          } /* end bad */
          /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
          if(fabs(sumr - 1.) > 1.e-3) { /* bad */
            printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage);
          } /* end bad */
        }/* age */
   
                   
        for (age=bage; age<=fage; age++){
          /* printf("%d %d ", cptcod, (int)age); */
          sumnewp[cptcod]=0.;
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewp[cptcod]+=probs[(int)age][i][cptcod];
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
          }
          /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
        }
        /* printf("\n"); */
        /* } */
   
        /* brutal averaging */
        /* for (i=1; i<=nlstate;i++){ */
        /*   for (age=1; age<=bage; age++){ */
        /*          mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
        /*          /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
        /*   }      */
        /*   for (age=fage; age<=AGESUP; age++){ */
        /*          mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */
        /*          /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
        /*   } */
        /* } /\* end i status *\/ */
        /* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */
        /*   for (age=1; age<=AGESUP; age++){ */
        /*          /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */
        /*          mobaverage[(int)age][i][cptcod]=0.; */
        /*   } */
        /* } */
      }/* end cptcod */
      free_vector(agemaxgoodr,1, ncovcombmax);
      free_vector(agemaxgood,1, ncovcombmax);
      free_vector(agemingood,1, ncovcombmax);
      free_vector(agemingoodr,1, ncovcombmax);
      free_vector(sumnewmr,1, ncovcombmax);
      free_vector(sumnewm,1, ncovcombmax);
      free_vector(sumnewp,1, ncovcombmax);
      return 0;
    }/* End movingaverage */
    
   
 /************** Forecasting ******************/  /************** Forecasting ******************/
 void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   /* proj1, year, month, day of starting projection     /* proj1, year, month, day of starting projection 
      agemin, agemax range of age       agemin, agemax range of age
      dateprev1 dateprev2 range of dates during which prevalence is computed       dateprev1 dateprev2 range of dates during which prevalence is computed
      anproj2 year of en of projection (same day and month as proj1).       anproj2 year of en of projection (same day and month as proj1).
   */    */
   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;    int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
   double agec; /* generic age */    double agec; /* generic age */
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   double *popeffectif,*popcount;    double *popeffectif,*popcount;
   double ***p3mat;    double ***p3mat;
   double ***mobaverage;    /* double ***mobaverage; */
   char fileresf[FILENAMELENGTH];    char fileresf[FILENAMELENGTH];
   
   agelim=AGESUP;    agelim=AGESUP;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
     
   strcpy(fileresf,"f");     strcpy(fileresf,"F_"); 
   strcat(fileresf,fileres);    strcat(fileresf,fileresu);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    if((ficresf=fopen(fileresf,"w"))==NULL) {
     printf("Problem with forecast resultfile: %s\n", fileresf);      printf("Problem with forecast resultfile: %s\n", fileresf);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   }    }
   printf("Computing forecasting: result on file '%s' \n", fileresf);    printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }  
   }  
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   if (stepm<=12) stepsize=1;    if (stepm<=12) stepsize=1;
   if(estepm < stepm){    if(estepm < stepm){
     printf ("Problem %d lower than %d\n",estepm, stepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   else  hstepm=estepm;       else{
       hstepm=estepm;   
     }
     if(estepm > stepm){ /* Yes every two year */
       stepsize=2;
     }
   
   hstepm=hstepm/stepm;     hstepm=hstepm/stepm; 
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
Line 4829  void prevforecast(char fileres[], double Line 8335  void prevforecast(char fileres[], double
   if(jprojmean==0) jprojmean=1;    if(jprojmean==0) jprojmean=1;
   if(mprojmean==0) jprojmean=1;    if(mprojmean==0) jprojmean=1;
   
   i1=cptcoveff;    i1=pow(2,cptcoveff);
   if (cptcovn < 1){i1=1;}    if (cptcovn < 1){i1=1;}
       
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       
   fprintf(ficresf,"#****** Routine prevforecast **\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
     
 /*            if (h==(int)(YEARM*yearp)){ */  /*            if (h==(int)(YEARM*yearp)){ */
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(k=1; k<=i1;k++){
       k=k+1;      if(i1 != 1 && TKresult[nres]!= k)
       fprintf(ficresf,"\n#******");        continue;
       for(j=1;j<=cptcoveff;j++) {      if(invalidvarcomb[k]){
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("\nCombination (%d) projection ignored because no cases \n",k); 
       }        continue;
       fprintf(ficresf,"******\n");      }
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");      fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
       for(j=1; j<=nlstate+ndeath;j++){       for(j=1;j<=cptcoveff;j++) {
         for(i=1; i<=nlstate;i++)                      fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresf," p%d%d",i,j);      }
         fprintf(ficresf," p.%d",j);      for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
       }        fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {       }
       fprintf(ficresf," yearproj age");
       for(j=1; j<=nlstate+ndeath;j++){ 
         for(i=1; i<=nlstate;i++)        
           fprintf(ficresf," p%d%d",i,j);
         fprintf(ficresf," wp.%d",j);
       }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
         fprintf(ficresf,"\n");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         /* for (agec=fage; agec>=(ageminpar-1); agec--){  */
         for (agec=fage; agec>=(bage); agec--){ 
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           /* We compute pii at age agec over nhstepm);*/
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
           /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
           for (h=0; h<=nhstepm; h++){
             if (h*hstepm/YEARM*stepm ==yearp) {
               break;
             }
           }
         fprintf(ficresf,"\n");          fprintf(ficresf,"\n");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);             for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (agec=fage; agec>=(ageminpar-1); agec--){           fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);           
           nhstepm = nhstepm/hstepm;           for(j=1; j<=nlstate+ndeath;j++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            ppij=0.;
           oldm=oldms;savm=savms;            for(i=1; i<=nlstate;i++) {
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);                if (mobilav>=1)
                ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k];
               else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
               }
               fprintf(ficresf," %.3f", p3mat[i][j][h]);
             } /* end i */
             fprintf(ficresf," %.3f", ppij);
           }/* end j */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */
         /* diffyear=(int) anproj1+yearp-ageminpar-1; */
         /*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/
       } /* end yearp */
     } /* end  k */
                   
           for (h=0; h<=nhstepm; h++){  
             if (h*hstepm/YEARM*stepm ==yearp) {  
               fprintf(ficresf,"\n");  
               for(j=1;j<=cptcoveff;j++)   
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);  
             }   
             for(j=1; j<=nlstate+ndeath;j++) {  
               ppij=0.;  
               for(i=1; i<=nlstate;i++) {  
                 if (mobilav==1)   
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];  
                 else {  
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];  
                 }  
                 if (h*hstepm/YEARM*stepm== yearp) {  
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);  
                 }  
               } /* end i */  
               if (h*hstepm/YEARM*stepm==yearp) {  
                 fprintf(ficresf," %.3f", ppij);  
               }  
             }/* end j */  
           } /* end h */  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         } /* end agec */  
       } /* end yearp */  
     } /* end cptcod */  
   } /* end  cptcov */  
          
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   
   fclose(ficresf);    fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
 }  }
   
 /************** Forecasting *****not tested NB*************/  /************** Back Forecasting ******************/
 void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){
       /* back1, year, month, day of starting backection
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       agemin, agemax range of age
   int *popage;       dateprev1 dateprev2 range of dates during which prevalence is computed
   double calagedatem, agelim, kk1, kk2;       anback2 year of end of backprojection (same day and month as back1).
        prevacurrent and prev are prevalences.
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
     double agec; /* generic age */
     double agelim, ppij, ppi, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   double *popeffectif,*popcount;    double *popeffectif,*popcount;
   double ***p3mat,***tabpop,***tabpopprev;    double ***p3mat;
   double ***mobaverage;    /* double ***mobaverage; */
   char filerespop[FILENAMELENGTH];    char fileresfb[FILENAMELENGTH];
    
     agelim=AGEINF;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*Do we need to compute prevalence again?*/
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;    /* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
       
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    strcpy(fileresfb,"FB_");
     strcat(fileresfb,fileresu);
     if((ficresfb=fopen(fileresfb,"w"))==NULL) {
       printf("Problem with back forecast resultfile: %s\n", fileresfb);
       fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb);
     }
     printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
     fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
       
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
       
   strcpy(filerespop,"pop");      
   strcat(filerespop,fileres);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    if (stepm<=12) stepsize=1;
     printf("Problem with forecast resultfile: %s\n", filerespop);    if(estepm < stepm){
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else{
       hstepm=estepm;   
     }
     if(estepm >= stepm){ /* Yes every two year */
       stepsize=2;
   }    }
   printf("Computing forecasting: result on file '%s' \n", filerespop);    
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    hstepm=hstepm/stepm;
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
     printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
     
     fprintf(ficresfb,"#****** Routine prevbackforecast **\n");
     
     for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(k=1; k<=i1;k++){
       if(i1 != 1 && TKresult[nres]!= k)
         continue;
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) projection ignored because no cases \n",k); 
         continue;
       }
       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       }
       fprintf(ficresfb," yearbproj age");
       for(j=1; j<=nlstate+ndeath;j++){
         for(i=1; i<=nlstate;i++)
           fprintf(ficresfb," b%d%d",i,j);
         fprintf(ficresfb," b.%d",j);
       }
       for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {
         /* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  */
         fprintf(ficresfb,"\n");
         fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);
         /* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */
         /* for (agec=bage; agec<=agemax-1; agec++){  /\* testing *\/ */
         for (agec=bage; agec<=fage; agec++){  /* testing */
           /* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/
           nhstepm=(int) (agec-agelim) *YEARM/stepm;/*     nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/
           nhstepm = nhstepm/hstepm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           /* computes hbxij at age agec over 1 to nhstepm */
           /* printf("####prevbackforecast debug  agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */
           hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres);
           /* hpxij(p3mat,nhstepm,agec,hstepm,p,             nlstate,stepm,oldm,savm, k,nres); */
           /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
           /* printf(" agec=%.2f\n",agec);fflush(stdout); */
           for (h=0; h<=nhstepm; h++){
             if (h*hstepm/YEARM*stepm ==-yearp) {
               break;
             }
           }
           fprintf(ficresfb,"\n");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec-h*hstepm/YEARM*stepm);
           for(i=1; i<=nlstate+ndeath;i++) {
             ppij=0.;ppi=0.;
             for(j=1; j<=nlstate;j++) {
               /* if (mobilav==1) */
               ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k];
               ppi=ppi+prevacurrent[(int)agec][j][k];
               /* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */
               /* ppi=ppi+mobaverage[(int)agec][j][k]; */
                 /* else { */
                 /*        ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */
                 /* } */
               fprintf(ficresfb," %.3f", p3mat[i][j][h]);
             } /* end j */
             if(ppi <0.99){
               printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
               fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
             }
             fprintf(ficresfb," %.3f", ppij);
           }/* end j */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */
       } /* end yearp */
     } /* end k */
     
     /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
     
     fclose(ficresfb);
     printf("End of Computing Back forecasting \n");
     fprintf(ficlog,"End of Computing Back forecasting\n");
           
   }
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  /* Variance of prevalence limit: varprlim */
    void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
       /*------- Variance of forward period (stable) prevalence------*/   
    
      char fileresvpl[FILENAMELENGTH];  
      FILE *ficresvpl;
      double **oldm, **savm;
      double **varpl; /* Variances of prevalence limits by age */   
      int i1, k, nres, j ;
      
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of forward period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
       
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
       
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
   if (mobilav!=0) {      for(nres=1; nres <= nresult; nres++) /* For each resultline */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(k=1; k<=i1;k++){
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){        if(i1 != 1 && TKresult[nres]!= k)
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          continue;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        fprintf(ficresvpl,"\n#****** ");
         printf("\n#****** ");
         fprintf(ficlog,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvpl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
     }      }
   }      
       fclose(ficresvpl);
       printf("done variance-covariance of forward period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;   }
   if (stepm<=12) stepsize=1;  /* Variance of back prevalence: varbprlim */
    void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
         /*------- Variance of back (stable) prevalence------*/
   
      char fileresvbl[FILENAMELENGTH];  
      FILE  *ficresvbl;
   
      double **oldm, **savm;
      double **varbpl; /* Variances of back prevalence limits by age */   
      int i1, k, nres, j ;
   
      strcpy(fileresvbl,"VBL_");
      strcat(fileresvbl,fileresu);
      if((ficresvbl=fopen(fileresvbl,"w"))==NULL) {
        printf("Problem with variance of back (stable) prevalence  resultfile: %s\n", fileresvbl);
        exit(0);
      }
      printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout);
      fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog);
      
      
      i1=pow(2,cptcoveff);
      if (cptcovn < 1){i1=1;}
      
      for(nres=1; nres <= nresult; nres++) /* For each resultline */
        for(k=1; k<=i1;k++){
          if(i1 != 1 && TKresult[nres]!= k)
            continue;
          fprintf(ficresvbl,"\n#****** ");
          printf("\n#****** ");
          fprintf(ficlog,"\n#****** ");
          for(j=1;j<=cptcoveff;j++) {
            fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
            fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
            printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
          }
          for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
            printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
            fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
            fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
          }
          fprintf(ficresvbl,"******\n");
          printf("******\n");
          fprintf(ficlog,"******\n");
          
          varbpl=matrix(1,nlstate,(int) bage, (int) fage);
          oldm=oldms;savm=savms;
          
          varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres);
          free_matrix(varbpl,1,nlstate,(int) bage, (int)fage);
          /*}*/
        }
      
      fclose(ficresvbl);
      printf("done variance-covariance of back prevalence\n");fflush(stdout);
      fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog);
   
    } /* End of varbprlim */
   
   /************** Forecasting *****not tested NB*************/
   /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
       
   agelim=AGESUP;  /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
   /*   int *popage; */
   /*   double calagedatem, agelim, kk1, kk2; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat,***tabpop,***tabpopprev; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char filerespop[FILENAMELENGTH]; */
   
   /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   agelim=AGESUP; */
   /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
     
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
     
     
   /*   strcpy(filerespop,"POP_");  */
   /*   strcat(filerespop,fileresu); */
   /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
   /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
   /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
   /*   } */
   /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
   /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
   
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
   
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
   
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
       
   hstepm=1;  /*   agelim=AGESUP; */
   hstepm=hstepm/stepm;   
       
   if (popforecast==1) {  /*   hstepm=1; */
     if((ficpop=fopen(popfile,"r"))==NULL) {  /*   hstepm=hstepm/stepm;  */
       printf("Problem with population file : %s\n",popfile);exit(0);          
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  /*   if (popforecast==1) { */
     }   /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
     popage=ivector(0,AGESUP);  /*       printf("Problem with population file : %s\n",popfile);exit(0); */
     popeffectif=vector(0,AGESUP);  /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
     popcount=vector(0,AGESUP);  /*     }  */
   /*     popage=ivector(0,AGESUP); */
   /*     popeffectif=vector(0,AGESUP); */
   /*     popcount=vector(0,AGESUP); */
           
     i=1;     /*     i=1;    */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
          
     imx=i;  /*     imx=i; */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
   }  /*   } */
     
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){  /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
       k=k+1;  /*       k=k+1; */
       fprintf(ficrespop,"\n#******");  /*       fprintf(ficrespop,"\n#******"); */
       for(j=1;j<=cptcoveff;j++) {  /*       for(j=1;j<=cptcoveff;j++) { */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*      fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
       }  /*       } */
       fprintf(ficrespop,"******\n");  /*       fprintf(ficrespop,"******\n"); */
       fprintf(ficrespop,"# Age");  /*       fprintf(ficrespop,"# Age"); */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
       if (popforecast==1)  fprintf(ficrespop," [Population]");  /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
               
       for (cpt=0; cpt<=0;cpt++) {   /*       for (cpt=0; cpt<=0;cpt++) {  */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
                   
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
           nhstepm = nhstepm/hstepm;   /*        nhstepm = nhstepm/hstepm;  */
                       
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
           oldm=oldms;savm=savms;  /*        oldm=oldms;savm=savms; */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
           
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }   
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)   
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }  
               }  
               if (h==(int)(calagedatem+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }  
             }  
             for(i=1; i<=nlstate;i++){  
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];  
             }  
   
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)   
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  
       }  
    
   /******/  
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;   
                       
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*        for (h=0; h<=nhstepm; h++){ */
           oldm=oldms;savm=savms;  /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*            fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
           for (h=0; h<=nhstepm; h++){  /*          }  */
             if (h==(int) (calagedatem+YEARM*cpt)) {  /*          for(j=1; j<=nlstate+ndeath;j++) { */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  /*            kk1=0.;kk2=0; */
             }   /*            for(i=1; i<=nlstate;i++) {               */
             for(j=1; j<=nlstate+ndeath;j++) {  /*              if (mobilav==1)  */
               kk1=0.;kk2=0;  /*                kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
               for(i=1; i<=nlstate;i++) {                /*              else { */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      /*                kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
               }  /*              } */
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);          /*            } */
             }  /*            if (h==(int)(calagedatem+12*cpt)){ */
           }  /*              tabpop[(int)(agedeb)][j][cptcod]=kk1; */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*              /\*fprintf(ficrespop," %.3f", kk1); */
         }  /*                if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
       }  /*            } */
    }   /*          } */
   }  /*          for(i=1; i<=nlstate;i++){ */
   /*            kk1=0.; */
   /*            for(j=1; j<=nlstate;j++){ */
   /*              kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
   /*            } */
   /*            tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
   /*          } */
               
   /*          if (h==(int)(calagedatem+12*cpt)) */
   /*            for(j=1; j<=nlstate;j++)  */
   /*              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
         
   /*       /\******\/ */
         
   /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
   /*          } */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
   /*     }  */
   /*   } */
     
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
     
   /*   if (popforecast==1) { */
   /*     free_ivector(popage,0,AGESUP); */
   /*     free_vector(popeffectif,0,AGESUP); */
   /*     free_vector(popcount,0,AGESUP); */
   /*   } */
   /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   fclose(ficrespop); */
   /* } /\* End of popforecast *\/ */
     
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);  
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);  
 } /* End of popforecast */  
   
 int fileappend(FILE *fichier, char *optionfich)  int fileappend(FILE *fichier, char *optionfich)
 {  {
   if((fichier=fopen(optionfich,"a"))==NULL) {    if((fichier=fopen(optionfich,"a"))==NULL) {
Line 5197  double gompertz(double x[]) Line 8980  double gompertz(double x[])
   double A,B,L=0.0,sump=0.,num=0.;    double A,B,L=0.0,sump=0.,num=0.;
   int i,n=0; /* n is the size of the sample */    int i,n=0; /* n is the size of the sample */
   
   for (i=0;i<=imx-1 ; i++) {    for (i=1;i<=imx ; i++) {
     sump=sump+weight[i];      sump=sump+weight[i];
     /*    sump=sump+1;*/      /*    sump=sump+1;*/
     num=num+1;      num=num+1;
Line 5270  double gompertz_f(const gsl_vector *v, v Line 9053  double gompertz_f(const gsl_vector *v, v
 #endif  #endif
   
 /******************* Printing html file ***********/  /******************* Printing html file ***********/
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \  void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                   int lastpass, int stepm, int weightopt, char model[],\                    int lastpass, int stepm, int weightopt, char model[],\
                   int imx,  double p[],double **matcov,double agemortsup){                    int imx,  double p[],double **matcov,double agemortsup){
   int i,k;    int i,k;
Line 5279  void printinghtmlmort(char fileres[], ch Line 9062  void printinghtmlmort(char fileres[], ch
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   for (i=1;i<=2;i++)     for (i=1;i<=2;i++) 
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");    fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
   fprintf(fichtm,"</ul>");    fprintf(fichtm,"</ul>");
   
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
Line 5294  fprintf(fichtm,"<ul><li><h4>Life table</ Line 9077  fprintf(fichtm,"<ul><li><h4>Life table</
 }  }
   
 /******************* Gnuplot file **************/  /******************* Gnuplot file **************/
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   char dirfileres[132],optfileres[132];    char dirfileres[132],optfileres[132];
   
Line 5308  void printinggnuplotmort(char fileres[], Line 9091  void printinggnuplotmort(char fileres[],
   
   strcpy(dirfileres,optionfilefiname);    strcpy(dirfileres,optionfilefiname);
   strcpy(optfileres,"vpl");    strcpy(optfileres,"vpl");
   fprintf(ficgp,"set out \"graphmort.png\"\n ");     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n");     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
   /* fprintf(ficgp, "set size 0.65,0.65\n"); */    /* fprintf(ficgp, "set size 0.65,0.65\n"); */
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
Line 5322  int readdata(char datafile[], int firsto Line 9105  int readdata(char datafile[], int firsto
   /*-------- data file ----------*/    /*-------- data file ----------*/
   FILE *fic;    FILE *fic;
   char dummy[]="                         ";    char dummy[]="                         ";
   int i=0, j=0, n=0;    int i=0, j=0, n=0, iv=0, v;
     int lstra;
   int linei, month, year,iout;    int linei, month, year,iout;
   char line[MAXLINE], linetmp[MAXLINE];    char line[MAXLINE], linetmp[MAXLINE];
   char stra[MAXLINE], strb[MAXLINE];    char stra[MAXLINE], strb[MAXLINE];
   char *stratrunc;    char *stratrunc;
   int lstra;  
   
     DummyV=ivector(1,NCOVMAX); /* 1 to 3 */
     FixedV=ivector(1,NCOVMAX); /* 1 to 3 */
   
     for(v=1; v <=ncovcol;v++){
       DummyV[v]=0;
       FixedV[v]=0;
     }
     for(v=ncovcol+1; v <=ncovcol+nqv;v++){
       DummyV[v]=1;
       FixedV[v]=0;
     }
     for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){
       DummyV[v]=0;
       FixedV[v]=1;
     }
     for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){
       DummyV[v]=1;
       FixedV[v]=1;
     }
     for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){
       printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
       fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
     }
   
   if((fic=fopen(datafile,"r"))==NULL)    {    if((fic=fopen(datafile,"r"))==NULL)    {
     printf("Problem while opening datafile: %s\n", datafile);return 1;      printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;      fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
   }    }
   
   i=1;    i=1;
Line 5354  int readdata(char datafile[], int firsto Line 9160  int readdata(char datafile[], int firsto
     }      }
     trimbb(linetmp,line); /* Trims multiple blanks in line */      trimbb(linetmp,line); /* Trims multiple blanks in line */
     strcpy(line, linetmp);      strcpy(line, linetmp);
         
       /* Loops on waves */
     for (j=maxwav;j>=1;j--){      for (j=maxwav;j>=1;j--){
         for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
             cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
             cotvar[j][ntv+iv][i]=-1; /* For performance reasons */
             if(isalpha(strb[1])) { /* .m or .d Really Missing value */
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
               return 1;
             }
           }else{
             errno=0;
             /* what_kind_of_number(strb); */
             dval=strtod(strb,&endptr); 
             /* if( strb[0]=='\0' || (*endptr != '\0')){ */
             /* if(strb != endptr && *endptr == '\0') */
             /*    dval=dlval; */
             /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
               return 1;
             }
             cotqvar[j][iv][i]=dval; 
             cotvar[j][ntv+iv][i]=dval; 
           }
           strcpy(line,stra);
         }/* end loop ntqv */
         
         for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
           }else{
             errno=0;
             lval=strtol(strb,&endptr,10); 
             /*    if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
               return 1;
             }
           }
           if(lval <-1 || lval >1){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
             return 1;
           }
           cotvar[j][iv][i]=(double)(lval);
           strcpy(line,stra);
         }/* end loop ntv */
         
         /* Statuses  at wave */
       cutv(stra, strb, line, ' ');         cutv(stra, strb, line, ' '); 
       if(strb[0]=='.') { /* Missing status */        if(strb[0]=='.') { /* Missing value */
         lval=-1;          lval=-1;
       }else{        }else{
         errno=0;          errno=0;
         lval=strtol(strb,&endptr,10);           lval=strtol(strb,&endptr,10); 
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/          /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){          if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
           return 1;            return 1;
         }          }
       }        }
         
       s[j][i]=lval;        s[j][i]=lval;
               
         /* Date of Interview */
       strcpy(line,stra);        strcpy(line,stra);
       cutv(stra, strb,line,' ');        cutv(stra, strb,line,' ');
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){        if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
Line 5387  int readdata(char datafile[], int firsto Line 9265  int readdata(char datafile[], int firsto
       anint[j][i]= (double) year;         anint[j][i]= (double) year; 
       mint[j][i]= (double)month;         mint[j][i]= (double)month; 
       strcpy(line,stra);        strcpy(line,stra);
     } /* ENd Waves */      } /* End loop on waves */
           
       /* Date of death */
     cutv(stra, strb,line,' ');       cutv(stra, strb,line,' '); 
     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
     }      }
Line 5397  int readdata(char datafile[], int firsto Line 9276  int readdata(char datafile[], int firsto
       year=9999;        year=9999;
     }else{      }else{
       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;        return 1;
     }      }
     andc[i]=(double) year;       andc[i]=(double) year; 
     moisdc[i]=(double) month;       moisdc[i]=(double) month; 
     strcpy(line,stra);      strcpy(line,stra);
           
       /* Date of birth */
     cutv(stra, strb,line,' ');       cutv(stra, strb,line,' '); 
     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
     }      }
Line 5413  int readdata(char datafile[], int firsto Line 9293  int readdata(char datafile[], int firsto
     }else{      }else{
       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;        return 1;
     }      }
     if (year==9999) {      if (year==9999) {
       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;        return 1;
         
     }      }
     annais[i]=(double)(year);      annais[i]=(double)(year);
     moisnais[i]=(double)(month);       moisnais[i]=(double)(month); 
     strcpy(line,stra);      strcpy(line,stra);
           
       /* Sample weight */
     cutv(stra, strb,line,' ');       cutv(stra, strb,line,' '); 
     errno=0;      errno=0;
     dval=strtod(strb,&endptr);       dval=strtod(strb,&endptr); 
Line 5437  int readdata(char datafile[], int firsto Line 9318  int readdata(char datafile[], int firsto
     weight[i]=dval;       weight[i]=dval; 
     strcpy(line,stra);      strcpy(line,stra);
           
       for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           /* what_kind_of_number(strb); */
           dval=strtod(strb,&endptr);
           /* if(strb != endptr && *endptr == '\0') */
           /*   dval=dlval; */
           /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
             return 1;
           }
           coqvar[iv][i]=dval; 
           covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
         }
         strcpy(line,stra);
       }/* end loop nqv */
       
       /* Covariate values */
     for (j=ncovcol;j>=1;j--){      for (j=ncovcol;j>=1;j--){
       cutv(stra, strb,line,' ');         cutv(stra, strb,line,' '); 
       if(strb[0]=='.') { /* Missing status */        if(strb[0]=='.') { /* Missing covariate value */
         lval=-1;          lval=-1;
       }else{        }else{
         errno=0;          errno=0;
Line 5454  int readdata(char datafile[], int firsto Line 9358  int readdata(char datafile[], int firsto
         printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
  For example, for multinomial values like 1, 2 and 3,\n \   For example, for multinomial values like 1, 2 and 3,\n                 \
  build V1=0 V2=0 for the reference value (1),\n \   build V1=0 V2=0 for the reference value (1),\n                         \
         V1=1 V2=0 for (2) \n \          V1=1 V2=0 for (2) \n                                            \
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
  output of IMaCh is often meaningless.\n \   output of IMaCh is often meaningless.\n                                \
  Exiting.\n",lval,linei, i,line,j);   Exiting.\n",lval,linei, i,line,j);
         fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
  For example, for multinomial values like 1, 2 and 3,\n \   For example, for multinomial values like 1, 2 and 3,\n                 \
  build V1=0 V2=0 for the reference value (1),\n \   build V1=0 V2=0 for the reference value (1),\n                         \
         V1=1 V2=0 for (2) \n \          V1=1 V2=0 for (2) \n                                            \
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
  output of IMaCh is often meaningless.\n \   output of IMaCh is often meaningless.\n                                \
  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);   Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
         return 1;          return 1;
       }        }
Line 5475  int readdata(char datafile[], int firsto Line 9379  int readdata(char datafile[], int firsto
       strcpy(line,stra);        strcpy(line,stra);
     }        }  
     lstra=strlen(stra);      lstra=strlen(stra);
            
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
       stratrunc = &(stra[lstra-9]);        stratrunc = &(stra[lstra-9]);
       num[i]=atol(stratrunc);        num[i]=atol(stratrunc);
Line 5487  int readdata(char datafile[], int firsto Line 9391  int readdata(char datafile[], int firsto
           
     i=i+1;      i=i+1;
   } /* End loop reading  data */    } /* End loop reading  data */
     
   *imax=i-1; /* Number of individuals */    *imax=i-1; /* Number of individuals */
   fclose(fic);    fclose(fic);
      
   return (0);    return (0);
   /* endread: */    /* endread: */
     printf("Exiting readdata: ");    printf("Exiting readdata: ");
     fclose(fic);    fclose(fic);
     return (1);    return (1);
   }
   
   void removefirstspace(char **stri){/*, char stro[]) {*/
     char *p1 = *stri, *p2 = *stri;
     while (*p2 == ' ')
       p2++; 
     /* while ((*p1++ = *p2++) !=0) */
     /*   ; */
     /* do */
     /*   while (*p2 == ' ') */
     /*     p2++; */
     /* while (*p1++ == *p2++); */
     *stri=p2; 
   }
   
   int decoderesult ( char resultline[], int nres)
   /**< This routine decode one result line and returns the combination # of dummy covariates only **/
   {
     int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
     char resultsav[MAXLINE];
     int resultmodel[MAXLINE];
     int modelresult[MAXLINE];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     removefirstspace(&resultline);
     printf("decoderesult:%s\n",resultline);
   
     if (strstr(resultline,"v") !=0){
       printf("Error. 'v' must be in upper case 'V' result: %s ",resultline);
       fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog);
       return 1;
     }
     trimbb(resultsav, resultline);
     if (strlen(resultsav) >1){
       j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */
     }
     if(j == 0){ /* Resultline but no = */
       TKresult[nres]=0; /* Combination for the nresult and the model */
       return (0);
     }
       
     if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
       printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
       fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
     }
     for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */
       if(nbocc(resultsav,'=') >1){
          cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' 
                                         resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */
          cutl(strc,strd,strb,'=');  /* strb:V4=1 strc=1 strd=V4 */
       }else
         cutl(strc,strd,resultsav,'=');
       Tvalsel[k]=atof(strc); /* 1 */
       
       cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
       Tvarsel[k]=atoi(strc);
       /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
       /* cptcovsel++;     */
       if (nbocc(stra,'=') >0)
         strcpy(resultsav,stra); /* and analyzes it */
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       if(Typevar[k1]==0){ /* Single covariate in model */
         match=0;
         for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5   */
             modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
             match=1;
             break;
           }
         }
         if(match == 0){
           printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
         }
       }
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
       match=0;
       for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         if(Typevar[k1]==0){ /* Single */
           if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4   */
             resultmodel[k1]=k2;  /* resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
             ++match;
           }
         }
       }
       if(match == 0){
         printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
       }else if(match > 1){
         printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model);
       }
     }
         
     /* We need to deduce which combination number is chosen and save quantitative values */
     /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
     /* result line V4=1 V5=25.1 V3=0  V2=8 V1=1 */
     /* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/
     /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
     /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
     /*    1 0 0 0 */
     /*    2 1 0 0 */
     /*    3 0 1 0 */ 
     /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 */
     /*    5 0 0 1 */
     /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 */
     /*    7 0 1 1 */
     /*    8 1 1 1 */
     /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
     /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
     /* V5*age V5 known which value for nres?  */
     /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
     for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */
       if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */
         k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */
         k2=(int)Tvarsel[k3]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         k+=Tvalsel[k3]*pow(2,k4);  /*  Tvalsel[1]=1  */
         Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1)  Tresult[nres][2]=0(V3=0) */
         Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
         Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
         printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4);
         k4++;;
       }  else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */
         k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */
         k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
         Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
         Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
         printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
         k4q++;;
       }
     }
     
     TKresult[nres]=++k; /* Combination for the nresult and the model */
     return (0);
 }  }
 void removespace(char *str) {  
   char *p1 = str, *p2 = str;  int decodemodel( char model[], int lastobs)
   do   /**< This routine decodes the model and returns:
     while (*p2 == ' ')          * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
       p2++;          * - nagesqr = 1 if age*age in the model, otherwise 0.
   while (*p1++ == *p2++);          * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
 }          * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
           * - cptcovage number of covariates with age*products =2
 int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:          * - cptcovs number of simple covariates
    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age          * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
    * - nagesqr = 1 if age*age in the model, otherwise 0.          *     which is a new column after the 9 (ncovcol) variables. 
    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age          * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
    * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age          * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
    * - cptcovage number of covariates with age*products =2          *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
    * - cptcovs number of simple covariates          * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10          */
    *     which is a new column after the 9 (ncovcol) variables.   
    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual  
    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage  
    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.  
    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .  
  */  
 {  {
   int i, j, k, ks;    int i, j, k, ks, v;
   int  j1, k1, k2;    int  j1, k1, k2, k3, k4;
   char modelsav[80];    char modelsav[80];
   char stra[80], strb[80], strc[80], strd[80],stre[80];    char stra[80], strb[80], strc[80], strd[80],stre[80];
   char *strpt;    char *strpt;
Line 5533  int decodemodel ( char model[], int last Line 9564  int decodemodel ( char model[], int last
   if (strlen(model) >1){ /* If there is at least 1 covariate */    if (strlen(model) >1){ /* If there is at least 1 covariate */
     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;      j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
     if (strstr(model,"AGE") !=0){      if (strstr(model,"AGE") !=0){
       printf("Error. AGE must be in lower case 'age' model=1+age+%s ",model);        printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
       fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s ",model);fflush(ficlog);        fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
       return 1;        return 1;
     }      }
     if (strstr(model,"v") !=0){      if (strstr(model,"v") !=0){
Line 5546  int decodemodel ( char model[], int last Line 9577  int decodemodel ( char model[], int last
     if ((strpt=strstr(model,"age*age")) !=0){      if ((strpt=strstr(model,"age*age")) !=0){
       printf(" strpt=%s, model=%s\n",strpt, model);        printf(" strpt=%s, model=%s\n",strpt, model);
       if(strpt != model){        if(strpt != model){
       printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \          printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
  'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
  corresponding column of parameters.\n",model);   corresponding column of parameters.\n",model);
       fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \          fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
  'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
  corresponding column of parameters.\n",model); fflush(ficlog);   corresponding column of parameters.\n",model); fflush(ficlog);
       return 1;          return 1;
     }        }
   
       nagesqr=1;        nagesqr=1;
       if (strstr(model,"+age*age") !=0)        if (strstr(model,"+age*age") !=0)
         substrchaine(modelsav, model, "+age*age");          substrchaine(modelsav, model, "+age*age");
Line 5567  int decodemodel ( char model[], int last Line 9597  int decodemodel ( char model[], int last
     if (strlen(modelsav) >1){      if (strlen(modelsav) >1){
       j=nbocc(modelsav,'+'); /**< j=Number of '+' */        j=nbocc(modelsav,'+'); /**< j=Number of '+' */
       j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */        j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */        cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2  */
       cptcovt= j+1; /* Number of total covariates in the model, not including        cptcovt= j+1; /* Number of total covariates in the model, not including
                    * cst, age and age*age                        * cst, age and age*age 
                    * V1+V1*age+ V3 + V3*V4+age*age=> 4*/                       * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
                   /* including age products which are counted in cptcovage.        /* including age products which are counted in cptcovage.
                   * but the covariates which are products must be treated          * but the covariates which are products must be treated 
                   * separately: ncovn=4- 2=2 (V1+V3). */         * separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */        cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */        cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
         
             
       /*   Design        /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight         *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >         *  <          ncovcol=8                >
Line 5585  int decodemodel ( char model[], int last Line 9615  int decodemodel ( char model[], int last
        *   k=  1    2      3       4     5       6      7        8         *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8         *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:         *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)         *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8         *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k         *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1         *       if products, new covar are created after ncovcol with k1
Line 5611  int decodemodel ( char model[], int last Line 9641  int decodemodel ( char model[], int last
        *       {2,   1,     4,      8,    5,      6,     3,       7}         *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []         * Struct []
        */         */
         
       /* This loop fills the array Tvar from the string 'model'.*/        /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */        /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */        /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
Line 5621  int decodemodel ( char model[], int last Line 9651  int decodemodel ( char model[], int last
       /*        k=1 Tvar[1]=2 (from V2) */        /*        k=1 Tvar[1]=2 (from V2) */
       /*        k=5 Tvar[5] */        /*        k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */        /* for (k=1; k<=cptcovn;k++) { */
       /*        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */        /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
       /*        } */        /*        } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
       /*        /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */         * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */        for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
         Tvar[k]=0;          Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
         }
       cptcovage=0;        cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */        for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+'           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
Line 5642  int decodemodel ( char model[], int last Line 9673  int decodemodel ( char model[], int last
             cptcovprod--;              cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */              cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */              Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               Typevar[k]=1;  /* 1 for age product */
             cptcovage++; /* Sums the number of covariates which include age as a product */              cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */              Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
             /*printf("stre=%s ", stre);*/              /*printf("stre=%s ", stre);*/
Line 5649  int decodemodel ( char model[], int last Line 9681  int decodemodel ( char model[], int last
             cptcovprod--;              cptcovprod--;
             cutl(stre,strb,strc,'V');              cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);              Tvar[k]=atoi(stre);
               Typevar[k]=1;  /* 1 for age product */
             cptcovage++;              cptcovage++;
             Tage[cptcovage]=k;              Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/            } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
Line 5656  int decodemodel ( char model[], int last Line 9689  int decodemodel ( char model[], int last
             cptcovn++;              cptcovn++;
             cptcovprodnoage++;k1++;              cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/              cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but              Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                                    because this model-covariate is a construction we invent a new column                                                  because this model-covariate is a construction we invent a new column
                                    ncovcol + k1                                                  which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                                    If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2                                                  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                    Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */                                                  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               Typevar[k]=2;  /* 2 for double fixed dummy covariates */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */              cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */              Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/              Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/              Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;              k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */              /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */              /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
               /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
               /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
             for (i=1; i<=lastobs;i++){              for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of                /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */                   covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
Line 5679  int decodemodel ( char model[], int last Line 9716  int decodemodel ( char model[], int last
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
           /*  scanf("%d",i);*/            /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');            cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */            ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
           cptcovn++;            cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
           Tvar[k]=atoi(strd);            Tvar[k]=atoi(strd);
             Typevar[k]=0;  /* 0 for simple covariates */
         }          }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                                  /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/                                    scanf("%d",i);*/
       } /* end of loop + on total covariates */        } /* end of loop + on total covariates */
     } /* end if strlen(modelsave == 0) age*age might exist */      } /* end if strlen(modelsave == 0) age*age might exist */
   } /* end if strlen(model == 0) */    } /* end if strlen(model == 0) */
       
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
     
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
   printf("cptcovprod=%d ", cptcovprod);       printf("cptcovprod=%d ", cptcovprod);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);       fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
        scanf("%d ",i);*/
   scanf("%d ",i);*/  
   
   /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
      of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
   /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
      model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
      k =           1    2   3     4       5       6      7      8        9
      Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
      Typevar[k]=   0    0   0     2       1       0      2      1        1
      Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
      Dummy[k]      1    0   0     0       3       1      1      2        3
             Tmodelind[combination of covar]=k;
   */  
   /* Dispatching between quantitative and time varying covariates */
     /* If Tvar[k] >ncovcol it is a product */
     /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
           /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
     printf("Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     fprintf(ficlog,"Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     for(k=-1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}
     for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
       if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         nsd++;
         modell[k].maintype= FTYPE;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         modell[k].maintype= FTYPE;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
         Fixed[k]= 0;
         Dummy[k]= 1;
         nqfveff++;
         modell[k].maintype= FTYPE;
         modell[k].subtype= FQ;
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         ncovf++;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
         TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
       }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */
         Fixed[k]= 1;
         Dummy[k]= 0;
         ntveff++; /* Only simple time varying dummy variable */
         modell[k].maintype= VTYPE;
         modell[k].subtype= VD;
         nsd++;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         ncovv++; /* Only simple time varying variables */
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k; /* TvarVind[2]=2  TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
         TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
         printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
         Fixed[k]= 1;
         Dummy[k]= 1;
         nqtveff++;
         modell[k].maintype= VTYPE;
         modell[k].subtype= VQ;
         ncovv++; /* Only simple time varying variables */
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
         TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
         /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
         printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
         printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
       }else if (Typevar[k] == 1) {  /* product with age */
         ncova++;
         TvarA[ncova]=Tvar[k];
         TvarAind[ncova]=k;
         if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
           Fixed[k]= 2;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFD;
           /* ncoveff++; */
         }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
           Fixed[k]= 2;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
           /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv ){
           Fixed[k]= 3;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVD;                /*      Product age * varying dummy */
           /* ntveff++; /\* Only simple time varying dummy variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
           Fixed[k]= 3;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
           /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
         }
       }else if (Typevar[k] == 2) {  /* product without age */
         k1=Tposprod[k];
         if(Tvard[k1][1] <=ncovcol){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
             ncovf++; /* Varying variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else{
           printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
           fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
         } /*end k1*/
       }else{
         printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
         fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
       }
       printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
       printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype);
       fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
     }
     /* Searching for doublons in the model */
     for(k1=1; k1<= cptcovt;k1++){
       for(k2=1; k2 <k1;k2++){
         /* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */
         if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){
           if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
             if(Tvar[k1]==Tvar[k2]){
               printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog);
               return(1);
             }
           }else if (Typevar[k1] ==2){
             k3=Tposprod[k1];
             k4=Tposprod[k2];
             if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
               printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }
         }
       }
     }
     printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
     fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
   return (0); /* with covar[new additional covariate if product] and Tage if age */     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
   /*endread:*/    /*endread:*/
     printf("Exiting decodemodel: ");    printf("Exiting decodemodel: ");
     return (1);    return (1);
 }  }
   
 int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )  int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 {  {/* Check ages at death */
   int i, m;    int i, m;
     int firstone=0;
     
   for (i=1; i<=imx; i++) {    for (i=1; i<=imx; i++) {
     for(m=2; (m<= maxwav); m++) {      for(m=2; (m<= maxwav); m++) {
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         anint[m][i]=9999;          anint[m][i]=9999;
         s[m][i]=-1;          if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
       }        }
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
         *nberr = *nberr + 1;          *nberr = *nberr + 1;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);          if(firstone == 0){
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);            firstone=1;
         s[m][i]=-1;          printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
           }
           fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
           s[m][i]=-1;  /* Droping the death status */
       }        }
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
         (*nberr)++;          (*nberr)++;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);           printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);           fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */          s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */
       }        }
     }      }
   }    }
Line 5734  int calandcheckages(int imx, int maxwav, Line 10073  int calandcheckages(int imx, int maxwav,
   for (i=1; i<=imx; i++)  {    for (i=1; i<=imx; i++)  {
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     for(m=firstpass; (m<= lastpass); m++){      for(m=firstpass; (m<= lastpass); m++){
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){        if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
         if (s[m][i] >= nlstate+1) {          if (s[m][i] >= nlstate+1) {
           if(agedc[i]>0){            if(agedc[i]>0){
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999){              if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
               agev[m][i]=agedc[i];                agev[m][i]=agedc[i];
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
             }else {              }else {
               if ((int)andc[i]!=9999){                if ((int)andc[i]!=9999){
                 nbwarn++;                  nbwarn++;
Line 5749  int calandcheckages(int imx, int maxwav, Line 10088  int calandcheckages(int imx, int maxwav,
               }                }
             }              }
           } /* agedc > 0 */            } /* agedc > 0 */
         }          } /* end if */
         else if(s[m][i] !=9){ /* Standard case, age in fractional          else if(s[m][i] !=9){ /* Standard case, age in fractional
                                  years but with the precision of a month */                                   years but with the precision of a month */
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
Line 5765  int calandcheckages(int imx, int maxwav, Line 10104  int calandcheckages(int imx, int maxwav,
           }            }
           /*agev[m][i]=anint[m][i]-annais[i];*/            /*agev[m][i]=anint[m][i]-annais[i];*/
           /*     agev[m][i] = age[i]+2*m;*/            /*     agev[m][i] = age[i]+2*m;*/
         }          } /* en if 9*/
         else { /* =9 */          else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
           agev[m][i]=1;            agev[m][i]=1;
           s[m][i]=-1;            s[m][i]=-1;
         }          }
       }        }
       else /*= 0 Unknown */        else if(s[m][i]==0) /*= 0 Unknown */
         agev[m][i]=1;          agev[m][i]=1;
     }        else{
               printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
   }    }
       
   for (i=1; i<=imx; i++)  {    for (i=1; i<=imx; i++)  {
     for(m=firstpass; (m<=lastpass); m++){      for(m=firstpass; (m<=lastpass); m++){
       if (s[m][i] > (nlstate+ndeath)) {        if (s[m][i] > (nlstate+ndeath)) {
Line 5841  BOOL IsWow64() Line 10186  BOOL IsWow64()
 }  }
 #endif  #endif
   
 void syscompilerinfo()  void syscompilerinfo(int logged)
  {   {
    /* #include "syscompilerinfo.h"*/     /* #include "syscompilerinfo.h"*/
    /* command line Intel compiler 32bit windows, XP compatible:*/     /* command line Intel compiler 32bit windows, XP compatible:*/
Line 5890  void syscompilerinfo() Line 10235  void syscompilerinfo()
    int cross = CROSS;     int cross = CROSS;
    if (cross){     if (cross){
            printf("Cross-");             printf("Cross-");
            fprintf(ficlog, "Cross-");             if(logged) fprintf(ficlog, "Cross-");
    }     }
 #endif  #endif
   
 #include <stdint.h>  #include <stdint.h>
   
    printf("Compiled with:");fprintf(ficlog,"Compiled with:");     printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
 #if defined(__clang__)  #if defined(__clang__)
    printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */     printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
 #endif  #endif
 #if defined(__ICC) || defined(__INTEL_COMPILER)  #if defined(__ICC) || defined(__INTEL_COMPILER)
    printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */     printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
 #endif  #endif
 #if defined(__GNUC__) || defined(__GNUG__)  #if defined(__GNUC__) || defined(__GNUG__)
    printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */     printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
 #endif  #endif
 #if defined(__HP_cc) || defined(__HP_aCC)  #if defined(__HP_cc) || defined(__HP_aCC)
    printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */     printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
 #endif  #endif
 #if defined(__IBMC__) || defined(__IBMCPP__)  #if defined(__IBMC__) || defined(__IBMCPP__)
    printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */     printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
 #endif  #endif
 #if defined(_MSC_VER)  #if defined(_MSC_VER)
    printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */     printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
 #endif  #endif
 #if defined(__PGI)  #if defined(__PGI)
    printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */     printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
 #endif  #endif
 #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)  #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
    printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */     printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
 #endif  #endif
    printf(" for ");fprintf(ficlog," for ");     printf(" for "); if (logged) fprintf(ficlog, " for ");
         
 // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros  // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
 #ifdef _WIN32 // note the underscore: without it, it's not msdn official!  #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
     // Windows (x64 and x86)      // Windows (x64 and x86)
    printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");     printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
 #elif __unix__ // all unices, not all compilers  #elif __unix__ // all unices, not all compilers
     // Unix      // Unix
    printf("Unix ");fprintf(ficlog,"Unix ");     printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
 #elif __linux__  #elif __linux__
     // linux      // linux
    printf("linux ");fprintf(ficlog,"linux ");     printf("linux ");if(logged) fprintf(ficlog,"linux ");
 #elif __APPLE__  #elif __APPLE__
     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..      // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
    printf("Mac OS ");fprintf(ficlog,"Mac OS ");     printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
 #endif  #endif
   
 /*  __MINGW32__   */  /*  __MINGW32__   */
Line 5949  void syscompilerinfo() Line 10294  void syscompilerinfo()
 /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */  /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
 #if UINTPTR_MAX == 0xffffffff  #if UINTPTR_MAX == 0xffffffff
    printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */     printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
 #elif UINTPTR_MAX == 0xffffffffffffffff  #elif UINTPTR_MAX == 0xffffffffffffffff
    printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */     printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
 #else  #else
    printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */     printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
 #endif  #endif
   
 #if defined(__GNUC__)  #if defined(__GNUC__)
Line 5966  void syscompilerinfo() Line 10311  void syscompilerinfo()
                             + __GNUC_MINOR__ * 100)                              + __GNUC_MINOR__ * 100)
 # endif  # endif
    printf(" using GNU C version %d.\n", __GNUC_VERSION__);     printf(" using GNU C version %d.\n", __GNUC_VERSION__);
    fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);     if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
    if (uname(&sysInfo) != -1) {     if (uname(&sysInfo) != -1) {
      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);       printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);           if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
    }     }
    else     else
       perror("uname() error");        perror("uname() error");
    //#ifndef __INTEL_COMPILER      //#ifndef __INTEL_COMPILER 
 #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)  #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
    printf("GNU libc version: %s\n", gnu_get_libc_version());      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
    fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());     if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
 #endif  #endif
 #endif  #endif
   
    //   void main()     //   void main ()
    //   {     //   {
 #if defined(_MSC_VER)  #if defined(_MSC_VER)
    if (IsWow64()){     if (IsWow64()){
            printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");             printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
            fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");             if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
    }     }
    else{     else{
            printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");             printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
            fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");             if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
    }     }
    //      printf("\nPress Enter to continue...");     //      printf("\nPress Enter to continue...");
    //      getchar();     //      getchar();
Line 5999  void syscompilerinfo() Line 10344  void syscompilerinfo()
 #endif  #endif
         
   
  }  }
   
 int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){  int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/    /*--------------- Prevalence limit  (forward period or forward stable prevalence) --------------*/
   int i, j, k, i1 ;    int i, j, k, i1, k4=0, nres=0 ;
   double ftolpl = 1.e-10;    /* double ftolpl = 1.e-10; */
   double age, agebase, agelim;    double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"pl");    strcpy(filerespl,"PL_");
     strcat(filerespl,fileres);    strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {    if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;      printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;      fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }    }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);    printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);    fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);    pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence \n");    fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");    fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");    fprintf(ficrespl,"\n");
       
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */    /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
     agebase=ageminpar;    agebase=ageminpar;
     agelim=agemaxpar;    agelim=agemaxpar;
   
     i1=pow(2,cptcoveff);    /* i1=pow(2,ncoveff); */
     if (cptcovn < 1){i1=1;}    i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */
     /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
   
         /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
         /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;        /* k=k+1; */
         /* to clean */        /* to clean */
         //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);        //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
         fprintf(ficrespl,"\n#******");        fprintf(ficrespl,"#******");
         printf("\n#******");        printf("#******");
         fprintf(ficlog,"\n#******");        fprintf(ficlog,"#******");
         for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=cptcoveff ;j++) {/* all covariates */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }        }
         fprintf(ficrespl,"******\n");        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         printf("******\n");          printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         fprintf(ficlog,"******\n");          fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         fprintf(ficrespl,"#Age ");        }
         for(j=1;j<=cptcoveff;j++) {        fprintf(ficrespl,"******\n");
           fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("******\n");
         }        fprintf(ficlog,"******\n");
         for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        if(invalidvarcomb[k]){
         fprintf(ficrespl,"\n");          printf("\nCombination (%d) ignored because no case \n",k); 
                   fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
         for (age=agebase; age<=agelim; age++){          fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
           continue;
         }
   
         fprintf(ficrespl,"#Age ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
         fprintf(ficrespl,"Total Years_to_converge\n");
       
         for (age=agebase; age<=agelim; age++){
         /* for (age=agebase; age<=agebase; age++){ */          /* for (age=agebase; age<=agebase; age++){ */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres);
           fprintf(ficrespl,"%.0f ",age );          fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)          for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           for(i=1; i<=nlstate;i++)          tot=0.;
             fprintf(ficrespl," %.5f", prlim[i][i]);          for(i=1; i<=nlstate;i++){
           fprintf(ficrespl,"\n");            tot +=  prlim[i][i];
         } /* Age */            fprintf(ficrespl," %.5f", prlim[i][i]);
         /* was end of cptcod */          }
           fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
     } /* cptcov */      } /* cptcov */
         return 0;    } /* nres */
     return 0;
 }  }
   
   int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
           /*--------------- Back Prevalence limit  (backward stable prevalence) --------------*/
           
           /* Computes the back prevalence limit  for any combination      of covariate values 
      * at any age between ageminpar and agemaxpar
            */
     int i, j, k, i1, nres=0 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
     /* double ***mobaverage; */
     /* double      **dnewm, **doldm, **dsavm;  /\* for use *\/ */
   
     strcpy(fileresplb,"PLB_");
     strcat(fileresplb,fileresu);
     if((ficresplb=fopen(fileresplb,"w"))==NULL) {
       printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
       fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
     }
     printf("Computing backward prevalence: result on file '%s' \n", fileresplb);
     fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb);
     pstamp(ficresplb);
     fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficresplb,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
     fprintf(ficresplb,"\n");
     
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     
     agebase=ageminpar;
     agelim=agemaxpar;
     
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
        if(i1 != 1 && TKresult[nres]!= k)
           continue;
         //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
         fprintf(ficresplb,"#******");
         printf("#******");
         fprintf(ficlog,"#******");
         for(j=1;j<=cptcoveff ;j++) {/* all covariates */
           fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficresplb,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         if(invalidvarcomb[k]){
           printf("\nCombination (%d) ignored because no cases \n",k); 
           fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
           fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
           continue;
         }
       
         fprintf(ficresplb,"#Age ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
         fprintf(ficresplb,"Total Years_to_converge\n");
       
       
         for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
           if(mobilavproj > 0){
             /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
             /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres);
           }else if (mobilavproj == 0){
             printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             exit(1);
           }else{
             /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres);
             /* printf("TOTOT\n"); */
             /* exit(1); */
           }
           fprintf(ficresplb,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           tot=0.;
           for(i=1; i<=nlstate;i++){
             tot +=  bprlim[i][i];
             fprintf(ficresplb," %.5f", bprlim[i][i]);
           }
           fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
         /*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */
       } /* end of any combination */
     } /* end of nres */  
     /* hBijx(p, bage, fage); */
     /* fclose(ficrespijb); */
     
     return 0;
   }
    
 int hPijx(double *p, int bage, int fage){  int hPijx(double *p, int bage, int fage){
     /*------------- h Pij x at various ages ------------*/      /*------------- h Pij x at various ages ------------*/
   
Line 6076  int hPijx(double *p, int bage, int fage) Line 10552  int hPijx(double *p, int bage, int fage)
   int agelim;    int agelim;
   int hstepm;    int hstepm;
   int nhstepm;    int nhstepm;
   int h, i, i1, j, k;    int h, i, i1, j, k, k4, nres=0;
   
   double agedeb;    double agedeb;
   double ***p3mat;    double ***p3mat;
   
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {      if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;        printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
Line 6095  int hPijx(double *p, int bage, int fage) Line 10571  int hPijx(double *p, int bage, int fage)
     agelim=AGESUP;      agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */      hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   
     /* hstepm=1;   aff par mois*/      /* hstepm=1;   aff par mois*/
     pstamp(ficrespij);      pstamp(ficrespij);
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     i1= pow(2,cptcoveff);      i1= pow(2,cptcoveff);
    /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */                  /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */                  /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
    /*   k=k+1;  */                  /*      k=k+1;  */
     for (k=1; k <= (int) pow(2,cptcoveff); k++){      for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
       fprintf(ficrespij,"\n#****** ");        fprintf(ficrespij,"\n#****** ");
       for(j=1;j<=cptcoveff;j++)         for(j=1;j<=cptcoveff;j++) 
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
       fprintf(ficrespij,"******\n");        fprintf(ficrespij,"******\n");
               
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
Line 6117  int hPijx(double *p, int bage, int fage) Line 10600  int hPijx(double *p, int bage, int fage)
                   
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         oldm=oldms;savm=savms;          oldm=oldms;savm=savms;
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");          fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
         for(i=1; i<=nlstate;i++)          for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)            for(j=1; j<=nlstate+ndeath;j++)
Line 6136  int hPijx(double *p, int bage, int fage) Line 10619  int hPijx(double *p, int bage, int fage)
       }        }
       /*}*/        /*}*/
     }      }
         return 0;      return 0;
 }  }
    
    int hBijx(double *p, int bage, int fage, double ***prevacurrent){
       /*------------- h Bij x at various ages ------------*/
   
     int stepsize;
     /* int agelim; */
           int ageminl;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k, nres;
           
     double agedeb;
     double ***p3mat;
           
     strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
     if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
       printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
       fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
     }
     printf("Computing pij back: result on file '%s' \n", filerespijb);
     fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
     
     /* agelim=AGESUP; */
     ageminl=30;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     
     /* hstepm=1;   aff par mois*/
     pstamp(ficrespijb);
     fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 ");
     i1= pow(2,cptcoveff);
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
     /*    k=k+1;  */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
         fprintf(ficrespijb,"\n#****** ");
         for(j=1;j<=cptcoveff;j++)
           fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficrespijb,"******\n");
         if(invalidvarcomb[k]){  /* Is it necessary here? */
           fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
           continue;
         }
         
         /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
         for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
           /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
           nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */
           /* and memory limitations if stepm is small */
   
           /* oldm=oldms;savm=savms; */
           /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
           hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);
           /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
           fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespijb," %1d-%1d",i,j);
           fprintf(ficrespijb,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
             /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
             fprintf(ficrespijb,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespijb,"\n");
         } /* end age deb */
       } /* end combination */
     } /* end nres */
     return 0;
    } /*  hBijx */
   
   
 /***********************************************/  /***********************************************/
Line 6155  int main(int argc, char *argv[]) Line 10727  int main(int argc, char *argv[])
 #endif  #endif
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;    int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
   int jj, ll, li, lj, lk;    int jj, ll, li, lj, lk;
   int numlinepar=0; /* Current linenumber of parameter file */    int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
   int itimes;    int itimes;
   int NDIM=2;    int NDIM=2;
   int vpopbased=0;    int vpopbased=0;
     int nres=0;
     int endishere=0;
     int noffset=0;
     int ncurrv=0; /* Temporary variable */
     
   char ca[32], cb[32];    char ca[32], cb[32];
   /*  FILE *fichtm; *//* Html File */    /*  FILE *fichtm; *//* Html File */
   /* FILE *ficgp;*/ /*Gnuplot File */    /* FILE *ficgp;*/ /*Gnuplot File */
   struct stat info;    struct stat info;
   double agedeb;    double agedeb=0.;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
     double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
   
   double fret;    double fret;
   double dum; /* Dummy variable */    double dum=0.; /* Dummy variable */
   double ***p3mat;    double ***p3mat;
   double ***mobaverage;    /* double ***mobaverage; */
   
   char line[MAXLINE];    char line[MAXLINE];
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char  modeltemp[MAXLINE];
     char resultline[MAXLINE];
     
   char pathr[MAXLINE], pathimach[MAXLINE];     char pathr[MAXLINE], pathimach[MAXLINE]; 
   char *tok, *val; /* pathtot */    char *tok, *val; /* pathtot */
   int firstobs=1, lastobs=10;    int firstobs=1, lastobs=10;
   int c,  h , cpt;    int c,  h , cpt, c2;
   int jl;    int jl=0;
   int i1, j1, jk, stepsize;    int i1, j1, jk, stepsize=0;
     int count=0;
   
   int *tab;     int *tab; 
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int backcast=0;
   int mobilav=0,popforecast=0;    int mobilav=0,popforecast=0;
   int hstepm, nhstepm;    int hstepm=0, nhstepm=0;
   int agemortsup;    int agemortsup;
   float  sumlpop=0.;    float  sumlpop=0.;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
   double bage=0, fage=110, age, agelim, agebase;    double bage=0, fage=110., age, agelim=0., agebase=0.;
   double ftolpl=FTOL;    double ftolpl=FTOL;
   double **prlim;    double **prlim;
     double **bprlim;
   double ***param; /* Matrix of parameters */    double ***param; /* Matrix of parameters */
   double  *p;    double ***paramstart; /* Matrix of starting parameter values */
     double  *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */
   double **matcov; /* Matrix of covariance */    double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
   double ***delti3; /* Scale */    double ***delti3; /* Scale */
   double *delti; /* Scale */    double *delti; /* Scale */
   double ***eij, ***vareij;    double ***eij, ***vareij;
   double **varpl; /* Variances of prevalence limits by age */    double **varpl; /* Variances of prevalence limits by age */
   
   double *epj, vepp;    double *epj, vepp;
   
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    double dateprev1, dateprev2;
     double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0;
     double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0;
   
   double **ximort;    double **ximort;
   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";    char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
   int *dcwave;    int *dcwave;
Line 6252  int main(int argc, char *argv[]) Line 10845  int main(int argc, char *argv[])
 #else  #else
   getcwd(pathcd, size);    getcwd(pathcd, size);
 #endif  #endif
     syscompilerinfo(0);
   printf("\n%s\n%s",version,fullversion);    printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
   if(argc <=1){    if(argc <=1){
     printf("\nEnter the parameter file name: ");      printf("\nEnter the parameter file name: ");
     fgets(pathr,FILENAMELENGTH,stdin);      if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
     i=strlen(pathr);      i=strlen(pathr);
     if(pathr[i-1]=='\n')      if(pathr[i-1]=='\n')
       pathr[i-1]='\0';        pathr[i-1]='\0';
     i=strlen(pathr);      i=strlen(pathr);
     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */      if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
       pathr[i-1]='\0';        pathr[i-1]='\0';
    for (tok = pathr; tok != NULL; ){      }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
       printf("Pathr |%s|\n",pathr);        printf("Pathr |%s|\n",pathr);
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
       printf("val= |%s| pathr=%s\n",val,pathr);        printf("val= |%s| pathr=%s\n",val,pathr);
Line 6271  int main(int argc, char *argv[]) Line 10873  int main(int argc, char *argv[])
       if(pathr[0] == '\0') break; /* Dirty */        if(pathr[0] == '\0') break; /* Dirty */
     }      }
   }    }
     else if (argc<=2){
       strcpy(pathtot,argv[1]);
     }
   else{    else{
     strcpy(pathtot,argv[1]);      strcpy(pathtot,argv[1]);
       strcpy(z,argv[2]);
       printf("\nargv[2]=%s z=%c\n",argv[2],z[0]);
   }    }
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   /*cygwin_split_path(pathtot,path,optionfile);    /*cygwin_split_path(pathtot,path,optionfile);
Line 6317  int main(int argc, char *argv[]) Line 10924  int main(int argc, char *argv[])
     goto end;      goto end;
   }    }
   fprintf(ficlog,"Log filename:%s\n",filelog);    fprintf(ficlog,"Log filename:%s\n",filelog);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    fprintf(ficlog,"Version %s %s",version,fullversion);
   fprintf(ficlog,"\nEnter the parameter file name: \n");    fprintf(ficlog,"\nEnter the parameter file name: \n");
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
  path=%s \n\   path=%s \n\
Line 6325  int main(int argc, char *argv[]) Line 10932  int main(int argc, char *argv[])
  optionfilext=%s\n\   optionfilext=%s\n\
  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);   optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
   syscompilerinfo();    syscompilerinfo(1);
   
   printf("Local time (at start):%s",strstart);    printf("Local time (at start):%s",strstart);
   fprintf(ficlog,"Local time (at start): %s",strstart);    fprintf(ficlog,"Local time (at start): %s",strstart);
Line 6336  int main(int argc, char *argv[]) Line 10943  int main(int argc, char *argv[])
   /* */    /* */
   strcpy(fileres,"r");    strcpy(fileres,"r");
   strcat(fileres, optionfilefiname);    strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
   strcat(fileres,".txt");    /* Other files have txt extension */    strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
   /* Main ---------arguments file --------*/    /* Main ---------arguments file --------*/
   
Line 6348  int main(int argc, char *argv[]) Line 10957  int main(int argc, char *argv[])
     exit(70);       exit(70); 
   }    }
   
   
   
   strcpy(filereso,"o");    strcpy(filereso,"o");
   strcat(filereso,fileres);    strcat(filereso,fileresu);
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     printf("Problem with Output resultfile: %s\n", filereso);      printf("Problem with Output resultfile: %s\n", filereso);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     fflush(ficlog);      fflush(ficlog);
     goto end;      goto end;
   }    }
         /*-------- Rewriting parameter file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name */
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", rfileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       fflush(ficlog);
       goto end;
     }
     fprintf(ficres,"#IMaCh %s\n",version);
   
                                         
   /* Reads comments: lines beginning with '#' */    /* Reads comments: lines beginning with '#' */
   numlinepar=0;    numlinepar=0;
   while((c=getc(ficpar))=='#' && c!= EOF){    /* Is it a BOM UTF-8 Windows file? */
     ungetc(c,ficpar);    /* First parameter line */
     fgets(line, MAXLINE, ficpar);    while(fgets(line, MAXLINE, ficpar)) {
       noffset=0;
       if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
       {
         noffset=noffset+3;
         printf("# File is an UTF8 Bom.\n"); // 0xBF
       }
       else if( line[0] == (char)0xFE && line[1] == (char)0xFF)
       {
         noffset=noffset+2;
         printf("# File is an UTF16BE BOM file\n");
       }
       else if( line[0] == 0 && line[1] == 0)
       {
         if( line[2] == (char)0xFE && line[3] == (char)0xFF){
           noffset=noffset+4;
           printf("# File is an UTF16BE BOM file\n");
         }
       } else{
         ;/*printf(" Not a BOM file\n");*/
       }
     
       /* If line starts with a # it is a comment */
       if (line[noffset] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficres);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
         fprintf(ficlog,"Should be 5 parameters\n");
       }
     numlinepar++;      numlinepar++;
     fputs(line,stdout);      printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     fputs(line,ficparo);      fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     fputs(line,ficlog);      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* while(fscanf(ficpar,"%[^\n]", line)) { */
       /* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */
       if (line[0] == '#') {
         numlinepar++;
         printf("%s",line);
         fprintf(ficres,"%s",line);
         fprintf(ficparo,"%s",line);
         fprintf(ficlog,"%s",line);
         continue;
       }else
         break;
   }    }
   ungetc(c,ficpar);    if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      if (num_filled != 11) {
   numlinepar++;        printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        printf("but line=%s\n",line);
   if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */        fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
     model[strlen(model)-1]='\0';        fprintf(ficlog,"but line=%s\n",line);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      }
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      if( lastpass > maxwav){
         printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
         fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
         fflush(ficlog);
         goto end;
       }
         printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
       fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
       fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt);
       fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         printf("%s",line);
         fprintf(ficres,"%s",line);
         fprintf(ficparo,"%s",line);
         fprintf(ficlog,"%s",line);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     /* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
     /* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
   fflush(ficlog);    fflush(ficlog);
   if(model[0]=='#'|| model[0]== '\0'){    /* if(model[0]=='#'|| model[0]== '\0'){ */
     printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \    if(model[0]=='#'){
  'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \      printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \
  'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \   'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \
    'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n");            \
     if(mle != -1){      if(mle != -1){
       printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");        printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n");
       exit(1);        exit(1);
     }      }
   }    }
Line 6392  int main(int argc, char *argv[]) Line 11116  int main(int argc, char *argv[])
     ungetc(c,ficpar);      ungetc(c,ficpar);
     fgets(line, MAXLINE, ficpar);      fgets(line, MAXLINE, ficpar);
     numlinepar++;      numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
     fputs(line, stdout);      fputs(line, stdout);
     //puts(line);      //puts(line);
     fputs(line,ficparo);      fputs(line,ficparo);
Line 6401  int main(int argc, char *argv[]) Line 11129  int main(int argc, char *argv[])
   
         
   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */    covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     if(nqv>=1)coqvar=matrix(1,nqv,1,n);  /**< Fixed quantitative covariate */
     if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,1,n);  /**< Time varying quantitative covariate */
     if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n);  /**< Time varying covariate (dummy and quantitative)*/
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5    /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
      v1+v2*age+v2*v3 makes cptcovn = 3       v1+v2*age+v2*v3 makes cptcovn = 3
Line 6422  int main(int argc, char *argv[]) Line 11153  int main(int argc, char *argv[])
   delti=delti3[1][1];    delti=delti3[1][1];
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   /* We could also provide initial parameters values giving by simple logistic regression 
    * only one way, that is without matrix product. We will have nlstate maximizations */
         /* for(i=1;i<nlstate;i++){ */
         /*        /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
         /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
         /* } */
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     fclose (ficparo);      fclose (ficparo);
     fclose (ficlog);      fclose (ficlog);
     goto end;      goto end;
     exit(0);      exit(0);
   }    }  else if(mle==-5) { /* Main Wizard */
   else if(mle==-3) { /* Main Wizard */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     matcov=matrix(1,npar,1,npar);      matcov=matrix(1,npar,1,npar);
   }      hess=matrix(1,npar,1,npar);
   else{    }  else{ /* Begin of mle != -1 or -5 */
     /* Read guessed parameters */      /* Read guessed parameters */
     /* Reads comments: lines beginning with '#' */      /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
Line 6452  int main(int argc, char *argv[]) Line 11188  int main(int argc, char *argv[])
     ungetc(c,ficpar);      ungetc(c,ficpar);
           
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){      for(i=1; i <=nlstate; i++){
       j=0;        j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){        for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;          if(jj==i) continue;
         j++;          j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);          fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){          if ((i1 != i) || (j1 != jj)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 It might be a problem of design; if ncovcol and the model are correct\n \  It might be a problem of design; if ncovcol and the model are correct\n \
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
Line 6466  run imach with mle=-1 to get a correct t Line 11203  run imach with mle=-1 to get a correct t
         }          }
         fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)          if(mle==1)
           printf("%1d%1d",i,j);            printf("%1d%1d",i,jj);
         fprintf(ficlog,"%1d%1d",i,j);          fprintf(ficlog,"%1d%1d",i,jj);
         for(k=1; k<=ncovmodel;k++){          for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);            fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){            if(mle==1){
Line 6487  run imach with mle=-1 to get a correct t Line 11224  run imach with mle=-1 to get a correct t
       }        }
     }        }  
     fflush(ficlog);      fflush(ficlog);
       
     /* Reads scales values */      /* Reads parameters values */
     p=param[1][1];      p=param[1][1];
       pstart=paramstart[1][1];
           
     /* Reads comments: lines beginning with '#' */      /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
Line 6526  run imach with mle=-1 to get a correct t Line 11264  run imach with mle=-1 to get a correct t
       }        }
     }      }
     fflush(ficlog);      fflush(ficlog);
       
     /* Reads covariance matrix */      /* Reads covariance matrix */
     delti=delti3[1][1];      delti=delti3[1][1];
                   
                   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                     
     /* Reads comments: lines beginning with '#' */      /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);        ungetc(c,ficpar);
Line 6543  run imach with mle=-1 to get a correct t Line 11281  run imach with mle=-1 to get a correct t
       fputs(line,ficlog);        fputs(line,ficlog);
     }      }
     ungetc(c,ficpar);      ungetc(c,ficpar);
                     
     matcov=matrix(1,npar,1,npar);      matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++)      for(i=1; i <=npar; i++)
       for(j=1; j <=npar; j++) matcov[i][j]=0.;        for(j=1; j <=npar; j++) matcov[i][j]=0.;
                         
       /* Scans npar lines */
     for(i=1; i <=npar; i++){      for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",str);        count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
       if(mle==1)        if(count != 3){
         printf("%s",str);          printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
       fprintf(ficlog,"%s",str);  This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
       fprintf(ficparo,"%s",str);  Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else{
           if(mle==1)
             printf("%1d%1d%d",i1,j1,jk);
         }
         fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
       for(j=1; j <=i; j++){        for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);          fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){          if(mle==1){
Line 6565  run imach with mle=-1 to get a correct t Line 11315  run imach with mle=-1 to get a correct t
       fscanf(ficpar,"\n");        fscanf(ficpar,"\n");
       numlinepar++;        numlinepar++;
       if(mle==1)        if(mle==1)
         printf("\n");                                  printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");        fprintf(ficparo,"\n");
     }      }
       /* End of read covariance matrix npar lines */
     for(i=1; i <=npar; i++)      for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)        for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];          matcov[i][j]=matcov[j][i];
Line 6579  run imach with mle=-1 to get a correct t Line 11330  run imach with mle=-1 to get a correct t
           
     fflush(ficlog);      fflush(ficlog);
           
     /*-------- Rewriting parameter file ----------*/  
     strcpy(rfileres,"r");    /* "Rparameterfile */  
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
     strcat(rfileres,".");    /* */  
     strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  
     }  
     fprintf(ficres,"#%s\n",version);  
   }    /* End of mle != -3 */    }    /* End of mle != -3 */
     
   /*  Main data    /*  Main data
    */     */
   n= lastobs;    n= lastobs;
Line 6599  run imach with mle=-1 to get a correct t Line 11340  run imach with mle=-1 to get a correct t
   annais=vector(1,n);    annais=vector(1,n);
   moisdc=vector(1,n);    moisdc=vector(1,n);
   andc=vector(1,n);    andc=vector(1,n);
     weight=vector(1,n);
   agedc=vector(1,n);    agedc=vector(1,n);
   cod=ivector(1,n);    cod=ivector(1,n);
   weight=vector(1,n);    for(i=1;i<=n;i++){
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      num[i]=0;
       moisnais[i]=0;
       annais[i]=0;
       moisdc[i]=0;
       andc[i]=0;
       agedc[i]=0;
       cod[i]=0;
       weight[i]=1.0; /* Equal weights, 1 by default */
     }
   mint=matrix(1,maxwav,1,n);    mint=matrix(1,maxwav,1,n);
   anint=matrix(1,maxwav,1,n);    anint=matrix(1,maxwav,1,n);
   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
   tab=ivector(1,NCOVMAX);    tab=ivector(1,NCOVMAX);
   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */    ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
   /* Reads data from file datafile */    /* Reads data from file datafile */
   if (readdata(datafile, firstobs, lastobs, &imx)==1)    if (readdata(datafile, firstobs, lastobs, &imx)==1)
     goto end;      goto end;
   
   /* Calculation of the number of parameters from char model */    /* Calculation of the number of parameters from char model */
     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
         k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4          k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
         k=3 V4 Tvar[k=3]= 4 (from V4)          k=3 V4 Tvar[k=3]= 4 (from V4)
         k=2 V1 Tvar[k=2]= 1 (from V1)          k=2 V1 Tvar[k=2]= 1 (from V1)
         k=1 Tvar[1]=2 (from V2)          k=1 Tvar[1]=2 (from V2)
     */    */
     
   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */    Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     TvarsDind=ivector(1,NCOVMAX); /*  */
     TvarsD=ivector(1,NCOVMAX); /*  */
     TvarsQind=ivector(1,NCOVMAX); /*  */
     TvarsQ=ivector(1,NCOVMAX); /*  */
     TvarF=ivector(1,NCOVMAX); /*  */
     TvarFind=ivector(1,NCOVMAX); /*  */
     TvarV=ivector(1,NCOVMAX); /*  */
     TvarVind=ivector(1,NCOVMAX); /*  */
     TvarA=ivector(1,NCOVMAX); /*  */
     TvarAind=ivector(1,NCOVMAX); /*  */
     TvarFD=ivector(1,NCOVMAX); /*  */
     TvarFDind=ivector(1,NCOVMAX); /*  */
     TvarFQ=ivector(1,NCOVMAX); /*  */
     TvarFQind=ivector(1,NCOVMAX); /*  */
     TvarVD=ivector(1,NCOVMAX); /*  */
     TvarVDind=ivector(1,NCOVMAX); /*  */
     TvarVQ=ivector(1,NCOVMAX); /*  */
     TvarVQind=ivector(1,NCOVMAX); /*  */
   
     Tvalsel=vector(1,NCOVMAX); /*  */
     Tvarsel=ivector(1,NCOVMAX); /*  */
     Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
     Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
     Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs).     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4,         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.        Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
Line 6630  run imach with mle=-1 to get a correct t Line 11406  run imach with mle=-1 to get a correct t
     ncovcol + k1      ncovcol + k1
     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
     Tvar[3=V1*V4]=4+1 etc */      Tvar[3=V1*V4]=4+1 etc */
   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */    Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
     Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3    /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)       if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
        Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
   */    */
   Tvaraff=ivector(1,NCOVMAX); /* Unclear */    Tvaraff=ivector(1,NCOVMAX); /* Unclear */
   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm    Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
Line 6642  run imach with mle=-1 to get a correct t Line 11420  run imach with mle=-1 to get a correct t
                          4 covariates (3 plus signs)                           4 covariates (3 plus signs)
                          Tage[1=V3*age]= 4; Tage[2=age*V4] = 3                           Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                       */                          */  
     Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual dummy, fixed or varying:
                                   * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                                   * V1 df, V2 qf, V3 & V4 dv, V5 qv
                                   * Tmodelind[1]@9={9,0,3,2,}*/
     TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
     TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual quantitative, fixed or varying:
                                   * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
 /* Main decodemodel */  /* Main decodemodel */
   
   
   if(decodemodel(model, lastobs) == 1)    if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
     goto end;      goto end;
   
   if((double)(lastobs-imx)/(double)imx > 1.10){    if((double)(lastobs-imx)/(double)imx > 1.10){
Line 6671  run imach with mle=-1 to get a correct t Line 11461  run imach with mle=-1 to get a correct t
   free_vector(annais,1,n);    free_vector(annais,1,n);
   /* free_matrix(mint,1,maxwav,1,n);    /* free_matrix(mint,1,maxwav,1,n);
      free_matrix(anint,1,maxwav,1,n);*/       free_matrix(anint,1,maxwav,1,n);*/
   free_vector(moisdc,1,n);    /* free_vector(moisdc,1,n); */
   free_vector(andc,1,n);    /* free_vector(andc,1,n); */
   /* */    /* */
       
   wav=ivector(1,imx);    wav=ivector(1,imx);
   dh=imatrix(1,lastpass-firstpass+1,1,imx);    /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
         
   /* Concatenates waves */    /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   /* */    /* Concatenates waves */
     
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
   ncodemax[1]=1;    ncodemax[1]=1;
   Ndum =ivector(-1,NCOVMAX);      Ndum =ivector(-1,NCOVMAX);  
   if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */    cptcoveff=0;
     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */    if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
   /* Nbcode gives the value of the lth modality of jth covariate, in      tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     }
     
     ncovcombmax=pow(2,cptcoveff);
     invalidvarcomb=ivector(1, ncovcombmax); 
     for(i=1;i<ncovcombmax;i++)
       invalidvarcomb[i]=0;
     
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
      V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/       V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
   /* 1 to ncodemax[j] is the maximum value of this jth covariate */    /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
     
   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */    /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/    /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
   /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/    /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
   h=0;    /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
   /*if (cptcovn > 0) */    /*if (cptcovn > 0) */
         
    
   m=pow(2,cptcoveff);    m=pow(2,cptcoveff);
     
   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */  
     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */   
       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/  
         for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */   
           h++;  
           if (h>m)   
             h=1;  
           /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1            /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
            * For k=4 covariates, h goes from 1 to 2**k             * For k=4 covariates, h goes from 1 to m=2**k
            * codtabm(h,k)=  1 & (h-1) >> (k-1) ;             * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
            *     h\k   1     2     3     4             *     h\k   1     2     3     4
            *______________________________               *______________________________  
            *     1 i=1 1 i=1 1 i=1 1 i=1 1             *     1 i=1 1 i=1 1 i=1 1 i=1 1
Line 6726  run imach with mle=-1 to get a correct t Line 11533  run imach with mle=-1 to get a correct t
            *     6     2     1     2     1             *     6     2     1     2     1
            *     7 i=4 1     2     2     1             *     7 i=4 1     2     2     1
            *     8     2     2     2     1             *     8     2     2     2     1
            *     9 i=5 1 i=3 1 i=2 1     1             *     9 i=5 1 i=3 1 i=2 1     2
            *    10     2     1     1     1             *    10     2     1     1     2
            *    11 i=6 1     2     1     1             *    11 i=6 1     2     1     2
            *    12     2     2     1     1             *    12     2     2     1     2
            *    13 i=7 1 i=4 1     2     1                 *    13 i=7 1 i=4 1     2     2    
            *    14     2     1     2     1             *    14     2     1     2     2
            *    15 i=8 1     2     2     1             *    15 i=8 1     2     2     2
            *    16     2     2     2     1             *    16     2     2     2     2
            */             */
           codtab[h][k]=j;    /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
           /* codtab[12][3]=1; */       /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
           /*codtab[h][Tvar[k]]=j;*/       * and the value of each covariate?
           printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);       * V1=1, V2=1, V3=2, V4=1 ?
         }        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
       }       * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
     }       * In order to get the real value in the data, we use nbcode
   }        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        * We are keeping this crazy system in order to be able (in the future?) 
      codtab[1][2]=1;codtab[2][2]=2; */       * to have more than 2 values (0 or 1) for a covariate.
   /* for(i=1; i <=m ;i++){        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
      for(k=1; k <=cptcovn; k++){       * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       *              bbbbbbbb
      }       *              76543210     
      printf("\n");       *   h-1        00000101 (6-1=5)
      }       *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
      scanf("%d",i);*/       *           &
        *     1        00000001 (1)
        *              00000000        = 1 & ((h-1) >> (k-1))
        *          +1= 00000001 =1 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
                    * codtabm and decodtabm are identical
        */
   
   
  free_ivector(Ndum,-1,NCOVMAX);   free_ivector(Ndum,-1,NCOVMAX);
   
Line 6760  run imach with mle=-1 to get a correct t Line 11594  run imach with mle=-1 to get a correct t
   /* Initialisation of ----------- gnuplot -------------*/    /* Initialisation of ----------- gnuplot -------------*/
   strcpy(optionfilegnuplot,optionfilefiname);    strcpy(optionfilegnuplot,optionfilefiname);
   if(mle==-3)    if(mle==-3)
     strcat(optionfilegnuplot,"-mort");      strcat(optionfilegnuplot,"-MORT_");
   strcat(optionfilegnuplot,".gp");    strcat(optionfilegnuplot,".gp");
   
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
     printf("Problem with file %s",optionfilegnuplot);      printf("Problem with file %s",optionfilegnuplot);
   }    }
   else{    else{
     fprintf(ficgp,"\n# %s\n", version);       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
     fprintf(ficgp,"# %s\n", optionfilegnuplot);       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
     //fprintf(ficgp,"set missing 'NaNq'\n");      //fprintf(ficgp,"set missing 'NaNq'\n");
     fprintf(ficgp,"set datafile missing 'NaNq'\n");      fprintf(ficgp,"set datafile missing 'NaNq'\n");
Line 6779  run imach with mle=-1 to get a correct t Line 11613  run imach with mle=-1 to get a correct t
   
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
   if(mle==-3)    if(mle==-3)
     strcat(optionfilehtm,"-mort");      strcat(optionfilehtm,"-MORT_");
   strcat(optionfilehtm,".htm");    strcat(optionfilehtm,".htm");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
     printf("Problem with %s \n",optionfilehtm);      printf("Problem with %s \n",optionfilehtm);
Line 6794  run imach with mle=-1 to get a correct t Line 11628  run imach with mle=-1 to get a correct t
   else{    else{
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  <hr size=\"2\" color=\"#EC5E5E\"> \n\
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   }    }
   
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  <hr size=\"2\" color=\"#EC5E5E\"> \n\
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
 \n\  \n\
 <hr  size=\"2\" color=\"#EC5E5E\">\  <hr  size=\"2\" color=\"#EC5E5E\">\
  <ul><li><h4>Parameter files</h4>\n\   <ul><li><h4>Parameter files</h4>\n\
Line 6824  Title=%s <br>Datafile=%s Firstpass=%d La Line 11660  Title=%s <br>Datafile=%s Firstpass=%d La
 #endif  #endif
                       
       
   /* Calculates basic frequencies. Computes observed prevalence at single age    /* Calculates basic frequencies. Computes observed prevalence at single age 
                    and for any valid combination of covariates
      and prints on file fileres'p'. */       and prints on file fileres'p'. */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);    freqsummary(fileres, p, pstart, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
                 firstpass, lastpass,  stepm,  weightopt, model);
   
   fprintf(fichtm,"\n");    fprintf(fichtm,"\n");
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\
             ftol, stepm);
     fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol);
     ncurrv=1;
     for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); 
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li> Number of time varying (wave varying) covariates: ntv=%d ", ntv);
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li>Number of quantitative time varying covariates: nqtv=%d ", nqtv);
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \
              nlstate, ndeath, maxwav, mle, weightopt);
   
     fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\
   <img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"));
   
     
     fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Total number of observations=%d <br>\n\
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);    imx,agemin,agemax,jmin,jmax,jmean);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
   /* For Powell, parameters are in a vector p[] starting at p[1]    /* For Powell, parameters are in a vector p[] starting at p[1]
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
Line 6848  Interval (in months) between two waves: Line 11706  Interval (in months) between two waves:
   /* For mortality only */    /* For mortality only */
   if (mle==-3){    if (mle==-3){
     ximort=matrix(1,NDIM,1,NDIM);       ximort=matrix(1,NDIM,1,NDIM); 
       for(i=1;i<=NDIM;i++)
         for(j=1;j<=NDIM;j++)
           ximort[i][j]=0.;
     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */      /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
     cens=ivector(1,n);      cens=ivector(1,n);
     ageexmed=vector(1,n);      ageexmed=vector(1,n);
     agecens=vector(1,n);      agecens=vector(1,n);
     dcwave=ivector(1,n);      dcwave=ivector(1,n);
                    
     for (i=1; i<=imx; i++){      for (i=1; i<=imx; i++){
       dcwave[i]=-1;        dcwave[i]=-1;
       for (m=firstpass; m<=lastpass; m++)        for (m=firstpass; m<=lastpass; m++)
Line 6863  Interval (in months) between two waves: Line 11724  Interval (in months) between two waves:
           break;            break;
         }          }
     }      }
       
     for (i=1; i<=imx; i++) {      for (i=1; i<=imx; i++) {
       if (wav[i]>0){        if (wav[i]>0){
         ageexmed[i]=agev[mw[1][i]][i];          ageexmed[i]=agev[mw[1][i]][i];
         j=wav[i];          j=wav[i];
         agecens[i]=1.;           agecens[i]=1.; 
           
         if (ageexmed[i]> 1 && wav[i] > 0){          if (ageexmed[i]> 1 && wav[i] > 0){
           agecens[i]=agev[mw[j][i]][i];            agecens[i]=agev[mw[j][i]][i];
           cens[i]= 1;            cens[i]= 1;
Line 6895  Interval (in months) between two waves: Line 11756  Interval (in months) between two waves:
 #else  #else
     printf("Powell\n");  fprintf(ficlog,"Powell\n");      printf("Powell\n");  fprintf(ficlog,"Powell\n");
 #endif  #endif
     strcpy(filerespow,"pow-mort");       strcpy(filerespow,"POW-MORT_"); 
     strcat(filerespow,fileres);      strcat(filerespow,fileresu);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {      if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);        printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
Line 6992  Interval (in months) between two waves: Line 11853  Interval (in months) between two waves:
 #endif    #endif  
     fclose(ficrespow);      fclose(ficrespow);
           
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
     for(i=1; i <=NDIM; i++)      for(i=1; i <=NDIM; i++)
       for(j=i+1;j<=NDIM;j++)        for(j=i+1;j<=NDIM;j++)
         matcov[i][j]=matcov[j][i];                                  matcov[i][j]=matcov[j][i];
           
     printf("\nCovariance matrix\n ");      printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
     for(i=1; i <=NDIM; i++) {      for(i=1; i <=NDIM; i++) {
       for(j=1;j<=NDIM;j++){         for(j=1;j<=NDIM;j++){ 
         printf("%f ",matcov[i][j]);                                  printf("%f ",matcov[i][j]);
                                   fprintf(ficlog,"%f ",matcov[i][j]);
       }        }
       printf("\n ");        printf("\n ");  fprintf(ficlog,"\n ");
     }      }
           
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     for (i=1;i<=NDIM;i++)       for (i=1;i<=NDIM;i++) {
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
     lsurv=vector(1,AGESUP);      lsurv=vector(1,AGESUP);
     lpop=vector(1,AGESUP);      lpop=vector(1,AGESUP);
     tpop=vector(1,AGESUP);      tpop=vector(1,AGESUP);
Line 7041  Interval (in months) between two waves: Line 11905  Interval (in months) between two waves:
           
           
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);                  ageminpar=50;
                       agemaxpar=100;
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \      if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
                           printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                           fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   }
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                      stepm, weightopt,\                       stepm, weightopt,\
                      model,imx,p,matcov,agemortsup);                       model,imx,p,matcov,agemortsup);
           
     free_vector(lsurv,1,AGESUP);      free_vector(lsurv,1,AGESUP);
     free_vector(lpop,1,AGESUP);      free_vector(lpop,1,AGESUP);
     free_vector(tpop,1,AGESUP);      free_vector(tpop,1,AGESUP);
 #ifdef GSL      free_matrix(ximort,1,NDIM,1,NDIM);
     free_ivector(cens,1,n);      free_ivector(cens,1,n);
     free_vector(agecens,1,n);      free_vector(agecens,1,n);
     free_ivector(dcwave,1,n);      free_ivector(dcwave,1,n);
     free_matrix(ximort,1,NDIM,1,NDIM);  #ifdef GSL
 #endif  #endif
   } /* Endof if mle==-3 mortality only */    } /* Endof if mle==-3 mortality only */
   /* Standard maximisation */    /* Standard  */
   else{ /* For mle >=1 */    else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
     globpr=0;/* debug */      globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
     /* Computes likelihood for initial parameters */      /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)      for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);        printf(" %d %8.5f",k,p[k]);
     printf("\n");      printf("\n");
     globpr=1; /* again, to print the contributions */      if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         /* for(i=1;i<nlstate;i++){ */
         /*        /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
         /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
         /* } */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)      for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);        printf(" %d %8.5f",k,p[k]);
     printf("\n");      printf("\n");
     if(mle>=1){ /* Could be 1 or 2, Real Maximisation */  
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }  
           
     /*--------- results files --------------*/      /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      /* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */
           
           
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
Line 7090  Interval (in months) between two waves: Line 11976  Interval (in months) between two waves:
           fprintf(ficlog,"%d%d ",i,k);            fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);            fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){            for(j=1; j <=ncovmodel; j++){
             printf("%lf ",p[jk]);              printf("%12.7f ",p[jk]);
             fprintf(ficlog,"%lf ",p[jk]);              fprintf(ficlog,"%12.7f ",p[jk]);
             fprintf(ficres,"%lf ",p[jk]);              fprintf(ficres,"%12.7f ",p[jk]);
             jk++;               jk++; 
           }            }
           printf("\n");            printf("\n");
Line 7101  Interval (in months) between two waves: Line 11987  Interval (in months) between two waves:
         }          }
       }        }
     }      }
     if(mle!=0){      if(mle != 0){
       /* Computing hessian and covariance matrix */        /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
       ftolhess=ftol; /* Usually correct */        ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);        hesscov(matcov, hess, p, npar, delti, ftolhess, func);
     }        printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
       
       /*  */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");      printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
Line 7129  Interval (in months) between two waves: Line 12034  Interval (in months) between two waves:
     }      }
           
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)      if(mle >= 1) /* To big for the screen */
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     /* # 121 Var(a12)\n\ */      /* # 121 Var(a12)\n\ */
Line 7192  Interval (in months) between two waves: Line 12097  Interval (in months) between two waves:
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{                        }else{
                         if(mle>=1)                          if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]);                             printf(" %.7e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]);                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                       }                        }
                     }                      }
                   }                    }
Line 7213  Interval (in months) between two waves: Line 12118  Interval (in months) between two waves:
           
     fflush(ficlog);      fflush(ficlog);
     fflush(ficres);      fflush(ficres);
           while(fgets(line, MAXLINE, ficpar)) {
     while((c=getc(ficpar))=='#' && c!= EOF){        /* If line starts with a # it is a comment */
       ungetc(c,ficpar);        if (line[0] == '#') {
       fgets(line, MAXLINE, ficpar);          numlinepar++;
       fputs(line,stdout);          fputs(line,stdout);
       fputs(line,ficparo);          fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
     }      }
     ungetc(c,ficpar);      
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
           
     estepm=0;      estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
         
         if (num_filled != 6) {
           printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           goto end;
         }
         printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
       }
       /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
       /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
       
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
     if (estepm==0 || estepm < stepm) estepm=stepm;      if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {      if (fage <= 2) {
       bage = ageminpar;        bage = ageminpar;
Line 7231  Interval (in months) between two waves: Line 12159  Interval (in months) between two waves:
     }      }
           
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   
     /* Other stuffs, more or less useful */          /* Other stuffs, more or less useful */    
     while((c=getc(ficpar))=='#' && c!= EOF){      while(fgets(line, MAXLINE, ficpar)) {
       ungetc(c,ficpar);        /* If line starts with a # it is a comment */
       fgets(line, MAXLINE, ficpar);        if (line[0] == '#') {
       fputs(line,stdout);          numlinepar++;
       fputs(line,ficparo);          fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
     }      }
     ungetc(c,ficpar);  
           if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        if (num_filled != 7) {
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          goto end;
             }
     while((c=getc(ficpar))=='#' && c!= EOF){        printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       ungetc(c,ficpar);        fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fgets(line, MAXLINE, ficpar);        fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fputs(line,stdout);        fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fputs(line,ficparo);      }
   
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
     }      }
     ungetc(c,ficpar);  
           
           
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
           
     fscanf(ficpar,"pop_based=%d\n",&popbased);      if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){
     fprintf(ficparo,"pop_based=%d\n",popbased);           if (num_filled != 1) {
     fprintf(ficres,"pop_based=%d\n",popbased);             printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
               fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
     while((c=getc(ficpar))=='#' && c!= EOF){          goto end;
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);        printf("pop_based=%d\n",popbased);
       fputs(line,stdout);        fprintf(ficlog,"pop_based=%d\n",popbased);
       fputs(line,ficparo);        fprintf(ficparo,"pop_based=%d\n",popbased);   
         fprintf(ficres,"pop_based=%d\n",popbased);   
     }      }
     ungetc(c,ficpar);       
           /* Results */
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      nresult=0;
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      do{
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        if(!fgets(line, MAXLINE, ficpar)){
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          endishere=1;
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          parameterline=14;
     /* day and month of proj2 are not used but only year anproj2.*/        }else if (line[0] == '#') {
               /* If line starts with a # it is a comment */
               numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp))
           parameterline=11;
         else if(sscanf(line,"backcast=%[^\n]\n",modeltemp))
           parameterline=12;
         else if(sscanf(line,"result:%[^\n]\n",modeltemp))
           parameterline=13;
         else{
           parameterline=14;
         }
         switch (parameterline){ 
         case 11:
           if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF){
             if (num_filled != 8) {
               printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
               fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
               goto end;
             }
             fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             /* day and month of proj2 are not used but only year anproj2.*/
             dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.;
             dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.;
   
           }
           break;
         case 12:
           /*fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);*/
           if((num_filled=sscanf(line,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF){
             if (num_filled != 8) {
               printf("Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
               fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
               goto end;
             }
             printf("backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             /* day and month of proj2 are not used but only year anproj2.*/
             dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.;
             dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.;
           }
           break;
         case 13:
           if((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){
             if (num_filled == 0){
               resultline[0]='\0';
               printf("Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line);
               fprintf(ficlog,"Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line);
               break;
             } else if (num_filled != 1){
               printf("ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line);
               fprintf(ficlog,"ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line);
             }
             nresult++; /* Sum of resultlines */
             printf("Result %d: result=%s\n",nresult, resultline);
             if(nresult > MAXRESULTLINES){
               printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
               fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
               goto end;
             }
             decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
             fprintf(ficparo,"result: %s\n",resultline);
             fprintf(ficres,"result: %s\n",resultline);
             fprintf(ficlog,"result: %s\n",resultline);
             break;
           case 14: 
             if(ncovmodel >2 && nresult==0 ){
               printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
               goto end;
             }
             break;
           default:
             nresult=1;
             decoderesult(".",nresult ); /* No covariate */
           }
         } /* End switch parameterline */
       }while(endishere==0); /* End do */
           
      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */      /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
           
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
             printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\  This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\  Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
         This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
    /*------------ free_vector  -------------*/  Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
    /*  chdir(path); */      }else{
          /* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */
     free_ivector(wav,1,imx);        printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, backcast, pathc,p, (int)anproj1-bage, (int)anback1-fage);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      }
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                      model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,backcast, estepm, \
                    jprev1,mprev1,anprev1,dateprev1, dateproj1, dateback1,jprev2,mprev2,anprev2,dateprev2,dateproj2, dateback2);
                   
       /*------------ free_vector  -------------*/
       /*  chdir(path); */
                   
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
     free_lvector(num,1,n);      free_lvector(num,1,n);
     free_vector(agedc,1,n);      free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);      fclose(ficparo);
     fclose(ficres);      fclose(ficres);
                   
                   
     /* Other results (useful)*/      /* Other results (useful)*/
                   
                   
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */      /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
     prlim=matrix(1,nlstate,1,nlstate);      prlim=matrix(1,nlstate,1,nlstate);
     prevalence_limit(p, prlim,  ageminpar, agemaxpar);      prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
     fclose(ficrespl);      fclose(ficrespl);
   
 #ifdef FREEEXIT2  
 #include "freeexit2.h"  
 #endif  
   
     /*------------- h Pij x at various ages ------------*/      /*------------- h Pij x at various ages ------------*/
     /*#include "hpijx.h"*/      /*#include "hpijx.h"*/
     hPijx(p, bage, fage);      hPijx(p, bage, fage);
     fclose(ficrespij);      fclose(ficrespij);
       
   /*-------------- Variance of one-step probabilities---*/      /* ncovcombmax=  pow(2,cptcoveff); */
       /*-------------- Variance of one-step probabilities---*/
     k=1;      k=1;
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
       
       /* Prevalence for each covariate combination in probs[age][status][cov] */
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
     for(i=1;i<=AGESUP;i++)      for(i=AGEINF;i<=AGESUP;i++)
       for(j=1;j<=NCOVMAX;j++)        for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
         for(k=1;k<=NCOVMAX;k++)          for(k=1;k<=ncovcombmax;k++)
           probs[i][j][k]=0.;            probs[i][j][k]=0.;
       prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, 
                  ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       if (mobilav!=0 ||mobilavproj !=0 ) {
         mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
         for(i=AGEINF;i<=AGESUP;i++)
           for(j=1;j<=nlstate+ndeath;j++)
             for(k=1;k<=ncovcombmax;k++)
               mobaverages[i][j][k]=0.;
         mobaverage=mobaverages;
         if (mobilav!=0) {
           printf("Movingaveraging observed prevalence\n");
           fprintf(ficlog,"Movingaveraging observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
             fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }
         } else if (mobilavproj !=0) {
           printf("Movingaveraging projected observed prevalence\n");
           fprintf(ficlog,"Movingaveraging projected observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
             fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
             printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
           }
         }else{
           printf("Internal error moving average\n");
           fflush(stdout);
           exit(1);
         }
       }/* end if moving average */
       
     /*---------- Forecasting ------------------*/      /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/  
     if(prevfcast==1){      if(prevfcast==1){
       /*    if(stepm ==1){*/        /*    if(stepm ==1){*/
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);        prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/  
       /*      }  */  
       /*      else{ */  
       /*        erreur=108; */  
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  
       /*      } */  
     }      }
    
     /* ------ Other prevalence ratios------------ */  
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      /* Backcasting */
       if(backcast==1){
         ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
   
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\  
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);  
     */  
   
     if (mobilav!=0) {        bprlim=matrix(1,nlstate,1,nlstate);
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
         printf(" Error in movingaverage mobilav=%d\n",mobilav);  
       }  
     }  
   
         back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
         fclose(ficresplb);
   
     /*---------- Health expectancies, no variances ------------*/        hBijx(p, bage, fage, mobaverage);
         fclose(ficrespijb);
   
         prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2,
                          mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff);
         varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
   
     strcpy(filerese,"e");        
     strcat(filerese,fileres);        free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
         free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       }    /* end  Backcasting */
    
    
       /* ------ Other prevalence ratios------------ */
   
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
                   
                   
       /*---------- Health expectancies, no variances ------------*/
                   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
     if((ficreseij=fopen(filerese,"w"))==NULL) {      if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }      }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/  
             
     for (k=1; k <= (int) pow(2,cptcoveff); k++){  
         fprintf(ficreseij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++) {  
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         }  
         fprintf(ficreseij,"******\n");  
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      pstamp(ficreseij);
         oldm=oldms;savm=savms;                  
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);        i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
         fprintf(ficreseij,"\n#****** ");
         printf("\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficreseij,"******\n");
         printf("******\n");
               
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
       /*}*/        oldm=oldms;savm=savms;
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
         
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     }      }
     fclose(ficreseij);      fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
   
                   
     /*---------- Health expectancies and variances ------------*/      /*---------- State-specific expectancies and variances ------------*/
                   
       strcpy(filerest,"T_");
     strcpy(filerest,"t");      strcat(filerest,fileresu);
     strcat(filerest,fileres);  
     if((ficrest=fopen(filerest,"w"))==NULL) {      if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }      }
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
     strcpy(fileresstde,"stde");  
     strcat(fileresstde,fileres);  
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);        printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);        fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
     }      }
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
     strcpy(filerescve,"cve");      strcpy(filerescve,"CVE_");
     strcat(filerescve,fileres);      strcat(filerescve,fileresu);
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {      if((ficrescveij=fopen(filerescve,"w"))==NULL) {
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);        printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);        fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
     }      }
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
   
     strcpy(fileresv,"v");      strcpy(fileresv,"V_");
     strcat(fileresv,fileres);      strcat(fileresv,fileresu);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {      if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }      }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
   
     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/  
             
     for (k=1; k <= (int) pow(2,cptcoveff); k++){  
         fprintf(ficrest,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrest,"******\n");  
   
         fprintf(ficresstdeij,"\n#****** ");  
         fprintf(ficrescveij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++) {  
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         }  
         fprintf(ficresstdeij,"******\n");  
         fprintf(ficrescveij,"******\n");  
   
         fprintf(ficresvij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficresvij,"******\n");  
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
         oldm=oldms;savm=savms;  
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);    
         /*  
          */  
         /* goto endfree; */  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
         pstamp(ficrest);  
   
   
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/      i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
           oldm=oldms;savm=savms; /* Segmentation fault */      if (cptcovn < 1){i1=1;}
           cptcod= 0; /* To be deleted */      
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */      for(nres=1; nres <= nresult; nres++) /* For each resultline */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");      for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
           if(vpopbased==1)        if(i1 != 1 && TKresult[nres]!= k)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);          continue;
           else        printf("\n#****** Result for:");
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");        fprintf(ficrest,"\n#****** Result for:");
           fprintf(ficrest,"# Age e.. (std) ");        fprintf(ficlog,"\n#****** Result for:");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        for(j=1;j<=cptcoveff;j++){ 
           fprintf(ficrest,"\n");          printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           epj=vector(1,nlstate+1);          fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           for(age=bage; age <=fage ;age++){        }
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
             if (vpopbased==1) {          printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
               if(mobilav ==0){          fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                 for(i=1; i<=nlstate;i++)          fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   prlim[i][i]=probs[(int)age][i][k];        } 
               }else{ /* mobilav */         fprintf(ficrest,"******\n");
                 for(i=1; i<=nlstate;i++)        fprintf(ficlog,"******\n");
                   prlim[i][i]=mobaverage[(int)age][i][k];        printf("******\n");
               }        
             }        fprintf(ficresstdeij,"\n#****** ");
                 fprintf(ficrescveij,"\n#****** ");
             fprintf(ficrest," %4.0f",age);        for(j=1;j<=cptcoveff;j++) {
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
               for(i=1, epj[j]=0.;i <=nlstate;i++) {          fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];        }
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
               }          fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
               epj[nlstate+1] +=epj[j];          fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         /* pstamp(ficresvij); */
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij ");
         fprintf(ficlog, " cvevsij ");
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         epj=vector(1,nlstate+1);
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij vpopbased=%d \n",vpopbased);
           fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           printf("Computing age specific forward period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
             }              }
             }
             for(i=1, vepp=0.;i <=nlstate;i++)            
               for(j=1;j <=nlstate;j++)            fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
                 vepp += vareij[i][j][(int)age];            /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            /* printf(" age %4.0f ",age); */
             for(j=1;j <=nlstate;j++){            for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));              for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
             }              }
             fprintf(ficrest,"\n");              epj[nlstate+1] +=epj[j];
           }            }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
         }          }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        } /* End vpopbased */
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        free_vector(epj,1,nlstate+1);
         free_vector(epj,1,nlstate+1);        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
       /*}*/        free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     }        printf("done selection\n");fflush(stdout);
         fprintf(ficlog,"done selection\n");fflush(ficlog);
         
       } /* End k selection */
   
       printf("done State-specific expectancies\n");fflush(stdout);
       fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
   
       /* variance-covariance of forward period prevalence*/
       varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
   
       
     free_vector(weight,1,n);      free_vector(weight,1,n);
     free_imatrix(Tvard,1,NCOVMAX,1,2);      free_imatrix(Tvard,1,NCOVMAX,1,2);
     free_imatrix(s,1,maxwav+1,1,n);      free_imatrix(s,1,maxwav+1,1,n);
Line 7534  Interval (in months) between two waves: Line 12662  Interval (in months) between two waves:
     fclose(ficresvij);      fclose(ficresvij);
     fclose(ficrest);      fclose(ficrest);
     fclose(ficpar);      fclose(ficpar);
         
     /*------- Variance of period (stable) prevalence------*/         
   
     strcpy(fileresvpl,"vpl");  
     strcat(fileresvpl,fileres);  
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);  
       exit(0);  
     }  
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);  
   
     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/  
             
     for (k=1; k <= (int) pow(2,cptcoveff); k++){  
         fprintf(ficresvpl,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficresvpl,"******\n");  
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);  
         oldm=oldms;savm=savms;  
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);  
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
       /*}*/  
     }  
   
     fclose(ficresvpl);  
   
     /*---------- End : free ----------------*/      /*---------- End : free ----------------*/
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (mobilav!=0 ||mobilavproj !=0)
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
   }  /* mle==-3 arrives here for freeing */      free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
  /* endfree:*/  
     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */      free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    }  /* mle==-3 arrives here for freeing */
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* endfree:*/
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(covar,0,NCOVMAX,1,n);    free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(matcov,1,npar,1,npar);    free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     /*free_vector(delti,1,npar);*/    if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);
     free_matrix(agev,1,maxwav,1,imx);    if(nqv>=1)free_matrix(coqvar,1,nqv,1,n);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     free_ivector(ncodemax,1,NCOVMAX);    free_matrix(hess,1,npar,1,npar);
     free_ivector(Tvar,1,NCOVMAX);    /*free_vector(delti,1,npar);*/
     free_ivector(Tprod,1,NCOVMAX);    free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_ivector(Tvaraff,1,NCOVMAX);    free_matrix(agev,1,maxwav,1,imx);
     free_ivector(Tage,1,NCOVMAX);    free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);    
     free_imatrix(codtab,1,100,1,10);    free_ivector(ncodemax,1,NCOVMAX);
     free_ivector(ncodemaxwundef,1,NCOVMAX);
     free_ivector(Dummy,-1,NCOVMAX);
     free_ivector(Fixed,-1,NCOVMAX);
     free_ivector(DummyV,1,NCOVMAX);
     free_ivector(FixedV,1,NCOVMAX);
     free_ivector(Typevar,-1,NCOVMAX);
     free_ivector(Tvar,1,NCOVMAX);
     free_ivector(TvarsQ,1,NCOVMAX);
     free_ivector(TvarsQind,1,NCOVMAX);
     free_ivector(TvarsD,1,NCOVMAX);
     free_ivector(TvarsDind,1,NCOVMAX);
     free_ivector(TvarFD,1,NCOVMAX);
     free_ivector(TvarFDind,1,NCOVMAX);
     free_ivector(TvarF,1,NCOVMAX);
     free_ivector(TvarFind,1,NCOVMAX);
     free_ivector(TvarV,1,NCOVMAX);
     free_ivector(TvarVind,1,NCOVMAX);
     free_ivector(TvarA,1,NCOVMAX);
     free_ivector(TvarAind,1,NCOVMAX);
     free_ivector(TvarFQ,1,NCOVMAX);
     free_ivector(TvarFQind,1,NCOVMAX);
     free_ivector(TvarVD,1,NCOVMAX);
     free_ivector(TvarVDind,1,NCOVMAX);
     free_ivector(TvarVQ,1,NCOVMAX);
     free_ivector(TvarVQind,1,NCOVMAX);
     free_ivector(Tvarsel,1,NCOVMAX);
     free_vector(Tvalsel,1,NCOVMAX);
     free_ivector(Tposprod,1,NCOVMAX);
     free_ivector(Tprod,1,NCOVMAX);
     free_ivector(Tvaraff,1,NCOVMAX);
     free_ivector(invalidvarcomb,1,ncovcombmax);
     free_ivector(Tage,1,NCOVMAX);
     free_ivector(Tmodelind,1,NCOVMAX);
     free_ivector(TmodelInvind,1,NCOVMAX);
     free_ivector(TmodelInvQind,1,NCOVMAX);
     
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     /* free_imatrix(codtab,1,100,1,10); */
   fflush(fichtm);    fflush(fichtm);
   fflush(ficgp);    fflush(ficgp);
       
     
   if((nberr >0) || (nbwarn>0)){    if((nberr >0) || (nbwarn>0)){
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
   }else{    }else{
     printf("End of Imach\n");      printf("End of Imach\n");
     fprintf(ficlog,"End of Imach\n");      fprintf(ficlog,"End of Imach\n");
Line 7609  Interval (in months) between two waves: Line 12747  Interval (in months) between two waves:
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));    printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     
   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));    printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));    fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));    fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
Line 7622  Interval (in months) between two waves: Line 12760  Interval (in months) between two waves:
   fclose(ficgp);    fclose(ficgp);
   fclose(ficlog);    fclose(ficlog);
   /*------ End -----------*/    /*------ End -----------*/
     
   
   /* Executes gnuplot */
    printf("Before Current directory %s!\n",pathcd);    
     printf("Before Current directory %s!\n",pathcd);
 #ifdef WIN32  #ifdef WIN32
    if (_chdir(pathcd) != 0)    if (_chdir(pathcd) != 0)
            printf("Can't move to directory %s!\n",path);      printf("Can't move to directory %s!\n",path);
    if(_getcwd(pathcd,MAXLINE) > 0)    if(_getcwd(pathcd,MAXLINE) > 0)
 #else  #else
    if(chdir(pathcd) != 0)      if(chdir(pathcd) != 0)
            printf("Can't move to directory %s!\n", path);        printf("Can't move to directory %s!\n", path);
    if (getcwd(pathcd, MAXLINE) > 0)    if (getcwd(pathcd, MAXLINE) > 0)
 #endif   #endif 
     printf("Current directory %s!\n",pathcd);      printf("Current directory %s!\n",pathcd);
   /*strcat(plotcmd,CHARSEPARATOR);*/    /*strcat(plotcmd,CHARSEPARATOR);*/
Line 7658  Interval (in months) between two waves: Line 12798  Interval (in months) between two waves:
       
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);    sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);    printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
     
   if((outcmd=system(plotcmd)) != 0){    if((outcmd=system(plotcmd)) != 0){
     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);      printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");      printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
Line 7686  Interval (in months) between two waves: Line 12826  Interval (in months) between two waves:
     else if (z[0] == 'g') system(plotcmd);      else if (z[0] == 'g') system(plotcmd);
     else if (z[0] == 'q') exit(0);      else if (z[0] == 'q') exit(0);
   }    }
   end:  end:
   while (z[0] != 'q') {    while (z[0] != 'q') {
     printf("\nType  q for exiting: ");      printf("\nType  q for exiting: "); fflush(stdout);
     scanf("%s",z);      scanf("%s",z);
   }    }
     printf("End\n");
     exit(0);
 }  }

Removed from v.1.187  
changed lines
  Added in v.1.288


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>