Diff for /imach/src/imach.c between versions 1.52 and 1.198

version 1.52, 2002/07/19 18:49:30 version 1.198, 2015/09/03 07:14:39
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.198  2015/09/03 07:14:39  brouard
      Summary: 0.98q5 Flavia
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.197  2015/09/01 18:24:39  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.196  2015/08/18 23:17:52  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: 0.98q5
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.195  2015/08/18 16:28:39  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Adding a hack for testing purpose
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    After reading the title, ftol and model lines, if the comment line has
   probability to be observed in state j at the second wave    a q, starting with #q, the answer at the end of the run is quit. It
   conditional to be observed in state i at the first wave. Therefore    permits to run test files in batch with ctest. The former workaround was
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    $ echo q | imach foo.imach
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.194  2015/08/18 13:32:00  brouard
   where the markup *Covariates have to be included here again* invites    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.193  2015/08/04 07:17:42  brouard
     Summary: 0.98q4
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.192  2015/07/16 16:49:02  brouard
   identical for each individual. Also, if a individual missed an    Summary: Fixing some outputs
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.190  2015/05/05 08:51:13  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Summary: Adding digits in output parameters (7 digits instead of 6)
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Fix 1+age+.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.189  2015/04/30 14:45:16  brouard
   hPijx.    Summary: 0.98q2
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.188  2015/04/30 08:27:53  brouard
   of the life expectancies. It also computes the prevalence limits.    *** empty log message ***
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.187  2015/04/29 09:11:15  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.186  2015/04/23 12:01:52  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: V1*age is working now, version 0.98q1
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Some codes had been disabled in order to simplify and Vn*age was
   **********************************************************************/    working in the optimization phase, ie, giving correct MLE parameters,
      but, as usual, outputs were not correct and program core dumped.
 #include <math.h>  
 #include <stdio.h>    Revision 1.185  2015/03/11 13:26:42  brouard
 #include <stdlib.h>    Summary: Inclusion of compile and links command line for Intel Compiler
 #include <unistd.h>  
     Revision 1.184  2015/03/11 11:52:39  brouard
 #define MAXLINE 256    Summary: Back from Windows 8. Intel Compiler
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.183  2015/03/10 20:34:32  brouard
 #define FILENAMELENGTH 80    Summary: 0.98q0, trying with directest, mnbrak fixed
 /*#define DEBUG*/  
 #define windows    We use directest instead of original Powell test; probably no
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    incidence on the results, but better justifications;
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
 #define NINTERVMAX 8    Author: Nicolas Brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.181  2015/02/11 23:22:24  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: Comments on Powell added
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Author:
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.180  2015/02/11 17:33:45  brouard
 #ifdef windows    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.179  2015/01/04 09:57:06  brouard
 #else    Summary: back to OS/X
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.178  2015/01/04 09:35:48  brouard
 #endif    *** empty log message ***
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.177  2015/01/03 18:40:56  brouard
 int erreur; /* Error number */    Summary: Still testing ilc32 on OSX
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.176  2015/01/03 16:45:04  brouard
 int npar=NPARMAX;    *** empty log message ***
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.175  2015/01/03 16:33:42  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    *** empty log message ***
 int popbased=0;  
     Revision 1.174  2015/01/03 16:15:49  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: Still in cross-compilation
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.173  2015/01/03 12:06:26  brouard
 int mle, weightopt;    Summary: trying to detect cross-compilation
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.172  2014/12/27 12:07:47  brouard
 double jmean; /* Mean space between 2 waves */    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.171  2014/12/23 13:26:59  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Summary: Back from Visual C
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Still problem with utsname.h on Windows
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.170  2014/12/23 11:17:12  brouard
 FILE *ficreseij;    Summary: Cleaning some \%% back to %%
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.169  2014/12/22 23:08:31  brouard
 char fileresvpl[FILENAMELENGTH];    Summary: 0.98p
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.168  2014/12/22 15:17:42  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Summary: update
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.167  2014/12/22 13:50:56  brouard
 char fileregp[FILENAMELENGTH];    Summary: Testing uname and compiler version and if compiled 32 or 64
 char popfile[FILENAMELENGTH];  
     Testing on Linux 64
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.166  2014/12/22 11:40:47  brouard
 #define NR_END 1    *** empty log message ***
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
 #define NRANSI  
 #define ITMAX 200    * imach.c (Module): Merging 1.61 to 1.162
   
 #define TOL 2.0e-4    Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    * imach.c (Module): Merging 1.61 to 1.162
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.163  2014/12/16 10:30:11  brouard
 #define GOLD 1.618034    * imach.c (Module): Merging 1.61 to 1.162
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.1  2014/09/16 11:06:58  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Summary: With some code (wrong) for nlopt
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Author:
 #define rint(a) floor(a+0.5)  
     Revision 1.161  2014/09/15 20:41:41  brouard
 static double sqrarg;    Summary: Problem with macro SQR on Intel compiler
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
 int imx;  
 int stepm;    Revision 1.159  2014/09/01 10:34:10  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: WIN32
     Author: Brouard
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.157  2014/08/27 16:26:55  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Summary: Preparing windows Visual studio version
 double **pmmij, ***probs, ***mobaverage;    Author: Brouard
 double dateintmean=0;  
     In order to compile on Visual studio, time.h is now correct and time_t
 double *weight;    and tm struct should be used. difftime should be used but sometimes I
 int **s; /* Status */    just make the differences in raw time format (time(&now).
 double *agedc, **covar, idx;    Trying to suppress #ifdef LINUX
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Add xdg-open for __linux in order to open default browser.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.156  2014/08/25 20:10:10  brouard
 double ftolhess; /* Tolerance for computing hessian */    *** empty log message ***
   
 /**************** split *************************/    Revision 1.155  2014/08/25 18:32:34  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Summary: New compile, minor changes
 {    Author: Brouard
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.153  2014/06/20 16:45:46  brouard
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Summary: If 3 live state, convergence to period prevalence on same graph
    if ( s == NULL ) {                   /* no directory, so use current */    Author: Brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.152  2014/06/18 17:54:09  brouard
 #if     defined(__bsd__)                /* get current working directory */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
       extern char       *getwd( );  
     Revision 1.151  2014/06/18 16:43:30  brouard
       if ( getwd( dirc ) == NULL ) {    *** empty log message ***
 #else  
       extern char       *getcwd( );    Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Author: brouard
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.149  2014/06/18 15:51:14  brouard
       }    Summary: Some fixes in parameter files errors
       strcpy( name, path );             /* we've got it */    Author: Nicolas Brouard
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.148  2014/06/17 17:38:48  brouard
       l2 = strlen( s );                 /* length of filename */    Summary: Nothing new
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Author: Brouard
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Just a new packaging for OS/X version 0.98nS
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.147  2014/06/16 10:33:11  brouard
    l1 = strlen( dirc );                 /* length of directory */    *** empty log message ***
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.146  2014/06/16 10:20:28  brouard
 #else    Summary: Merge
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Author: Brouard
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Merge, before building revised version.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.145  2014/06/10 21:23:15  brouard
    l1= strlen( name);    Summary: Debugging with valgrind
    l2= strlen( s)+1;    Author: Nicolas Brouard
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Lot of changes in order to output the results with some covariates
    return( 0 );                         /* we're done */    After the Edimburgh REVES conference 2014, it seems mandatory to
 }    improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
 /******************************************/    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
 void replace(char *s, char*t)    the source code.
 {  
   int i;    Revision 1.143  2014/01/26 09:45:38  brouard
   int lg=20;    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   i=0;  
   lg=strlen(t);    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   for(i=0; i<= lg; i++) {    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.142  2014/01/26 03:57:36  brouard
   }    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 }  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int nbocc(char *s, char occ)  
 {    Revision 1.141  2014/01/26 02:42:01  brouard
   int i,j=0;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   int lg=20;  
   i=0;    Revision 1.140  2011/09/02 10:37:54  brouard
   lg=strlen(s);    Summary: times.h is ok with mingw32 now.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.139  2010/06/14 07:50:17  brouard
   }    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   return j;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 }  
     Revision 1.138  2010/04/30 18:19:40  brouard
 void cutv(char *u,char *v, char*t, char occ)    *** empty log message ***
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    Revision 1.137  2010/04/29 18:11:38  brouard
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    (Module): Checking covariates for more complex models
      gives u="abcedf" and v="ghi2j" */    than V1+V2. A lot of change to be done. Unstable.
   int i,lg,j,p=0;  
   i=0;    Revision 1.136  2010/04/26 20:30:53  brouard
   for(j=0; j<=strlen(t)-1; j++) {    (Module): merging some libgsl code. Fixing computation
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    of likelione (using inter/intrapolation if mle = 0) in order to
   }    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.135  2009/10/29 15:33:14  brouard
     (u[j] = t[j]);    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   }  
      u[p]='\0';    Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.133  2009/07/06 10:21:25  brouard
   }    just nforces
 }  
     Revision 1.132  2009/07/06 08:22:05  brouard
 /********************** nrerror ********************/    Many tings
   
 void nrerror(char error_text[])    Revision 1.131  2009/06/20 16:22:47  brouard
 {    Some dimensions resccaled
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.130  2009/05/26 06:44:34  brouard
   exit(1);    (Module): Max Covariate is now set to 20 instead of 8. A
 }    lot of cleaning with variables initialized to 0. Trying to make
 /*********************** vector *******************/    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 double *vector(int nl, int nh)  
 {    Revision 1.129  2007/08/31 13:49:27  lievre
   double *v;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.128  2006/06/30 13:02:05  brouard
   return v-nl+NR_END;    (Module): Clarifications on computing e.j
 }  
     Revision 1.127  2006/04/28 18:11:50  brouard
 /************************ free vector ******************/    (Module): Yes the sum of survivors was wrong since
 void free_vector(double*v, int nl, int nh)    imach-114 because nhstepm was no more computed in the age
 {    loop. Now we define nhstepma in the age loop.
   free((FREE_ARG)(v+nl-NR_END));    (Module): In order to speed up (in case of numerous covariates) we
 }    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
 /************************ivector *******************************/    deviation (needs data from the Hessian matrices) which slows the
 int *ivector(long nl,long nh)    computation.
 {    In the future we should be able to stop the program is only health
   int *v;    expectancies and graph are needed without standard deviations.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.126  2006/04/28 17:23:28  brouard
   return v-nl+NR_END;    (Module): Yes the sum of survivors was wrong since
 }    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 /******************free ivector **************************/    Version 0.98h
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.125  2006/04/04 15:20:31  lievre
   free((FREE_ARG)(v+nl-NR_END));    Errors in calculation of health expectancies. Age was not initialized.
 }    Forecasting file added.
   
 /******************* imatrix *******************************/    Revision 1.124  2006/03/22 17:13:53  lievre
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Parameters are printed with %lf instead of %f (more numbers after the comma).
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    The log-likelihood is printed in the log file
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.123  2006/03/20 10:52:43  brouard
   int **m;    * imach.c (Module): <title> changed, corresponds to .htm file
      name. <head> headers where missing.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    * imach.c (Module): Weights can have a decimal point as for
   if (!m) nrerror("allocation failure 1 in matrix()");    English (a comma might work with a correct LC_NUMERIC environment,
   m += NR_END;    otherwise the weight is truncated).
   m -= nrl;    Modification of warning when the covariates values are not 0 or
      1.
      Version 0.98g
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.122  2006/03/20 09:45:41  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Weights can have a decimal point as for
   m[nrl] += NR_END;    English (a comma might work with a correct LC_NUMERIC environment,
   m[nrl] -= ncl;    otherwise the weight is truncated).
      Modification of warning when the covariates values are not 0 or
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    1.
      Version 0.98g
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.121  2006/03/16 17:45:01  lievre
 }    * imach.c (Module): Comments concerning covariates added
   
 /****************** free_imatrix *************************/    * imach.c (Module): refinements in the computation of lli if
 void free_imatrix(m,nrl,nrh,ncl,nch)    status=-2 in order to have more reliable computation if stepm is
       int **m;    not 1 month. Version 0.98f
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.120  2006/03/16 15:10:38  lievre
 {    (Module): refinements in the computation of lli if
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    status=-2 in order to have more reliable computation if stepm is
   free((FREE_ARG) (m+nrl-NR_END));    not 1 month. Version 0.98f
 }  
     Revision 1.119  2006/03/15 17:42:26  brouard
 /******************* matrix *******************************/    (Module): Bug if status = -2, the loglikelihood was
 double **matrix(long nrl, long nrh, long ncl, long nch)    computed as likelihood omitting the logarithm. Version O.98e
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.118  2006/03/14 18:20:07  brouard
   double **m;    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Function pstamp added
   m += NR_END;    (Module): Version 0.98d
   m -= nrl;  
     Revision 1.117  2006/03/14 17:16:22  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): varevsij Comments added explaining the second
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    table of variances if popbased=1 .
   m[nrl] += NR_END;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   m[nrl] -= ncl;    (Module): Function pstamp added
     (Module): Version 0.98d
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.116  2006/03/06 10:29:27  brouard
 }    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.115  2006/02/27 12:17:45  brouard
 {    (Module): One freematrix added in mlikeli! 0.98c
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.114  2006/02/26 12:57:58  brouard
 }    (Module): Some improvements in processing parameter
     filename with strsep.
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.113  2006/02/24 14:20:24  brouard
 {    (Module): Memory leaks checks with valgrind and:
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    datafile was not closed, some imatrix were not freed and on matrix
   double ***m;    allocation too.
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.112  2006/01/30 09:55:26  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   m += NR_END;  
   m -= nrl;    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Comments can be added in data file. Missing date values
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    can be a simple dot '.'.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.109  2006/01/24 19:37:15  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (Module): Comments (lines starting with a #) are allowed in data.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.108  2006/01/19 18:05:42  lievre
   m[nrl][ncl] -= nll;    Gnuplot problem appeared...
   for (j=ncl+1; j<=nch; j++)    To be fixed
     m[nrl][j]=m[nrl][j-1]+nlay;  
      Revision 1.107  2006/01/19 16:20:37  brouard
   for (i=nrl+1; i<=nrh; i++) {    Test existence of gnuplot in imach path
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.106  2006/01/19 13:24:36  brouard
       m[i][j]=m[i][j-1]+nlay;    Some cleaning and links added in html output
   }  
   return m;    Revision 1.105  2006/01/05 20:23:19  lievre
 }    *** empty log message ***
   
 /*************************free ma3x ************************/    Revision 1.104  2005/09/30 16:11:43  lievre
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    (Module): sump fixed, loop imx fixed, and simplifications.
 {    (Module): If the status is missing at the last wave but we know
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    that the person is alive, then we can code his/her status as -2
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (instead of missing=-1 in earlier versions) and his/her
   free((FREE_ARG)(m+nrl-NR_END));    contributions to the likelihood is 1 - Prob of dying from last
 }    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.103  2005/09/30 15:54:49  lievre
 extern double *pcom,*xicom;    (Module): sump fixed, loop imx fixed, and simplifications.
 extern double (*nrfunc)(double []);  
      Revision 1.102  2004/09/15 17:31:30  brouard
 double f1dim(double x)    Add the possibility to read data file including tab characters.
 {  
   int j;    Revision 1.101  2004/09/15 10:38:38  brouard
   double f;    Fix on curr_time
   double *xt;  
      Revision 1.100  2004/07/12 18:29:06  brouard
   xt=vector(1,ncom);    Add version for Mac OS X. Just define UNIX in Makefile
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.99  2004/06/05 08:57:40  brouard
   free_vector(xt,1,ncom);    *** empty log message ***
   return f;  
 }    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 /*****************brent *************************/    directly from the data i.e. without the need of knowing the health
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    state at each age, but using a Gompertz model: log u =a + b*age .
 {    This is the basic analysis of mortality and should be done before any
   int iter;    other analysis, in order to test if the mortality estimated from the
   double a,b,d,etemp;    cross-longitudinal survey is different from the mortality estimated
   double fu,fv,fw,fx;    from other sources like vital statistic data.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    The same imach parameter file can be used but the option for mle should be -3.
   double e=0.0;  
      Agnès, who wrote this part of the code, tried to keep most of the
   a=(ax < cx ? ax : cx);    former routines in order to include the new code within the former code.
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    The output is very simple: only an estimate of the intercept and of
   fw=fv=fx=(*f)(x);    the slope with 95% confident intervals.
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    Current limitations:
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    A) Even if you enter covariates, i.e. with the
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     printf(".");fflush(stdout);    B) There is no computation of Life Expectancy nor Life Table.
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG    Revision 1.97  2004/02/20 13:25:42  lievre
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Version 0.96d. Population forecasting command line is (temporarily)
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    suppressed.
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.96  2003/07/15 15:38:55  brouard
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       *xmin=x;    rewritten within the same printf. Workaround: many printfs.
       return fx;  
     }    Revision 1.95  2003/07/08 07:54:34  brouard
     ftemp=fu;    * imach.c (Repository):
     if (fabs(e) > tol1) {    (Repository): Using imachwizard code to output a more meaningful covariance
       r=(x-w)*(fx-fv);    matrix (cov(a12,c31) instead of numbers.
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.94  2003/06/27 13:00:02  brouard
       q=2.0*(q-r);    Just cleaning
       if (q > 0.0) p = -p;  
       q=fabs(q);    Revision 1.93  2003/06/25 16:33:55  brouard
       etemp=e;    (Module): On windows (cygwin) function asctime_r doesn't
       e=d;    exist so I changed back to asctime which exists.
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    (Module): Version 0.96b
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    Revision 1.92  2003/06/25 16:30:45  brouard
         d=p/q;    (Module): On windows (cygwin) function asctime_r doesn't
         u=x+d;    exist so I changed back to asctime which exists.
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    Revision 1.91  2003/06/25 15:30:29  brouard
       }    * imach.c (Repository): Duplicated warning errors corrected.
     } else {    (Repository): Elapsed time after each iteration is now output. It
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    helps to forecast when convergence will be reached. Elapsed time
     }    is stamped in powell.  We created a new html file for the graphs
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    concerning matrix of covariance. It has extension -cov.htm.
     fu=(*f)(u);  
     if (fu <= fx) {    Revision 1.90  2003/06/24 12:34:15  brouard
       if (u >= x) a=x; else b=x;    (Module): Some bugs corrected for windows. Also, when
       SHFT(v,w,x,u)    mle=-1 a template is output in file "or"mypar.txt with the design
         SHFT(fv,fw,fx,fu)    of the covariance matrix to be input.
         } else {  
           if (u < x) a=u; else b=u;    Revision 1.89  2003/06/24 12:30:52  brouard
           if (fu <= fw || w == x) {    (Module): Some bugs corrected for windows. Also, when
             v=w;    mle=-1 a template is output in file "or"mypar.txt with the design
             w=u;    of the covariance matrix to be input.
             fv=fw;  
             fw=fu;    Revision 1.88  2003/06/23 17:54:56  brouard
           } else if (fu <= fv || v == x || v == w) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
             v=u;  
             fv=fu;    Revision 1.87  2003/06/18 12:26:01  brouard
           }    Version 0.96
         }  
   }    Revision 1.86  2003/06/17 20:04:08  brouard
   nrerror("Too many iterations in brent");    (Module): Change position of html and gnuplot routines and added
   *xmin=x;    routine fileappend.
   return fx;  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 /****************** mnbrak ***********************/    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    was wrong (infinity). We still send an "Error" but patch by
             double (*func)(double))    assuming that the date of death was just one stepm after the
 {    interview.
   double ulim,u,r,q, dum;    (Repository): Because some people have very long ID (first column)
   double fu;    we changed int to long in num[] and we added a new lvector for
      memory allocation. But we also truncated to 8 characters (left
   *fa=(*func)(*ax);    truncation)
   *fb=(*func)(*bx);    (Repository): No more line truncation errors.
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    Revision 1.84  2003/06/13 21:44:43  brouard
       SHFT(dum,*fb,*fa,dum)    * imach.c (Repository): Replace "freqsummary" at a correct
       }    place. It differs from routine "prevalence" which may be called
   *cx=(*bx)+GOLD*(*bx-*ax);    many times. Probs is memory consuming and must be used with
   *fc=(*func)(*cx);    parcimony.
   while (*fb > *fc) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Revision 1.83  2003/06/10 13:39:11  lievre
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    *** empty log message ***
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    Revision 1.82  2003/06/05 15:57:20  brouard
     if ((*bx-u)*(u-*cx) > 0.0) {    Add log in  imach.c and  fullversion number is now printed.
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  */
       fu=(*func)(u);  /*
       if (fu < *fc) {     Interpolated Markov Chain
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    Short summary of the programme:
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    This program computes Healthy Life Expectancies from
       u=ulim;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       fu=(*func)(u);    first survey ("cross") where individuals from different ages are
     } else {    interviewed on their health status or degree of disability (in the
       u=(*cx)+GOLD*(*cx-*bx);    case of a health survey which is our main interest) -2- at least a
       fu=(*func)(u);    second wave of interviews ("longitudinal") which measure each change
     }    (if any) in individual health status.  Health expectancies are
     SHFT(*ax,*bx,*cx,u)    computed from the time spent in each health state according to a
       SHFT(*fa,*fb,*fc,fu)    model. More health states you consider, more time is necessary to reach the
       }    Maximum Likelihood of the parameters involved in the model.  The
 }    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 /*************** linmin ************************/    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int ncom;    'age' is age and 'sex' is a covariate. If you want to have a more
 double *pcom,*xicom;    complex model than "constant and age", you should modify the program
 double (*nrfunc)(double []);    where the markup *Covariates have to be included here again* invites
      you to do it.  More covariates you add, slower the
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    convergence.
 {  
   double brent(double ax, double bx, double cx,    The advantage of this computer programme, compared to a simple
                double (*f)(double), double tol, double *xmin);    multinomial logistic model, is clear when the delay between waves is not
   double f1dim(double x);    identical for each individual. Also, if a individual missed an
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    intermediate interview, the information is lost, but taken into
               double *fc, double (*func)(double));    account using an interpolation or extrapolation.  
   int j;  
   double xx,xmin,bx,ax;    hPijx is the probability to be observed in state i at age x+h
   double fx,fb,fa;    conditional to the observed state i at age x. The delay 'h' can be
      split into an exact number (nh*stepm) of unobserved intermediate
   ncom=n;    states. This elementary transition (by month, quarter,
   pcom=vector(1,n);    semester or year) is modelled as a multinomial logistic.  The hPx
   xicom=vector(1,n);    matrix is simply the matrix product of nh*stepm elementary matrices
   nrfunc=func;    and the contribution of each individual to the likelihood is simply
   for (j=1;j<=n;j++) {    hPijx.
     pcom[j]=p[j];  
     xicom[j]=xi[j];    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the period (stable) prevalence. 
   ax=0.0;    
   xx=1.0;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);             Institut national d'études démographiques, Paris.
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    This software have been partly granted by Euro-REVES, a concerted action
 #ifdef DEBUG    from the European Union.
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    It is copyrighted identically to a GNU software product, ie programme and
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    software can be distributed freely for non commercial use. Latest version
 #endif    can be accessed at http://euroreves.ined.fr/imach .
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     p[j] += xi[j];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   }    
   free_vector(xicom,1,n);    **********************************************************************/
   free_vector(pcom,1,n);  /*
 }    main
     read parameterfile
 /*************** powell ************************/    read datafile
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    concatwav
             double (*func)(double []))    freqsummary
 {    if (mle >= 1)
   void linmin(double p[], double xi[], int n, double *fret,      mlikeli
               double (*func)(double []));    print results files
   int i,ibig,j;    if mle==1 
   double del,t,*pt,*ptt,*xit;       computes hessian
   double fp,fptt;    read end of parameter file: agemin, agemax, bage, fage, estepm
   double *xits;        begin-prev-date,...
   pt=vector(1,n);    open gnuplot file
   ptt=vector(1,n);    open html file
   xit=vector(1,n);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   xits=vector(1,n);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   *fret=(*func)(p);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   for (j=1;j<=n;j++) pt[j]=p[j];      freexexit2 possible for memory heap.
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);    h Pij x                         | pij_nom  ficrestpij
     ibig=0;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     del=0.0;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       printf(" %d %.12f",i, p[i]);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     fprintf(ficlog," %d %.12f",i, p[i]);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     printf("\n");     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     fprintf(ficlog,"\n");     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    forecasting if prevfcast==1 prevforecast call prevalence()
       fptt=(*fret);    health expectancies
 #ifdef DEBUG    Variance-covariance of DFLE
       printf("fret=%lf \n",*fret);    prevalence()
       fprintf(ficlog,"fret=%lf \n",*fret);     movingaverage()
 #endif    varevsij() 
       printf("%d",i);fflush(stdout);    if popbased==1 varevsij(,popbased)
       fprintf(ficlog,"%d",i);fflush(ficlog);    total life expectancies
       linmin(p,xit,n,fret,func);    Variance of period (stable) prevalence
       if (fabs(fptt-(*fret)) > del) {   end
         del=fabs(fptt-(*fret));  */
         ibig=i;  
       }  /* #define DEBUG */
 #ifdef DEBUG  /* #define DEBUGBRENT */
       printf("%d %.12e",i,(*fret));  #define POWELL /* Instead of NLOPT */
       fprintf(ficlog,"%d %.12e",i,(*fret));  #define POWELLF1F3 /* Skip test */
       for (j=1;j<=n;j++) {  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
         printf(" x(%d)=%.12e",j,xit[j]);  
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  #include <math.h>
       }  #include <stdio.h>
       for(j=1;j<=n;j++) {  #include <stdlib.h>
         printf(" p=%.12e",p[j]);  #include <string.h>
         fprintf(ficlog," p=%.12e",p[j]);  
       }  #ifdef _WIN32
       printf("\n");  #include <io.h>
       fprintf(ficlog,"\n");  #include <windows.h>
 #endif  #include <tchar.h>
     }  #else
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #include <unistd.h>
 #ifdef DEBUG  #endif
       int k[2],l;  
       k[0]=1;  #include <limits.h>
       k[1]=-1;  #include <sys/types.h>
       printf("Max: %.12e",(*func)(p));  
       fprintf(ficlog,"Max: %.12e",(*func)(p));  #if defined(__GNUC__)
       for (j=1;j<=n;j++) {  #include <sys/utsname.h> /* Doesn't work on Windows */
         printf(" %.12e",p[j]);  #endif
         fprintf(ficlog," %.12e",p[j]);  
       }  #include <sys/stat.h>
       printf("\n");  #include <errno.h>
       fprintf(ficlog,"\n");  /* extern int errno; */
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /* #ifdef LINUX */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /* #include <time.h> */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /* #include "timeval.h" */
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /* #else */
         }  /* #include <sys/time.h> */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /* #endif */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  #include <time.h>
 #endif  
   #ifdef GSL
   #include <gsl/gsl_errno.h>
       free_vector(xit,1,n);  #include <gsl/gsl_multimin.h>
       free_vector(xits,1,n);  #endif
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  
       return;  #ifdef NLOPT
     }  #include <nlopt.h>
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  typedef struct {
     for (j=1;j<=n;j++) {    double (* function)(double [] );
       ptt[j]=2.0*p[j]-pt[j];  } myfunc_data ;
       xit[j]=p[j]-pt[j];  #endif
       pt[j]=p[j];  
     }  /* #include <libintl.h> */
     fptt=(*func)(ptt);  /* #define _(String) gettext (String) */
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  #define GNUPLOTPROGRAM "gnuplot"
         for (j=1;j<=n;j++) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
           xi[j][ibig]=xi[j][n];  #define FILENAMELENGTH 132
           xi[j][n]=xit[j];  
         }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #ifdef DEBUG  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
         for(j=1;j<=n;j++){  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
           printf(" %.12e",xit[j]);  
           fprintf(ficlog," %.12e",xit[j]);  #define NINTERVMAX 8
         }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
         printf("\n");  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         fprintf(ficlog,"\n");  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 #endif  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
       }  #define MAXN 20000
     }  #define YEARM 12. /**< Number of months per year */
   }  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEOVERFLOW 1.e20
 /**** Prevalence limit ****************/  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   #ifdef _WIN32
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define DIRSEPARATOR '\\'
 {  #define CHARSEPARATOR "\\"
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #define ODIRSEPARATOR '/'
      matrix by transitions matrix until convergence is reached */  #else
   #define DIRSEPARATOR '/'
   int i, ii,j,k;  #define CHARSEPARATOR "/"
   double min, max, maxmin, maxmax,sumnew=0.;  #define ODIRSEPARATOR '\\'
   double **matprod2();  #endif
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /* $Id$ */
   double agefin, delaymax=50 ; /* Max number of years to converge */  /* $State$ */
   #include "version.h"
   for (ii=1;ii<=nlstate+ndeath;ii++)  char version[]=__IMACH_VERSION__;
     for (j=1;j<=nlstate+ndeath;j++){  char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char fullversion[]="$Revision$ $Date$"; 
     }  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
    cov[1]=1.;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
     newm=savm;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     /* Covariates have to be included here again */  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
      cov[2]=agefin;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
    int cptcovprodnoage=0; /**< Number of covariate products without age */   
       for (k=1; k<=cptcovn;k++) {  int cptcoveff=0; /* Total number of covariates to vary for printing results */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int cptcov=0; /* Working variable */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  int npar=NPARMAX;
       }  int nlstate=2; /* Number of live states */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int ndeath=1; /* Number of dead states */
       for (k=1; k<=cptcovprod;k++)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int popbased=0;
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  int *wav; /* Number of waves for this individuual 0 is possible */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int maxwav=0; /* Maxim number of waves */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     savm=oldm;                     to the likelihood and the sum of weights (done by funcone)*/
     oldm=newm;  int mle=1, weightopt=0;
     maxmax=0.;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     for(j=1;j<=nlstate;j++){  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       min=1.;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       max=0.;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       for(i=1; i<=nlstate; i++) {  int countcallfunc=0;  /* Count the number of calls to func */
         sumnew=0;  double jmean=1; /* Mean space between 2 waves */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  double **matprod2(); /* test */
         prlim[i][j]= newm[i][j]/(1-sumnew);  double **oldm, **newm, **savm; /* Working pointers to matrices */
         max=FMAX(max,prlim[i][j]);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         min=FMIN(min,prlim[i][j]);  /*FILE *fic ; */ /* Used in readdata only */
       }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       maxmin=max-min;  FILE *ficlog, *ficrespow;
       maxmax=FMAX(maxmax,maxmin);  int globpr=0; /* Global variable for printing or not */
     }  double fretone; /* Only one call to likelihood */
     if(maxmax < ftolpl){  long ipmx=0; /* Number of contributions */
       return prlim;  double sw; /* Sum of weights */
     }  char filerespow[FILENAMELENGTH];
   }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /*************** transition probabilities ***************/  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   double s1, s2;  FILE *ficresstdeij;
   /*double t34;*/  char fileresstde[FILENAMELENGTH];
   int i,j,j1, nc, ii, jj;  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
     for(i=1; i<= nlstate; i++){  FILE  *ficresvij;
     for(j=1; j<i;j++){  char fileresv[FILENAMELENGTH];
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  FILE  *ficresvpl;
         /*s2 += param[i][j][nc]*cov[nc];*/  char fileresvpl[FILENAMELENGTH];
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char title[MAXLINE];
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       ps[i][j]=s2;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char command[FILENAMELENGTH];
     }  int  outcmd=0;
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  char filelog[FILENAMELENGTH]; /* Log file */
       }  char filerest[FILENAMELENGTH];
       ps[i][j]=s2;  char fileregp[FILENAMELENGTH];
     }  char popfile[FILENAMELENGTH];
   }  
     /*ps[3][2]=1;*/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
   for(i=1; i<= nlstate; i++){  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
      s1=0;  /* struct timezone tzp; */
     for(j=1; j<i; j++)  /* extern int gettimeofday(); */
       s1+=exp(ps[i][j]);  struct tm tml, *gmtime(), *localtime();
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  extern time_t time();
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  struct tm start_time, end_time, curr_time, last_time, forecast_time;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
     for(j=i+1; j<=nlstate+ndeath; j++)  struct tm tm;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  char strcurr[80], strfor[80];
   } /* end i */  
   char *endptr;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  long lval;
     for(jj=1; jj<= nlstate+ndeath; jj++){  double dval;
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  #define NR_END 1
     }  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
   
   #define NRANSI 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #define ITMAX 200 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  #define TOL 2.0e-4 
    }  
     printf("\n ");  #define CGOLD 0.3819660 
     }  #define ZEPS 1.0e-10 
     printf("\n ");printf("%lf ",cov[2]);*/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #define GOLD 1.618034 
   goto end;*/  #define GLIMIT 100.0 
     return ps;  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /**************** Product of 2 matrices ******************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #define rint(a) floor(a+0.5)
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   /* in, b, out are matrice of pointers which should have been initialized  #define mytinydouble 1.0e-16
      before: only the contents of out is modified. The function returns  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
      a pointer to pointers identical to out */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   long i, j, k;  /* static double dsqrarg; */
   for(i=nrl; i<= nrh; i++)  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     for(k=ncolol; k<=ncoloh; k++)  static double sqrarg;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         out[i][k] +=in[i][j]*b[j][k];  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   return out;  
 }  int imx; 
   int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 /************* Higher Matrix Product ***************/  
   int estepm;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  int m,nb;
      duration (i.e. until  long *num;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  int firstpass=0, lastpass=4,*cod, *cens;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
      (typically every 2 years instead of every month which is too big).                     covariate for which somebody answered excluding 
      Model is determined by parameters x and covariates have to be                     undefined. Usually 2: 0 and 1. */
      included manually here.  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered including 
      */                               undefined. Usually 3: -1, 0 and 1. */
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int i, j, d, h, k;  double **pmmij, ***probs;
   double **out, cov[NCOVMAX];  double *ageexmed,*agecens;
   double **newm;  double dateintmean=0;
   
   /* Hstepm could be zero and should return the unit matrix */  double *weight;
   for (i=1;i<=nlstate+ndeath;i++)  int **s; /* Status */
     for (j=1;j<=nlstate+ndeath;j++){  double *agedc;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       po[i][j][0]=(i==j ? 1.0 : 0.0);                    * covar=matrix(0,NCOVMAX,1,n); 
     }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double  idx; 
   for(h=1; h <=nhstepm; h++){  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     for(d=1; d <=hstepm; d++){  int *Tage;
       newm=savm;  int *Ndum; /** Freq of modality (tricode */
       /* Covariates have to be included here again */  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       cov[1]=1.;  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double *lsurv, *lpop, *tpop;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double ftolhess; /**< Tolerance for computing hessian */
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    */ 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    char  *ss;                            /* pointer */
       savm=oldm;    int   l1=0, l2=0;                             /* length counters */
       oldm=newm;  
     }    l1 = strlen(path );                   /* length of path */
     for(i=1; i<=nlstate+ndeath; i++)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       for(j=1;j<=nlstate+ndeath;j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         po[i][j][h]=newm[i][j];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      strcpy( name, path );               /* we got the fullname name because no directory */
          */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   } /* end h */      /* get current working directory */
   return po;      /*    extern  char* getcwd ( char *buf , int len);*/
 }  #ifdef WIN32
       if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   #else
 /*************** log-likelihood *************/          if (getcwd(dirc, FILENAME_MAX) == NULL) {
 double func( double *x)  #endif
 {        return( GLOCK_ERROR_GETCWD );
   int i, ii, j, k, mi, d, kk;      }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      /* got dirc from getcwd*/
   double **out;      printf(" DIRC = %s \n",dirc);
   double sw; /* Sum of weights */    } else {                              /* strip direcotry from path */
   double lli; /* Individual log likelihood */      ss++;                               /* after this, the filename */
   long ipmx;      l2 = strlen( ss );                  /* length of filename */
   /*extern weight */      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* We are differentiating ll according to initial status */      strcpy( name, ss );         /* save file name */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   /*for(i=1;i<imx;i++)      dirc[l1-l2] = '\0';                 /* add zero */
     printf(" %d\n",s[4][i]);      printf(" DIRC2 = %s \n",dirc);
   */    }
   cov[1]=1.;    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    if( dirc[l1-1] != DIRSEPARATOR ){
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      dirc[l1] =  DIRSEPARATOR;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      dirc[l1+1] = 0; 
     for(mi=1; mi<= wav[i]-1; mi++){      printf(" DIRC3 = %s \n",dirc);
       for (ii=1;ii<=nlstate+ndeath;ii++)    }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    ss = strrchr( name, '.' );            /* find last / */
       for(d=0; d<dh[mi][i]; d++){    if (ss >0){
         newm=savm;      ss++;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      strcpy(ext,ss);                     /* save extension */
         for (kk=1; kk<=cptcovage;kk++) {      l1= strlen( name);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      l2= strlen(ss)+1;
         }      strncpy( finame, name, l1-l2);
              finame[l1-l2]= 0;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;    return( 0 );                          /* we're done */
         oldm=newm;  }
          
          
       } /* end mult */  /******************************************/
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  void replace_back_to_slash(char *s, char*t)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  {
       ipmx +=1;    int i;
       sw += weight[i];    int lg=0;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    i=0;
     } /* end of wave */    lg=strlen(t);
   } /* end of individual */    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      if (t[i]== '\\') s[i]='/';
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  }
   return -l;  
 }  char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
 /*********** Maximum Likelihood Estimation ***************/    s=out;
     while (*in != '\0'){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 {        in++;
   int i,j, iter;      }
   double **xi,*delti;      *out++ = *in++;
   double fret;    }
   xi=matrix(1,npar,1,npar);    *out='\0';
   for (i=1;i<=npar;i++)    return s;
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  /* char *substrchaine(char *out, char *in, char *chain) */
   powell(p,xi,npar,ftol,&iter,&fret,func);  /* { */
   /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /*   char *s, *t; */
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*   t=in;s=out; */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*   while ((*in != *chain) && (*in != '\0')){ */
   /*     *out++ = *in++; */
 }  /*   } */
   
 /**** Computes Hessian and covariance matrix ***/  /*   /\* *in matches *chain *\/ */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
 {  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   double  **a,**y,*x,pd;  /*   } */
   double **hess;  /*   in--; chain--; */
   int i, j,jk;  /*   while ( (*in != '\0')){ */
   int *indx;  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /*     *out++ = *in++; */
   double hessii(double p[], double delta, int theta, double delti[]);  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   double hessij(double p[], double delti[], int i, int j);  /*   } */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*   *out='\0'; */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*   out=s; */
   /*   return out; */
   hess=matrix(1,npar,1,npar);  /* } */
   char *substrchaine(char *out, char *in, char *chain)
   printf("\nCalculation of the hessian matrix. Wait...\n");  {
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    /* Substract chain 'chain' from 'in', return and output 'out' */
   for (i=1;i<=npar;i++){    /* in="V1+V1*age+age*age+V2", chain="age*age" */
     printf("%d",i);fflush(stdout);  
     fprintf(ficlog,"%d",i);fflush(ficlog);    char *strloc;
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/    strcpy (out, in); 
     /*printf(" %lf ",hess[i][i]);*/    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   }    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
      if(strloc != NULL){ 
   for (i=1;i<=npar;i++) {      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
     for (j=1;j<=npar;j++)  {      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
       if (j>i) {      /* strcpy (strloc, strloc +strlen(chain));*/
         printf(".%d%d",i,j);fflush(stdout);    }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
         hess[i][j]=hessij(p,delti,i,j);    return out;
         hess[j][i]=hess[i][j];      }
         /*printf(" %lf ",hess[i][j]);*/  
       }  
     }  char *cutl(char *blocc, char *alocc, char *in, char occ)
   }  {
   printf("\n");    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   fprintf(ficlog,"\n");       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef" and alocc="ghi2j".
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    */
      char *s, *t;
   a=matrix(1,npar,1,npar);    t=in;s=in;
   y=matrix(1,npar,1,npar);    while ((*in != occ) && (*in != '\0')){
   x=vector(1,npar);      *alocc++ = *in++;
   indx=ivector(1,npar);    }
   for (i=1;i<=npar;i++)    if( *in == occ){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      *(alocc)='\0';
   ludcmp(a,npar,indx,&pd);      s=++in;
     }
   for (j=1;j<=npar;j++) {   
     for (i=1;i<=npar;i++) x[i]=0;    if (s == t) {/* occ not found */
     x[j]=1;      *(alocc-(in-s))='\0';
     lubksb(a,npar,indx,x);      in=s;
     for (i=1;i<=npar;i++){    }
       matcov[i][j]=x[i];    while ( *in != '\0'){
     }      *blocc++ = *in++;
   }    }
   
   printf("\n#Hessian matrix#\n");    *blocc='\0';
   fprintf(ficlog,"\n#Hessian matrix#\n");    return t;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++) {  char *cutv(char *blocc, char *alocc, char *in, char occ)
       printf("%.3e ",hess[i][j]);  {
       fprintf(ficlog,"%.3e ",hess[i][j]);    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
     }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     printf("\n");       gives blocc="abcdef2ghi" and alocc="j".
     fprintf(ficlog,"\n");       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   }    */
     char *s, *t;
   /* Recompute Inverse */    t=in;s=in;
   for (i=1;i<=npar;i++)    while (*in != '\0'){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      while( *in == occ){
   ludcmp(a,npar,indx,&pd);        *blocc++ = *in++;
         s=in;
   /*  printf("\n#Hessian matrix recomputed#\n");      }
       *blocc++ = *in++;
   for (j=1;j<=npar;j++) {    }
     for (i=1;i<=npar;i++) x[i]=0;    if (s == t) /* occ not found */
     x[j]=1;      *(blocc-(in-s))='\0';
     lubksb(a,npar,indx,x);    else
     for (i=1;i<=npar;i++){      *(blocc-(in-s)-1)='\0';
       y[i][j]=x[i];    in=s;
       printf("%.3e ",y[i][j]);    while ( *in != '\0'){
       fprintf(ficlog,"%.3e ",y[i][j]);      *alocc++ = *in++;
     }    }
     printf("\n");  
     fprintf(ficlog,"\n");    *alocc='\0';
   }    return s;
   */  }
   
   free_matrix(a,1,npar,1,npar);  int nbocc(char *s, char occ)
   free_matrix(y,1,npar,1,npar);  {
   free_vector(x,1,npar);    int i,j=0;
   free_ivector(indx,1,npar);    int lg=20;
   free_matrix(hess,1,npar,1,npar);    i=0;
     lg=strlen(s);
     for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /*************** hessian matrix ****************/    return j;
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  /* void cutv(char *u,char *v, char*t, char occ) */
   int l=1, lmax=20;  /* { */
   double k1,k2;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   double p2[NPARMAX+1];  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   double res;  /*      gives u="abcdef2ghi" and v="j" *\/ */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*   int i,lg,j,p=0; */
   double fx;  /*   i=0; */
   int k=0,kmax=10;  /*   lg=strlen(t); */
   double l1;  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   fx=func(x);  /*   } */
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  /*   for(j=0; j<p; j++) { */
     l1=pow(10,l);  /*     (u[j] = t[j]); */
     delts=delt;  /*   } */
     for(k=1 ; k <kmax; k=k+1){  /*      u[p]='\0'; */
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /*    for(j=0; j<= lg; j++) { */
       k1=func(p2)-fx;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       p2[theta]=x[theta]-delt;  /*   } */
       k2=func(p2)-fx;  /* } */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  #ifdef _WIN32
        char * strsep(char **pp, const char *delim)
 #ifdef DEBUG  {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    char *p, *q;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);           
 #endif    if ((p = *pp) == NULL)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      return 0;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    if ((q = strpbrk (p, delim)) != NULL)
         k=kmax;    {
       }      *pp = q + 1;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      *q = '\0';
         k=kmax; l=lmax*10.;    }
       }    else
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      *pp = 0;
         delts=delt;    return p;
       }  }
     }  #endif
   }  
   delti[theta]=delts;  /********************** nrerror ********************/
   return res;  
    void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 double hessij( double x[], double delti[], int thetai,int thetaj)    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   int i;  }
   int l=1, l1, lmax=20;  /*********************** vector *******************/
   double k1,k2,k3,k4,res,fx;  double *vector(int nl, int nh)
   double p2[NPARMAX+1];  {
   int k;    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   fx=func(x);    if (!v) nrerror("allocation failure in vector");
   for (k=1; k<=2; k++) {    return v-nl+NR_END;
     for (i=1;i<=npar;i++) p2[i]=x[i];  }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /************************ free vector ******************/
     k1=func(p2)-fx;  void free_vector(double*v, int nl, int nh)
    {
     p2[thetai]=x[thetai]+delti[thetai]/k;    free((FREE_ARG)(v+nl-NR_END));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k2=func(p2)-fx;  
    /************************ivector *******************************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  int *ivector(long nl,long nh)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k3=func(p2)-fx;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     p2[thetai]=x[thetai]-delti[thetai]/k;    if (!v) nrerror("allocation failure in ivector");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    return v-nl+NR_END;
     k4=func(p2)-fx;  }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  /******************free ivector **************************/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  void free_ivector(int *v, long nl, long nh)
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
   }  }
   return res;  
 }  /************************lvector *******************************/
   long *lvector(long nl,long nh)
 /************** Inverse of matrix **************/  {
 void ludcmp(double **a, int n, int *indx, double *d)    long *v;
 {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   int i,imax,j,k;    if (!v) nrerror("allocation failure in ivector");
   double big,dum,sum,temp;    return v-nl+NR_END;
   double *vv;  }
    
   vv=vector(1,n);  /******************free lvector **************************/
   *d=1.0;  void free_lvector(long *v, long nl, long nh)
   for (i=1;i<=n;i++) {  {
     big=0.0;    free((FREE_ARG)(v+nl-NR_END));
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /******************* imatrix *******************************/
     vv[i]=1.0/big;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (j=1;j<=n;j++) {  { 
     for (i=1;i<j;i++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       sum=a[i][j];    int **m; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    
       a[i][j]=sum;    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     big=0.0;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     for (i=j;i<=n;i++) {    m += NR_END; 
       sum=a[i][j];    m -= nrl; 
       for (k=1;k<j;k++)    
         sum -= a[i][k]*a[k][j];    
       a[i][j]=sum;    /* allocate rows and set pointers to them */ 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         big=dum;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         imax=i;    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
     }    
     if (j != imax) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for (k=1;k<=n;k++) {    
         dum=a[imax][k];    /* return pointer to array of pointers to rows */ 
         a[imax][k]=a[j][k];    return m; 
         a[j][k]=dum;  } 
       }  
       *d = -(*d);  /****************** free_imatrix *************************/
       vv[imax]=vv[j];  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
     indx[j]=imax;        long nch,ncl,nrh,nrl; 
     if (a[j][j] == 0.0) a[j][j]=TINY;       /* free an int matrix allocated by imatrix() */ 
     if (j != n) {  { 
       dum=1.0/(a[j][j]);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    free((FREE_ARG) (m+nrl-NR_END)); 
     }  } 
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /******************* matrix *******************************/
 ;  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 void lubksb(double **a, int n, int *indx, double b[])    double **m;
 {  
   int i,ii=0,ip,j;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double sum;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   for (i=1;i<=n;i++) {    m -= nrl;
     ip=indx[i];  
     sum=b[ip];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     b[ip]=b[i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (ii)    m[nrl] += NR_END;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    m[nrl] -= ncl;
     else if (sum) ii=i;  
     b[i]=sum;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }    return m;
   for (i=n;i>=1;i--) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     sum=b[i];  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     b[i]=sum/a[i][i];     */
   }  }
 }  
   /*************************free matrix ************************/
 /************ Frequencies ********************/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  {
 {  /* Some frequencies */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  }
   int first;  
   double ***freq; /* Frequencies */  /******************* ma3x *******************************/
   double *pp;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double pos, k2, dateintsum=0,k2cpt=0;  {
   FILE *ficresp;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   char fileresp[FILENAMELENGTH];    double ***m;
    
   pp=vector(1,nlstate);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (!m) nrerror("allocation failure 1 in matrix()");
   strcpy(fileresp,"p");    m += NR_END;
   strcat(fileresp,fileres);    m -= nrl;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     exit(0);    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
   j=cptcoveff;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
   first=1;    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
   for(k1=1; k1<=j;k1++){      m[nrl][j]=m[nrl][j-1]+nlay;
     for(i1=1; i1<=ncodemax[k1];i1++){    
       j1++;    for (i=nrl+1; i<=nrh; i++) {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         scanf("%d", i);*/      for (j=ncl+1; j<=nch; j++) 
       for (i=-1; i<=nlstate+ndeath; i++)          m[i][j]=m[i][j-1]+nlay;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      }
           for(m=agemin; m <= agemax+3; m++)    return m; 
             freq[i][jk][m]=0;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                   &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       dateintsum=0;    */
       k2cpt=0;  }
       for (i=1; i<=imx; i++) {  
         bool=1;  /*************************free ma3x ************************/
         if  (cptcovn>0) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           for (z1=1; z1<=cptcoveff; z1++)  {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
               bool=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         }    free((FREE_ARG)(m+nrl-NR_END));
         if (bool==1) {  }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /*************** function subdirf ***********/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  char *subdirf(char fileres[])
               if(agev[m][i]==0) agev[m][i]=agemax+1;  {
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* Caution optionfilefiname is hidden */
               if (m<lastpass) {    strcpy(tmpout,optionfilefiname);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    strcat(tmpout,"/"); /* Add to the right */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    strcat(tmpout,fileres);
               }    return tmpout;
                }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;  /*************** function subdirf2 ***********/
                 k2cpt++;  char *subdirf2(char fileres[], char *preop)
               }  {
             }    
           }    /* Caution optionfilefiname is hidden */
         }    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
            strcat(tmpout,preop);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    strcat(tmpout,fileres);
     return tmpout;
       if  (cptcovn>0) {  }
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*************** function subdirf3 ***********/
         fprintf(ficresp, "**********\n#");  char *subdirf3(char fileres[], char *preop, char *preop2)
       }  {
       for(i=1; i<=nlstate;i++)    
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* Caution optionfilefiname is hidden */
       fprintf(ficresp, "\n");    strcpy(tmpout,optionfilefiname);
          strcat(tmpout,"/");
       for(i=(int)agemin; i <= (int)agemax+3; i++){    strcat(tmpout,preop);
         if(i==(int)agemax+3){    strcat(tmpout,preop2);
           fprintf(ficlog,"Total");    strcat(tmpout,fileres);
         }else{    return tmpout;
           if(first==1){  }
             first=0;  
             printf("See log file for details...\n");  char *asc_diff_time(long time_sec, char ascdiff[])
           }  {
           fprintf(ficlog,"Age %d", i);    long sec_left, days, hours, minutes;
         }    days = (time_sec) / (60*60*24);
         for(jk=1; jk <=nlstate ; jk++){    sec_left = (time_sec) % (60*60*24);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    hours = (sec_left) / (60*60) ;
             pp[jk] += freq[jk][m][i];    sec_left = (sec_left) %(60*60);
         }    minutes = (sec_left) /60;
         for(jk=1; jk <=nlstate ; jk++){    sec_left = (sec_left) % (60);
           for(m=-1, pos=0; m <=0 ; m++)    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
             pos += freq[jk][m][i];    return ascdiff;
           if(pp[jk]>=1.e-10){  }
             if(first==1){  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /***************** f1dim *************************/
             }  extern int ncom; 
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  extern double *pcom,*xicom;
           }else{  extern double (*nrfunc)(double []); 
             if(first==1)   
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  double f1dim(double x) 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  { 
           }    int j; 
         }    double f;
     double *xt; 
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    xt=vector(1,ncom); 
             pp[jk] += freq[jk][m][i];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
         for(jk=1,pos=0; jk <=nlstate ; jk++)    return f; 
           pos += pp[jk];  } 
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5){  /*****************brent *************************/
             if(first==1)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  {
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
           }else{     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
             if(first==1)     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);     * returned function value. 
           }    */
           if( i <= (int) agemax){    int iter; 
             if(pos>=1.e-5){    double a,b,d,etemp;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    double fu=0,fv,fw,fx;
               probs[i][jk][j1]= pp[jk]/pos;    double ftemp=0.;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
             }    double e=0.0; 
             else   
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    a=(ax < cx ? ax : cx); 
           }    b=(ax > cx ? ax : cx); 
         }    x=w=v=bx; 
            fw=fv=fx=(*f)(x); 
         for(jk=-1; jk <=nlstate+ndeath; jk++)    for (iter=1;iter<=ITMAX;iter++) { 
           for(m=-1; m <=nlstate+ndeath; m++)      xm=0.5*(a+b); 
             if(freq[jk][m][i] !=0 ) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
             if(first==1)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      printf(".");fflush(stdout);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      fprintf(ficlog,".");fflush(ficlog);
             }  #ifdef DEBUGBRENT
         if(i <= (int) agemax)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           fprintf(ficresp,"\n");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         if(first==1)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
           printf("Others in log...\n");  #endif
         fprintf(ficlog,"\n");      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       }        *xmin=x; 
     }        return fx; 
   }      } 
   dateintmean=dateintsum/k2cpt;      ftemp=fu;
        if (fabs(e) > tol1) { 
   fclose(ficresp);        r=(x-w)*(fx-fv); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        q=(x-v)*(fx-fw); 
   free_vector(pp,1,nlstate);        p=(x-v)*q-(x-w)*r; 
          q=2.0*(q-r); 
   /* End of Freq */        if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
 /************ Prevalence ********************/        e=d; 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 {  /* Some frequencies */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          else { 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          d=p/q; 
   double ***freq; /* Frequencies */          u=x+d; 
   double *pp;          if (u-a < tol2 || b-u < tol2) 
   double pos, k2;            d=SIGN(tol1,xm-x); 
         } 
   pp=vector(1,nlstate);      } else { 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
        } 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   j1=0;      fu=(*f)(u); 
        if (fu <= fx) { 
   j=cptcoveff;        if (u >= x) a=x; else b=x; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        SHFT(v,w,x,u) 
          SHFT(fv,fw,fx,fu) 
   for(k1=1; k1<=j;k1++){      } else { 
     for(i1=1; i1<=ncodemax[k1];i1++){        if (u < x) a=u; else b=u; 
       j1++;        if (fu <= fw || w == x) { 
                v=w; 
       for (i=-1; i<=nlstate+ndeath; i++)            w=u; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)            fv=fw; 
           for(m=agemin; m <= agemax+3; m++)          fw=fu; 
             freq[i][jk][m]=0;        } else if (fu <= fv || v == x || v == w) { 
                v=u; 
       for (i=1; i<=imx; i++) {          fv=fu; 
         bool=1;        } 
         if  (cptcovn>0) {      } 
           for (z1=1; z1<=cptcoveff; z1++)    } 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    nrerror("Too many iterations in brent"); 
               bool=0;    *xmin=x; 
         }    return fx; 
         if (bool==1) {  } 
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /****************** mnbrak ***********************/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               if(agev[m][i]==1) agev[m][i]=agemax+2;              double (*func)(double)) 
               if (m<lastpass) {  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
                 if (calagedate>0)  the downhill direction (defined by the function as evaluated at the initial points) and returns
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
                 else  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];     */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    double ulim,u,r,q, dum;
               }    double fu; 
             }  
           }    double scale=10.;
         }    int iterscale=0;
       }  
       for(i=(int)agemin; i <= (int)agemax+3; i++){    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
         for(jk=1; jk <=nlstate ; jk++){    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  
         }    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
         for(jk=1; jk <=nlstate ; jk++){    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
           for(m=-1, pos=0; m <=0 ; m++)    /*   *bx = *ax - (*ax - *bx)/scale; */
             pos += freq[jk][m][i];    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
         }    /* } */
          
         for(jk=1; jk <=nlstate ; jk++){    if (*fb > *fa) { 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      SHFT(dum,*ax,*bx,dum) 
             pp[jk] += freq[jk][m][i];      SHFT(dum,*fb,*fa,dum) 
         }    } 
            *cx=(*bx)+GOLD*(*bx-*ax); 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    *fc=(*func)(*cx); 
          #ifdef DEBUG
         for(jk=1; jk <=nlstate ; jk++){        printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
           if( i <= (int) agemax){    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
             if(pos>=1.e-5){  #endif
               probs[i][jk][j1]= pp[jk]/pos;    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
             }      r=(*bx-*ax)*(*fb-*fc); 
           }      q=(*bx-*cx)*(*fb-*fa); 
         }/* end jk */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }/* end i */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
     } /* end i1 */      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
   } /* end k1 */      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         fu=(*func)(u); 
    #ifdef DEBUG
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        /* f(x)=A(x-u)**2+f(u) */
   free_vector(pp,1,nlstate);        double A, fparabu; 
          A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 }  /* End of Freq */        fparabu= *fa - A*(*ax-u)*(*ax-u);
         printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 /************* Waves Concatenation ***************/        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         /* And thus,it can be that fu > *fc even if fparabu < *fc */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
 {          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
      Death is a valid wave (if date is known).  #endif 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  #ifdef MNBRAKORIGINAL
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  #else
      and mw[mi+1][i]. dh depends on stepm.  /*       if (fu > *fc) { */
      */  /* #ifdef DEBUG */
   /*       printf("mnbrak4  fu > fc \n"); */
   int i, mi, m;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /* #endif */
      double sum=0., jmean=0.;*/  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
   int first;  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
   int j, k=0,jk, ju, jl;  /*      dum=u; /\* Shifting c and u *\/ */
   double sum=0.;  /*      u = *cx; */
   first=0;  /*      *cx = dum; */
   jmin=1e+5;  /*      dum = fu; */
   jmax=-1;  /*      fu = *fc; */
   jmean=0.;  /*      *fc =dum; */
   for(i=1; i<=imx; i++){  /*       } else { /\* end *\/ */
     mi=0;  /* #ifdef DEBUG */
     m=firstpass;  /*       printf("mnbrak3  fu < fc \n"); */
     while(s[m][i] <= nlstate){  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
       if(s[m][i]>=1)  /* #endif */
         mw[++mi][i]=m;  /*      dum=u; /\* Shifting c and u *\/ */
       if(m >=lastpass)  /*      u = *cx; */
         break;  /*      *cx = dum; */
       else  /*      dum = fu; */
         m++;  /*      fu = *fc; */
     }/* end while */  /*      *fc =dum; */
     if (s[m][i] > nlstate){  /*       } */
       mi++;     /* Death is another wave */  #ifdef DEBUG
       /* if(mi==0)  never been interviewed correctly before death */        printf("mnbrak34  fu < or >= fc \n");
          /* Only death is a correct wave */        fprintf(ficlog, "mnbrak34 fu < fc\n");
       mw[mi][i]=m;  #endif
     }        dum=u; /* Shifting c and u */
         u = *cx;
     wav[i]=mi;        *cx = dum;
     if(mi==0){        dum = fu;
       if(first==0){        fu = *fc;
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        *fc =dum;
         first=1;  #endif
       }      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
       if(first==1){  #ifdef DEBUG
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        printf("mnbrak2  u after c but before ulim\n");
       }        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
     } /* end mi==0 */  #endif
   }        fu=(*func)(u); 
         if (fu < *fc) { 
   for(i=1; i<=imx; i++){  #ifdef DEBUG
     for(mi=1; mi<wav[i];mi++){        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
       if (stepm <=0)        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
         dh[mi][i]=1;  #endif
       else{          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         if (s[mw[mi+1][i]][i] > nlstate) {          SHFT(*fb,*fc,fu,(*func)(u)) 
           if (agedc[i] < 2*AGESUP) {        } 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
           if(j==0) j=1;  /* Survives at least one month after exam */  #ifdef DEBUG
           k=k+1;        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
           if (j >= jmax) jmax=j;        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
           if (j <= jmin) jmin=j;  #endif
           sum=sum+j;        u=ulim; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        fu=(*func)(u); 
           }      } else { /* u could be left to b (if r > q parabola has a maximum) */
         }  #ifdef DEBUG
         else{        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
           k=k+1;  #endif
           if (j >= jmax) jmax=j;        u=(*cx)+GOLD*(*cx-*bx); 
           else if (j <= jmin)jmin=j;        fu=(*func)(u); 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      } /* end tests */
           sum=sum+j;      SHFT(*ax,*bx,*cx,u) 
         }      SHFT(*fa,*fb,*fc,fu) 
         jk= j/stepm;  #ifdef DEBUG
         jl= j -jk*stepm;        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
         ju= j -(jk+1)*stepm;        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
         if(jl <= -ju)  #endif
           dh[mi][i]=jk;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
         else  } 
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)  /*************** linmin ************************/
           dh[mi][i]=1; /* At least one step */  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
       }  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     }  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   }  the value of func at the returned location p . This is actually all accomplished by calling the
   jmean=sum/k;  routines mnbrak and brent .*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  int ncom; 
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  double *pcom,*xicom;
  }  double (*nrfunc)(double []); 
    
 /*********** Tricode ****************************/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 void tricode(int *Tvar, int **nbcode, int imx)  { 
 {    double brent(double ax, double bx, double cx, 
   int Ndum[20],ij=1, k, j, i;                 double (*f)(double), double tol, double *xmin); 
   int cptcode=0;    double f1dim(double x); 
   cptcoveff=0;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
   for (k=0; k<19; k++) Ndum[k]=0;    int j; 
   for (k=1; k<=7; k++) ncodemax[k]=0;    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
       ij=(int)(covar[Tvar[j]][i]);   
       Ndum[ij]++;    ncom=n; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    pcom=vector(1,n); 
       if (ij > cptcode) cptcode=ij;    xicom=vector(1,n); 
     }    nrfunc=func; 
     for (j=1;j<=n;j++) { 
     for (i=0; i<=cptcode; i++) {      pcom[j]=p[j]; 
       if(Ndum[i]!=0) ncodemax[j]++;      xicom[j]=xi[j]; 
     }    } 
     ij=1;  
     /* axs=0.0; */
     /* xxss=1; /\* 1 and using scale *\/ */
     for (i=1; i<=ncodemax[j]; i++) {    xxs=1;
       for (k=0; k<=19; k++) {    /* do{ */
         if (Ndum[k] != 0) {      ax=0.;
           nbcode[Tvar[j]][ij]=k;      xx= xxs;
                mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
           ij++;      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
         }      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
         if (ij > ncodemax[j]) break;      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
       }        /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
     }      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   }        /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
     /*   if (fx != fx){ */
  for (k=0; k<19; k++) Ndum[k]=0;    /*    xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
     /*    printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
  for (i=1; i<=ncovmodel-2; i++) {    /*   } */
    ij=Tvar[i];    /* }while(fx != fx); */
    Ndum[ij]++;  
  }  #ifdef DEBUGLINMIN
     printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
  ij=1;  #endif
  for (i=1; i<=10; i++) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
    if((Ndum[i]!=0) && (i<=ncovcol)){    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
      Tvaraff[ij]=i;    /* fmin = f(p[j] + xmin * xi[j]) */
      ij++;    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
    }    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
  }  #ifdef DEBUG
      printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  cptcoveff=ij-1;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }  #endif
   #ifdef DEBUGLINMIN
 /*********** Health Expectancies ****************/    printf("linmin end ");
   #endif
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    for (j=1;j<=n;j++) { 
       /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
 {      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
   /* Health expectancies */      /* if(xxs <1.0) */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
   double age, agelim, hf;      p[j] += xi[j]; /* Parameters values are updated accordingly */
   double ***p3mat,***varhe;    } 
   double **dnewm,**doldm;    /* printf("\n"); */
   double *xp;  #ifdef DEBUGLINMIN
   double **gp, **gm;    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   double ***gradg, ***trgradg;    for (j=1;j<=n;j++) { 
   int theta;      printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
       if(j % ncovmodel == 0)
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        printf("\n");
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate*2,1,npar);  #endif
   doldm=matrix(1,nlstate*2,1,nlstate*2);    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
   fprintf(ficreseij,"# Health expectancies\n");  } 
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  /*************** powell ************************/
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  /*
   fprintf(ficreseij,"\n");  Minimization of a function func of n variables. Input consists of an initial starting point
   p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   if(estepm < stepm){  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
     printf ("Problem %d lower than %d\n",estepm, stepm);  such that failure to decrease by more than this amount on one iteration signals doneness. On
   }  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   else  hstepm=estepm;    function value at p , and iter is the number of iterations taken. The routine linmin is used.
   /* We compute the life expectancy from trapezoids spaced every estepm months   */
    * This is mainly to measure the difference between two models: for example  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
    * if stepm=24 months pijx are given only every 2 years and by summing them              double (*func)(double [])) 
    * we are calculating an estimate of the Life Expectancy assuming a linear  { 
    * progression inbetween and thus overestimating or underestimating according    void linmin(double p[], double xi[], int n, double *fret, 
    * to the curvature of the survival function. If, for the same date, we                double (*func)(double [])); 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int i,ibig,j; 
    * to compare the new estimate of Life expectancy with the same linear    double del,t,*pt,*ptt,*xit;
    * hypothesis. A more precise result, taking into account a more precise    double directest;
    * curvature will be obtained if estepm is as small as stepm. */    double fp,fptt;
     double *xits;
   /* For example we decided to compute the life expectancy with the smallest unit */    int niterf, itmp;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    pt=vector(1,n); 
      nstepm is the number of stepm from age to agelin.    ptt=vector(1,n); 
      Look at hpijx to understand the reason of that which relies in memory size    xit=vector(1,n); 
      and note for a fixed period like estepm months */    xits=vector(1,n); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    *fret=(*func)(p); 
      survival function given by stepm (the optimization length). Unfortunately it    for (j=1;j<=n;j++) pt[j]=p[j]; 
      means that if the survival funtion is printed only each two years of age and if      rcurr_time = time(NULL);  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (*iter=1;;++(*iter)) { 
      results. So we changed our mind and took the option of the best precision.      fp=(*fret); /* From former iteration or initial value */
   */      ibig=0; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      del=0.0; 
       rlast_time=rcurr_time;
   agelim=AGESUP;      /* (void) gettimeofday(&curr_time,&tzp); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      rcurr_time = time(NULL);  
     /* nhstepm age range expressed in number of stepm */      curr_time = *localtime(&rcurr_time);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
     /* if (stepm >= YEARM) hstepm=1;*/  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for (i=1;i<=n;i++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf(" %d %.12f",i, p[i]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        fprintf(ficlog," %d %.12lf",i, p[i]);
     gp=matrix(0,nhstepm,1,nlstate*2);        fprintf(ficrespow," %.12lf", p[i]);
     gm=matrix(0,nhstepm,1,nlstate*2);      }
       printf("\n");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      fprintf(ficlog,"\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      fprintf(ficrespow,"\n");fflush(ficrespow);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        if(*iter <=3){
          tml = *localtime(&rcurr_time);
         strcpy(strcurr,asctime(&tml));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        rforecast_time=rcurr_time; 
         itmp = strlen(strcurr);
     /* Computing Variances of health expectancies */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
      for(theta=1; theta <=npar; theta++){        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       for(i=1; i<=npar; i++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(niterf=10;niterf<=30;niterf+=10){
       }          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            forecast_time = *localtime(&rforecast_time);
            strcpy(strfor,asctime(&forecast_time));
       cptj=0;          itmp = strlen(strfor);
       for(j=1; j<= nlstate; j++){          if(strfor[itmp-1]=='\n')
         for(i=1; i<=nlstate; i++){          strfor[itmp-1]='\0';
           cptj=cptj+1;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }
           }      }
         }      for (i=1;i<=n;i++) { /* For each direction i */
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
              fptt=(*fret); 
        #ifdef DEBUG
       for(i=1; i<=npar; i++)            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #endif
                  printf("%d",i);fflush(stdout); /* print direction (parameter) i */
       cptj=0;        fprintf(ficlog,"%d",i);fflush(ficlog);
       for(j=1; j<= nlstate; j++){        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
         for(i=1;i<=nlstate;i++){                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
           cptj=cptj+1;        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          /* because that direction will be replaced unless the gain del is small */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
           }          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
         }          /* with the new direction. */
       }          del=fabs(fptt-(*fret)); 
       for(j=1; j<= nlstate*2; j++)          ibig=i; 
         for(h=0; h<=nhstepm-1; h++){        } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #ifdef DEBUG
         }        printf("%d %.12e",i,(*fret));
      }        fprintf(ficlog,"%d %.12e",i,(*fret));
            for (j=1;j<=n;j++) {
 /* End theta */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
      for(h=0; h<=nhstepm-1; h++)        for(j=1;j<=n;j++) {
       for(j=1; j<=nlstate*2;j++)          printf(" p(%d)=%.12e",j,p[j]);
         for(theta=1; theta <=npar; theta++)          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
           trgradg[h][j][theta]=gradg[h][theta][j];        }
              printf("\n");
         fprintf(ficlog,"\n");
      for(i=1;i<=nlstate*2;i++)  #endif
       for(j=1;j<=nlstate*2;j++)      } /* end loop on each direction i */
         varhe[i][j][(int)age] =0.;      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
       /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
      printf("%d|",(int)age);fflush(stdout);      /* New value of last point Pn is not computed, P(n-1) */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
      for(h=0;h<=nhstepm-1;h++){        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
       for(k=0;k<=nhstepm-1;k++){        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        /* decreased of more than 3.84  */
         for(i=1;i<=nlstate*2;i++)        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
           for(j=1;j<=nlstate*2;j++)        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        /* By adding 10 parameters more the gain should be 18.31 */
       }  
     }        /* Starting the program with initial values given by a former maximization will simply change */
     /* Computing expectancies */        /* the scales of the directions and the directions, because the are reset to canonical directions */
     for(i=1; i<=nlstate;i++)        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
       for(j=1; j<=nlstate;j++)        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  #ifdef DEBUG
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        int k[2],l;
                  k[0]=1;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
         }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
     fprintf(ficreseij,"%3.0f",age );          printf(" %.12e",p[j]);
     cptj=0;          fprintf(ficlog," %.12e",p[j]);
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){        printf("\n");
         cptj++;        fprintf(ficlog,"\n");
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
     fprintf(ficreseij,"\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     free_matrix(gm,0,nhstepm,1,nlstate*2);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     free_matrix(gp,0,nhstepm,1,nlstate*2);          }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   }  #endif
   printf("\n");  
   fprintf(ficlog,"\n");  
         free_vector(xit,1,n); 
   free_vector(xp,1,npar);        free_vector(xits,1,n); 
   free_matrix(dnewm,1,nlstate*2,1,npar);        free_vector(ptt,1,n); 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        free_vector(pt,1,n); 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        return; 
 }      } /* enough precision */ 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 /************ Variance ******************/      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        ptt[j]=2.0*p[j]-pt[j]; 
 {        xit[j]=p[j]-pt[j]; 
   /* Variance of health expectancies */        pt[j]=p[j]; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      } 
   /* double **newm;*/      fptt=(*func)(ptt); /* f_3 */
   double **dnewm,**doldm;  #ifdef POWELLF1F3
   double **dnewmp,**doldmp;  #else
   int i, j, nhstepm, hstepm, h, nstepm ;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   int k, cptcode;  #endif
   double *xp;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   double **gp, **gm;  /* for var eij */        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   double ***gradg, ***trgradg; /*for var eij */        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
   double **gradgp, **trgradgp; /* for var p point j */        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   double *gpp, *gmp; /* for var p point j */        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
   double ***p3mat;        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   double age,agelim, hf;  #ifdef NRCORIGINAL
   int theta;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   char digit[4];  #else
   char digitp[16];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
         t= t- del*SQR(fp-fptt);
   char fileresprobmorprev[FILENAMELENGTH];  #endif
         directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
   if(popbased==1)  #ifdef DEBUG
     strcpy(digitp,"-populbased-");        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   else        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
     strcpy(digitp,"-stablbased-");        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   strcpy(fileresprobmorprev,"prmorprev");        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   sprintf(digit,"%-d",ij);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   strcat(fileresprobmorprev,digitp); /* Popbased or not */  #endif
   strcat(fileresprobmorprev,fileres);  #ifdef POWELLORIGINAL
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        if (t < 0.0) { /* Then we use it for new direction */
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  #else
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        if (directest*t < 0.0) { /* Contradiction between both tests */
   }          printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        } 
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        if (directest < 0.0) { /* Then we use it for new direction */
     fprintf(ficresprobmorprev," p.%-d SE",j);  #endif
     for(i=1; i<=nlstate;i++)  #ifdef DEBUGLINMIN
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          printf("Before linmin in direction P%d-P0\n",n);
   }            for (j=1;j<=n;j++) { 
   fprintf(ficresprobmorprev,"\n");            printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            if(j % ncovmodel == 0)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              printf("\n");
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          }
     exit(0);  #endif
   }          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
   else{  #ifdef DEBUGLINMIN
     fprintf(ficgp,"\n# Routine varevsij");          for (j=1;j<=n;j++) { 
   }            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            if(j % ncovmodel == 0)
     printf("Problem with html file: %s\n", optionfilehtm);              printf("\n");
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          }
     exit(0);  #endif
   }          for (j=1;j<=n;j++) { 
   else{            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
   }          }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");  #ifdef DEBUG
   for(i=1; i<=nlstate;i++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(j=1; j<=nlstate;j++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          for(j=1;j<=n;j++){
   fprintf(ficresvij,"\n");            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate,1,npar);          printf("\n");
   doldm=matrix(1,nlstate,1,nlstate);          fprintf(ficlog,"\n");
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  #endif
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        } /* end of t or directest negative */
   #ifdef POWELLF1F3
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  #else
   gpp=vector(nlstate+1,nlstate+ndeath);      } /* end if (fptt < fp)  */
   gmp=vector(nlstate+1,nlstate+ndeath);  #endif
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    } /* loop iteration */ 
    } 
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  /**** Prevalence limit (stable or period prevalence)  ****************/
   }  
   else  hstepm=estepm;    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      nhstepm is the number of hstepm from age to agelim       matrix by transitions matrix until convergence is reached */
      nstepm is the number of stepm from age to agelin.    
      Look at hpijx to understand the reason of that which relies in memory size    int i, ii,j,k;
      and note for a fixed period like k years */    double min, max, maxmin, maxmax,sumnew=0.;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* double **matprod2(); */ /* test */
      survival function given by stepm (the optimization length). Unfortunately it    double **out, cov[NCOVMAX+1], **pmij();
      means that if the survival funtion is printed only each two years of age and if    double **newm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double agefin, delaymax=50 ; /* Max number of years to converge */
      results. So we changed our mind and took the option of the best precision.    
   */    for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (j=1;j<=nlstate+ndeath;j++){
   agelim = AGESUP;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    cov[1]=1.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     gp=matrix(0,nhstepm,1,nlstate);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     gm=matrix(0,nhstepm,1,nlstate);      newm=savm;
       /* Covariates have to be included here again */
       cov[2]=agefin;
     for(theta=1; theta <=npar; theta++){      if(nagesqr==1)
       for(i=1; i<=npar; i++){ /* Computes gradient */        cov[3]= agefin*agefin;;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (k=1; k<=cptcovn;k++) {
       }        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       if (popbased==1) {      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2];
         for(i=1; i<=nlstate;i++)      for (k=1; k<=cptcovprod;k++) /* Useless */
           prlim[i][i]=probs[(int)age][i][ij];        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])];
       }      
        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for(j=1; j<= nlstate; j++){      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         for(h=0; h<=nhstepm; h++){      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       }      
       /* This for computing forces of mortality (h=1)as a weighted average */      savm=oldm;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){      oldm=newm;
         for(i=1; i<= nlstate; i++)      maxmax=0.;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      for(j=1;j<=nlstate;j++){
       }            min=1.;
       /* end force of mortality */        max=0.;
         for(i=1; i<=nlstate; i++) {
       for(i=1; i<=npar; i++) /* Computes gradient */          sumnew=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            prlim[i][j]= newm[i][j]/(1-sumnew);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
            max=FMAX(max,prlim[i][j]);
       if (popbased==1) {          min=FMIN(min,prlim[i][j]);
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=probs[(int)age][i][ij];        maxmin=max-min;
       }        maxmax=FMAX(maxmax,maxmin);
       } /* j loop */
       for(j=1; j<= nlstate; j++){      if(maxmax < ftolpl){
         for(h=0; h<=nhstepm; h++){        return prlim;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    } /* age loop */
         }    return prlim; /* should not reach here */
       }  }
       /* This for computing force of mortality (h=1)as a weighted average */  
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  /*************** transition probabilities ***************/ 
         for(i=1; i<= nlstate; i++)  
           gmp[j] += prlim[i][i]*p3mat[i][j][1];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       }      {
       /* end force of mortality */    /* According to parameters values stored in x and the covariate's values stored in cov,
        computes the probability to be observed in state j being in state i by appying the
       for(j=1; j<= nlstate; j++) /* vareij */       model to the ncovmodel covariates (including constant and age).
         for(h=0; h<=nhstepm; h++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         }       ncth covariate in the global vector x is given by the formula:
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       }       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     } /* End theta */       Outputs ps[i][j] the probability to be observed in j being in j according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    */
     double s1, lnpijopii;
     for(h=0; h<=nhstepm; h++) /* veij */    /*double t34;*/
       for(j=1; j<=nlstate;j++)    int i,j, nc, ii, jj;
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       for(theta=1; theta <=npar; theta++)            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         trgradgp[j][theta]=gradgp[theta][j];            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }
     for(i=1;i<=nlstate;i++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       for(j=1;j<=nlstate;j++)  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         vareij[i][j][(int)age] =0.;        }
         for(j=i+1; j<=nlstate+ndeath;j++){
     for(h=0;h<=nhstepm;h++){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       for(k=0;k<=nhstepm;k++){            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         for(i=1;i<=nlstate;i++)          }
           for(j=1;j<=nlstate;j++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }      }
     }      
       for(i=1; i<= nlstate; i++){
     /* pptj */        s1=0;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        for(j=1; j<i; j++){
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        }
         varppt[j][i]=doldmp[j][i];        for(j=i+1; j<=nlstate+ndeath; j++){
     /* end ppptj */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        }
          /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     if (popbased==1) {        ps[i][i]=1./(s1+1.);
       for(i=1; i<=nlstate;i++)        /* Computing other pijs */
         prlim[i][i]=probs[(int)age][i][ij];        for(j=1; j<i; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
            for(j=i+1; j<=nlstate+ndeath; j++)
     /* This for computing force of mortality (h=1)as a weighted average */          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(i=1; i<= nlstate; i++)      } /* end i */
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      
     }          for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     /* end force of mortality */        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          ps[ii][ii]=1;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      }
       for(i=1; i<=nlstate;i++){      
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      
       }      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     fprintf(ficresprobmorprev,"\n");      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       /*   } */
     fprintf(ficresvij,"%.0f ",age );      /*   printf("\n "); */
     for(i=1; i<=nlstate;i++)      /* } */
       for(j=1; j<=nlstate;j++){      /* printf("\n ");printf("%lf ",cov[2]);*/
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      /*
       }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     fprintf(ficresvij,"\n");        goto end;*/
     free_matrix(gp,0,nhstepm,1,nlstate);      return ps;
     free_matrix(gm,0,nhstepm,1,nlstate);  }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  /**************** Product of 2 matrices ******************/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   free_vector(gpp,nlstate+1,nlstate+ndeath);  {
   free_vector(gmp,nlstate+1,nlstate+ndeath);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    /* in, b, out are matrice of pointers which should have been initialized 
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");       before: only the contents of out is modified. The function returns
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */       a pointer to pointers identical to out */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    int i, j, k;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    for(i=nrl; i<= nrh; i++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);      for(k=ncolol; k<=ncoloh; k++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);        out[i][k]=0.;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);        for(j=ncl; j<=nch; j++)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);          out[i][k] +=in[i][j]*b[j][k];
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      }
 */    return out;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);  }
   
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);  /************* Higher Matrix Product ***************/
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  {
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* Computes the transition matrix starting at age 'age' over 
   fclose(ficresprobmorprev);       'nhstepm*hstepm*stepm' months (i.e. until
   fclose(ficgp);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   fclose(fichtm);       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 }       (typically every 2 years instead of every month which is too big 
        for the memory).
 /************ Variance of prevlim ******************/       Model is determined by parameters x and covariates have to be 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)       included manually here. 
 {  
   /* Variance of prevalence limit */       */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    int i, j, d, h, k;
   double **dnewm,**doldm;    double **out, cov[NCOVMAX+1];
   int i, j, nhstepm, hstepm;    double **newm;
   int k, cptcode;    double agexact;
   double *xp;  
   double *gp, *gm;    /* Hstepm could be zero and should return the unit matrix */
   double **gradg, **trgradg;    for (i=1;i<=nlstate+ndeath;i++)
   double age,agelim;      for (j=1;j<=nlstate+ndeath;j++){
   int theta;        oldm[i][j]=(i==j ? 1.0 : 0.0);
            po[i][j][0]=(i==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      }
   fprintf(ficresvpl,"# Age");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(i=1; i<=nlstate;i++)    for(h=1; h <=nhstepm; h++){
       fprintf(ficresvpl," %1d-%1d",i,i);      for(d=1; d <=hstepm; d++){
   fprintf(ficresvpl,"\n");        newm=savm;
         /* Covariates have to be included here again */
   xp=vector(1,npar);        cov[1]=1.;
   dnewm=matrix(1,nlstate,1,npar);        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   doldm=matrix(1,nlstate,1,nlstate);        cov[2]=agexact;
          if(nagesqr==1)
   hstepm=1*YEARM; /* Every year of age */          cov[3]= agexact*agexact;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for (k=1; k<=cptcovn;k++) 
   agelim = AGESUP;          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     if (stepm >= YEARM) hstepm=1;          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
     gradg=matrix(1,npar,1,nlstate);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])];
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for(theta=1; theta <=npar; theta++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       }        savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        oldm=newm;
       for(i=1;i<=nlstate;i++)      }
         gp[i] = prlim[i][i];      for(i=1; i<=nlstate+ndeath; i++)
            for(j=1;j<=nlstate+ndeath;j++) {
       for(i=1; i<=npar; i++) /* Computes gradient */          po[i][j][h]=newm[i][j];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)      /*printf("h=%d ",h);*/
         gm[i] = prlim[i][i];    } /* end h */
   /*     printf("\n H=%d \n",h); */
       for(i=1;i<=nlstate;i++)    return po;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  }
     } /* End theta */  
   #ifdef NLOPT
     trgradg =matrix(1,nlstate,1,npar);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     double fret;
     for(j=1; j<=nlstate;j++)    double *xt;
       for(theta=1; theta <=npar; theta++)    int j;
         trgradg[j][theta]=gradg[theta][j];    myfunc_data *d2 = (myfunc_data *) pd;
   /* xt = (p1-1); */
     for(i=1;i<=nlstate;i++)    xt=vector(1,n); 
       varpl[i][(int)age] =0.;    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     for(i=1;i<=nlstate;i++)    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    printf("Function = %.12lf ",fret);
     for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     fprintf(ficresvpl,"%.0f ",age );    printf("\n");
     for(i=1; i<=nlstate;i++)   free_vector(xt,1,n);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    return fret;
     fprintf(ficresvpl,"\n");  }
     free_vector(gp,1,nlstate);  #endif
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  /*************** log-likelihood *************/
     free_matrix(trgradg,1,nlstate,1,npar);  double func( double *x)
   } /* End age */  {
     int i, ii, j, k, mi, d, kk;
   free_vector(xp,1,npar);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   free_matrix(doldm,1,nlstate,1,npar);    double **out;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
 }    int s1, s2;
     double bbh, survp;
 /************ Variance of one-step probabilities  ******************/    long ipmx;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double agexact;
 {    /*extern weight */
   int i, j=0,  i1, k1, l1, t, tj;    /* We are differentiating ll according to initial status */
   int k2, l2, j1,  z1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int k=0,l, cptcode;    /*for(i=1;i<imx;i++) 
   int first=1, first1;      printf(" %d\n",s[4][i]);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    */
   double **dnewm,**doldm;  
   double *xp;    ++countcallfunc;
   double *gp, *gm;  
   double **gradg, **trgradg;    cov[1]=1.;
   double **mu;  
   double age,agelim, cov[NCOVMAX];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;    if(mle==1){
   char fileresprob[FILENAMELENGTH];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char fileresprobcov[FILENAMELENGTH];        /* Computes the values of the ncovmodel covariates of the model
   char fileresprobcor[FILENAMELENGTH];           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
            Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   double ***varpij;           to be observed in j being in i according to the model.
          */
   strcpy(fileresprob,"prob");        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   strcat(fileresprob,fileres);            cov[2+nagesqr+k]=covar[Tvar[k]][i];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprob);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   }           has been calculated etc */
   strcpy(fileresprobcov,"probcov");        for(mi=1; mi<= wav[i]-1; mi++){
   strcat(fileresprobcov,fileres);          for (ii=1;ii<=nlstate+ndeath;ii++)
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {            for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with resultfile: %s\n", fileresprobcov);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   strcpy(fileresprobcor,"probcor");          for(d=0; d<dh[mi][i]; d++){
   strcat(fileresprobcor,fileres);            newm=savm;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("Problem with resultfile: %s\n", fileresprobcor);            cov[2]=agexact;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);            if(nagesqr==1)
   }              cov[3]= agexact*agexact;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            savm=oldm;
              oldm=newm;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          } /* end mult */
   fprintf(ficresprob,"# Age");        
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   fprintf(ficresprobcov,"# Age");          /* But now since version 0.9 we anticipate for bias at large stepm.
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   fprintf(ficresprobcov,"# Age");           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for(i=1; i<=nlstate;i++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     for(j=1; j<=(nlstate+ndeath);j++){           * probability in order to take into account the bias as a fraction of the way
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       fprintf(ficresprobcov," p%1d-%1d ",i,j);           * -stepm/2 to stepm/2 .
       fprintf(ficresprobcor," p%1d-%1d ",i,j);           * For stepm=1 the results are the same as for previous versions of Imach.
     }             * For stepm > 1 the results are less biased than in previous versions. 
   fprintf(ficresprob,"\n");           */
   fprintf(ficresprobcov,"\n");          s1=s[mw[mi][i]][i];
   fprintf(ficresprobcor,"\n");          s2=s[mw[mi+1][i]][i];
   xp=vector(1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          /* bias bh is positive if real duration
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));           * is higher than the multiple of stepm and negative otherwise.
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);           */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   first=1;          if( s2 > nlstate){ 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            /* i.e. if s2 is a death state and if the date of death is known 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);               then the contribution to the likelihood is the probability to 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);               die between last step unit time and current  step unit time, 
     exit(0);               which is also equal to probability to die before dh 
   }               minus probability to die before dh-stepm . 
   else{               In version up to 0.92 likelihood was computed
     fprintf(ficgp,"\n# Routine varprob");          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          and not the date of a change in health state. The former idea was
     printf("Problem with html file: %s\n", optionfilehtm);          to consider that at each interview the state was recorded
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          (healthy, disable or death) and IMaCh was corrected; but when we
     exit(0);          introduced the exact date of death then we should have modified
   }          the contribution of an exact death to the likelihood. This new
   else{          contribution is smaller and very dependent of the step unit
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          stepm. It is no more the probability to die between last interview
     fprintf(fichtm,"\n");          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");          probability to die within a month. Thanks to Chris
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          Jackson for correcting this bug.  Former versions increased
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
   }          lower mortality.
             */
            /* If, at the beginning of the maximization mostly, the
   cov[1]=1;             cumulative probability or probability to be dead is
   tj=cptcoveff;             constant (ie = 1) over time d, the difference is equal to
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}             0.  out[s1][3] = savm[s1][3]: probability, being at state
   j1=0;             s1 at precedent wave, to be dead a month before current
   for(t=1; t<=tj;t++){             wave is equal to probability, being at state s1 at
     for(i1=1; i1<=ncodemax[t];i1++){             precedent wave, to be dead at mont of the current
       j1++;             wave. Then the observed probability (that this person died)
                   is null according to current estimated parameter. In fact,
       if  (cptcovn>0) {             it should be very low but not zero otherwise the log go to
         fprintf(ficresprob, "\n#********** Variable ");             infinity.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          */
         fprintf(ficresprob, "**********\n#");  /* #ifdef INFINITYORIGINAL */
         fprintf(ficresprobcov, "\n#********** Variable ");  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /* #else */
         fprintf(ficresprobcov, "**********\n#");  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
          /*          lli=log(mytinydouble); */
         fprintf(ficgp, "\n#********** Variable ");  /*        else */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
         fprintf(ficgp, "**********\n#");  /* #endif */
                      lli=log(out[s1][s2] - savm[s1][s2]);
          
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          } else if  (s2==-2) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for (j=1,survp=0. ; j<=nlstate; j++) 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                    /*survp += out[s1][j]; */
         fprintf(ficresprobcor, "\n#********** Variable ");                lli= log(survp);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficgp, "**********\n#");              
       }          else if  (s2==-4) { 
                  for (j=3,survp=0. ; j<=nlstate; j++)  
       for (age=bage; age<=fage; age ++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         cov[2]=age;            lli= log(survp); 
         for (k=1; k<=cptcovn;k++) {          } 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }          else if  (s2==-5) { 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            for (j=1,survp=0. ; j<=2; j++)  
         for (k=1; k<=cptcovprod;k++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            lli= log(survp); 
                  } 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          else{
         gp=vector(1,(nlstate)*(nlstate+ndeath));            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         gm=vector(1,(nlstate)*(nlstate+ndeath));            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
              } 
         for(theta=1; theta <=npar; theta++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(i=1; i<=npar; i++)          /*if(lli ==000.0)*/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                    ipmx +=1;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          sw += weight[i];
                    ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           k=0;          /* if (lli < log(mytinydouble)){ */
           for(i=1; i<= (nlstate); i++){          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
             for(j=1; j<=(nlstate+ndeath);j++){          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
               k=k+1;          /* } */
               gp[k]=pmmij[i][j];        } /* end of wave */
             }      } /* end of individual */
           }    }  else if(mle==2){
                for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(i=1; i<=npar; i++)        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
           k=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1; i<=(nlstate); i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             for(j=1; j<=(nlstate+ndeath);j++){            }
               k=k+1;          for(d=0; d<=dh[mi][i]; d++){
               gm[k]=pmmij[i][j];            newm=savm;
             }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            cov[2]=agexact;
                  if(nagesqr==1)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              cov[3]= agexact*agexact;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(theta=1; theta <=npar; theta++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             trgradg[j][theta]=gradg[theta][j];            savm=oldm;
                    oldm=newm;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          } /* end mult */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        
                  s1=s[mw[mi][i]][i];
         pmij(pmmij,cov,ncovmodel,x,nlstate);          s2=s[mw[mi+1][i]][i];
                  bbh=(double)bh[mi][i]/(double)stepm; 
         k=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(i=1; i<=(nlstate); i++){          ipmx +=1;
           for(j=1; j<=(nlstate+ndeath);j++){          sw += weight[i];
             k=k+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             mu[k][(int) age]=pmmij[i][j];        } /* end of wave */
           }      } /* end of individual */
         }    }  else if(mle==3){  /* exponential inter-extrapolation */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
             varpij[i][j][(int)age] = doldm[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
         /*printf("\n%d ",(int)age);            for (j=1;j<=nlstate+ndeath;j++){
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            }
      }*/          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
         fprintf(ficresprob,"\n%d ",(int)age);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresprobcov,"\n%d ",(int)age);            cov[2]=agexact;
         fprintf(ficresprobcor,"\n%d ",(int)age);            if(nagesqr==1)
               cov[3]= agexact*agexact;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         i=0;            oldm=newm;
         for (k=1; k<=(nlstate);k++){          } /* end mult */
           for (l=1; l<=(nlstate+ndeath);l++){        
             i=i++;          s1=s[mw[mi][i]][i];
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          s2=s[mw[mi+1][i]][i];
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          bbh=(double)bh[mi][i]/(double)stepm; 
             for (j=1; j<=i;j++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          ipmx +=1;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }        } /* end of wave */
         }/* end of loop for state */      } /* end of individual */
       } /* end of loop for age */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /* Confidence intervalle of pij  */        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       /*        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficgp,"\nset noparametric;unset label");          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);            }
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);            newm=savm;
       */            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            if(nagesqr==1)
       first1=1;              cov[3]= agexact*agexact;
       for (k2=1; k2<=(nlstate);k2++){            for (kk=1; kk<=cptcovage;kk++) {
         for (l2=1; l2<=(nlstate+ndeath);l2++){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           if(l2==k2) continue;            }
           j=(k2-1)*(nlstate+ndeath)+l2;          
           for (k1=1; k1<=(nlstate);k1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for (l1=1; l1<=(nlstate+ndeath);l1++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(l1==k1) continue;            savm=oldm;
               i=(k1-1)*(nlstate+ndeath)+l1;            oldm=newm;
               if(i<=j) continue;          } /* end mult */
               for (age=bage; age<=fage; age ++){        
                 if ((int)age %5==0){          s1=s[mw[mi][i]][i];
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          s2=s[mw[mi+1][i]][i];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          if( s2 > nlstate){ 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            lli=log(out[s1][s2] - savm[s1][s2]);
                   mu1=mu[i][(int) age]/stepm*YEARM ;          }else{
                   mu2=mu[j][(int) age]/stepm*YEARM;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   c12=cv12/sqrt(v1*v2);          }
                   /* Computing eigen value of matrix of covariance */          ipmx +=1;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          sw += weight[i];
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   /* Eigen vectors */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        } /* end of wave */
                   /*v21=sqrt(1.-v11*v11); *//* error */      } /* end of individual */
                   v21=(lc1-v1)/cv12*v11;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   v12=-v21;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   v22=v11;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   tnalp=v21/v11;        for(mi=1; mi<= wav[i]-1; mi++){
                   if(first1==1){          for (ii=1;ii<=nlstate+ndeath;ii++)
                     first1=0;            for (j=1;j<=nlstate+ndeath;j++){
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            }
                   /*printf(fignu*/          for(d=0; d<dh[mi][i]; d++){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            newm=savm;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   if(first==1){            cov[2]=agexact;
                     first=0;            if(nagesqr==1)
                     fprintf(ficgp,"\nset parametric;unset label");              cov[3]= agexact*agexact;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);            for (kk=1; kk<=cptcovage;kk++) {
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);            }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);          
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            savm=oldm;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            oldm=newm;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          } /* end mult */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          s1=s[mw[mi][i]][i];
                   }else{          s2=s[mw[mi+1][i]][i];
                     first=0;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);          ipmx +=1;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          sw += weight[i];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        } /* end of wave */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      } /* end of individual */
                   }/* if first */    } /* End of if */
                 } /* age mod 5 */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               } /* end loop age */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               first=1;    return -l;
             } /*l12 */  }
           } /* k12 */  
         } /*l1 */  /*************** log-likelihood *************/
       }/* k1 */  double funcone( double *x)
     } /* loop covariates */  {
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    /* Same as likeli but slower because of a lot of printf and if */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    int i, ii, j, k, mi, d, kk;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    double **out;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double lli; /* Individual log likelihood */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double llt;
   }    int s1, s2;
   free_vector(xp,1,npar);    double bbh, survp;
   fclose(ficresprob);    double agexact;
   fclose(ficresprobcov);    /*extern weight */
   fclose(ficresprobcor);    /* We are differentiating ll according to initial status */
   fclose(ficgp);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   fclose(fichtm);    /*for(i=1;i<imx;i++) 
 }      printf(" %d\n",s[4][i]);
     */
     cov[1]=1.;
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    for(k=1; k<=nlstate; k++) ll[k]=0.;
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   int popforecast, int estepm ,\      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   double jprev1, double mprev1,double anprev1, \      for(mi=1; mi<= wav[i]-1; mi++){
                   double jprev2, double mprev2,double anprev2){        for (ii=1;ii<=nlstate+ndeath;ii++)
   int jj1, k1, i1, cpt;          for (j=1;j<=nlstate+ndeath;j++){
   /*char optionfilehtm[FILENAMELENGTH];*/            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with %s \n",optionfilehtm), exit(0);          }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);        for(d=0; d<dh[mi][i]; d++){
   }          newm=savm;
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          cov[2]=agexact;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          if(nagesqr==1)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n            cov[3]= agexact*agexact;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          for (kk=1; kk<=cptcovage;kk++) {
  - Life expectancies by age and initial health status (estepm=%2d months):            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
           /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  m=cptcoveff;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
  jj1=0;          oldm=newm;
  for(k1=1; k1<=m;k1++){        } /* end mult */
    for(i1=1; i1<=ncodemax[k1];i1++){        
      jj1++;        s1=s[mw[mi][i]][i];
      if (cptcovn > 0) {        s2=s[mw[mi+1][i]][i];
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        bbh=(double)bh[mi][i]/(double)stepm; 
        for (cpt=1; cpt<=cptcoveff;cpt++)        /* bias is positive if real duration
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);         * is higher than the multiple of stepm and negative otherwise.
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         */
      }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
      /* Pij */          lli=log(out[s1][s2] - savm[s1][s2]);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        } else if  (s2==-2) {
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              for (j=1,survp=0. ; j<=nlstate; j++) 
      /* Quasi-incidences */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          lli= log(survp);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }else if (mle==1){
        /* Stable prevalence in each health state */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        for(cpt=1; cpt<nlstate;cpt++){        } else if(mle==2){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        } else if(mle==3){  /* exponential inter-extrapolation */
        }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      for(cpt=1; cpt<=nlstate;cpt++) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          lli=log(out[s1][s2]); /* Original formula */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        } else{  /* mle=0 back to 1 */
      }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          /*lli=log(out[s1][s2]); */ /* Original formula */
 health expectancies in states (1) and (2): e%s%d.png<br>        } /* End of if */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        ipmx +=1;
    } /* end i1 */        sw += weight[i];
  }/* End k1 */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  fprintf(fichtm,"</ul>");        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
           fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n   %11.6f %11.6f %11.6f ", \
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n            llt +=ll[k]*gipmx/gsw;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          }
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          fprintf(ficresilk," %10.6f\n", -llt);
         }
  if(popforecast==1) fprintf(fichtm,"\n      } /* end of wave */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    } /* end of individual */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         <br>",fileres,fileres,fileres,fileres);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  else    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    if(globpr==0){ /* First time we count the contributions and weights */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      gipmx=ipmx;
       gsw=sw;
  m=cptcoveff;    }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    return -l;
   }
  jj1=0;  
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){  /*************** function likelione ***********/
      jj1++;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      if (cptcovn > 0) {  {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* This routine should help understanding what is done with 
        for (cpt=1; cpt<=cptcoveff;cpt++)       the selection of individuals/waves and
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       to check the exact contribution to the likelihood.
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       Plotting could be done.
      }     */
      for(cpt=1; cpt<=nlstate;cpt++) {    int k;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>    if(*globpri !=0){ /* Just counts and sums, no printings */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        strcpy(fileresilk,"ilk"); 
      }      strcat(fileresilk,fileres);
    } /* end i1 */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
  }/* End k1 */        printf("Problem with resultfile: %s\n", fileresilk);
  fprintf(fichtm,"</ul>");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 fclose(fichtm);      }
 }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 /******************* Gnuplot file **************/      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int ng;    }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    *fretone=(*funcone)(p);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    if(*globpri !=0){
   }      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 #ifdef windows      fflush(fichtm); 
     fprintf(ficgp,"cd \"%s\" \n",pathc);    } 
 #endif    return;
 m=pow(2,cptcoveff);  }
    
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /*********** Maximum Likelihood Estimation ***************/
    for (k1=1; k1<= m ; k1 ++) {  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 #ifdef windows  {
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    int i,j, iter=0;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    double **xi;
 #endif    double fret;
 #ifdef unix    double fretone; /* Only one call to likelihood */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /*  char filerespow[FILENAMELENGTH];*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  
 #endif  #ifdef NLOPT
     int creturn;
 for (i=1; i<= nlstate ; i ++) {    nlopt_opt opt;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *lb;
 }    double minf; /* the minimum objective value, upon return */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double * p1; /* Shifted parameters from 0 instead of 1 */
     for (i=1; i<= nlstate ; i ++) {    myfunc_data dinst, *d = &dinst;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  #endif
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    xi=matrix(1,npar,1,npar);
      for (i=1; i<= nlstate ; i ++) {    for (i=1;i<=npar;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for (j=1;j<=npar;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        xi[i][j]=(i==j ? 1.0 : 0.0);
 }      printf("Powell\n");  fprintf(ficlog,"Powell\n");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    strcpy(filerespow,"pow"); 
 #ifdef unix    strcat(filerespow,fileres);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 #endif      printf("Problem with resultfile: %s\n", filerespow);
    }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }    }
   /*2 eme*/    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
   for (k1=1; k1<= m ; k1 ++) {      for(j=1;j<=nlstate+ndeath;j++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    fprintf(ficrespow,"\n");
      #ifdef POWELL
     for (i=1; i<= nlstate+1 ; i ++) {    powell(p,xi,npar,ftol,&iter,&fret,func);
       k=2*i;  #endif
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  #ifdef NLOPT
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  #ifdef NEWUOA
   else fprintf(ficgp," \%%*lf (\%%*lf)");    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 }    #else
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  #endif
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    lb=vector(0,npar-1);
       for (j=1; j<= nlstate+1 ; j ++) {    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    nlopt_set_lower_bounds(opt, lb);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    nlopt_set_initial_step1(opt, 0.1);
 }      
       fprintf(ficgp,"\" t\"\" w l 0,");    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    d->function = func;
       for (j=1; j<= nlstate+1 ; j ++) {    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    nlopt_set_min_objective(opt, myfunc, d);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    nlopt_set_xtol_rel(opt, ftol);
 }      if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      printf("nlopt failed! %d\n",creturn); 
       else fprintf(ficgp,"\" t\"\" w l 0,");    }
     }    else {
   }      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
        printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
   /*3eme*/      iter=1; /* not equal */
     }
   for (k1=1; k1<= m ; k1 ++) {    nlopt_destroy(opt);
     for (cpt=1; cpt<= nlstate ; cpt ++) {  #endif
       k=2+nlstate*(2*cpt-2);    free_matrix(xi,1,npar,1,npar);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fclose(ficrespow);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 */  {
       for (i=1; i< nlstate ; i ++) {    double  **a,**y,*x,pd;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    double **hess;
     int i, j;
       }    int *indx;
     }  
   }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   /* CV preval stat */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     for (k1=1; k1<= m ; k1 ++) {    void ludcmp(double **a, int npar, int *indx, double *d) ;
     for (cpt=1; cpt<nlstate ; cpt ++) {    double gompertz(double p[]);
       k=3;    hess=matrix(1,npar,1,npar);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for (i=1; i< nlstate ; i ++)    for (i=1;i<=npar;i++){
         fprintf(ficgp,"+$%d",k+i+1);      printf("%d",i);fflush(stdout);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      fprintf(ficlog,"%d",i);fflush(ficlog);
           
       l=3+(nlstate+ndeath)*cpt;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      
       for (i=1; i< nlstate ; i ++) {      /*  printf(" %f ",p[i]);
         l=3+(nlstate+ndeath)*cpt;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         fprintf(ficgp,"+$%d",l+i+1);    }
       }    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for (i=1;i<=npar;i++) {
     }      for (j=1;j<=npar;j++)  {
   }          if (j>i) { 
            printf(".%d%d",i,j);fflush(stdout);
   /* proba elementaires */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
    for(i=1,jk=1; i <=nlstate; i++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
     for(k=1; k <=(nlstate+ndeath); k++){          
       if (k != i) {          hess[j][i]=hess[i][j];    
         for(j=1; j <=ncovmodel; j++){          /*printf(" %lf ",hess[i][j]);*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }
           jk++;      }
           fprintf(ficgp,"\n");    }
         }    printf("\n");
       }    fprintf(ficlog,"\n");
     }  
    }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    
      for(jk=1; jk <=m; jk++) {    a=matrix(1,npar,1,npar);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    y=matrix(1,npar,1,npar);
        if (ng==2)    x=vector(1,npar);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    indx=ivector(1,npar);
        else    for (i=1;i<=npar;i++)
          fprintf(ficgp,"\nset title \"Probability\"\n");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    ludcmp(a,npar,indx,&pd);
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {    for (j=1;j<=npar;j++) {
          k3=i;      for (i=1;i<=npar;i++) x[i]=0;
          for(k=1; k<=(nlstate+ndeath); k++) {      x[j]=1;
            if (k != k2){      lubksb(a,npar,indx,x);
              if(ng==2)      for (i=1;i<=npar;i++){ 
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        matcov[i][j]=x[i];
              else      }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    }
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {    printf("\n#Hessian matrix#\n");
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficlog,"\n#Hessian matrix#\n");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (i=1;i<=npar;i++) { 
                  ij++;      for (j=1;j<=npar;j++) { 
                }        printf("%.3e ",hess[i][j]);
                else        fprintf(ficlog,"%.3e ",hess[i][j]);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      }
              }      printf("\n");
              fprintf(ficgp,")/(1");      fprintf(ficlog,"\n");
                  }
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    /* Recompute Inverse */
                ij=1;    for (i=1;i<=npar;i++)
                for(j=3; j <=ncovmodel; j++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    ludcmp(a,npar,indx,&pd);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;    /*  printf("\n#Hessian matrix recomputed#\n");
                  }  
                  else    for (j=1;j<=npar;j++) {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for (i=1;i<=npar;i++) x[i]=0;
                }      x[j]=1;
                fprintf(ficgp,")");      lubksb(a,npar,indx,x);
              }      for (i=1;i<=npar;i++){ 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        y[i][j]=x[i];
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        printf("%.3e ",y[i][j]);
              i=i+ncovmodel;        fprintf(ficlog,"%.3e ",y[i][j]);
            }      }
          } /* end k */      printf("\n");
        } /* end k2 */      fprintf(ficlog,"\n");
      } /* end jk */    }
    } /* end ng */    */
    fclose(ficgp);  
 }  /* end gnuplot */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
 /*************** Moving average **************/    free_ivector(indx,1,npar);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    free_matrix(hess,1,npar,1,npar);
   
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  }
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  /*************** hessian matrix ****************/
           mobaverage[(int)agedeb][i][cptcod]=0.;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      {
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    int i;
       for (i=1; i<=nlstate;i++){    int l=1, lmax=20;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double k1,k2;
           for (cpt=0;cpt<=4;cpt++){    double p2[MAXPARM+1]; /* identical to x */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double res;
           }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double fx;
         }    int k=0,kmax=10;
       }    double l1;
     }  
        fx=func(x);
 }    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       l1=pow(10,l);
 /************** Forecasting ******************/      delts=delt;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        p2[theta]=x[theta] +delt;
   int *popage;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        p2[theta]=x[theta]-delt;
   double *popeffectif,*popcount;        k2=func(p2)-fx;
   double ***p3mat;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   char fileresf[FILENAMELENGTH];        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
  agelim=AGESUP;  #ifdef DEBUGHESS
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   strcpy(fileresf,"f");          k=kmax;
   strcat(fileresf,fileres);        }
   if((ficresf=fopen(fileresf,"w"))==NULL) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     printf("Problem with forecast resultfile: %s\n", fileresf);          k=kmax; l=lmax*10;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);        }
   }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   printf("Computing forecasting: result on file '%s' \n", fileresf);          delts=delt;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        }
       }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    }
     delti[theta]=delts;
   if (mobilav==1) {    return res; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     movingaverage(agedeb, fage, ageminpar, mobaverage);  }
   }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   stepsize=(int) (stepm+YEARM-1)/YEARM;  {
   if (stepm<=12) stepsize=1;    int i;
      int l=1, lmax=20;
   agelim=AGESUP;    double k1,k2,k3,k4,res,fx;
      double p2[MAXPARM+1];
   hstepm=1;    int k;
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);    fx=func(x);
   anprojmean=yp;    for (k=1; k<=2; k++) {
   yp2=modf((yp1*12),&yp);      for (i=1;i<=npar;i++) p2[i]=x[i];
   mprojmean=yp;      p2[thetai]=x[thetai]+delti[thetai]/k;
   yp1=modf((yp2*30.5),&yp);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   jprojmean=yp;      k1=func(p2)-fx;
   if(jprojmean==0) jprojmean=1;    
   if(mprojmean==0) jprojmean=1;      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      k2=func(p2)-fx;
      
   for(cptcov=1;cptcov<=i2;cptcov++){      p2[thetai]=x[thetai]-delti[thetai]/k;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k=k+1;      k3=func(p2)-fx;
       fprintf(ficresf,"\n#******");    
       for(j=1;j<=cptcoveff;j++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
       fprintf(ficresf,"******\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       fprintf(ficresf,"# StartingAge FinalAge");  #ifdef DEBUG
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
            fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        #endif
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    }
         fprintf(ficresf,"\n");    return res;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    }
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /************** Inverse of matrix **************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  void ludcmp(double **a, int n, int *indx, double *d) 
           nhstepm = nhstepm/hstepm;  { 
              int i,imax,j,k; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double big,dum,sum,temp; 
           oldm=oldms;savm=savms;    double *vv; 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     
            vv=vector(1,n); 
           for (h=0; h<=nhstepm; h++){    *d=1.0; 
             if (h==(int) (calagedate+YEARM*cpt)) {    for (i=1;i<=n;i++) { 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      big=0.0; 
             }      for (j=1;j<=n;j++) 
             for(j=1; j<=nlstate+ndeath;j++) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
               kk1=0.;kk2=0;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
               for(i=1; i<=nlstate;i++) {                    vv[i]=1.0/big; 
                 if (mobilav==1)    } 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    for (j=1;j<=n;j++) { 
                 else {      for (i=1;i<j;i++) { 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        sum=a[i][j]; 
                 }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                        a[i][j]=sum; 
               }      } 
               if (h==(int)(calagedate+12*cpt)){      big=0.0; 
                 fprintf(ficresf," %.3f", kk1);      for (i=j;i<=n;i++) { 
                                sum=a[i][j]; 
               }        for (k=1;k<j;k++) 
             }          sum -= a[i][k]*a[k][j]; 
           }        a[i][j]=sum; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         }          big=dum; 
       }          imax=i; 
     }        } 
   }      } 
              if (j != imax) { 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   fclose(ficresf);          a[imax][k]=a[j][k]; 
 }          a[j][k]=dum; 
 /************** Forecasting ******************/        } 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        *d = -(*d); 
          vv[imax]=vv[j]; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      } 
   int *popage;      indx[j]=imax; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double *popeffectif,*popcount;      if (j != n) { 
   double ***p3mat,***tabpop,***tabpopprev;        dum=1.0/(a[j][j]); 
   char filerespop[FILENAMELENGTH];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(vv,1,n);  /* Doesn't work */
   agelim=AGESUP;  ;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  } 
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
      int i,ii=0,ip,j; 
   strcpy(filerespop,"pop");    double sum; 
   strcat(filerespop,fileres);   
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    for (i=1;i<=n;i++) { 
     printf("Problem with forecast resultfile: %s\n", filerespop);      ip=indx[i]; 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);      sum=b[ip]; 
   }      b[ip]=b[i]; 
   printf("Computing forecasting: result on file '%s' \n", filerespop);      if (ii) 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      b[i]=sum; 
     } 
   if (mobilav==1) {    for (i=n;i>=1;i--) { 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      sum=b[i]; 
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
     } 
   stepsize=(int) (stepm+YEARM-1)/YEARM;  } 
   if (stepm<=12) stepsize=1;  
    void pstamp(FILE *fichier)
   agelim=AGESUP;  {
      fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
   hstepm=1;  }
   hstepm=hstepm/stepm;  
    /************ Frequencies ********************/
   if (popforecast==1) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     if((ficpop=fopen(popfile,"r"))==NULL) {  {  /* Some frequencies */
       printf("Problem with population file : %s\n",popfile);exit(0);    
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    int i, m, jk, j1, bool, z1,j;
     }    int first;
     popage=ivector(0,AGESUP);    double ***freq; /* Frequencies */
     popeffectif=vector(0,AGESUP);    double *pp, **prop;
     popcount=vector(0,AGESUP);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        char fileresp[FILENAMELENGTH];
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    pp=vector(1,nlstate);
        prop=matrix(1,nlstate,iagemin,iagemax+3);
     imx=i;    strcpy(fileresp,"p");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    strcat(fileresp,fileres);
   }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      exit(0);
       k=k+1;    }
       fprintf(ficrespop,"\n#******");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for(j=1;j<=cptcoveff;j++) {    j1=0;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       }    j=cptcoveff;
       fprintf(ficrespop,"******\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    first=1;
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
          /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
       for (cpt=0; cpt<=0;cpt++) {    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /*    j1++; */
            for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          scanf("%d", i);*/
           nhstepm = nhstepm/hstepm;        for (i=-5; i<=nlstate+ndeath; i++)  
                    for (jk=-5; jk<=nlstate+ndeath; jk++)  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=iagemin; m <= iagemax+3; m++)
           oldm=oldms;savm=savms;              freq[i][jk][m]=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          
                for (i=1; i<=nlstate; i++)  
           for (h=0; h<=nhstepm; h++){          for(m=iagemin; m <= iagemax+3; m++)
             if (h==(int) (calagedate+YEARM*cpt)) {            prop[i][m]=0;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        
             }        dateintsum=0;
             for(j=1; j<=nlstate+ndeath;j++) {        k2cpt=0;
               kk1=0.;kk2=0;        for (i=1; i<=imx; i++) {
               for(i=1; i<=nlstate;i++) {                        bool=1;
                 if (mobilav==1)          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            for (z1=1; z1<=cptcoveff; z1++)       
                 else {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
                 }                bool=0;
               }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
               if (h==(int)(calagedate+12*cpt)){                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                   /*fprintf(ficrespop," %.3f", kk1);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              } 
               }          }
             }   
             for(i=1; i<=nlstate;i++){          if (bool==1){
               kk1=0.;            for(m=firstpass; m<=lastpass; m++){
                 for(j=1; j<=nlstate;j++){              k2=anint[m][i]+(mint[m][i]/12.);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           }                }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                
         }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }                  dateintsum=dateintsum+k2;
                    k2cpt++;
   /******/                }
                 /*}*/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        } /* end i */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         
           nhstepm = nhstepm/hstepm;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                  pstamp(ficresp);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if  (cptcovn>0) {
           oldm=oldms;savm=savms;          fprintf(ficresp, "\n#********** Variable "); 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           for (h=0; h<=nhstepm; h++){          fprintf(ficresp, "**********\n#");
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficlog, "\n#********** Variable "); 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             }          fprintf(ficlog, "**********\n#");
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;        for(i=1; i<=nlstate;i++) 
               for(i=1; i<=nlstate;i++) {                        fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            fprintf(ficresp, "\n");
               }        
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for(i=iagemin; i <= iagemax+3; i++){
             }          if(i==iagemax+3){
           }            fprintf(ficlog,"Total");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{
         }            if(first==1){
       }              first=0;
    }              printf("See log file for details...\n");
   }            }
              fprintf(ficlog,"Age %d", i);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
           for(jk=1; jk <=nlstate ; jk++){
   if (popforecast==1) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_ivector(popage,0,AGESUP);              pp[jk] += freq[jk][m][i]; 
     free_vector(popeffectif,0,AGESUP);          }
     free_vector(popcount,0,AGESUP);          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pos=0; m <=0 ; m++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              pos += freq[jk][m][i];
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(pp[jk]>=1.e-10){
   fclose(ficrespop);              if(first==1){
 }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
 /***********************************************/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 /**************** Main Program *****************/            }else{
 /***********************************************/              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 int main(int argc, char *argv[])              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 {            }
           }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;          for(jk=1; jk <=nlstate ; jk++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   double fret;          }       
   double **xi,tmp,delta;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   double dum; /* Dummy variable */            posprop += prop[jk][i];
   double ***p3mat;          }
   int *indx;          for(jk=1; jk <=nlstate ; jk++){
   char line[MAXLINE], linepar[MAXLINE];            if(pos>=1.e-5){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];              if(first==1)
   int firstobs=1, lastobs=10;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int sdeb, sfin; /* Status at beginning and end */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int c,  h , cpt,l;            }else{
   int ju,jl, mi;              if(first==1)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int mobilav=0,popforecast=0;            }
   int hstepm, nhstepm;            if( i <= iagemax){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double bage, fage, age, agelim, agebase;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double ftolpl=FTOL;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double **prlim;              }
   double *severity;              else
   double ***param; /* Matrix of parameters */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double  *p;            }
   double **matcov; /* Matrix of covariance */          }
   double ***delti3; /* Scale */          
   double *delti; /* Scale */          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double ***eij, ***vareij;            for(m=-1; m <=nlstate+ndeath; m++)
   double **varpl; /* Variances of prevalence limits by age */              if(freq[jk][m][i] !=0 ) {
   double *epj, vepp;              if(first==1)
   double kk1, kk2;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                }
           if(i <= iagemax)
   char *alph[]={"a","a","b","c","d","e"}, str[4];            fprintf(ficresp,"\n");
           if(first==1)
             printf("Others in log...\n");
   char z[1]="c", occ;          fprintf(ficlog,"\n");
 #include <sys/time.h>        }
 #include <time.h>        /*}*/
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    }
      dateintmean=dateintsum/k2cpt; 
   /* long total_usecs;   
   struct timeval start_time, end_time;    fclose(ficresp);
      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    free_vector(pp,1,nlstate);
   getcwd(pathcd, size);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   printf("\n%s",version);  }
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");  /************ Prevalence ********************/
     scanf("%s",pathtot);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
   else{    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     strcpy(pathtot,argv[1]);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   }       We still use firstpass and lastpass as another selection.
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    */
   /*cygwin_split_path(pathtot,path,optionfile);   
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int i, m, jk, j1, bool, z1,j;
   /* cutv(path,optionfile,pathtot,'\\');*/  
     double **prop;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double posprop; 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double  y2; /* in fractional years */
   chdir(path);    int iagemin, iagemax;
   replace(pathc,path);    int first; /** to stop verbosity which is redirected to log file */
   
 /*-------- arguments in the command line --------*/    iagemin= (int) agemin;
     iagemax= (int) agemax;
   /* Log file */    /*pp=vector(1,nlstate);*/
   strcat(filelog, optionfilefiname);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   strcat(filelog,".log");    /* */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   if((ficlog=fopen(filelog,"w"))==NULL)    {    j1=0;
     printf("Problem with logfile %s\n",filelog);    
     goto end;    /*j=cptcoveff;*/
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficlog,"Log filename:%s\n",filelog);    
   fprintf(ficlog,"\n%s",version);    first=1;
   fprintf(ficlog,"\nEnter the parameter file name: ");    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      /*for(i1=1; i1<=ncodemax[k1];i1++){
   fflush(ficlog);        j1++;*/
         
   /* */        for (i=1; i<=nlstate; i++)  
   strcpy(fileres,"r");          for(m=iagemin; m <= iagemax+3; m++)
   strcat(fileres, optionfilefiname);            prop[i][m]=0.0;
   strcat(fileres,".txt");    /* Other files have txt extension */       
         for (i=1; i<=imx; i++) { /* Each individual */
   /*---------arguments file --------*/          bool=1;
           if  (cptcovn>0) {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            for (z1=1; z1<=cptcoveff; z1++) 
     printf("Problem with optionfile %s\n",optionfile);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                bool=0;
     goto end;          } 
   }          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   strcpy(filereso,"o");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   strcat(filereso,fileres);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if((ficparo=fopen(filereso,"w"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with Output resultfile: %s\n", filereso);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     goto end;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   /* Reads comments: lines beginning with '#' */                  prop[s[m][i]][iagemax+3] += weight[i]; 
   while((c=getc(ficpar))=='#' && c!= EOF){                } 
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);            } /* end selection of waves */
     puts(line);          }
     fputs(line,ficparo);        }
   }        for(i=iagemin; i <= iagemax+3; i++){  
   ungetc(c,ficpar);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          } 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          for(jk=1; jk <=nlstate ; jk++){     
 while((c=getc(ficpar))=='#' && c!= EOF){            if( i <=  iagemax){ 
     ungetc(c,ficpar);              if(posprop>=1.e-5){ 
     fgets(line, MAXLINE, ficpar);                probs[i][jk][j1]= prop[jk][i]/posprop;
     puts(line);              } else{
     fputs(line,ficparo);                if(first==1){
   }                  first=0;
   ungetc(c,ficpar);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                  }
                  }
   covar=matrix(0,NCOVMAX,1,n);            } 
   cptcovn=0;          }/* end jk */ 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        }/* end i */ 
       /*} *//* end i1 */
   ncovmodel=2+cptcovn;    } /* end j1 */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    
      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   /* Read guess parameters */    /*free_vector(pp,1,nlstate);*/
   /* Reads comments: lines beginning with '#' */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   while((c=getc(ficpar))=='#' && c!= EOF){  }  /* End of prevalence */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************* Waves Concatenation ***************/
     puts(line);  
     fputs(line,ficparo);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   }  {
   ungetc(c,ficpar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     for(i=1; i <=nlstate; i++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for(j=1; j <=nlstate+ndeath-1; j++){       and mw[mi+1][i]. dh depends on stepm.
       fscanf(ficpar,"%1d%1d",&i1,&j1);       */
       fprintf(ficparo,"%1d%1d",i1,j1);  
       if(mle==1)    int i, mi, m;
         printf("%1d%1d",i,j);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficlog,"%1d%1d",i,j);       double sum=0., jmean=0.;*/
       for(k=1; k<=ncovmodel;k++){    int first;
         fscanf(ficpar," %lf",&param[i][j][k]);    int j, k=0,jk, ju, jl;
         if(mle==1){    double sum=0.;
           printf(" %lf",param[i][j][k]);    first=0;
           fprintf(ficlog," %lf",param[i][j][k]);    jmin=100000;
         }    jmax=-1;
         else    jmean=0.;
           fprintf(ficlog," %lf",param[i][j][k]);    for(i=1; i<=imx; i++){
         fprintf(ficparo," %lf",param[i][j][k]);      mi=0;
       }      m=firstpass;
       fscanf(ficpar,"\n");      while(s[m][i] <= nlstate){
       if(mle==1)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         printf("\n");          mw[++mi][i]=m;
       fprintf(ficlog,"\n");        if(m >=lastpass)
       fprintf(ficparo,"\n");          break;
     }        else
            m++;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      }/* end while */
       if (s[m][i] > nlstate){
   p=param[1][1];        mi++;     /* Death is another wave */
          /* if(mi==0)  never been interviewed correctly before death */
   /* Reads comments: lines beginning with '#' */           /* Only death is a correct wave */
   while((c=getc(ficpar))=='#' && c!= EOF){        mw[mi][i]=m;
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      wav[i]=mi;
     fputs(line,ficparo);      if(mi==0){
   }        nbwarn++;
   ungetc(c,ficpar);        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          first=1;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }
   for(i=1; i <=nlstate; i++){        if(first==1){
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       printf("%1d%1d",i,j);      } /* end mi==0 */
       fprintf(ficparo,"%1d%1d",i1,j1);    } /* End individuals */
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);    for(i=1; i<=imx; i++){
         printf(" %le",delti3[i][j][k]);      for(mi=1; mi<wav[i];mi++){
         fprintf(ficparo," %le",delti3[i][j][k]);        if (stepm <=0)
       }          dh[mi][i]=1;
       fscanf(ficpar,"\n");        else{
       printf("\n");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fprintf(ficparo,"\n");            if (agedc[i] < 2*AGESUP) {
     }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   }              if(j==0) j=1;  /* Survives at least one month after exam */
   delti=delti3[1][1];              else if(j<0){
                  nberr++;
   /* Reads comments: lines beginning with '#' */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   while((c=getc(ficpar))=='#' && c!= EOF){                j=1; /* Temporary Dangerous patch */
     ungetc(c,ficpar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fgets(line, MAXLINE, ficpar);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     puts(line);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fputs(line,ficparo);              }
   }              k=k+1;
   ungetc(c,ficpar);              if (j >= jmax){
                  jmax=j;
   matcov=matrix(1,npar,1,npar);                ijmax=i;
   for(i=1; i <=npar; i++){              }
     fscanf(ficpar,"%s",&str);              if (j <= jmin){
     if(mle==1)                jmin=j;
       printf("%s",str);                ijmin=i;
     fprintf(ficlog,"%s",str);              }
     fprintf(ficparo,"%s",str);              sum=sum+j;
     for(j=1; j <=i; j++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fscanf(ficpar," %le",&matcov[i][j]);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       if(mle==1){            }
         printf(" %.5le",matcov[i][j]);          }
         fprintf(ficlog," %.5le",matcov[i][j]);          else{
       }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       else  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         fprintf(ficlog," %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);            k=k+1;
     }            if (j >= jmax) {
     fscanf(ficpar,"\n");              jmax=j;
     if(mle==1)              ijmax=i;
       printf("\n");            }
     fprintf(ficlog,"\n");            else if (j <= jmin){
     fprintf(ficparo,"\n");              jmin=j;
   }              ijmin=i;
   for(i=1; i <=npar; i++)            }
     for(j=i+1;j<=npar;j++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       matcov[i][j]=matcov[j][i];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                if(j<0){
   if(mle==1)              nberr++;
     printf("\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficlog,"\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
     /*-------- Rewriting paramater file ----------*/          }
      strcpy(rfileres,"r");    /* "Rparameterfile */          jk= j/stepm;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          jl= j -jk*stepm;
      strcat(rfileres,".");    /* */          ju= j -(jk+1)*stepm;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     if((ficres =fopen(rfileres,"w"))==NULL) {            if(jl==0){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              dh[mi][i]=jk;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;              bh[mi][i]=0;
     }            }else{ /* We want a negative bias in order to only have interpolation ie
     fprintf(ficres,"#%s\n",version);                    * to avoid the price of an extra matrix product in likelihood */
                  dh[mi][i]=jk+1;
     /*-------- data file ----------*/              bh[mi][i]=ju;
     if((fic=fopen(datafile,"r"))==NULL)    {            }
       printf("Problem with datafile: %s\n", datafile);goto end;          }else{
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            if(jl <= -ju){
     }              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
     n= lastobs;                                   * is higher than the multiple of stepm and negative otherwise.
     severity = vector(1,maxwav);                                   */
     outcome=imatrix(1,maxwav+1,1,n);            }
     num=ivector(1,n);            else{
     moisnais=vector(1,n);              dh[mi][i]=jk+1;
     annais=vector(1,n);              bh[mi][i]=ju;
     moisdc=vector(1,n);            }
     andc=vector(1,n);            if(dh[mi][i]==0){
     agedc=vector(1,n);              dh[mi][i]=1; /* At least one step */
     cod=ivector(1,n);              bh[mi][i]=ju; /* At least one step */
     weight=vector(1,n);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            }
     mint=matrix(1,maxwav,1,n);          } /* end if mle */
     anint=matrix(1,maxwav,1,n);        }
     s=imatrix(1,maxwav+1,1,n);      } /* end wave */
     adl=imatrix(1,maxwav+1,1,n);        }
     tab=ivector(1,NCOVMAX);    jmean=sum/k;
     ncodemax=ivector(1,8);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     i=1;   }
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {  /*********** Tricode ****************************/
          void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
         for (j=maxwav;j>=1;j--){  {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
           strcpy(line,stra);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
         }     * nbcode[Tvar[j]][1]= 
            */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    int cptcode=0; /* Modality max of covariates j */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    int modmincovj=0; /* Modality min of covariates j */
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){    cptcoveff=0; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   
         }    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         num[i]=atol(stra);  
            /* Loop on covariates without age and products */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for (k=-1; k < maxncov; k++) Ndum[k]=0;
       for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
         i=i+1;                                 modality of this covariate Vj*/ 
       }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     }                                      * If product of Vn*Vm, still boolean *:
     /* printf("ii=%d", ij);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
        scanf("%d",i);*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   imx=i-1; /* Number of individuals */        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
   /* for (i=1; i<=imx; i++){        if (ij > modmaxcovj)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          modmaxcovj=ij; 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        else if (ij < modmincovj) 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          modmincovj=ij; 
     }*/        if ((ij < -1) && (ij > NCOVMAX)){
    /*  for (i=1; i<=imx; i++){          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
      if (s[4][i]==9)  s[4][i]=-1;          exit(1);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        }else
          Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
          /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   /* Calculation of the number of parameter from char model*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        /* getting the maximum value of the modality of the covariate
   Tprod=ivector(1,15);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   Tvaraff=ivector(1,15);           female is 1, then modmaxcovj=1.*/
   Tvard=imatrix(1,15,1,2);      } /* end for loop on individuals i */
   Tage=ivector(1,15);            printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
          fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   if (strlen(model) >1){      cptcode=modmaxcovj;
     j=0, j1=0, k1=1, k2=1;      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     j=nbocc(model,'+');     /*for (i=0; i<=cptcode; i++) {*/
     j1=nbocc(model,'*');      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
     cptcovn=j+1;        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
     cptcovprod=j1;        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
            if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
     strcpy(modelsav,model);          if( k != -1){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
       printf("Error. Non available option model=%s ",model);                               covariate for which somebody answered excluding 
       fprintf(ficlog,"Error. Non available option model=%s ",model);                               undefined. Usually 2: 0 and 1. */
       goto end;          }
     }          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
                                   covariate for which somebody answered including 
     for(i=(j+1); i>=1;i--){                               undefined. Usually 3: -1, 0 and 1. */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       /*scanf("%d",i);*/      } /* Ndum[-1] number of undefined modalities */
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
         if (strcmp(strc,"age")==0) { /* Vn*age */      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
           cptcovprod--;         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
           cutv(strb,stre,strd,'V');         modmincovj=3; modmaxcovj = 7;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
           cptcovage++;         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
             Tage[cptcovage]=i;         defining two dummy variables: variables V1_1 and V1_2.
             /*printf("stre=%s ", stre);*/         nbcode[Tvar[j]][ij]=k;
         }         nbcode[Tvar[j]][1]=0;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */         nbcode[Tvar[j]][2]=1;
           cptcovprod--;         nbcode[Tvar[j]][3]=2;
           cutv(strb,stre,strc,'V');         To be continued (not working yet).
           Tvar[i]=atoi(stre);      */
           cptcovage++;      ij=0; /* ij is similar to i but can jump over null modalities */
           Tage[cptcovage]=i;      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
         }          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
         else {  /* Age is not in the model */            break;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          }
           Tvar[i]=ncovcol+k1;          ij++;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
           Tprod[k1]=i;          cptcode = ij; /* New max modality for covar j */
           Tvard[k1][1]=atoi(strc); /* m*/      } /* end of loop on modality i=-1 to 1 or more */
           Tvard[k1][2]=atoi(stre); /* n */        
           Tvar[cptcovn+k2]=Tvard[k1][1];      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      /*  /\*recode from 0 *\/ */
           for (k=1; k<=lastobs;k++)      /*                               k is a modality. If we have model=V1+V1*sex  */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           k1++;      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
           k2=k2+2;      /*  } */
         }      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
       }      /*  if (ij > ncodemax[j]) { */
       else { /* no more sum */      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
        /*  scanf("%d",i);*/      /*    break; */
       cutv(strd,strc,strb,'V');      /*  } */
       Tvar[i]=atoi(strc);      /*   }  /\* end of loop on modality k *\/ */
       }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       strcpy(modelsav,stra);      
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         scanf("%d",i);*/    
     } /* end of loop + */    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
   } /* end model */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);     Ndum[ij]++; /* Might be supersed V1 + V1*age */
   printf("cptcovprod=%d ", cptcovprod);   } 
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/   ij=0;
     fclose(fic);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     /*  if(mle==1){*/     if((Ndum[i]!=0) && (i<=ncovcol)){
     if (weightopt != 1) { /* Maximisation without weights*/       ij++;
       for(i=1;i<=n;i++) weight[i]=1.0;       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     }       Tvaraff[ij]=i; /*For printing (unclear) */
     /*-calculation of age at interview from date of interview and age at death -*/     }else{
     agev=matrix(1,maxwav,1,imx);         /* Tvaraff[ij]=0; */
      }
     for (i=1; i<=imx; i++) {   }
       for(m=2; (m<= maxwav); m++) {   /* ij--; */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   cptcoveff=ij; /*Number of total covariates*/
          anint[m][i]=9999;  
          s[m][i]=-1;  }
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }  /*********** Health Expectancies ****************/
     }  
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  {
       for(m=1; (m<= maxwav); m++){    /* Health expectancies, no variances */
         if(s[m][i] >0){    int i, j, nhstepm, hstepm, h, nstepm;
           if (s[m][i] >= nlstate+1) {    int nhstepma, nstepma; /* Decreasing with age */
             if(agedc[i]>0)    double age, agelim, hf;
               if(moisdc[i]!=99 && andc[i]!=9999)    double ***p3mat;
                 agev[m][i]=agedc[i];    double eip;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {    pstamp(ficreseij);
               if (andc[i]!=9999){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    fprintf(ficreseij,"# Age");
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    for(i=1; i<=nlstate;i++){
               agev[m][i]=-1;      for(j=1; j<=nlstate;j++){
               }        fprintf(ficreseij," e%1d%1d ",i,j);
             }      }
           }      fprintf(ficreseij," e%1d. ",i);
           else if(s[m][i] !=9){ /* Should no more exist */    }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficreseij,"\n");
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;    
             else if(agev[m][i] <agemin){    if(estepm < stepm){
               agemin=agev[m][i];      printf ("Problem %d lower than %d\n",estepm, stepm);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    }
             }    else  hstepm=estepm;   
             else if(agev[m][i] >agemax){    /* We compute the life expectancy from trapezoids spaced every estepm months
               agemax=agev[m][i];     * This is mainly to measure the difference between two models: for example
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/     * if stepm=24 months pijx are given only every 2 years and by summing them
             }     * we are calculating an estimate of the Life Expectancy assuming a linear 
             /*agev[m][i]=anint[m][i]-annais[i];*/     * progression in between and thus overestimating or underestimating according
             /*   agev[m][i] = age[i]+2*m;*/     * to the curvature of the survival function. If, for the same date, we 
           }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           else { /* =9 */     * to compare the new estimate of Life expectancy with the same linear 
             agev[m][i]=1;     * hypothesis. A more precise result, taking into account a more precise
             s[m][i]=-1;     * curvature will be obtained if estepm is as small as stepm. */
           }  
         }    /* For example we decided to compute the life expectancy with the smallest unit */
         else /*= 0 Unknown */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           agev[m][i]=1;       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like estepm months */
     for (i=1; i<=imx; i++)  {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(m=1; (m<= maxwav); m++){       survival function given by stepm (the optimization length). Unfortunately it
         if (s[m][i] > (nlstate+ndeath)) {       means that if the survival funtion is printed only each two years of age and if
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         results. So we changed our mind and took the option of the best precision.
           goto end;    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
     }    agelim=AGESUP;
     /* If stepm=6 months */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
     free_vector(severity,1,maxwav);  /* nhstepm age range expressed in number of stepm */
     free_imatrix(outcome,1,maxwav+1,1,n);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     free_vector(moisnais,1,n);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(annais,1,n);    /* if (stepm >= YEARM) hstepm=1;*/
     /* free_matrix(mint,1,maxwav,1,n);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        free_matrix(anint,1,maxwav,1,n);*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     wav=ivector(1,imx);      /* if (stepm >= YEARM) hstepm=1;*/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
          /* If stepm=6 months */
     /* Concatenates waves */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       Tcode=ivector(1,100);      
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       ncodemax[1]=1;      
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      printf("%d|",(int)age);fflush(stdout);
            fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    codtab=imatrix(1,100,1,10);      
    h=0;      /* Computing expectancies */
    m=pow(2,cptcoveff);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
    for(k=1;k<=cptcoveff; k++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      for(i=1; i <=(m/pow(2,k));i++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        for(j=1; j <= ncodemax[k]; j++){            
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }      fprintf(ficreseij,"%3.0f",age );
        }      for(i=1; i<=nlstate;i++){
      }        eip=0;
    }        for(j=1; j<=nlstate;j++){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          eip +=eij[i][j][(int)age];
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
    /* for(i=1; i <=m ;i++){        }
       for(k=1; k <=cptcovn; k++){        fprintf(ficreseij,"%9.4f", eip );
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      }
       }      fprintf(ficreseij,"\n");
       printf("\n");      
       }    }
       scanf("%d",i);*/    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        printf("\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(ficlog,"\n");
        and prints on file fileres'p'. */    
   }
      
      void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Covariances of health expectancies eij and of total life expectancies according
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     to initial status i, ei. .
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    */
          int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     /* For Powell, parameters are in a vector p[] starting at p[1]    int nhstepma, nstepma; /* Decreasing with age */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double age, agelim, hf;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     if(mle==1){    double *xp, *xm;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double **gp, **gm;
     }    double ***gradg, ***trgradg;
        int theta;
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double eip, vip;
    
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    jk=1;    xp=vector(1,npar);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    xm=vector(1,npar);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    dnewm=matrix(1,nlstate*nlstate,1,npar);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
    for(i=1,jk=1; i <=nlstate; i++){    
      for(k=1; k <=(nlstate+ndeath); k++){    pstamp(ficresstdeij);
        if (k != i)    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
          {    fprintf(ficresstdeij,"# Age");
            printf("%d%d ",i,k);    for(i=1; i<=nlstate;i++){
            fprintf(ficlog,"%d%d ",i,k);      for(j=1; j<=nlstate;j++)
            fprintf(ficres,"%1d%1d ",i,k);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
            for(j=1; j <=ncovmodel; j++){      fprintf(ficresstdeij," e%1d. ",i);
              printf("%f ",p[jk]);    }
              fprintf(ficlog,"%f ",p[jk]);    fprintf(ficresstdeij,"\n");
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    pstamp(ficrescveij);
            }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
            printf("\n");    fprintf(ficrescveij,"# Age");
            fprintf(ficlog,"\n");    for(i=1; i<=nlstate;i++)
            fprintf(ficres,"\n");      for(j=1; j<=nlstate;j++){
          }        cptj= (j-1)*nlstate+i;
      }        for(i2=1; i2<=nlstate;i2++)
    }          for(j2=1; j2<=nlstate;j2++){
    if(mle==1){            cptj2= (j2-1)*nlstate+i2;
      /* Computing hessian and covariance matrix */            if(cptj2 <= cptj)
      ftolhess=ftol; /* Usually correct */              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
      hesscov(matcov, p, npar, delti, ftolhess, func);          }
    }      }
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficrescveij,"\n");
    printf("# Scales (for hessian or gradient estimation)\n");    
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    if(estepm < stepm){
    for(i=1,jk=1; i <=nlstate; i++){      printf ("Problem %d lower than %d\n",estepm, stepm);
      for(j=1; j <=nlstate+ndeath; j++){    }
        if (j!=i) {    else  hstepm=estepm;   
          fprintf(ficres,"%1d%1d",i,j);    /* We compute the life expectancy from trapezoids spaced every estepm months
          printf("%1d%1d",i,j);     * This is mainly to measure the difference between two models: for example
          fprintf(ficlog,"%1d%1d",i,j);     * if stepm=24 months pijx are given only every 2 years and by summing them
          for(k=1; k<=ncovmodel;k++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
            printf(" %.5e",delti[jk]);     * progression in between and thus overestimating or underestimating according
            fprintf(ficlog," %.5e",delti[jk]);     * to the curvature of the survival function. If, for the same date, we 
            fprintf(ficres," %.5e",delti[jk]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
            jk++;     * to compare the new estimate of Life expectancy with the same linear 
          }     * hypothesis. A more precise result, taking into account a more precise
          printf("\n");     * curvature will be obtained if estepm is as small as stepm. */
          fprintf(ficlog,"\n");  
          fprintf(ficres,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
        }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      }       nhstepm is the number of hstepm from age to agelim 
    }       nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
    k=1;       and note for a fixed period like estepm months */
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    if(mle==1)       survival function given by stepm (the optimization length). Unfortunately it
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       means that if the survival funtion is printed only each two years of age and if
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    for(i=1;i<=npar;i++){       results. So we changed our mind and took the option of the best precision.
      /*  if (k>nlstate) k=1;    */
          i1=(i-1)/(ncovmodel*nlstate)+1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
          printf("%s%d%d",alph[k],i1,tab[i]);*/    /* If stepm=6 months */
      fprintf(ficres,"%3d",i);    /* nhstepm age range expressed in number of stepm */
      if(mle==1)    agelim=AGESUP;
        printf("%3d",i);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
      fprintf(ficlog,"%3d",i);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      for(j=1; j<=i;j++){    /* if (stepm >= YEARM) hstepm=1;*/
        fprintf(ficres," %.5e",matcov[i][j]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        if(mle==1)    
          printf(" %.5e",matcov[i][j]);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(ficlog," %.5e",matcov[i][j]);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      fprintf(ficres,"\n");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      if(mle==1)    gp=matrix(0,nhstepm,1,nlstate*nlstate);
        printf("\n");    gm=matrix(0,nhstepm,1,nlstate*nlstate);
      fprintf(ficlog,"\n");  
      k++;    for (age=bage; age<=fage; age ++){ 
    }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    while((c=getc(ficpar))=='#' && c!= EOF){      /* if (stepm >= YEARM) hstepm=1;*/
      ungetc(c,ficpar);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
      fgets(line, MAXLINE, ficpar);  
      puts(line);      /* If stepm=6 months */
      fputs(line,ficparo);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
    }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
    ungetc(c,ficpar);      
    estepm=0;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
    if (estepm==0 || estepm < stepm) estepm=stepm;      /* Computing  Variances of health expectancies */
    if (fage <= 2) {      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
      bage = ageminpar;         decrease memory allocation */
      fage = agemaxpar;      for(theta=1; theta <=npar; theta++){
    }        for(i=1; i<=npar; i++){ 
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
            hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
    while((c=getc(ficpar))=='#' && c!= EOF){    
      ungetc(c,ficpar);        for(j=1; j<= nlstate; j++){
      fgets(line, MAXLINE, ficpar);          for(i=1; i<=nlstate; i++){
      puts(line);            for(h=0; h<=nhstepm-1; h++){
      fputs(line,ficparo);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
    }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
    ungetc(c,ficpar);            }
            }
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        }
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(ij=1; ij<= nlstate*nlstate; ij++)
              for(h=0; h<=nhstepm-1; h++){
    while((c=getc(ficpar))=='#' && c!= EOF){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
      ungetc(c,ficpar);          }
      fgets(line, MAXLINE, ficpar);      }/* End theta */
      puts(line);      
      fputs(line,ficparo);      
    }      for(h=0; h<=nhstepm-1; h++)
    ungetc(c,ficpar);        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
        for(ij=1;ij<=nlstate*nlstate;ij++)
   fscanf(ficpar,"pop_based=%d\n",&popbased);        for(ji=1;ji<=nlstate*nlstate;ji++)
   fprintf(ficparo,"pop_based=%d\n",popbased);            varhe[ij][ji][(int)age] =0.;
   fprintf(ficres,"pop_based=%d\n",popbased);    
         printf("%d|",(int)age);fflush(stdout);
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     ungetc(c,ficpar);       for(h=0;h<=nhstepm-1;h++){
     fgets(line, MAXLINE, ficpar);        for(k=0;k<=nhstepm-1;k++){
     puts(line);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     fputs(line,ficparo);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   }          for(ij=1;ij<=nlstate*nlstate;ij++)
   ungetc(c,ficpar);            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        for(j=1; j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     puts(line);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     fputs(line,ficparo);            
   }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   ungetc(c,ficpar);  
           }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fprintf(ficresstdeij,"%3.0f",age );
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      for(i=1; i<=nlstate;i++){
         eip=0.;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        vip=0.;
         for(j=1; j<=nlstate;j++){
 /*------------ gnuplot -------------*/          eip += eij[i][j][(int)age];
   strcpy(optionfilegnuplot,optionfilefiname);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   strcat(optionfilegnuplot,".gp");            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     printf("Problem with file %s",optionfilegnuplot);        }
   }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   fclose(ficgp);      }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);      fprintf(ficresstdeij,"\n");
 /*--------- index.htm --------*/  
       fprintf(ficrescveij,"%3.0f",age );
   strcpy(optionfilehtm,optionfile);      for(i=1; i<=nlstate;i++)
   strcat(optionfilehtm,".htm");        for(j=1; j<=nlstate;j++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          cptj= (j-1)*nlstate+i;
     printf("Problem with %s \n",optionfilehtm), exit(0);          for(i2=1; i2<=nlstate;i2++)
   }            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              if(cptj2 <= cptj)
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 \n            }
 Total number of observations=%d <br>\n        }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      fprintf(ficrescveij,"\n");
 <hr  size=\"2\" color=\"#EC5E5E\">     
  <ul><li><h4>Parameter files</h4>\n    }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fclose(fichtm);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
 /*------------ free_vector  -------------*/    fprintf(ficlog,"\n");
  chdir(path);  
      free_vector(xm,1,npar);
  free_ivector(wav,1,imx);    free_vector(xp,1,npar);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
  free_ivector(num,1,n);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  free_vector(agedc,1,n);  }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);  /************ Variance ******************/
  fclose(ficres);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
   /*--------------- Prevalence limit --------------*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   strcpy(filerespl,"pl");    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
   strcat(filerespl,fileres);    
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    int movingaverage();
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double **dnewm,**doldm;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double **dnewmp,**doldmp;
   }    int i, j, nhstepm, hstepm, h, nstepm ;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    int k;
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    double *xp;
   fprintf(ficrespl,"#Prevalence limit\n");    double **gp, **gm;  /* for var eij */
   fprintf(ficrespl,"#Age ");    double ***gradg, ***trgradg; /*for var eij */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double **gradgp, **trgradgp; /* for var p point j */
   fprintf(ficrespl,"\n");    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   prlim=matrix(1,nlstate,1,nlstate);    double ***p3mat;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double age,agelim, hf;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***mobaverage;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int theta;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char digit[4];
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    char digitp[25];
   k=0;  
   agebase=ageminpar;    char fileresprobmorprev[FILENAMELENGTH];
   agelim=agemaxpar;  
   ftolpl=1.e-10;    if(popbased==1){
   i1=cptcoveff;      if(mobilav!=0)
   if (cptcovn < 1){i1=1;}        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    else 
         k=k+1;      strcpy(digitp,"-stablbased-");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    if (mobilav!=0) {
         printf("\n#******");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficlog,"\n#******");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         for(j=1;j<=cptcoveff;j++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         }  
         fprintf(ficrespl,"******\n");    strcpy(fileresprobmorprev,"prmorprev"); 
         printf("******\n");    sprintf(digit,"%-d",ij);
         fprintf(ficlog,"******\n");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
            strcat(fileresprobmorprev,digit); /* Tvar to be done */
         for (age=agebase; age<=agelim; age++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcat(fileresprobmorprev,fileres);
           fprintf(ficrespl,"%.0f",age );    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           for(i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           fprintf(ficrespl," %.5f", prlim[i][i]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           fprintf(ficrespl,"\n");    }
         }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }   
     }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fclose(ficrespl);    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   /*------------- h Pij x at various ages ------------*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      fprintf(ficresprobmorprev," p.%-d SE",j);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    }  
   }    fprintf(ficresprobmorprev,"\n");
   printf("Computing pij: result on file '%s' \n", filerespij);    fprintf(ficgp,"\n# Routine varevsij");
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*if (stepm<=24) stepsize=2;*/  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   agelim=AGESUP;    pstamp(ficresvij);
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   /* hstepm=1;   aff par mois*/    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   k=0;    fprintf(ficresvij,"# Age");
   for(cptcov=1;cptcov<=i1;cptcov++){    for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(j=1; j<=nlstate;j++)
       k=k+1;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         fprintf(ficrespij,"\n#****** ");    fprintf(ficresvij,"\n");
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    xp=vector(1,npar);
         fprintf(ficrespij,"******\n");    dnewm=matrix(1,nlstate,1,npar);
            doldm=matrix(1,nlstate,1,nlstate);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if(estepm < stepm){
           fprintf(ficrespij,"# Age");      printf ("Problem %d lower than %d\n",estepm, stepm);
           for(i=1; i<=nlstate;i++)    }
             for(j=1; j<=nlstate+ndeath;j++)    else  hstepm=estepm;   
               fprintf(ficrespij," %1d-%1d",i,j);    /* For example we decided to compute the life expectancy with the smallest unit */
           fprintf(ficrespij,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
            for (h=0; h<=nhstepm; h++){       nhstepm is the number of hstepm from age to agelim 
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       nstepm is the number of stepm from age to agelin. 
             for(i=1; i<=nlstate;i++)       Look at function hpijx to understand why (it is linked to memory size questions) */
               for(j=1; j<=nlstate+ndeath;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       survival function given by stepm (the optimization length). Unfortunately it
             fprintf(ficrespij,"\n");       means that if the survival funtion is printed every two years of age and if
              }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
           fprintf(ficrespij,"\n");    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrespij);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      for(theta=1; theta <=npar; theta++){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   else{        }
     erreur=108;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }        if (popbased==1) {
            if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   /*---------- Health expectancies and variances ------------*/              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   strcpy(filerest,"t");            for(i=1; i<=nlstate;i++)
   strcat(filerest,fileres);              prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficrest=fopen(filerest,"w"))==NULL) {          }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    
   }        for(j=1; j<= nlstate; j++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          for(h=0; h<=nhstepm; h++){
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   strcpy(filerese,"e");        }
   strcat(filerese,fileres);        /* This for computing probability of death (h=1 means
   if((ficreseij=fopen(filerese,"w"))==NULL) {           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);           as a weighted average of prlim.
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   strcpy(fileresv,"v");        /* end probability of death */
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        if (popbased==1) {
   calagedate=-1;          if(mobilav ==0){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   k=0;          }else{ /* mobilav */ 
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              prlim[i][i]=mobaverage[(int)age][i][ij];
       k=k+1;          }
       fprintf(ficrest,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       fprintf(ficrest,"******\n");          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficreseij,"\n#****** ");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficreseij,"******\n");        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficresvij,"\n#****** ");           as a weighted average of prlim.
       for(j=1;j<=cptcoveff;j++)        */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficresvij,"******\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }    
       oldm=oldms;savm=savms;        /* end probability of death */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
          for(j=1; j<= nlstate; j++) /* vareij */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for(h=0; h<=nhstepm; h++){
       oldm=oldms;savm=savms;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);          }
       if(popbased==1){  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
        }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      } /* End theta */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       epj=vector(1,nlstate+1);      for(h=0; h<=nhstepm; h++) /* veij */
       for(age=bage; age <=fage ;age++){        for(j=1; j<=nlstate;j++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(theta=1; theta <=npar; theta++)
         if (popbased==1) {            trgradg[h][j][theta]=gradg[h][theta][j];
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         }        for(theta=1; theta <=npar; theta++)
                  trgradgp[j][theta]=gradgp[theta][j];
         fprintf(ficrest," %4.0f",age);    
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      for(i=1;i<=nlstate;i++)
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        for(j=1;j<=nlstate;j++)
           }          vareij[i][j][(int)age] =0.;
           epj[nlstate+1] +=epj[j];  
         }      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
         for(i=1, vepp=0.;i <=nlstate;i++)          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           for(j=1;j <=nlstate;j++)          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
             vepp += vareij[i][j][(int)age];          for(i=1;i<=nlstate;i++)
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            for(j=1;j<=nlstate;j++)
         for(j=1;j <=nlstate;j++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        }
         }      }
         fprintf(ficrest,"\n");    
       }      /* pptj */
     }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 free_matrix(mint,1,maxwav,1,n);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     free_vector(weight,1,n);          varppt[j][i]=doldmp[j][i];
   fclose(ficreseij);      /* end ppptj */
   fclose(ficresvij);      /*  x centered again */
   fclose(ficrest);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fclose(ficpar);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   free_vector(epj,1,nlstate+1);   
        if (popbased==1) {
   /*------- Variance limit prevalence------*/          if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
   strcpy(fileresvpl,"vpl");            prlim[i][i]=probs[(int)age][i][ij];
   strcat(fileresvpl,fileres);        }else{ /* mobilav */ 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          for(i=1; i<=nlstate;i++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            prlim[i][i]=mobaverage[(int)age][i][ij];
     exit(0);        }
   }      }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);               
       /* This for computing probability of death (h=1 means
   k=0;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   for(cptcov=1;cptcov<=i1;cptcov++){         as a weighted average of prlim.
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      */
       k=k+1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficresvpl,"\n#****** ");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       for(j=1;j<=cptcoveff;j++)          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }    
       fprintf(ficresvpl,"******\n");      /* end probability of death */
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       oldm=oldms;savm=savms;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     }        for(i=1; i<=nlstate;i++){
  }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   fclose(ficresvpl);      } 
       fprintf(ficresprobmorprev,"\n");
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=1; j<=nlstate;j++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
        fprintf(ficresvij,"\n");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(gp,0,nhstepm,1,nlstate);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(gm,0,nhstepm,1,nlstate);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(matcov,1,npar,1,npar);    } /* End age */
   free_vector(delti,1,npar);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   free_matrix(agev,1,maxwav,1,imx);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fprintf(fichtm,"\n</body>");    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
   fclose(fichtm);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fclose(ficgp);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if(erreur >0){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("End of Imach with error or warning %d\n",erreur);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   }else{    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
    printf("End of Imach\n");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
    fprintf(ficlog,"End of Imach\n");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   printf("See log file on %s\n",filelog);  */
   fclose(ficlog);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    free_vector(xp,1,npar);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    free_matrix(doldm,1,nlstate,1,nlstate);
   /*------ End -----------*/    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  end:    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #ifdef windows    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* chdir(pathcd);*/    fclose(ficresprobmorprev);
 #endif    fflush(ficgp);
  /*system("wgnuplot graph.plt");*/    fflush(fichtm); 
  /*system("../gp37mgw/wgnuplot graph.plt");*/  }  /* end varevsij */
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  /************ Variance of prevlim ******************/
  strcpy(plotcmd,GNUPLOTPROGRAM);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
  strcat(plotcmd," ");  {
  strcat(plotcmd,optionfilegnuplot);    /* Variance of prevalence limit */
  system(plotcmd);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
 #ifdef windows    double **dnewm,**doldm;
   while (z[0] != 'q') {    int i, j, nhstepm, hstepm;
     /* chdir(path); */    double *xp;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    double *gp, *gm;
     scanf("%s",z);    double **gradg, **trgradg;
     if (z[0] == 'c') system("./imach");    double age,agelim;
     else if (z[0] == 'e') system(optionfilehtm);    int theta;
     else if (z[0] == 'g') system(plotcmd);    
     else if (z[0] == 'q') exit(0);    pstamp(ficresvpl);
   }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 #endif    fprintf(ficresvpl,"# Age");
 }    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4></br>this page is important in order to visualize confidence intervals and especially correlation between disability and recovery</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file.<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                else
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]);
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     
                  ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(ij <=cptcovage) { /* Bug valgrind */
                      if((j-2)==Tage[ij]) { /* Bug valgrind */
                        fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]);
                        ij++;
                      }
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8\n");
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
   
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]\n", model)) !=EOF){
       if (num_filled != 1) {
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
         }
         strcpy(model,modeltemp); 
       }
       printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     for(h=1; h <=100 ;h++){ 
       /* printf("h=%2d ", h); */
        for(k=1; k <=10; k++){
          /* printf("k=%d %d ",k,codtabm(h,k)); */
          codtab[h][k]=codtabm(h,k);
        }
        /* printf("\n"); */
     }
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
         }
       }
   
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.52  
changed lines
  Added in v.1.198


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>