Diff for /imach/src/imach.c between versions 1.2 and 1.122

version 1.2, 2001/03/13 18:10:26 version 1.122, 2006/03/20 09:45:41
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.122  2006/03/20 09:45:41  brouard
   individuals from different ages are interviewed on their health status    (Module): Weights can have a decimal point as for
   or degree of  disability. At least a second wave of interviews    English (a comma might work with a correct LC_NUMERIC environment,
   ("longitudinal") should  measure each new individual health status.    otherwise the weight is truncated).
   Health expectancies are computed from the transistions observed between    Modification of warning when the covariates values are not 0 or
   waves and are computed for each degree of severity of disability (number    1.
   of life states). More degrees you consider, more time is necessary to    Version 0.98g
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.121  2006/03/16 17:45:01  lievre
   the probabibility to be observed in state j at the second wave conditional    * imach.c (Module): Comments concerning covariates added
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    * imach.c (Module): refinements in the computation of lli if
   is a covariate. If you want to have a more complex model than "constant and    status=-2 in order to have more reliable computation if stepm is
   age", you should modify the program where the markup    not 1 month. Version 0.98f
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   The advantage that this computer programme claims, comes from that if the    status=-2 in order to have more reliable computation if stepm is
   delay between waves is not identical for each individual, or if some    not 1 month. Version 0.98f
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.119  2006/03/15 17:42:26  brouard
   hPijx is the probability to be    (Module): Bug if status = -2, the loglikelihood was
   observed in state i at age x+h conditional to the observed state i at age    computed as likelihood omitting the logarithm. Version O.98e
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.118  2006/03/14 18:20:07  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    (Module): varevsij Comments added explaining the second
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    table of variances if popbased=1 .
   and the contribution of each individual to the likelihood is simply hPijx.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Version 0.98d
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.117  2006/03/14 17:16:22  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): varevsij Comments added explaining the second
            Institut national d'études démographiques, Paris.    table of variances if popbased=1 .
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   from the European Union.    (Module): Function pstamp added
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.98d
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.116  2006/03/06 10:29:27  brouard
   **********************************************************************/    (Module): Variance-covariance wrong links and
      varian-covariance of ej. is needed (Saito).
 #include <math.h>  
 #include <stdio.h>    Revision 1.115  2006/02/27 12:17:45  brouard
 #include <stdlib.h>    (Module): One freematrix added in mlikeli! 0.98c
 #include <unistd.h>  
     Revision 1.114  2006/02/26 12:57:58  brouard
 #define MAXLINE 256    (Module): Some improvements in processing parameter
 #define FILENAMELENGTH 80    filename with strsep.
 /*#define DEBUG*/  
 #define windows    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    datafile was not closed, some imatrix were not freed and on matrix
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    allocation too.
   
 #define NINTERVMAX 8    Revision 1.112  2006/01/30 09:55:26  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.111  2006/01/25 20:38:18  brouard
 #define MAXN 80000    (Module): Lots of cleaning and bugs added (Gompertz)
 #define YEARM 12. /* Number of months per year */    (Module): Comments can be added in data file. Missing date values
 #define AGESUP 130    can be a simple dot '.'.
 #define AGEBASE 40  
     Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 int nvar;  
 static int cptcov;    Revision 1.109  2006/01/24 19:37:15  brouard
 int cptcovn;    (Module): Comments (lines starting with a #) are allowed in data.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.108  2006/01/19 18:05:42  lievre
 int ndeath=1; /* Number of dead states */    Gnuplot problem appeared...
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    To be fixed
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.107  2006/01/19 16:20:37  brouard
 int maxwav; /* Maxim number of waves */    Test existence of gnuplot in imach path
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.106  2006/01/19 13:24:36  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Some cleaning and links added in html output
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.105  2006/01/05 20:23:19  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    *** empty log message ***
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.104  2005/09/30 16:11:43  lievre
   char filerese[FILENAMELENGTH];    (Module): sump fixed, loop imx fixed, and simplifications.
  FILE  *ficresvij;    (Module): If the status is missing at the last wave but we know
   char fileresv[FILENAMELENGTH];    that the person is alive, then we can code his/her status as -2
  FILE  *ficresvpl;    (instead of missing=-1 in earlier versions) and his/her
   char fileresvpl[FILENAMELENGTH];    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
   
     Revision 1.103  2005/09/30 15:54:49  lievre
 #define NR_END 1    (Module): sump fixed, loop imx fixed, and simplifications.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define NRANSI  
 #define ITMAX 200    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 #define TOL 2.0e-4  
     Revision 1.100  2004/07/12 18:29:06  brouard
 #define CGOLD 0.3819660    Add version for Mac OS X. Just define UNIX in Makefile
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.98  2004/05/16 15:05:56  brouard
 #define TINY 1.0e-20    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 static double maxarg1,maxarg2;    state at each age, but using a Gompertz model: log u =a + b*age .
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    This is the basic analysis of mortality and should be done before any
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    other analysis, in order to test if the mortality estimated from the
      cross-longitudinal survey is different from the mortality estimated
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    from other sources like vital statistic data.
 #define rint(a) floor(a+0.5)  
     The same imach parameter file can be used but the option for mle should be -3.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Agnès, who wrote this part of the code, tried to keep most of the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    former routines in order to include the new code within the former code.
   
 int imx;    The output is very simple: only an estimate of the intercept and of
 int stepm;    the slope with 95% confident intervals.
 /* Stepm, step in month: minimum step interpolation*/  
     Current limitations:
 int m,nb;    A) Even if you enter covariates, i.e. with the
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    B) There is no computation of Life Expectancy nor Life Table.
 double **pmmij;  
     Revision 1.97  2004/02/20 13:25:42  lievre
 double *weight;    Version 0.96d. Population forecasting command line is (temporarily)
 int **s; /* Status */    suppressed.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab;    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    rewritten within the same printf. Workaround: many printfs.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 /******************************************/    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 void replace(char *s, char*t)  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
   int i;    Just cleaning
   int lg=20;  
   i=0;    Revision 1.93  2003/06/25 16:33:55  brouard
   lg=strlen(t);    (Module): On windows (cygwin) function asctime_r doesn't
   for(i=0; i<= lg; i++) {    exist so I changed back to asctime which exists.
     (s[i] = t[i]);    (Module): Version 0.96b
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 int nbocc(char *s, char occ)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   int i,j=0;    * imach.c (Repository): Duplicated warning errors corrected.
   int lg=20;    (Repository): Elapsed time after each iteration is now output. It
   i=0;    helps to forecast when convergence will be reached. Elapsed time
   lg=strlen(s);    is stamped in powell.  We created a new html file for the graphs
   for(i=0; i<= lg; i++) {    concerning matrix of covariance. It has extension -cov.htm.
   if  (s[i] == occ ) j++;  
   }    Revision 1.90  2003/06/24 12:34:15  brouard
   return j;    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   int i,lg,j,p;    (Module): Some bugs corrected for windows. Also, when
   i=0;    mle=-1 a template is output in file "or"mypar.txt with the design
   if (t[0]== occ) p=0;    of the covariance matrix to be input.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;    Revision 1.88  2003/06/23 17:54:56  brouard
   }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   lg=strlen(t);    Revision 1.87  2003/06/18 12:26:01  brouard
   for(j=0; j<p; j++) {    Version 0.96
     (u[j] = t[j]);  
     u[p]='\0';    Revision 1.86  2003/06/17 20:04:08  brouard
   }    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.85  2003/06/17 13:12:43  brouard
   }    * imach.c (Repository): Check when date of death was earlier that
 }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /********************** nrerror ********************/    assuming that the date of death was just one stepm after the
     interview.
 void nrerror(char error_text[])    (Repository): Because some people have very long ID (first column)
 {    we changed int to long in num[] and we added a new lvector for
   fprintf(stderr,"ERREUR ...\n");    memory allocation. But we also truncated to 8 characters (left
   fprintf(stderr,"%s\n",error_text);    truncation)
   exit(1);    (Repository): No more line truncation errors.
 }  
 /*********************** vector *******************/    Revision 1.84  2003/06/13 21:44:43  brouard
 double *vector(int nl, int nh)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   double *v;    many times. Probs is memory consuming and must be used with
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    parcimony.
   if (!v) nrerror("allocation failure in vector");    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   return v-nl+NR_END;  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   free((FREE_ARG)(v+nl-NR_END));  
 }  */
   /*
 /************************ivector *******************************/     Interpolated Markov Chain
 int *ivector(long nl,long nh)  
 {    Short summary of the programme:
   int *v;    
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    This program computes Healthy Life Expectancies from
   if (!v) nrerror("allocation failure in ivector");    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   return v-nl+NR_END;    first survey ("cross") where individuals from different ages are
 }    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 /******************free ivector **************************/    second wave of interviews ("longitudinal") which measure each change
 void free_ivector(int *v, long nl, long nh)    (if any) in individual health status.  Health expectancies are
 {    computed from the time spent in each health state according to a
   free((FREE_ARG)(v+nl-NR_END));    model. More health states you consider, more time is necessary to reach the
 }    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 /******************* imatrix *******************************/    probability to be observed in state j at the second wave
 int **imatrix(long nrl, long nrh, long ncl, long nch)    conditional to be observed in state i at the first wave. Therefore
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 {    'age' is age and 'sex' is a covariate. If you want to have a more
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    complex model than "constant and age", you should modify the program
   int **m;    where the markup *Covariates have to be included here again* invites
      you to do it.  More covariates you add, slower the
   /* allocate pointers to rows */    convergence.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    The advantage of this computer programme, compared to a simple
   m += NR_END;    multinomial logistic model, is clear when the delay between waves is not
   m -= nrl;    identical for each individual. Also, if a individual missed an
      intermediate interview, the information is lost, but taken into
      account using an interpolation or extrapolation.  
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    hPijx is the probability to be observed in state i at age x+h
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    conditional to the observed state i at age x. The delay 'h' can be
   m[nrl] += NR_END;    split into an exact number (nh*stepm) of unobserved intermediate
   m[nrl] -= ncl;    states. This elementary transition (by month, quarter,
      semester or year) is modelled as a multinomial logistic.  The hPx
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    matrix is simply the matrix product of nh*stepm elementary matrices
      and the contribution of each individual to the likelihood is simply
   /* return pointer to array of pointers to rows */    hPijx.
   return m;  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 /****************** free_imatrix *************************/    
 void free_imatrix(m,nrl,nrh,ncl,nch)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       int **m;             Institut national d'études démographiques, Paris.
       long nch,ncl,nrh,nrl;    This software have been partly granted by Euro-REVES, a concerted action
      /* free an int matrix allocated by imatrix() */    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    software can be distributed freely for non commercial use. Latest version
   free((FREE_ARG) (m+nrl-NR_END));    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /******************* matrix *******************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double **matrix(long nrl, long nrh, long ncl, long nch)    
 {    **********************************************************************/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /*
   double **m;    main
     read parameterfile
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    read datafile
   if (!m) nrerror("allocation failure 1 in matrix()");    concatwav
   m += NR_END;    freqsummary
   m -= nrl;    if (mle >= 1)
       mlikeli
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    print results files
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if mle==1 
   m[nrl] += NR_END;       computes hessian
   m[nrl] -= ncl;    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    open gnuplot file
   return m;    open html file
 }    period (stable) prevalence
      for age prevalim()
 /*************************free matrix ************************/    h Pij x
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    health expectancies
   free((FREE_ARG)(m+nrl-NR_END));    Variance-covariance of DFLE
 }    prevalence()
      movingaverage()
 /******************* ma3x *******************************/    varevsij() 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Variance of period (stable) prevalence
   double ***m;   end
   */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  
   m -= nrl;   
   #include <math.h>
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <stdio.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <stdlib.h>
   m[nrl] += NR_END;  #include <string.h>
   m[nrl] -= ncl;  #include <unistd.h>
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <limits.h>
   #include <sys/types.h>
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #include <sys/stat.h>
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <errno.h>
   m[nrl][ncl] += NR_END;  extern int errno;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  /* #include <sys/time.h> */
     m[nrl][j]=m[nrl][j-1]+nlay;  #include <time.h>
    #include "timeval.h"
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /* #include <libintl.h> */
     for (j=ncl+1; j<=nch; j++)  /* #define _(String) gettext (String) */
       m[i][j]=m[i][j-1]+nlay;  
   }  #define MAXLINE 256
   return m;  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /*************************free ma3x ************************/  #define FILENAMELENGTH 132
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /***************** f1dim *************************/  #define NINTERVMAX 8
 extern int ncom;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 extern double *pcom,*xicom;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 extern double (*nrfunc)(double []);  #define NCOVMAX 8 /* Maximum number of covariates */
    #define MAXN 20000
 double f1dim(double x)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   int j;  #define AGEBASE 40
   double f;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double *xt;  #ifdef UNIX
    #define DIRSEPARATOR '/'
   xt=vector(1,ncom);  #define CHARSEPARATOR "/"
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define ODIRSEPARATOR '\\'
   f=(*nrfunc)(xt);  #else
   free_vector(xt,1,ncom);  #define DIRSEPARATOR '\\'
   return f;  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /* $Id$ */
 {  /* $State$ */
   int iter;  
   double a,b,d,etemp;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   double fu,fv,fw,fx;  char fullversion[]="$Revision$ $Date$"; 
   double ftemp;  char strstart[80];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double e=0.0;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar;
   a=(ax < cx ? ax : cx);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   b=(ax > cx ? ax : cx);  int npar=NPARMAX;
   x=w=v=bx;  int nlstate=2; /* Number of live states */
   fw=fv=fx=(*f)(x);  int ndeath=1; /* Number of dead states */
   for (iter=1;iter<=ITMAX;iter++) {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     xm=0.5*(a+b);  int popbased=0;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int *wav; /* Number of waves for this individuual 0 is possible */
     printf(".");fflush(stdout);  int maxwav; /* Maxim number of waves */
 #ifdef DEBUG  int jmin, jmax; /* min, max spacing between 2 waves */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int gipmx, gsw; /* Global variables on the number of contributions 
 #endif                     to the likelihood and the sum of weights (done by funcone)*/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int mle, weightopt;
       *xmin=x;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       return fx;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     ftemp=fu;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     if (fabs(e) > tol1) {  double jmean; /* Mean space between 2 waves */
       r=(x-w)*(fx-fv);  double **oldm, **newm, **savm; /* Working pointers to matrices */
       q=(x-v)*(fx-fw);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       p=(x-v)*q-(x-w)*r;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       q=2.0*(q-r);  FILE *ficlog, *ficrespow;
       if (q > 0.0) p = -p;  int globpr; /* Global variable for printing or not */
       q=fabs(q);  double fretone; /* Only one call to likelihood */
       etemp=e;  long ipmx; /* Number of contributions */
       e=d;  double sw; /* Sum of weights */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char filerespow[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       else {  FILE *ficresilk;
         d=p/q;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
         u=x+d;  FILE *ficresprobmorprev;
         if (u-a < tol2 || b-u < tol2)  FILE *fichtm, *fichtmcov; /* Html File */
           d=SIGN(tol1,xm-x);  FILE *ficreseij;
       }  char filerese[FILENAMELENGTH];
     } else {  FILE *ficresstdeij;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileresstde[FILENAMELENGTH];
     }  FILE *ficrescveij;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char filerescve[FILENAMELENGTH];
     fu=(*f)(u);  FILE  *ficresvij;
     if (fu <= fx) {  char fileresv[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  FILE  *ficresvpl;
       SHFT(v,w,x,u)  char fileresvpl[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  char title[MAXLINE];
         } else {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
           if (fu <= fw || w == x) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
             v=w;  char command[FILENAMELENGTH];
             w=u;  int  outcmd=0;
             fv=fw;  
             fw=fu;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  char filelog[FILENAMELENGTH]; /* Log file */
             fv=fu;  char filerest[FILENAMELENGTH];
           }  char fileregp[FILENAMELENGTH];
         }  char popfile[FILENAMELENGTH];
   }  
   nrerror("Too many iterations in brent");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   *xmin=x;  
   return fx;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /****************** mnbrak ***********************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  extern long time();
             double (*func)(double))  char strcurr[80], strfor[80];
 {  
   double ulim,u,r,q, dum;  char *endptr;
   double fu;  long lval;
    double dval;
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  #define NR_END 1
   if (*fb > *fa) {  #define FREE_ARG char*
     SHFT(dum,*ax,*bx,dum)  #define FTOL 1.0e-10
       SHFT(dum,*fb,*fa,dum)  
       }  #define NRANSI 
   *cx=(*bx)+GOLD*(*bx-*ax);  #define ITMAX 200 
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  #define TOL 2.0e-4 
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  #define CGOLD 0.3819660 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define ZEPS 1.0e-10 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  #define GOLD 1.618034 
       fu=(*func)(u);  #define GLIMIT 100.0 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define TINY 1.0e-20 
       fu=(*func)(u);  
       if (fu < *fc) {  static double maxarg1,maxarg2;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
           SHFT(*fb,*fc,fu,(*func)(u))  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       u=ulim;  #define rint(a) floor(a+0.5)
       fu=(*func)(u);  
     } else {  static double sqrarg;
       u=(*cx)+GOLD*(*cx-*bx);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       fu=(*func)(u);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     }  int agegomp= AGEGOMP;
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  int imx; 
       }  int stepm=1;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /*************** linmin ************************/  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 int ncom;  
 double *pcom,*xicom;  int m,nb;
 double (*nrfunc)(double []);  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   double brent(double ax, double bx, double cx,  double *ageexmed,*agecens;
                double (*f)(double), double tol, double *xmin);  double dateintmean=0;
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double *weight;
               double *fc, double (*func)(double));  int **s; /* Status */
   int j;  double *agedc, **covar, idx;
   double xx,xmin,bx,ax;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double fx,fb,fa;  double *lsurv, *lpop, *tpop;
    
   ncom=n;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   pcom=vector(1,n);  double ftolhess; /* Tolerance for computing hessian */
   xicom=vector(1,n);  
   nrfunc=func;  /**************** split *************************/
   for (j=1;j<=n;j++) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   ax=0.0;    */ 
   xx=1.0;    char  *ss;                            /* pointer */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int   l1, l2;                         /* length counters */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    l1 = strlen(path );                   /* length of path */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #endif    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for (j=1;j<=n;j++) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     xi[j] *= xmin;      strcpy( name, path );               /* we got the fullname name because no directory */
     p[j] += xi[j];      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   free_vector(xicom,1,n);      /* get current working directory */
   free_vector(pcom,1,n);      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /*************** powell ************************/      }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      /* got dirc from getcwd*/
             double (*func)(double []))      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   void linmin(double p[], double xi[], int n, double *fret,      ss++;                               /* after this, the filename */
               double (*func)(double []));      l2 = strlen( ss );                  /* length of filename */
   int i,ibig,j;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double del,t,*pt,*ptt,*xit;      strcpy( name, ss );         /* save file name */
   double fp,fptt;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double *xits;      dirc[l1-l2] = 0;                    /* add zero */
   pt=vector(1,n);      printf(" DIRC2 = %s \n",dirc);
   ptt=vector(1,n);    }
   xit=vector(1,n);    /* We add a separator at the end of dirc if not exists */
   xits=vector(1,n);    l1 = strlen( dirc );                  /* length of directory */
   *fret=(*func)(p);    if( dirc[l1-1] != DIRSEPARATOR ){
   for (j=1;j<=n;j++) pt[j]=p[j];      dirc[l1] =  DIRSEPARATOR;
   for (*iter=1;;++(*iter)) {      dirc[l1+1] = 0; 
     fp=(*fret);      printf(" DIRC3 = %s \n",dirc);
     ibig=0;    }
     del=0.0;    ss = strrchr( name, '.' );            /* find last / */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (ss >0){
     for (i=1;i<=n;i++)      ss++;
       printf(" %d %.12f",i, p[i]);      strcpy(ext,ss);                     /* save extension */
     printf("\n");      l1= strlen( name);
     for (i=1;i<=n;i++) {      l2= strlen(ss)+1;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      strncpy( finame, name, l1-l2);
       fptt=(*fret);      finame[l1-l2]= 0;
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);  
 #endif    return( 0 );                          /* we're done */
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /******************************************/
         ibig=i;  
       }  void replace_back_to_slash(char *s, char*t)
 #ifdef DEBUG  {
       printf("%d %.12e",i,(*fret));    int i;
       for (j=1;j<=n;j++) {    int lg=0;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    i=0;
         printf(" x(%d)=%.12e",j,xit[j]);    lg=strlen(t);
       }    for(i=0; i<= lg; i++) {
       for(j=1;j<=n;j++)      (s[i] = t[i]);
         printf(" p=%.12e",p[j]);      if (t[i]== '\\') s[i]='/';
       printf("\n");    }
 #endif  }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int nbocc(char *s, char occ)
 #ifdef DEBUG  {
       int k[2],l;    int i,j=0;
       k[0]=1;    int lg=20;
       k[1]=-1;    i=0;
       printf("Max: %.12e",(*func)(p));    lg=strlen(s);
       for (j=1;j<=n;j++)    for(i=0; i<= lg; i++) {
         printf(" %.12e",p[j]);    if  (s[i] == occ ) j++;
       printf("\n");    }
       for(l=0;l<=1;l++) {    return j;
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void cutv(char *u,char *v, char*t, char occ)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 #endif       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
     i=0;
       free_vector(xit,1,n);    for(j=0; j<=strlen(t)-1; j++) {
       free_vector(xits,1,n);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       free_vector(ptt,1,n);    }
       free_vector(pt,1,n);  
       return;    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      (u[j] = t[j]);
     for (j=1;j<=n;j++) {    }
       ptt[j]=2.0*p[j]-pt[j];       u[p]='\0';
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];     for(j=0; j<= lg; j++) {
     }      if (j>=(p+1))(v[j-p-1] = t[j]);
     fptt=(*func)(ptt);    }
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /********************** nrerror ********************/
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  void nrerror(char error_text[])
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    fprintf(stderr,"ERREUR ...\n");
         }    fprintf(stderr,"%s\n",error_text);
 #ifdef DEBUG    exit(EXIT_FAILURE);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  /*********************** vector *******************/
           printf(" %.12e",xit[j]);  double *vector(int nl, int nh)
         printf("\n");  {
 #endif    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     }    if (!v) nrerror("allocation failure in vector");
   }    return v-nl+NR_END;
 }  }
   
 /**** Prevalence limit ****************/  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  
   /************************ivector *******************************/
   int i, ii,j,k;  int *ivector(long nl,long nh)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    int *v;
   double **out, cov[NCOVMAX], **pmij();    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double **newm;    if (!v) nrerror("allocation failure in ivector");
   double agefin, delaymax=50 ; /* Max number of years to converge */    return v-nl+NR_END;
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /******************free ivector **************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void free_ivector(int *v, long nl, long nh)
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(v+nl-NR_END));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /************************lvector *******************************/
     cov[1]=1.;  long *lvector(long nl,long nh)
     cov[2]=agefin;  {
     if (cptcovn>0){    long *v;
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     }    if (!v) nrerror("allocation failure in ivector");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return v-nl+NR_END;
   }
     savm=oldm;  
     oldm=newm;  /******************free lvector **************************/
     maxmax=0.;  void free_lvector(long *v, long nl, long nh)
     for(j=1;j<=nlstate;j++){  {
       min=1.;    free((FREE_ARG)(v+nl-NR_END));
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /******************* imatrix *******************************/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         prlim[i][j]= newm[i][j]/(1-sumnew);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         max=FMAX(max,prlim[i][j]);  { 
         min=FMIN(min,prlim[i][j]);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
       maxmin=max-min;    
       maxmax=FMAX(maxmax,maxmin);    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if(maxmax < ftolpl){    if (!m) nrerror("allocation failure 1 in matrix()"); 
       return prlim;    m += NR_END; 
     }    m -= nrl; 
   }    
 }    
     /* allocate rows and set pointers to them */ 
 /*************** transition probabilities **********/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m[nrl] += NR_END; 
 {    m[nrl] -= ncl; 
   double s1, s2;    
   /*double t34;*/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int i,j,j1, nc, ii, jj;    
     /* return pointer to array of pointers to rows */ 
     for(i=1; i<= nlstate; i++){    return m; 
     for(j=1; j<i;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /****************** free_imatrix *************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void free_imatrix(m,nrl,nrh,ncl,nch)
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        int **m;
       }        long nch,ncl,nrh,nrl; 
       ps[i][j]=s2;       /* free an int matrix allocated by imatrix() */ 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for(j=i+1; j<=nlstate+ndeath;j++){    free((FREE_ARG) (m+nrl-NR_END)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /******************* matrix *******************************/
       }  double **matrix(long nrl, long nrh, long ncl, long nch)
       ps[i][j]=s2;  {
     }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   }    double **m;
   for(i=1; i<= nlstate; i++){  
      s1=0;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=1; j<i; j++)    if (!m) nrerror("allocation failure 1 in matrix()");
       s1+=exp(ps[i][j]);    m += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m -= nrl;
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=1; j<i; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl] += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl] -= ncl;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   } /* end i */    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){     */
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    free((FREE_ARG)(m+nrl-NR_END));
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /******************* ma3x *******************************/
     printf("\n ");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 /*    double ***m;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     return ps;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /**************** Product of 2 matrices ******************/  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    m[nrl] -= ncl;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   long i, j, k;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for(i=nrl; i<= nrh; i++)    m[nrl][ncl] += NR_END;
     for(k=ncolol; k<=ncoloh; k++)    m[nrl][ncl] -= nll;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    for (j=ncl+1; j<=nch; j++) 
         out[i][k] +=in[i][j]*b[j][k];      m[nrl][j]=m[nrl][j-1]+nlay;
     
   return out;    for (i=nrl+1; i<=nrh; i++) {
 }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 /************* Higher Matrix Product ***************/    }
     return m; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    */
      duration (i.e. until  }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*************************free ma3x ************************/
      (typically every 2 years instead of every month which is too big).  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      Model is determined by parameters x and covariates have to be  {
      included manually here.    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
      */    free((FREE_ARG)(m+nrl-NR_END));
   }
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /*************** function subdirf ***********/
   double **newm;  char *subdirf(char fileres[])
   {
   /* Hstepm could be zero and should return the unit matrix */    /* Caution optionfilefiname is hidden */
   for (i=1;i<=nlstate+ndeath;i++)    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,"/"); /* Add to the right */
       oldm[i][j]=(i==j ? 1.0 : 0.0);    strcat(tmpout,fileres);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return tmpout;
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /*************** function subdirf2 ***********/
     for(d=1; d <=hstepm; d++){  char *subdirf2(char fileres[], char *preop)
       newm=savm;  {
       /* Covariates have to be included here again */    
       cov[1]=1.;    /* Caution optionfilefiname is hidden */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    strcpy(tmpout,optionfilefiname);
       if (cptcovn>0){    strcat(tmpout,"/");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    return tmpout;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** function subdirf3 ***********/
       savm=oldm;  char *subdirf3(char fileres[], char *preop, char *preop2)
       oldm=newm;  {
     }    
     for(i=1; i<=nlstate+ndeath; i++)    /* Caution optionfilefiname is hidden */
       for(j=1;j<=nlstate+ndeath;j++) {    strcpy(tmpout,optionfilefiname);
         po[i][j][h]=newm[i][j];    strcat(tmpout,"/");
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    strcat(tmpout,preop);
          */    strcat(tmpout,preop2);
       }    strcat(tmpout,fileres);
   } /* end h */    return tmpout;
   return po;  }
 }  
   /***************** f1dim *************************/
   extern int ncom; 
 /*************** log-likelihood *************/  extern double *pcom,*xicom;
 double func( double *x)  extern double (*nrfunc)(double []); 
 {   
   int i, ii, j, k, mi, d;  double f1dim(double x) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  { 
   double **out;    int j; 
   double sw; /* Sum of weights */    double f;
   double lli; /* Individual log likelihood */    double *xt; 
   long ipmx;   
   /*extern weight */    xt=vector(1,ncom); 
   /* We are differentiating ll according to initial status */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    f=(*nrfunc)(xt); 
   /*for(i=1;i<imx;i++)    free_vector(xt,1,ncom); 
 printf(" %d\n",s[4][i]);    return f; 
   */  } 
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*****************brent *************************/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
        for(mi=1; mi<= wav[i]-1; mi++){  { 
       for (ii=1;ii<=nlstate+ndeath;ii++)    int iter; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double a,b,d,etemp;
             for(d=0; d<dh[mi][i]; d++){    double fu,fv,fw,fx;
         newm=savm;    double ftemp;
           cov[1]=1.;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double e=0.0; 
           if (cptcovn>0){   
             for (k=1; k<=cptcovn;k++) {    a=(ax < cx ? ax : cx); 
               cov[2+k]=covar[Tvar[k]][i];    b=(ax > cx ? ax : cx); 
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/    x=w=v=bx; 
             }    fw=fv=fx=(*f)(x); 
             }    for (iter=1;iter<=ITMAX;iter++) { 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      xm=0.5*(a+b); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
           savm=oldm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           oldm=newm;      printf(".");fflush(stdout);
       } /* end mult */      fprintf(ficlog,".");fflush(ficlog);
      #ifdef DEBUG
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       ipmx +=1;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       sw += weight[i];  #endif
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     } /* end of wave */        *xmin=x; 
   } /* end of individual */        return fx; 
       } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      ftemp=fu;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      if (fabs(e) > tol1) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   return -l;        p=(x-v)*q-(x-w)*r; 
 }        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
         q=fabs(q); 
 /*********** Maximum Likelihood Estimation ***************/        etemp=e; 
         e=d; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int i,j, iter;        else { 
   double **xi,*delti;          d=p/q; 
   double fret;          u=x+d; 
   xi=matrix(1,npar,1,npar);          if (u-a < tol2 || b-u < tol2) 
   for (i=1;i<=npar;i++)            d=SIGN(tol1,xm-x); 
     for (j=1;j<=npar;j++)        } 
       xi[i][j]=(i==j ? 1.0 : 0.0);      } else { 
   printf("Powell\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      fu=(*f)(u); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 /**** Computes Hessian and covariance matrix ***/          } else { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            if (u < x) a=u; else b=u; 
 {            if (fu <= fw || w == x) { 
   double  **a,**y,*x,pd;              v=w; 
   double **hess;              w=u; 
   int i, j,jk;              fv=fw; 
   int *indx;              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
   double hessii(double p[], double delta, int theta, double delti[]);              v=u; 
   double hessij(double p[], double delti[], int i, int j);              fv=fu; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;            } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;          } 
     } 
     nrerror("Too many iterations in brent"); 
   hess=matrix(1,npar,1,npar);    *xmin=x; 
     return fx; 
   printf("\nCalculation of the hessian matrix. Wait...\n");  } 
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /****************** mnbrak ***********************/
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   }              double (*func)(double)) 
   { 
   for (i=1;i<=npar;i++) {    double ulim,u,r,q, dum;
     for (j=1;j<=npar;j++)  {    double fu; 
       if (j>i) {   
         printf(".%d%d",i,j);fflush(stdout);    *fa=(*func)(*ax); 
         hess[i][j]=hessij(p,delti,i,j);    *fb=(*func)(*bx); 
         hess[j][i]=hess[i][j];    if (*fb > *fa) { 
       }      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
   }        } 
   printf("\n");    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    while (*fb > *fc) { 
        r=(*bx-*ax)*(*fb-*fc); 
   a=matrix(1,npar,1,npar);      q=(*bx-*cx)*(*fb-*fa); 
   y=matrix(1,npar,1,npar);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   x=vector(1,npar);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   indx=ivector(1,npar);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for (i=1;i<=npar;i++)      if ((*bx-u)*(u-*cx) > 0.0) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fu=(*func)(u); 
   ludcmp(a,npar,indx,&pd);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
   for (j=1;j<=npar;j++) {        if (fu < *fc) { 
     for (i=1;i<=npar;i++) x[i]=0;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     x[j]=1;            SHFT(*fb,*fc,fu,(*func)(u)) 
     lubksb(a,npar,indx,x);            } 
     for (i=1;i<=npar;i++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       matcov[i][j]=x[i];        u=ulim; 
     }        fu=(*func)(u); 
   }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   printf("\n#Hessian matrix#\n");        fu=(*func)(u); 
   for (i=1;i<=npar;i++) {      } 
     for (j=1;j<=npar;j++) {      SHFT(*ax,*bx,*cx,u) 
       printf("%.3e ",hess[i][j]);        SHFT(*fa,*fb,*fc,fu) 
     }        } 
     printf("\n");  } 
   }  
   /*************** linmin ************************/
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  int ncom; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  double *pcom,*xicom;
   ludcmp(a,npar,indx,&pd);  double (*nrfunc)(double []); 
    
   /*  printf("\n#Hessian matrix recomputed#\n");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   for (j=1;j<=npar;j++) {    double brent(double ax, double bx, double cx, 
     for (i=1;i<=npar;i++) x[i]=0;                 double (*f)(double), double tol, double *xmin); 
     x[j]=1;    double f1dim(double x); 
     lubksb(a,npar,indx,x);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for (i=1;i<=npar;i++){                double *fc, double (*func)(double)); 
       y[i][j]=x[i];    int j; 
       printf("%.3e ",y[i][j]);    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
     printf("\n");   
   }    ncom=n; 
   */    pcom=vector(1,n); 
     xicom=vector(1,n); 
   free_matrix(a,1,npar,1,npar);    nrfunc=func; 
   free_matrix(y,1,npar,1,npar);    for (j=1;j<=n;j++) { 
   free_vector(x,1,npar);      pcom[j]=p[j]; 
   free_ivector(indx,1,npar);      xicom[j]=xi[j]; 
   free_matrix(hess,1,npar,1,npar);    } 
     ax=0.0; 
     xx=1.0; 
 }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 /*************** hessian matrix ****************/  #ifdef DEBUG
 double hessii( double x[], double delta, int theta, double delti[])    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i;  #endif
   int l=1, lmax=20;    for (j=1;j<=n;j++) { 
   double k1,k2;      xi[j] *= xmin; 
   double p2[NPARMAX+1];      p[j] += xi[j]; 
   double res;    } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    free_vector(xicom,1,n); 
   double fx;    free_vector(pcom,1,n); 
   int k=0,kmax=10;  } 
   double l1;  
   char *asc_diff_time(long time_sec, char ascdiff[])
   fx=func(x);  {
   for (i=1;i<=npar;i++) p2[i]=x[i];    long sec_left, days, hours, minutes;
   for(l=0 ; l <=lmax; l++){    days = (time_sec) / (60*60*24);
     l1=pow(10,l);    sec_left = (time_sec) % (60*60*24);
     delts=delt;    hours = (sec_left) / (60*60) ;
     for(k=1 ; k <kmax; k=k+1){    sec_left = (sec_left) %(60*60);
       delt = delta*(l1*k);    minutes = (sec_left) /60;
       p2[theta]=x[theta] +delt;    sec_left = (sec_left) % (60);
       k1=func(p2)-fx;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       p2[theta]=x[theta]-delt;    return ascdiff;
       k2=func(p2)-fx;  }
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*************** powell ************************/
        void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 #ifdef DEBUG              double (*func)(double [])) 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  { 
 #endif    void linmin(double p[], double xi[], int n, double *fret, 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */                double (*func)(double [])); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    int i,ibig,j; 
         k=kmax;    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    double *xits;
         k=kmax; l=lmax*10.;    int niterf, itmp;
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    pt=vector(1,n); 
         delts=delt;    ptt=vector(1,n); 
       }    xit=vector(1,n); 
     }    xits=vector(1,n); 
   }    *fret=(*func)(p); 
   delti[theta]=delts;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   return res;      for (*iter=1;;++(*iter)) { 
 }      fp=(*fret); 
       ibig=0; 
 double hessij( double x[], double delti[], int thetai,int thetaj)      del=0.0; 
 {      last_time=curr_time;
   int i;      (void) gettimeofday(&curr_time,&tzp);
   int l=1, l1, lmax=20;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double k1,k2,k3,k4,res,fx;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   double p2[NPARMAX+1];      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   int k;      */
      for (i=1;i<=n;i++) {
   fx=func(x);        printf(" %d %.12f",i, p[i]);
   for (k=1; k<=2; k++) {        fprintf(ficlog," %d %.12lf",i, p[i]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        fprintf(ficrespow," %.12lf", p[i]);
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      printf("\n");
     k1=func(p2)-fx;      fprintf(ficlog,"\n");
        fprintf(ficrespow,"\n");fflush(ficrespow);
     p2[thetai]=x[thetai]+delti[thetai]/k;      if(*iter <=3){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        tm = *localtime(&curr_time.tv_sec);
     k2=func(p2)-fx;        strcpy(strcurr,asctime(&tm));
    /*       asctime_r(&tm,strcurr); */
     p2[thetai]=x[thetai]-delti[thetai]/k;        forecast_time=curr_time; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        itmp = strlen(strcurr);
     k3=func(p2)-fx;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
            strcurr[itmp-1]='\0';
     p2[thetai]=x[thetai]-delti[thetai]/k;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     k4=func(p2)-fx;        for(niterf=10;niterf<=30;niterf+=10){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 #ifdef DEBUG          tmf = *localtime(&forecast_time.tv_sec);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*      asctime_r(&tmf,strfor); */
 #endif          strcpy(strfor,asctime(&tmf));
   }          itmp = strlen(strfor);
   return res;          if(strfor[itmp-1]=='\n')
 }          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /************** Inverse of matrix **************/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 void ludcmp(double **a, int n, int *indx, double *d)        }
 {      }
   int i,imax,j,k;      for (i=1;i<=n;i++) { 
   double big,dum,sum,temp;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double *vv;        fptt=(*fret); 
    #ifdef DEBUG
   vv=vector(1,n);        printf("fret=%lf \n",*fret);
   *d=1.0;        fprintf(ficlog,"fret=%lf \n",*fret);
   for (i=1;i<=n;i++) {  #endif
     big=0.0;        printf("%d",i);fflush(stdout);
     for (j=1;j<=n;j++)        fprintf(ficlog,"%d",i);fflush(ficlog);
       if ((temp=fabs(a[i][j])) > big) big=temp;        linmin(p,xit,n,fret,func); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        if (fabs(fptt-(*fret)) > del) { 
     vv[i]=1.0/big;          del=fabs(fptt-(*fret)); 
   }          ibig=i; 
   for (j=1;j<=n;j++) {        } 
     for (i=1;i<j;i++) {  #ifdef DEBUG
       sum=a[i][j];        printf("%d %.12e",i,(*fret));
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        fprintf(ficlog,"%d %.12e",i,(*fret));
       a[i][j]=sum;        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     big=0.0;          printf(" x(%d)=%.12e",j,xit[j]);
     for (i=j;i<=n;i++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       sum=a[i][j];        }
       for (k=1;k<j;k++)        for(j=1;j<=n;j++) {
         sum -= a[i][k]*a[k][j];          printf(" p=%.12e",p[j]);
       a[i][j]=sum;          fprintf(ficlog," p=%.12e",p[j]);
       if ( (dum=vv[i]*fabs(sum)) >= big) {        }
         big=dum;        printf("\n");
         imax=i;        fprintf(ficlog,"\n");
       }  #endif
     }      } 
     if (j != imax) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for (k=1;k<=n;k++) {  #ifdef DEBUG
         dum=a[imax][k];        int k[2],l;
         a[imax][k]=a[j][k];        k[0]=1;
         a[j][k]=dum;        k[1]=-1;
       }        printf("Max: %.12e",(*func)(p));
       *d = -(*d);        fprintf(ficlog,"Max: %.12e",(*func)(p));
       vv[imax]=vv[j];        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
     indx[j]=imax;          fprintf(ficlog," %.12e",p[j]);
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {        printf("\n");
       dum=1.0/(a[j][j]);        fprintf(ficlog,"\n");
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   free_vector(vv,1,n);  /* Doesn't work */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 ;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 void lubksb(double **a, int n, int *indx, double b[])          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   int i,ii=0,ip,j;  #endif
   double sum;  
    
   for (i=1;i<=n;i++) {        free_vector(xit,1,n); 
     ip=indx[i];        free_vector(xits,1,n); 
     sum=b[ip];        free_vector(ptt,1,n); 
     b[ip]=b[i];        free_vector(pt,1,n); 
     if (ii)        return; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      } 
     else if (sum) ii=i;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     b[i]=sum;      for (j=1;j<=n;j++) { 
   }        ptt[j]=2.0*p[j]-pt[j]; 
   for (i=n;i>=1;i--) {        xit[j]=p[j]-pt[j]; 
     sum=b[i];        pt[j]=p[j]; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      } 
     b[i]=sum/a[i][i];      fptt=(*func)(ptt); 
   }      if (fptt < fp) { 
 }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 /************ Frequencies ********************/          linmin(p,xit,n,fret,func); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          for (j=1;j<=n;j++) { 
 {  /* Some frequencies */            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          }
   double ***freq; /* Frequencies */  #ifdef DEBUG
   double *pp;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double pos;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   FILE *ficresp;          for(j=1;j<=n;j++){
   char fileresp[FILENAMELENGTH];            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   pp=vector(1,nlstate);          }
           printf("\n");
   strcpy(fileresp,"p");          fprintf(ficlog,"\n");
   strcat(fileresp,fileres);  #endif
   if((ficresp=fopen(fileresp,"w"))==NULL) {        }
     printf("Problem with prevalence resultfile: %s\n", fileresp);      } 
     exit(0);    } 
   }  } 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /**** Prevalence limit (stable or period prevalence)  ****************/
   
   j=cptcovn;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for(k1=1; k1<=j;k1++){       matrix by transitions matrix until convergence is reached */
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
         for (i=-1; i<=nlstate+ndeath; i++)      double **matprod2();
          for (jk=-1; jk<=nlstate+ndeath; jk++)      double **out, cov[NCOVMAX], **pmij();
            for(m=agemin; m <= agemax+3; m++)    double **newm;
              freq[i][jk][m]=0;    double agefin, delaymax=50 ; /* Max number of years to converge */
          
        for (i=1; i<=imx; i++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
          bool=1;      for (j=1;j<=nlstate+ndeath;j++){
          if  (cptcovn>0) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            for (z1=1; z1<=cptcovn; z1++)      }
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;  
          }     cov[1]=1.;
           if (bool==1) {   
            for(m=firstpass; m<=lastpass-1; m++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              if(agev[m][i]==0) agev[m][i]=agemax+1;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
              if(agev[m][i]==1) agev[m][i]=agemax+2;      newm=savm;
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      /* Covariates have to be included here again */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];       cov[2]=agefin;
            }    
          }        for (k=1; k<=cptcovn;k++) {
        }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         if  (cptcovn>0) {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          fprintf(ficresp, "\n#Variable");        }
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
        }        for (k=1; k<=cptcovprod;k++)
        fprintf(ficresp, "\n#");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        for(i=1; i<=nlstate;i++)  
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
        fprintf(ficresp, "\n");        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for(i=(int)agemin; i <= (int)agemax+3; i++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     if(i==(int)agemax+3)  
       printf("Total");      savm=oldm;
     else      oldm=newm;
       printf("Age %d", i);      maxmax=0.;
     for(jk=1; jk <=nlstate ; jk++){      for(j=1;j<=nlstate;j++){
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        min=1.;
         pp[jk] += freq[jk][m][i];        max=0.;
     }        for(i=1; i<=nlstate; i++) {
     for(jk=1; jk <=nlstate ; jk++){          sumnew=0;
       for(m=-1, pos=0; m <=0 ; m++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         pos += freq[jk][m][i];          prlim[i][j]= newm[i][j]/(1-sumnew);
       if(pp[jk]>=1.e-10)          max=FMAX(max,prlim[i][j]);
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          min=FMIN(min,prlim[i][j]);
       else        }
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
     for(jk=1; jk <=nlstate ; jk++){      }
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)      if(maxmax < ftolpl){
         pp[jk] += freq[jk][m][i];        return prlim;
     }      }
     for(jk=1,pos=0; jk <=nlstate ; jk++)    }
       pos += pp[jk];  }
     for(jk=1; jk <=nlstate ; jk++){  
       if(pos>=1.e-5)  /*************** transition probabilities ***************/ 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
       else  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  {
       if( i <= (int) agemax){    double s1, s2;
         if(pos>=1.e-5)    /*double t34;*/
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    int i,j,j1, nc, ii, jj;
       else  
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      for(i=1; i<= nlstate; i++){
       }        for(j=1; j<i;j++){
     }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for(jk=-1; jk <=nlstate+ndeath; jk++)            /*s2 += param[i][j][nc]*cov[nc];*/
       for(m=-1; m <=nlstate+ndeath; m++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     if(i <= (int) agemax)          }
       fprintf(ficresp,"\n");          ps[i][j]=s2;
     printf("\n");  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     }        }
     }        for(j=i+1; j<=nlstate+ndeath;j++){
  }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   fclose(ficresp);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }
   free_vector(pp,1,nlstate);          ps[i][j]=s2;
         }
 }  /* End of Freq */      }
       /*ps[3][2]=1;*/
 /************* Waves Concatenation ***************/      
       for(i=1; i<= nlstate; i++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        s1=0;
 {        for(j=1; j<i; j++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          s1+=exp(ps[i][j]);
      Death is a valid wave (if date is known).        for(j=i+1; j<=nlstate+ndeath; j++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          s1+=exp(ps[i][j]);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        ps[i][i]=1./(s1+1.);
      and mw[mi+1][i]. dh depends on stepm.        for(j=1; j<i; j++)
      */          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
   int i, mi, m;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 float sum=0.;      } /* end i */
       
   for(i=1; i<=imx; i++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     mi=0;        for(jj=1; jj<= nlstate+ndeath; jj++){
     m=firstpass;          ps[ii][jj]=0;
     while(s[m][i] <= nlstate){          ps[ii][ii]=1;
       if(s[m][i]>=1)        }
         mw[++mi][i]=m;      }
       if(m >=lastpass)      
         break;  
       else  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         m++;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     }/* end while */  /*         printf("ddd %lf ",ps[ii][jj]); */
     if (s[m][i] > nlstate){  /*       } */
       mi++;     /* Death is another wave */  /*       printf("\n "); */
       /* if(mi==0)  never been interviewed correctly before death */  /*        } */
          /* Only death is a correct wave */  /*        printf("\n ");printf("%lf ",cov[2]); */
       mw[mi][i]=m;         /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
     wav[i]=mi;      return ps;
     if(mi==0)  }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }  /**************** Product of 2 matrices ******************/
   
   for(i=1; i<=imx; i++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for(mi=1; mi<wav[i];mi++){  {
       if (stepm <=0)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         dh[mi][i]=1;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       else{    /* in, b, out are matrice of pointers which should have been initialized 
         if (s[mw[mi+1][i]][i] > nlstate) {       before: only the contents of out is modified. The function returns
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       a pointer to pointers identical to out */
           if(j=0) j=1;  /* Survives at least one month after exam */    long i, j, k;
         }    for(i=nrl; i<= nrh; i++)
         else{      for(k=ncolol; k<=ncoloh; k++)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/          out[i][k] +=in[i][j]*b[j][k];
   
           k=k+1;    return out;
           if (j >= jmax) jmax=j;  }
           else if (j <= jmin)jmin=j;  
           sum=sum+j;  
         }  /************* Higher Matrix Product ***************/
         jk= j/stepm;  
         jl= j -jk*stepm;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         ju= j -(jk+1)*stepm;  {
         if(jl <= -ju)    /* Computes the transition matrix starting at age 'age' over 
           dh[mi][i]=jk;       'nhstepm*hstepm*stepm' months (i.e. until
         else       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           dh[mi][i]=jk+1;       nhstepm*hstepm matrices. 
         if(dh[mi][i]==0)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           dh[mi][i]=1; /* At least one step */       (typically every 2 years instead of every month which is too big 
       }       for the memory).
     }       Model is determined by parameters x and covariates have to be 
   }       included manually here. 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);  
 }       */
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)    int i, j, d, h, k;
 {    double **out, cov[NCOVMAX];
   int Ndum[80],ij, k, j, i;    double **newm;
   int cptcode=0;  
   for (k=0; k<79; k++) Ndum[k]=0;    /* Hstepm could be zero and should return the unit matrix */
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   for (j=1; j<=cptcovn; j++) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for (i=1; i<=imx; i++) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
       ij=(int)(covar[Tvar[j]][i]);      }
       Ndum[ij]++;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       if (ij > cptcode) cptcode=ij;    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        newm=savm;
     for (i=0; i<=cptcode; i++) {        /* Covariates have to be included here again */
       if(Ndum[i]!=0) ncodemax[j]++;        cov[1]=1.;
     }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     ij=1;        for (k=1; k<=cptcovage;k++)
     for (i=1; i<=ncodemax[j]; i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=0; k<=79; k++) {        for (k=1; k<=cptcovprod;k++)
         if (Ndum[k] != 0) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           nbcode[Tvar[j]][ij]=k;  
           ij++;  
         }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         if (ij > ncodemax[j]) break;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }          savm=oldm;
         oldm=newm;
   }      }
       for(i=1; i<=nlstate+ndeath; i++)
 /*********** Health Expectancies ****************/        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 {           */
   /* Health expectancies */        }
   int i, j, nhstepm, hstepm, h;    } /* end h */
   double age, agelim,hf;    return po;
   double ***p3mat;  }
    
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  /*************** log-likelihood *************/
   for(i=1; i<=nlstate;i++)  double func( double *x)
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficreseij," %1d-%1d",i,j);    int i, ii, j, k, mi, d, kk;
   fprintf(ficreseij,"\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   hstepm=1*YEARM; /*  Every j years of age (in month) */    double sw; /* Sum of weights */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double lli; /* Individual log likelihood */
     int s1, s2;
   agelim=AGESUP;    double bbh, survp;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    long ipmx;
     /* nhstepm age range expressed in number of stepm */    /*extern weight */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    /* We are differentiating ll according to initial status */
     /* Typically if 20 years = 20*12/6=40 stepm */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     if (stepm >= YEARM) hstepm=1;    /*for(i=1;i<imx;i++) 
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      printf(" %d\n",s[4][i]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    cov[1]=1.;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     if(mle==1){
     for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           eij[i][j][(int)age] +=p3mat[i][j][h];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     hf=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hf=stepm/YEARM;            }
     fprintf(ficreseij,"%.0f",age );          for(d=0; d<dh[mi][i]; d++){
     for(i=1; i<=nlstate;i++)            newm=savm;
       for(j=1; j<=nlstate;j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficreseij,"\n");            }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /************ Variance ******************/          } /* end mult */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        
 {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   /* Variance of health expectancies */          /* But now since version 0.9 we anticipate for bias at large stepm.
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double **newm;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double **dnewm,**doldm;           * the nearest (and in case of equal distance, to the lowest) interval but now
   int i, j, nhstepm, hstepm, h;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int k, cptcode;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
    double *xp;           * probability in order to take into account the bias as a fraction of the way
   double **gp, **gm;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   double ***gradg, ***trgradg;           * -stepm/2 to stepm/2 .
   double ***p3mat;           * For stepm=1 the results are the same as for previous versions of Imach.
   double age,agelim;           * For stepm > 1 the results are less biased than in previous versions. 
   int theta;           */
           s1=s[mw[mi][i]][i];
    fprintf(ficresvij,"# Covariances of life expectancies\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficresvij,"# Age");          bbh=(double)bh[mi][i]/(double)stepm; 
   for(i=1; i<=nlstate;i++)          /* bias bh is positive if real duration
     for(j=1; j<=nlstate;j++)           * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);           */
   fprintf(ficresvij,"\n");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   xp=vector(1,npar);            /* i.e. if s2 is a death state and if the date of death is known 
   dnewm=matrix(1,nlstate,1,npar);               then the contribution to the likelihood is the probability to 
   doldm=matrix(1,nlstate,1,nlstate);               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
   hstepm=1*YEARM; /* Every year of age */               minus probability to die before dh-stepm . 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */               In version up to 0.92 likelihood was computed
   agelim = AGESUP;          as if date of death was unknown. Death was treated as any other
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          health state: the date of the interview describes the actual state
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          and not the date of a change in health state. The former idea was
     if (stepm >= YEARM) hstepm=1;          to consider that at each interview the state was recorded
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          (healthy, disable or death) and IMaCh was corrected; but when we
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          introduced the exact date of death then we should have modified
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          the contribution of an exact death to the likelihood. This new
     gp=matrix(0,nhstepm,1,nlstate);          contribution is smaller and very dependent of the step unit
     gm=matrix(0,nhstepm,1,nlstate);          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
     for(theta=1; theta <=npar; theta++){          interview up to one month before death multiplied by the
       for(i=1; i<=npar; i++){ /* Computes gradient */          probability to die within a month. Thanks to Chris
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            which slows down the processing. The difference can be up to 10%
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lower mortality.
       for(j=1; j<= nlstate; j++){            */
         for(h=0; h<=nhstepm; h++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }          } else if  (s2==-2) {
       }            for (j=1,survp=0. ; j<=nlstate; j++) 
                  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(i=1; i<=npar; i++) /* Computes gradient */            /*survp += out[s1][j]; */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            lli= log(survp);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          
       for(j=1; j<= nlstate; j++){          else if  (s2==-4) { 
         for(h=0; h<=nhstepm; h++){            for (j=3,survp=0. ; j<=nlstate; j++)  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            lli= log(survp); 
         }          } 
       }  
       for(j=1; j<= nlstate; j++)          else if  (s2==-5) { 
         for(h=0; h<=nhstepm; h++){            for (j=1,survp=0. ; j<=2; j++)  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
     } /* End theta */          } 
           
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(h=0; h<=nhstepm; h++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for(j=1; j<=nlstate;j++)          } 
         for(theta=1; theta <=npar; theta++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           trgradg[h][j][theta]=gradg[h][theta][j];          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(i=1;i<=nlstate;i++)          ipmx +=1;
       for(j=1;j<=nlstate;j++)          sw += weight[i];
         vareij[i][j][(int)age] =0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(h=0;h<=nhstepm;h++){        } /* end of wave */
       for(k=0;k<=nhstepm;k++){      } /* end of individual */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    }  else if(mle==2){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(j=1;j<=nlstate;j++)        for(mi=1; mi<= wav[i]-1; mi++){
             vareij[i][j][(int)age] += doldm[i][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     h=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) h=stepm/YEARM;            }
     fprintf(ficresvij,"%.0f ",age );          for(d=0; d<=dh[mi][i]; d++){
     for(i=1; i<=nlstate;i++)            newm=savm;
       for(j=1; j<=nlstate;j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficresvij,"\n");            }
     free_matrix(gp,0,nhstepm,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_matrix(gm,0,nhstepm,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            savm=oldm;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            oldm=newm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /* end mult */
   } /* End age */        
            s1=s[mw[mi][i]][i];
   free_vector(xp,1,npar);          s2=s[mw[mi+1][i]][i];
   free_matrix(doldm,1,nlstate,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_matrix(dnewm,1,nlstate,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /************ Variance of prevlim ******************/        } /* end of wave */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      } /* end of individual */
 {    }  else if(mle==3){  /* exponential inter-extrapolation */
   /* Variance of prevalence limit */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **newm;        for(mi=1; mi<= wav[i]-1; mi++){
   double **dnewm,**doldm;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, j, nhstepm, hstepm;            for (j=1;j<=nlstate+ndeath;j++){
   int k, cptcode;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *gp, *gm;            }
   double **gradg, **trgradg;          for(d=0; d<dh[mi][i]; d++){
   double age,agelim;            newm=savm;
   int theta;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresvpl,"# Age");            }
   for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresvpl," %1d-%1d",i,i);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresvpl,"\n");            savm=oldm;
             oldm=newm;
   xp=vector(1,npar);          } /* end mult */
   dnewm=matrix(1,nlstate,1,npar);        
   doldm=matrix(1,nlstate,1,nlstate);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   hstepm=1*YEARM; /* Every year of age */          bbh=(double)bh[mi][i]/(double)stepm; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   agelim = AGESUP;          ipmx +=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          sw += weight[i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (stepm >= YEARM) hstepm=1;        } /* end of wave */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } /* end of individual */
     gradg=matrix(1,npar,1,nlstate);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     gp=vector(1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gm=vector(1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for(theta=1; theta <=npar; theta++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=npar; i++){ /* Computes gradient */            for (j=1;j<=nlstate+ndeath;j++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
         gp[i] = prlim[i][i];            newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++) /* Computes gradient */            for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)          
         gm[i] = prlim[i][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1;i<=nlstate;i++)            savm=oldm;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            oldm=newm;
     } /* End theta */          } /* end mult */
         
     trgradg =matrix(1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for(j=1; j<=nlstate;j++)          if( s2 > nlstate){ 
       for(theta=1; theta <=npar; theta++)            lli=log(out[s1][s2] - savm[s1][s2]);
         trgradg[j][theta]=gradg[theta][j];          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] =0.;          ipmx +=1;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          sw += weight[i];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i=1;i<=nlstate;i++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        } /* end of wave */
       } /* end of individual */
     fprintf(ficresvpl,"%.0f ",age );    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficresvpl,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
     free_vector(gp,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_vector(gm,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     free_matrix(gradg,1,npar,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(trgradg,1,nlstate,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   } /* End age */            }
           for(d=0; d<dh[mi][i]; d++){
   free_vector(xp,1,npar);            newm=savm;
   free_matrix(doldm,1,nlstate,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(dnewm,1,nlstate,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
           
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /***********************************************/            savm=oldm;
 /**************** Main Program *****************/            oldm=newm;
 /***********************************************/          } /* end mult */
         
 /*int main(int argc, char *argv[])*/          s1=s[mw[mi][i]][i];
 int main()          s2=s[mw[mi+1][i]][i];
 {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;          sw += weight[i];
   double agedeb, agefin,hf;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double agemin=1.e20, agemax=-1.e20;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
   double fret;      } /* end of individual */
   double **xi,tmp,delta;    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double dum; /* Dummy variable */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double ***p3mat;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int *indx;    return -l;
   char line[MAXLINE], linepar[MAXLINE];  }
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  /*************** log-likelihood *************/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];  double funcone( double *x)
   char filerest[FILENAMELENGTH];  {
   char fileregp[FILENAMELENGTH];    /* Same as likeli but slower because of a lot of printf and if */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    int i, ii, j, k, mi, d, kk;
   int firstobs=1, lastobs=10;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   int sdeb, sfin; /* Status at beginning and end */    double **out;
   int c,  h , cpt,l;    double lli; /* Individual log likelihood */
   int ju,jl, mi;    double llt;
   int i1,j1, k1,jk,aa,bb, stepsize;    int s1, s2;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double bbh, survp;
      /*extern weight */
   int hstepm, nhstepm;    /* We are differentiating ll according to initial status */
   double bage, fage, age, agelim, agebase;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double ftolpl=FTOL;    /*for(i=1;i<imx;i++) 
   double **prlim;      printf(" %d\n",s[4][i]);
   double *severity;    */
   double ***param; /* Matrix of parameters */    cov[1]=1.;
   double  *p;  
   double **matcov; /* Matrix of covariance */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double ***delti3; /* Scale */  
   double *delti; /* Scale */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***eij, ***vareij;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **varpl; /* Variances of prevalence limits by age */      for(mi=1; mi<= wav[i]-1; mi++){
   double *epj, vepp;        for (ii=1;ii<=nlstate+ndeath;ii++)
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";          for (j=1;j<=nlstate+ndeath;j++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char z[1]="c", occ;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #include <sys/time.h>          }
 #include <time.h>        for(d=0; d<dh[mi][i]; d++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          newm=savm;
   /* long total_usecs;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   struct timeval start_time, end_time;          for (kk=1; kk<=cptcovage;kk++) {
              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("\nIMACH, Version 0.63");          savm=oldm;
   printf("\nEnter the parameter file name: ");          oldm=newm;
         } /* end mult */
 #ifdef windows        
   scanf("%s",pathtot);        s1=s[mw[mi][i]][i];
   getcwd(pathcd, size);        s2=s[mw[mi+1][i]][i];
   cutv(path,optionfile,pathtot,'\\');        bbh=(double)bh[mi][i]/(double)stepm; 
   chdir(path);        /* bias is positive if real duration
   replace(pathc,path);         * is higher than the multiple of stepm and negative otherwise.
 #endif         */
 #ifdef unix        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   scanf("%s",optionfile);          lli=log(out[s1][s2] - savm[s1][s2]);
 #endif        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
 /*-------- arguments in the command line --------*/            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
   strcpy(fileres,"r");        }else if (mle==1){
   strcat(fileres, optionfile);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   /*---------arguments file --------*/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     printf("Problem with optionfile %s\n",optionfile);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     goto end;          lli=log(out[s1][s2]); /* Original formula */
   }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   strcpy(filereso,"o");        } /* End of if */
   strcat(filereso,fileres);        ipmx +=1;
   if((ficparo=fopen(filereso,"w"))==NULL) {        sw += weight[i];
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   /* Reads comments: lines beginning with '#' */          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   while((c=getc(ficpar))=='#' && c!= EOF){   %11.6f %11.6f %11.6f ", \
     ungetc(c,ficpar);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     fgets(line, MAXLINE, ficpar);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     puts(line);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     fputs(line,ficparo);            llt +=ll[k]*gipmx/gsw;
   }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   ungetc(c,ficpar);          }
           fprintf(ficresilk," %10.6f\n", -llt);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      } /* end of wave */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   covar=matrix(1,NCOVMAX,1,n);        /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   if (strlen(model)<=1) cptcovn=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   else {    if(globpr==0){ /* First time we count the contributions and weights */
     j=0;      gipmx=ipmx;
     j=nbocc(model,'+');      gsw=sw;
     cptcovn=j+1;    }
   }    return -l;
   }
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
    /*************** function likelione ***********/
   /* Read guess parameters */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    /* This routine should help understanding what is done with 
     ungetc(c,ficpar);       the selection of individuals/waves and
     fgets(line, MAXLINE, ficpar);       to check the exact contribution to the likelihood.
     puts(line);       Plotting could be done.
     fputs(line,ficparo);     */
   }    int k;
   ungetc(c,ficpar);  
      if(*globpri !=0){ /* Just counts and sums, no printings */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      strcpy(fileresilk,"ilk"); 
     for(i=1; i <=nlstate; i++)      strcat(fileresilk,fileres);
     for(j=1; j <=nlstate+ndeath-1; j++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);        printf("Problem with resultfile: %s\n", fileresilk);
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       printf("%1d%1d",i,j);      }
       for(k=1; k<=ncovmodel;k++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         fscanf(ficpar," %lf",&param[i][j][k]);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         printf(" %lf",param[i][j][k]);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         fprintf(ficparo," %lf",param[i][j][k]);      for(k=1; k<=nlstate; k++) 
       }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fscanf(ficpar,"\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       printf("\n");    }
       fprintf(ficparo,"\n");  
     }    *fretone=(*funcone)(p);
      if(*globpri !=0){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fclose(ficresilk);
   p=param[1][1];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fflush(fichtm); 
   /* Reads comments: lines beginning with '#' */    } 
   while((c=getc(ficpar))=='#' && c!= EOF){    return;
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);  /*********** Maximum Likelihood Estimation ***************/
   }  
   ungetc(c,ficpar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int i,j, iter;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double **xi;
   for(i=1; i <=nlstate; i++){    double fret;
     for(j=1; j <=nlstate+ndeath-1; j++){    double fretone; /* Only one call to likelihood */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /*  char filerespow[FILENAMELENGTH];*/
       printf("%1d%1d",i,j);    xi=matrix(1,npar,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    for (i=1;i<=npar;i++)
       for(k=1; k<=ncovmodel;k++){      for (j=1;j<=npar;j++)
         fscanf(ficpar,"%le",&delti3[i][j][k]);        xi[i][j]=(i==j ? 1.0 : 0.0);
         printf(" %le",delti3[i][j][k]);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         fprintf(ficparo," %le",delti3[i][j][k]);    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
       fscanf(ficpar,"\n");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("\n");      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }    }
   }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   delti=delti3[1][1];    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   /* Reads comments: lines beginning with '#' */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficrespow,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    powell(p,xi,npar,ftol,&iter,&fret,func);
     puts(line);  
     fputs(line,ficparo);    free_matrix(xi,1,npar,1,npar);
   }    fclose(ficrespow);
   ungetc(c,ficpar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   matcov=matrix(1,npar,1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);  }
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  /**** Computes Hessian and covariance matrix ***/
     for(j=1; j <=i; j++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       fscanf(ficpar," %le",&matcov[i][j]);  {
       printf(" %.5le",matcov[i][j]);    double  **a,**y,*x,pd;
       fprintf(ficparo," %.5le",matcov[i][j]);    double **hess;
     }    int i, j,jk;
     fscanf(ficpar,"\n");    int *indx;
     printf("\n");  
     fprintf(ficparo,"\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   for(i=1; i <=npar; i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
     for(j=i+1;j<=npar;j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
       matcov[i][j]=matcov[j][i];    double gompertz(double p[]);
        hess=matrix(1,npar,1,npar);
   printf("\n");  
     printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
    if(mle==1){    for (i=1;i<=npar;i++){
     /*-------- data file ----------*/      printf("%d",i);fflush(stdout);
     if((ficres =fopen(fileres,"w"))==NULL) {      fprintf(ficlog,"%d",i);fflush(ficlog);
       printf("Problem with resultfile: %s\n", fileres);goto end;     
     }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     fprintf(ficres,"#%s\n",version);      
          /*  printf(" %f ",p[i]);
     if((fic=fopen(datafile,"r"))==NULL)    {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       printf("Problem with datafile: %s\n", datafile);goto end;    }
     }    
     for (i=1;i<=npar;i++) {
     n= lastobs;      for (j=1;j<=npar;j++)  {
     severity = vector(1,maxwav);        if (j>i) { 
     outcome=imatrix(1,maxwav+1,1,n);          printf(".%d%d",i,j);fflush(stdout);
     num=ivector(1,n);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     moisnais=vector(1,n);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     annais=vector(1,n);          
     moisdc=vector(1,n);          hess[j][i]=hess[i][j];    
     andc=vector(1,n);          /*printf(" %lf ",hess[i][j]);*/
     agedc=vector(1,n);        }
     cod=ivector(1,n);      }
     weight=vector(1,n);    }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    printf("\n");
     mint=matrix(1,maxwav,1,n);    fprintf(ficlog,"\n");
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     adl=imatrix(1,maxwav+1,1,n);        fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     tab=ivector(1,NCOVMAX);    
     ncodemax=ivector(1,NCOVMAX);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     i=1;    x=vector(1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {    indx=ivector(1,npar);
       if ((i >= firstobs) && (i <=lastobs)) {    for (i=1;i<=npar;i++)
              for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for (j=maxwav;j>=1;j--){    ludcmp(a,npar,indx,&pd);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);    for (j=1;j<=npar;j++) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1;i<=npar;i++) x[i]=0;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      x[j]=1;
         }      lubksb(a,npar,indx,x);
              for (i=1;i<=npar;i++){ 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        matcov[i][j]=x[i];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      }
     }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++) { 
         for (j=ncov;j>=1;j--){      for (j=1;j<=npar;j++) { 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
         num[i]=atol(stra);      }
       printf("\n");
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/      fprintf(ficlog,"\n");
     }
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/  
     /* Recompute Inverse */
         i=i+1;    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     }    ludcmp(a,npar,indx,&pd);
     /*scanf("%d",i);*/  
     /*  printf("\n#Hessian matrix recomputed#\n");
   imx=i-1; /* Number of individuals */  
      for (j=1;j<=npar;j++) {
   /* Calculation of the number of parameter from char model*/      for (i=1;i<=npar;i++) x[i]=0;
   Tvar=ivector(1,8);          x[j]=1;
          lubksb(a,npar,indx,x);
   if (strlen(model) >1){      for (i=1;i<=npar;i++){ 
     j=0;        y[i][j]=x[i];
     j=nbocc(model,'+');        printf("%.3e ",y[i][j]);
     cptcovn=j+1;        fprintf(ficlog,"%.3e ",y[i][j]);
        }
     strcpy(modelsav,model);      printf("\n");
     if (j==0) {      fprintf(ficlog,"\n");
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    }
     }    */
     else {  
       for(i=j; i>=1;i--){    free_matrix(a,1,npar,1,npar);
         cutv(stra,strb,modelsav,'+');    free_matrix(y,1,npar,1,npar);
         if (strchr(strb,'*')) {    free_vector(x,1,npar);
           cutv(strd,strc,strb,'*');    free_ivector(indx,1,npar);
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;    free_matrix(hess,1,npar,1,npar);
           cutv(strb,strc,strd,'V');  
           for (k=1; k<=lastobs;k++)  
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  }
         }  
         else {  /*************** hessian matrix ****************/
           cutv(strd,strc,strb,'V');  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           Tvar[i+1]=atoi(strc);  {
         }    int i;
         strcpy(modelsav,stra);      int l=1, lmax=20;
       }    double k1,k2;
       /*cutv(strd,strc,stra,'V');*/    double p2[NPARMAX+1];
       Tvar[1]=atoi(strc);    double res;
     }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }    double fx;
   /*printf("tvar=%d ",Tvar[1]);*/    int k=0,kmax=10;
   /*scanf("%d ",i);*/    double l1;
     fclose(fic);  
     fx=func(x);
     if (weightopt != 1) { /* Maximisation without weights*/    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1;i<=n;i++) weight[i]=1.0;    for(l=0 ; l <=lmax; l++){
     }      l1=pow(10,l);
     /*-calculation of age at interview from date of interview and age at death -*/      delts=delt;
     agev=matrix(1,maxwav,1,imx);      for(k=1 ; k <kmax; k=k+1){
            delt = delta*(l1*k);
     for (i=1; i<=imx; i++)  {        p2[theta]=x[theta] +delt;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        k1=func(p2)-fx;
       for(m=1; (m<= maxwav); m++){        p2[theta]=x[theta]-delt;
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;          k2=func(p2)-fx;
         if(s[m][i] >0){        /*res= (k1-2.0*fx+k2)/delt/delt; */
           if (s[m][i] == nlstate+1) {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             if(agedc[i]>0)        
               if(moisdc[i]!=99 && andc[i]!=9999)  #ifdef DEBUG
               agev[m][i]=agedc[i];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             else{        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  #endif
               agev[m][i]=-1;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           }          k=kmax;
           else if(s[m][i] !=9){ /* Should no more exist */        }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             if(mint[m][i]==99 || anint[m][i]==9999){          k=kmax; l=lmax*10.;
               agev[m][i]=1;        }
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
             }          delts=delt;
             else if(agev[m][i] <agemin){        }
               agemin=agev[m][i];      }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    }
             }    delti[theta]=delts;
             else if(agev[m][i] >agemax){    return res; 
               agemax=agev[m][i];    
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  }
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
             /*   agev[m][i] = age[i]+2*m;*/  {
           }    int i;
           else { /* =9 */    int l=1, l1, lmax=20;
             agev[m][i]=1;    double k1,k2,k3,k4,res,fx;
             s[m][i]=-1;    double p2[NPARMAX+1];
           }    int k;
         }  
         else /*= 0 Unknown */    fx=func(x);
           agev[m][i]=1;    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
          p2[thetai]=x[thetai]+delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for (i=1; i<=imx; i++)  {      k1=func(p2)-fx;
       for(m=1; (m<= maxwav); m++){    
         if (s[m][i] > (nlstate+ndeath)) {      p2[thetai]=x[thetai]+delti[thetai]/k;
           printf("Error: Wrong value in nlstate or ndeath\n");        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           goto end;      k2=func(p2)-fx;
         }    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     free_vector(severity,1,maxwav);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_imatrix(outcome,1,maxwav+1,1,n);      k4=func(p2)-fx;
     free_vector(moisnais,1,n);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     free_vector(annais,1,n);  #ifdef DEBUG
     free_matrix(mint,1,maxwav,1,n);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_matrix(anint,1,maxwav,1,n);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_vector(moisdc,1,n);  #endif
     free_vector(andc,1,n);    }
     return res;
      }
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  /************** Inverse of matrix **************/
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  void ludcmp(double **a, int n, int *indx, double *d) 
      { 
     /* Concatenates waves */    int i,imax,j,k; 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    double big,dum,sum,temp; 
     double *vv; 
    
 Tcode=ivector(1,100);    vv=vector(1,n); 
    nbcode=imatrix(1,nvar,1,8);      *d=1.0; 
    ncodemax[1]=1;    for (i=1;i<=n;i++) { 
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);      big=0.0; 
        for (j=1;j<=n;j++) 
    codtab=imatrix(1,100,1,10);        if ((temp=fabs(a[i][j])) > big) big=temp; 
    h=0;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
    m=pow(2,cptcovn);      vv[i]=1.0/big; 
      } 
    for(k=1;k<=cptcovn; k++){    for (j=1;j<=n;j++) { 
      for(i=1; i <=(m/pow(2,k));i++){      for (i=1;i<j;i++) { 
        for(j=1; j <= ncodemax[k]; j++){        sum=a[i][j]; 
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
            h++;        a[i][j]=sum; 
            if (h>m) h=1;codtab[h][k]=j;      } 
          }      big=0.0; 
        }      for (i=j;i<=n;i++) { 
      }        sum=a[i][j]; 
    }        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
    /*for(i=1; i <=m ;i++){        a[i][j]=sum; 
      for(k=1; k <=cptcovn; k++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);          big=dum; 
      }          imax=i; 
      printf("\n");        } 
    }      } 
   scanf("%d",i);*/      if (j != imax) { 
            for (k=1;k<=n;k++) { 
    /* Calculates basic frequencies. Computes observed prevalence at single age          dum=a[imax][k]; 
        and prints on file fileres'p'. */          a[imax][k]=a[j][k]; 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);          a[j][k]=dum; 
         } 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        *d = -(*d); 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        vv[imax]=vv[j]; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      indx[j]=imax; 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      if (a[j][j] == 0.0) a[j][j]=TINY; 
          if (j != n) { 
     /* For Powell, parameters are in a vector p[] starting at p[1]        dum=1.0/(a[j][j]); 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      } 
     /*scanf("%d",i);*/    } 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    free_vector(vv,1,n);  /* Doesn't work */
   ;
      } 
     /*--------- results files --------------*/  
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  void lubksb(double **a, int n, int *indx, double b[]) 
      { 
    jk=1;    int i,ii=0,ip,j; 
    fprintf(ficres,"# Parameters\n");    double sum; 
    printf("# Parameters\n");   
    for(i=1,jk=1; i <=nlstate; i++){    for (i=1;i<=n;i++) { 
      for(k=1; k <=(nlstate+ndeath); k++){      ip=indx[i]; 
        if (k != i)      sum=b[ip]; 
          {      b[ip]=b[i]; 
            printf("%d%d ",i,k);      if (ii) 
            fprintf(ficres,"%1d%1d ",i,k);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
            for(j=1; j <=ncovmodel; j++){      else if (sum) ii=i; 
              printf("%f ",p[jk]);      b[i]=sum; 
              fprintf(ficres,"%f ",p[jk]);    } 
              jk++;    for (i=n;i>=1;i--) { 
            }      sum=b[i]; 
            printf("\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
            fprintf(ficres,"\n");      b[i]=sum/a[i][i]; 
          }    } 
      }  } 
    }  
   void pstamp(FILE *fichier)
     /* Computing hessian and covariance matrix */  {
     ftolhess=ftol; /* Usually correct */    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     hesscov(matcov, p, npar, delti, ftolhess, func);  }
     fprintf(ficres,"# Scales\n");  
     printf("# Scales\n");  /************ Frequencies ********************/
      for(i=1,jk=1; i <=nlstate; i++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       for(j=1; j <=nlstate+ndeath; j++){  {  /* Some frequencies */
         if (j!=i) {    
           fprintf(ficres,"%1d%1d",i,j);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           printf("%1d%1d",i,j);    int first;
           for(k=1; k<=ncovmodel;k++){    double ***freq; /* Frequencies */
             printf(" %.5e",delti[jk]);    double *pp, **prop;
             fprintf(ficres," %.5e",delti[jk]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             jk++;    char fileresp[FILENAMELENGTH];
           }    
           printf("\n");    pp=vector(1,nlstate);
           fprintf(ficres,"\n");    prop=matrix(1,nlstate,iagemin,iagemax+3);
         }    strcpy(fileresp,"p");
       }    strcat(fileresp,fileres);
       }    if((ficresp=fopen(fileresp,"w"))==NULL) {
          printf("Problem with prevalence resultfile: %s\n", fileresp);
     k=1;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     fprintf(ficres,"# Covariance\n");      exit(0);
     printf("# Covariance\n");    }
     for(i=1;i<=npar;i++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       /*  if (k>nlstate) k=1;    j1=0;
       i1=(i-1)/(ncovmodel*nlstate)+1;    
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    j=cptcoveff;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);    first=1;
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);    for(k1=1; k1<=j;k1++){
         printf(" %.5e",matcov[i][j]);      for(i1=1; i1<=ncodemax[k1];i1++){
       }        j1++;
       fprintf(ficres,"\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       printf("\n");          scanf("%d", i);*/
       k++;        for (i=-5; i<=nlstate+ndeath; i++)  
     }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                for(m=iagemin; m <= iagemax+3; m++)
     while((c=getc(ficpar))=='#' && c!= EOF){              freq[i][jk][m]=0;
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);      for (i=1; i<=nlstate; i++)  
       puts(line);        for(m=iagemin; m <= iagemax+3; m++)
       fputs(line,ficparo);          prop[i][m]=0;
     }        
     ungetc(c,ficpar);        dateintsum=0;
          k2cpt=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        for (i=1; i<=imx; i++) {
              bool=1;
     if (fage <= 2) {          if  (cptcovn>0) {
       bage = agemin;            for (z1=1; z1<=cptcoveff; z1++) 
       fage = agemax;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
           }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          if (bool==1){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            for(m=firstpass; m<=lastpass; m++){
 /*------------ gnuplot -------------*/              k2=anint[m][i]+(mint[m][i]/12.);
 chdir(pathcd);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if((ficgp=fopen("graph.plt","w"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with file graph.gp");goto end;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #ifdef windows                if (m<lastpass) {
   fprintf(ficgp,"cd \"%s\" \n",pathc);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 #endif                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 m=pow(2,cptcovn);                }
                  
  /* 1eme*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   for (cpt=1; cpt<= nlstate ; cpt ++) {                  dateintsum=dateintsum+k2;
    for (k1=1; k1<= m ; k1 ++) {                  k2cpt++;
                 }
 #ifdef windows                /*}*/
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            }
 #endif          }
 #ifdef unix        }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);         
 #endif        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
 for (i=1; i<= nlstate ; i ++) {        if  (cptcovn>0) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresp, "\n#********** Variable "); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficresp, "**********\n#");
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
     for (i=1; i<= nlstate ; i ++) {        for(i=1; i<=nlstate;i++) 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficresp, "\n");
 }        
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(i=iagemin; i <= iagemax+3; i++){
      for (i=1; i<= nlstate ; i ++) {          if(i==iagemax+3){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            fprintf(ficlog,"Total");
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }else{
 }              if(first==1){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              first=0;
 #ifdef unix              printf("See log file for details...\n");
 fprintf(ficgp,"\nset ter gif small size 400,300");            }
 #endif            fprintf(ficlog,"Age %d", i);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }
    }          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   /*2 eme*/              pp[jk] += freq[jk][m][i]; 
           }
   for (k1=1; k1<= m ; k1 ++) {          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            for(m=-1, pos=0; m <=0 ; m++)
                  pos += freq[jk][m][i];
     for (i=1; i<= nlstate+1 ; i ++) {            if(pp[jk]>=1.e-10){
       k=2*i;              if(first==1){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for (j=1; j<= nlstate+1 ; j ++) {              }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }else{
 }                if(first==1)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){
 }              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(ficgp,"\" t\"\" w l 0,");              pp[jk] += freq[jk][m][i];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }       
       for (j=1; j<= nlstate+1 ; j ++) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            pos += pp[jk];
   else fprintf(ficgp," \%%*lf (\%%*lf)");            posprop += prop[jk][i];
 }            }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(jk=1; jk <=nlstate ; jk++){
       else fprintf(ficgp,"\" t\"\" w l 0,");            if(pos>=1.e-5){
     }              if(first==1)
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
   /*3eme*/              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   for (k1=1; k1<= m ; k1 ++) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (cpt=1; cpt<= nlstate ; cpt ++) {            }
       k=2+nlstate*(cpt-1);            if( i <= iagemax){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              if(pos>=1.e-5){
       for (i=1; i< nlstate ; i ++) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              }
     }              else
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
              }
   /* CV preval stat */          }
   for (k1=1; k1<= m ; k1 ++) {          
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
       k=3;            for(m=-1; m <=nlstate+ndeath; m++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);              if(freq[jk][m][i] !=0 ) {
       for (i=1; i< nlstate ; i ++)              if(first==1)
         fprintf(ficgp,"+$%d",k+i+1);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                    }
       l=3+(nlstate+ndeath)*cpt;          if(i <= iagemax)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            fprintf(ficresp,"\n");
       for (i=1; i< nlstate ; i ++) {          if(first==1)
         l=3+(nlstate+ndeath)*cpt;            printf("Others in log...\n");
         fprintf(ficgp,"+$%d",l+i+1);          fprintf(ficlog,"\n");
       }        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    }
     }    dateintmean=dateintsum/k2cpt; 
   }   
     fclose(ficresp);
   /* proba elementaires */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   for(i=1,jk=1; i <=nlstate; i++){    free_vector(pp,1,nlstate);
     for(k=1; k <=(nlstate+ndeath); k++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       if (k != i) {    /* End of Freq */
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/  }
         for(j=1; j <=ncovmodel; j++){  
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);  /************ Prevalence ********************/
           jk++;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           fprintf(ficgp,"\n");  {  
         }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
     }       We still use firstpass and lastpass as another selection.
   }    */
   for(jk=1; jk <=m; jk++) {   
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   for(i=1; i <=nlstate; i++) {    double ***freq; /* Frequencies */
     for(k=1; k <=(nlstate+ndeath); k++){    double *pp, **prop;
       if (k != i) {    double pos,posprop; 
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);    double  y2; /* in fractional years */
         for(j=3; j <=ncovmodel; j++)    int iagemin, iagemax;
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         fprintf(ficgp,")/(1");    iagemin= (int) agemin;
         for(k1=1; k1 <=(nlstate+ndeath); k1++)    iagemax= (int) agemax;
           if (k1 != i) {    /*pp=vector(1,nlstate);*/
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             for(j=3; j <=ncovmodel; j++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    j1=0;
             fprintf(ficgp,")");    
           }    j=cptcoveff;
         fprintf(ficgp,") t \"p%d%d\" ", i,k);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    
       }    for(k1=1; k1<=j;k1++){
     }      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          
   }        for (i=1; i<=nlstate; i++)  
   fclose(ficgp);          for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
 chdir(path);       
     free_matrix(agev,1,maxwav,1,imx);        for (i=1; i<=imx; i++) { /* Each individual */
     free_ivector(wav,1,imx);          bool=1;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          if  (cptcovn>0) {
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_imatrix(s,1,maxwav+1,1,n);                bool=0;
              } 
              if (bool==1) { 
     free_ivector(num,1,n);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     free_vector(agedc,1,n);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     free_vector(weight,1,n);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fclose(ficparo);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fclose(ficres);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
    }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
    /*________fin mle=1_________*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                      prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
                }
     /* No more information from the sample is required now */            } /* end selection of waves */
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        for(i=iagemin; i <= iagemax+3; i++){  
     fgets(line, MAXLINE, ficpar);          
     puts(line);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fputs(line,ficparo);            posprop += prop[jk][i]; 
   }          } 
   ungetc(c,ficpar);  
            for(jk=1; jk <=nlstate ; jk++){     
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            if( i <=  iagemax){ 
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);              if(posprop>=1.e-5){ 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);                probs[i][jk][j1]= prop[jk][i]/posprop;
 /*--------- index.htm --------*/              } 
             } 
   if((fichtm=fopen("index.htm","w"))==NULL)    {          }/* end jk */ 
     printf("Problem with index.htm \n");goto end;        }/* end i */ 
   }      } /* end i1 */
     } /* end k1 */
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n    
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    /*free_vector(pp,1,nlstate);*/
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  }  /* End of prevalence */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  /************* Waves Concatenation ***************/
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  fprintf(fichtm," <li>Graphs</li>\n<p>");       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  m=cptcovn;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       and mw[mi+1][i]. dh depends on stepm.
        */
  j1=0;  
  for(k1=1; k1<=m;k1++){    int i, mi, m;
    for(i1=1; i1<=ncodemax[k1];i1++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        j1++;       double sum=0., jmean=0.;*/
        if (cptcovn > 0) {    int first;
          fprintf(fichtm,"<hr>************ Results for covariates");    int j, k=0,jk, ju, jl;
          for (cpt=1; cpt<=cptcovn;cpt++)    double sum=0.;
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);    first=0;
          fprintf(fichtm," ************\n<hr>");    jmin=1e+5;
        }    jmax=-1;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    jmean=0.;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        for(i=1; i<=imx; i++){
        for(cpt=1; cpt<nlstate;cpt++){      mi=0;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      m=firstpass;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      while(s[m][i] <= nlstate){
        }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     for(cpt=1; cpt<=nlstate;cpt++) {          mw[++mi][i]=m;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        if(m >=lastpass)
 interval) in state (%d): v%s%d%d.gif <br>          break;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          else
      }          m++;
      for(cpt=1; cpt<=nlstate;cpt++) {      }/* end while */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      if (s[m][i] > nlstate){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        mi++;     /* Death is another wave */
      }        /* if(mi==0)  never been interviewed correctly before death */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and           /* Only death is a correct wave */
 health expectancies in states (1) and (2): e%s%d.gif<br>        mw[mi][i]=m;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      }
 fprintf(fichtm,"\n</body>");  
    }      wav[i]=mi;
  }      if(mi==0){
 fclose(fichtm);        nbwarn++;
         if(first==0){
   /*--------------- Prevalence limit --------------*/          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
            first=1;
   strcpy(filerespl,"pl");        }
   strcat(filerespl,fileres);        if(first==1){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }
   }      } /* end mi==0 */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    } /* End individuals */
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    for(i=1; i<=imx; i++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for(mi=1; mi<wav[i];mi++){
   fprintf(ficrespl,"\n");        if (stepm <=0)
            dh[mi][i]=1;
   prlim=matrix(1,nlstate,1,nlstate);        else{
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if (agedc[i] < 2*AGESUP) {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if(j==0) j=1;  /* Survives at least one month after exam */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              else if(j<0){
   k=0;                nberr++;
   agebase=agemin;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   agelim=agemax;                j=1; /* Temporary Dangerous patch */
   ftolpl=1.e-10;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   i1=cptcovn;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (cptcovn < 1){i1=1;}                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
   for(cptcov=1;cptcov<=i1;cptcov++){              k=k+1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              if (j >= jmax){
         k=k+1;                jmax=j;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                ijmax=i;
         fprintf(ficrespl,"\n#****** ");              }
         for(j=1;j<=cptcovn;j++)              if (j <= jmin){
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);                jmin=j;
         fprintf(ficrespl,"******\n");                ijmin=i;
                      }
         for (age=agebase; age<=agelim; age++){              sum=sum+j;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           fprintf(ficrespl,"%.0f",age );              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           for(i=1; i<=nlstate;i++)            }
           fprintf(ficrespl," %.5f", prlim[i][i]);          }
           fprintf(ficrespl,"\n");          else{
         }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     }  
   fclose(ficrespl);            k=k+1;
   /*------------- h Pij x at various ages ------------*/            if (j >= jmax) {
                jmax=j;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);              ijmax=i;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            else if (j <= jmin){
   }              jmin=j;
   printf("Computing pij: result on file '%s' \n", filerespij);              ijmin=i;
              }
   stepsize=(int) (stepm+YEARM-1)/YEARM;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   if (stepm<=24) stepsize=2;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   agelim=AGESUP;              nberr++;
   hstepm=stepsize*YEARM; /* Every year of age */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
   k=0;            sum=sum+j;
   for(cptcov=1;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          jk= j/stepm;
       k=k+1;          jl= j -jk*stepm;
         fprintf(ficrespij,"\n#****** ");          ju= j -(jk+1)*stepm;
         for(j=1;j<=cptcovn;j++)          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            if(jl==0){
         fprintf(ficrespij,"******\n");              dh[mi][i]=jk;
                      bh[mi][i]=0;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            }else{ /* We want a negative bias in order to only have interpolation ie
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    * at the price of an extra matrix product in likelihood */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              dh[mi][i]=jk+1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              bh[mi][i]=ju;
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }else{
           fprintf(ficrespij,"# Age");            if(jl <= -ju){
           for(i=1; i<=nlstate;i++)              dh[mi][i]=jk;
             for(j=1; j<=nlstate+ndeath;j++)              bh[mi][i]=jl;       /* bias is positive if real duration
               fprintf(ficrespij," %1d-%1d",i,j);                                   * is higher than the multiple of stepm and negative otherwise.
           fprintf(ficrespij,"\n");                                   */
           for (h=0; h<=nhstepm; h++){            }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            else{
             for(i=1; i<=nlstate;i++)              dh[mi][i]=jk+1;
               for(j=1; j<=nlstate+ndeath;j++)              bh[mi][i]=ju;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            }
             fprintf(ficrespij,"\n");            if(dh[mi][i]==0){
           }              dh[mi][i]=1; /* At least one step */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              bh[mi][i]=ju; /* At least one step */
           fprintf(ficrespij,"\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         }            }
     }          } /* end if mle */
   }        }
       } /* end wave */
   fclose(ficrespij);    }
     jmean=sum/k;
   /*---------- Health expectancies and variances ------------*/    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   strcpy(filerest,"t");   }
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  /*********** Tricode ****************************/
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  void tricode(int *Tvar, int **nbcode, int imx)
   }  {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
   strcpy(filerese,"e");    cptcoveff=0; 
   strcat(filerese,fileres);   
   if((ficreseij=fopen(filerese,"w"))==NULL) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    for (k=1; k<=7; k++) ncodemax[k]=0;
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
  strcpy(fileresv,"v");                                 modality*/ 
   strcat(fileresv,fileres);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        Ndum[ij]++; /*store the modality */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (i=0; i<=cptcode; i++) {
       k=k+1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficrest,"\n#****** ");      }
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      ij=1; 
       fprintf(ficrest,"******\n");      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
       fprintf(ficreseij,"\n#****** ");          if (Ndum[k] != 0) {
       for(j=1;j<=cptcovn;j++)            nbcode[Tvar[j]][ij]=k; 
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficreseij,"******\n");            
             ij++;
       fprintf(ficresvij,"\n#****** ");          }
       for(j=1;j<=cptcovn;j++)          if (ij > ncodemax[j]) break; 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        }  
       fprintf(ficresvij,"******\n");      } 
     }  
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;   for (k=0; k< maxncov; k++) Ndum[k]=0;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   for (i=1; i<=ncovmodel-2; i++) { 
       oldm=oldms;savm=savms;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     ij=Tvar[i];
           Ndum[ij]++;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");   ij=1;
           for (i=1; i<= maxncov; i++) {
       hf=1;     if((Ndum[i]!=0) && (i<=ncovcol)){
       if (stepm >= YEARM) hf=stepm/YEARM;       Tvaraff[ij]=i; /*For printing */
       epj=vector(1,nlstate+1);       ij++;
       for(age=bage; age <=fage ;age++){     }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   }
         fprintf(ficrest," %.0f",age);   
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   cptcoveff=ij-1; /*Number of simple covariates*/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  }
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  
           }  /*********** Health Expectancies ****************/
           epj[nlstate+1] +=epj[j];  
         }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)  {
             vepp += vareij[i][j][(int)age];    /* Health expectancies, no variances */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         for(j=1;j <=nlstate;j++){    double age, agelim, hf;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    double ***p3mat;
         }    double eip;
         fprintf(ficrest,"\n");  
       }    pstamp(ficreseij);
     }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   }    fprintf(ficreseij,"# Age");
            for(i=1; i<=nlstate;i++){
  fclose(ficreseij);      for(j=1; j<=nlstate;j++){
  fclose(ficresvij);        fprintf(ficreseij," e%1d%1d ",i,j);
   fclose(ficrest);      }
   fclose(ficpar);      fprintf(ficreseij," e%1d. ",i);
   free_vector(epj,1,nlstate+1);    }
   /*  scanf("%d ",i); */    fprintf(ficreseij,"\n");
   
   /*------- Variance limit prevalence------*/      
     if(estepm < stepm){
 strcpy(fileresvpl,"vpl");      printf ("Problem %d lower than %d\n",estepm, stepm);
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    else  hstepm=estepm;   
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    /* We compute the life expectancy from trapezoids spaced every estepm months
     exit(0);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
  k=0;     * to the curvature of the survival function. If, for the same date, we 
  for(cptcov=1;cptcov<=i1;cptcov++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * to compare the new estimate of Life expectancy with the same linear 
      k=k+1;     * hypothesis. A more precise result, taking into account a more precise
      fprintf(ficresvpl,"\n#****** ");     * curvature will be obtained if estepm is as small as stepm. */
      for(j=1;j<=cptcovn;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    /* For example we decided to compute the life expectancy with the smallest unit */
      fprintf(ficresvpl,"******\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             nhstepm is the number of hstepm from age to agelim 
      varpl=matrix(1,nlstate,(int) bage, (int) fage);       nstepm is the number of stepm from age to agelin. 
      oldm=oldms;savm=savms;       Look at hpijx to understand the reason of that which relies in memory size
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       and note for a fixed period like estepm months */
    }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   fclose(ficresvpl);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   /*---------- End : free ----------------*/    */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    agelim=AGESUP;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /* nhstepm age range expressed in number of stepm */
      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /* if (stepm >= YEARM) hstepm=1;*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   free_matrix(matcov,1,npar,1,npar);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   free_vector(delti,1,npar);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
   printf("End of Imach\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      
        printf("%d|",(int)age);fflush(stdout);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      
   /*------ End -----------*/      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
  end:        for(j=1; j<=nlstate;j++)
 #ifdef windows          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  chdir(pathcd);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 #endif            
  system("wgnuplot ../gp37mgw/graph.plt");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
 #ifdef windows          }
   while (z[0] != 'q') {  
     chdir(pathcd);      fprintf(ficreseij,"%3.0f",age );
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      for(i=1; i<=nlstate;i++){
     scanf("%s",z);        eip=0;
     if (z[0] == 'c') system("./imach");        for(j=1; j<=nlstate;j++){
     else if (z[0] == 'e') {          eip +=eij[i][j][(int)age];
       chdir(path);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       system("index.htm");        }
     }        fprintf(ficreseij,"%9.4f", eip );
     else if (z[0] == 'q') exit(0);      }
   }      fprintf(ficreseij,"\n");
 #endif      
 }    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
   
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.122


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>