Diff for /imach/src/imach.c between versions 1.2 and 1.132

version 1.2, 2001/03/13 18:10:26 version 1.132, 2009/07/06 08:22:05
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.132  2009/07/06 08:22:05  brouard
   individuals from different ages are interviewed on their health status    Many tings
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.131  2009/06/20 16:22:47  brouard
   Health expectancies are computed from the transistions observed between    Some dimensions resccaled
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.130  2009/05/26 06:44:34  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): Max Covariate is now set to 20 instead of 8. A
   The simplest model is the multinomial logistic model where pij is    lot of cleaning with variables initialized to 0. Trying to make
   the probabibility to be observed in state j at the second wave conditional    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Revision 1.129  2007/08/31 13:49:27  lievre
   is a covariate. If you want to have a more complex model than "constant and    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    Revision 1.128  2006/06/30 13:02:05  brouard
   More covariates you add, less is the speed of the convergence.    (Module): Clarifications on computing e.j
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.127  2006/04/28 18:11:50  brouard
   delay between waves is not identical for each individual, or if some    (Module): Yes the sum of survivors was wrong since
   individual missed an interview, the information is not rounded or lost, but    imach-114 because nhstepm was no more computed in the age
   taken into account using an interpolation or extrapolation.    loop. Now we define nhstepma in the age loop.
   hPijx is the probability to be    (Module): In order to speed up (in case of numerous covariates) we
   observed in state i at age x+h conditional to the observed state i at age    compute health expectancies (without variances) in a first step
   x. The delay 'h' can be split into an exact number (nh*stepm) of    and then all the health expectancies with variances or standard
   unobserved intermediate  states. This elementary transition (by month or    deviation (needs data from the Hessian matrices) which slows the
   quarter trimester, semester or year) is model as a multinomial logistic.    computation.
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    In the future we should be able to stop the program is only health
   and the contribution of each individual to the likelihood is simply hPijx.    expectancies and graph are needed without standard deviations.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.126  2006/04/28 17:23:28  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Yes the sum of survivors was wrong since
      imach-114 because nhstepm was no more computed in the age
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    loop. Now we define nhstepma in the age loop.
            Institut national d'études démographiques, Paris.    Version 0.98h
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.125  2006/04/04 15:20:31  lievre
   It is copyrighted identically to a GNU software product, ie programme and    Errors in calculation of health expectancies. Age was not initialized.
   software can be distributed freely for non commercial use. Latest version    Forecasting file added.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.124  2006/03/22 17:13:53  lievre
      Parameters are printed with %lf instead of %f (more numbers after the comma).
 #include <math.h>    The log-likelihood is printed in the log file
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.123  2006/03/20 10:52:43  brouard
 #include <unistd.h>    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    * imach.c (Module): Weights can have a decimal point as for
 /*#define DEBUG*/    English (a comma might work with a correct LC_NUMERIC environment,
 #define windows    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    1.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Version 0.98g
   
 #define NINTERVMAX 8    Revision 1.122  2006/03/20 09:45:41  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Weights can have a decimal point as for
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    English (a comma might work with a correct LC_NUMERIC environment,
 #define NCOVMAX 8 /* Maximum number of covariates */    otherwise the weight is truncated).
 #define MAXN 80000    Modification of warning when the covariates values are not 0 or
 #define YEARM 12. /* Number of months per year */    1.
 #define AGESUP 130    Version 0.98g
 #define AGEBASE 40  
     Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 int nvar;  
 static int cptcov;    * imach.c (Module): refinements in the computation of lli if
 int cptcovn;    status=-2 in order to have more reliable computation if stepm is
 int npar=NPARMAX;    not 1 month. Version 0.98f
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.120  2006/03/16 15:10:38  lievre
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 int *wav; /* Number of waves for this individuual 0 is possible */    not 1 month. Version 0.98f
 int maxwav; /* Maxim number of waves */  
 int mle, weightopt;    Revision 1.119  2006/03/15 17:42:26  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Bug if status = -2, the loglikelihood was
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    computed as likelihood omitting the logarithm. Version O.98e
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.118  2006/03/14 18:20:07  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    (Module): varevsij Comments added explaining the second
 FILE *ficgp, *fichtm;    table of variances if popbased=1 .
 FILE *ficreseij;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   char filerese[FILENAMELENGTH];    (Module): Function pstamp added
  FILE  *ficresvij;    (Module): Version 0.98d
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.117  2006/03/14 17:16:22  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
     (Module): Version 0.98d
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.116  2006/03/06 10:29:27  brouard
 #define FTOL 1.0e-10    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 #define NRANSI  
 #define ITMAX 200    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 #define TOL 2.0e-4  
     Revision 1.114  2006/02/26 12:57:58  brouard
 #define CGOLD 0.3819660    (Module): Some improvements in processing parameter
 #define ZEPS 1.0e-10    filename with strsep.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.113  2006/02/24 14:20:24  brouard
 #define GOLD 1.618034    (Module): Memory leaks checks with valgrind and:
 #define GLIMIT 100.0    datafile was not closed, some imatrix were not freed and on matrix
 #define TINY 1.0e-20    allocation too.
   
 static double maxarg1,maxarg2;    Revision 1.112  2006/01/30 09:55:26  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.111  2006/01/25 20:38:18  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Lots of cleaning and bugs added (Gompertz)
 #define rint(a) floor(a+0.5)    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.110  2006/01/25 00:51:50  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Lots of cleaning and bugs added (Gompertz)
   
 int imx;    Revision 1.109  2006/01/24 19:37:15  brouard
 int stepm;    (Module): Comments (lines starting with a #) are allowed in data.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.108  2006/01/19 18:05:42  lievre
 int m,nb;    Gnuplot problem appeared...
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    To be fixed
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij;    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 double *weight;  
 int **s; /* Status */    Revision 1.106  2006/01/19 13:24:36  brouard
 double *agedc, **covar, idx;    Some cleaning and links added in html output
 int **nbcode, *Tcode, *Tvar, **codtab;  
     Revision 1.105  2006/01/05 20:23:19  lievre
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    *** empty log message ***
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 /******************************************/    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 void replace(char *s, char*t)    (instead of missing=-1 in earlier versions) and his/her
 {    contributions to the likelihood is 1 - Prob of dying from last
   int i;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   int lg=20;    the healthy state at last known wave). Version is 0.98
   i=0;  
   lg=strlen(t);    Revision 1.103  2005/09/30 15:54:49  lievre
   for(i=0; i<= lg; i++) {    (Module): sump fixed, loop imx fixed, and simplifications.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.102  2004/09/15 17:31:30  brouard
   }    Add the possibility to read data file including tab characters.
 }  
     Revision 1.101  2004/09/15 10:38:38  brouard
 int nbocc(char *s, char occ)    Fix on curr_time
 {  
   int i,j=0;    Revision 1.100  2004/07/12 18:29:06  brouard
   int lg=20;    Add version for Mac OS X. Just define UNIX in Makefile
   i=0;  
   lg=strlen(s);    Revision 1.99  2004/06/05 08:57:40  brouard
   for(i=0; i<= lg; i++) {    *** empty log message ***
   if  (s[i] == occ ) j++;  
   }    Revision 1.98  2004/05/16 15:05:56  brouard
   return j;    New version 0.97 . First attempt to estimate force of mortality
 }    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 void cutv(char *u,char *v, char*t, char occ)    This is the basic analysis of mortality and should be done before any
 {    other analysis, in order to test if the mortality estimated from the
   int i,lg,j,p;    cross-longitudinal survey is different from the mortality estimated
   i=0;    from other sources like vital statistic data.
   if (t[0]== occ) p=0;  
   for(j=0; j<=strlen(t)-1; j++) {    The same imach parameter file can be used but the option for mle should be -3.
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;  
   }    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    The output is very simple: only an estimate of the intercept and of
     (u[j] = t[j]);    the slope with 95% confident intervals.
     u[p]='\0';  
   }    Current limitations:
     A) Even if you enter covariates, i.e. with the
    for(j=0; j<= lg; j++) {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     if (j>=(p+1))(v[j-p-1] = t[j]);    B) There is no computation of Life Expectancy nor Life Table.
   }  
 }    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 /********************** nrerror ********************/  
     Revision 1.96  2003/07/15 15:38:55  brouard
 void nrerror(char error_text[])    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.95  2003/07/08 07:54:34  brouard
   exit(1);    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
 /*********************** vector *******************/    matrix (cov(a12,c31) instead of numbers.
 double *vector(int nl, int nh)  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
   double *v;    Just cleaning
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.93  2003/06/25 16:33:55  brouard
   return v-nl+NR_END;    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.92  2003/06/25 16:30:45  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   free((FREE_ARG)(v+nl-NR_END));    exist so I changed back to asctime which exists.
 }  
     Revision 1.91  2003/06/25 15:30:29  brouard
 /************************ivector *******************************/    * imach.c (Repository): Duplicated warning errors corrected.
 int *ivector(long nl,long nh)    (Repository): Elapsed time after each iteration is now output. It
 {    helps to forecast when convergence will be reached. Elapsed time
   int *v;    is stamped in powell.  We created a new html file for the graphs
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    concerning matrix of covariance. It has extension -cov.htm.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.90  2003/06/24 12:34:15  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /******************free ivector **************************/    of the covariance matrix to be input.
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.88  2003/06/23 17:54:56  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.87  2003/06/18 12:26:01  brouard
   int **m;    Version 0.96
    
   /* allocate pointers to rows */    Revision 1.86  2003/06/17 20:04:08  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): Change position of html and gnuplot routines and added
   if (!m) nrerror("allocation failure 1 in matrix()");    routine fileappend.
   m += NR_END;  
   m -= nrl;    Revision 1.85  2003/06/17 13:12:43  brouard
      * imach.c (Repository): Check when date of death was earlier that
      current date of interview. It may happen when the death was just
   /* allocate rows and set pointers to them */    prior to the death. In this case, dh was negative and likelihood
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    was wrong (infinity). We still send an "Error" but patch by
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    assuming that the date of death was just one stepm after the
   m[nrl] += NR_END;    interview.
   m[nrl] -= ncl;    (Repository): Because some people have very long ID (first column)
      we changed int to long in num[] and we added a new lvector for
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    memory allocation. But we also truncated to 8 characters (left
      truncation)
   /* return pointer to array of pointers to rows */    (Repository): No more line truncation errors.
   return m;  
 }    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 /****************** free_imatrix *************************/    place. It differs from routine "prevalence" which may be called
 void free_imatrix(m,nrl,nrh,ncl,nch)    many times. Probs is memory consuming and must be used with
       int **m;    parcimony.
       long nch,ncl,nrh,nrl;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.83  2003/06/10 13:39:11  lievre
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    *** empty log message ***
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  */
 {  /*
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;     Interpolated Markov Chain
   double **m;  
     Short summary of the programme:
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");    This program computes Healthy Life Expectancies from
   m += NR_END;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m -= nrl;    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    case of a health survey which is our main interest) -2- at least a
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    second wave of interviews ("longitudinal") which measure each change
   m[nrl] += NR_END;    (if any) in individual health status.  Health expectancies are
   m[nrl] -= ncl;    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Maximum Likelihood of the parameters involved in the model.  The
   return m;    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /*************************free matrix ************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    where the markup *Covariates have to be included here again* invites
   free((FREE_ARG)(m+nrl-NR_END));    you to do it.  More covariates you add, slower the
 }    convergence.
   
 /******************* ma3x *******************************/    The advantage of this computer programme, compared to a simple
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    intermediate interview, the information is lost, but taken into
   double ***m;    account using an interpolation or extrapolation.  
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    hPijx is the probability to be observed in state i at age x+h
   if (!m) nrerror("allocation failure 1 in matrix()");    conditional to the observed state i at age x. The delay 'h' can be
   m += NR_END;    split into an exact number (nh*stepm) of unobserved intermediate
   m -= nrl;    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    matrix is simply the matrix product of nh*stepm elementary matrices
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    and the contribution of each individual to the likelihood is simply
   m[nrl] += NR_END;    hPijx.
   m[nrl] -= ncl;  
     Also this programme outputs the covariance matrix of the parameters but also
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    of the life expectancies. It also computes the period (stable) prevalence. 
     
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");             Institut national d'études démographiques, Paris.
   m[nrl][ncl] += NR_END;    This software have been partly granted by Euro-REVES, a concerted action
   m[nrl][ncl] -= nll;    from the European Union.
   for (j=ncl+1; j<=nch; j++)    It is copyrighted identically to a GNU software product, ie programme and
     m[nrl][j]=m[nrl][j-1]+nlay;    software can be distributed freely for non commercial use. Latest version
      can be accessed at http://euroreves.ined.fr/imach .
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     for (j=ncl+1; j<=nch; j++)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       m[i][j]=m[i][j-1]+nlay;    
   }    **********************************************************************/
   return m;  /*
 }    main
     read parameterfile
 /*************************free ma3x ************************/    read datafile
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    concatwav
 {    freqsummary
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (mle >= 1)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      mlikeli
   free((FREE_ARG)(m+nrl-NR_END));    print results files
 }    if mle==1 
        computes hessian
 /***************** f1dim *************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 extern int ncom;        begin-prev-date,...
 extern double *pcom,*xicom;    open gnuplot file
 extern double (*nrfunc)(double []);    open html file
      period (stable) prevalence
 double f1dim(double x)     for age prevalim()
 {    h Pij x
   int j;    variance of p varprob
   double f;    forecasting if prevfcast==1 prevforecast call prevalence()
   double *xt;    health expectancies
      Variance-covariance of DFLE
   xt=vector(1,ncom);    prevalence()
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     movingaverage()
   f=(*nrfunc)(xt);    varevsij() 
   free_vector(xt,1,ncom);    if popbased==1 varevsij(,popbased)
   return f;    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /*****************brent *************************/  */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  
   int iter;  
   double a,b,d,etemp;   
   double fu,fv,fw,fx;  #include <math.h>
   double ftemp;  #include <stdio.h>
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #include <stdlib.h>
   double e=0.0;  #include <string.h>
    #include <unistd.h>
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  #include <limits.h>
   x=w=v=bx;  #include <sys/types.h>
   fw=fv=fx=(*f)(x);  #include <sys/stat.h>
   for (iter=1;iter<=ITMAX;iter++) {  #include <errno.h>
     xm=0.5*(a+b);  extern int errno;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /* #include <sys/time.h> */
     printf(".");fflush(stdout);  #include <time.h>
 #ifdef DEBUG  #include "timeval.h"
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /* #include <libintl.h> */
 #endif  /* #define _(String) gettext (String) */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  #define MAXLINE 256
       return fx;  
     }  #define GNUPLOTPROGRAM "gnuplot"
     ftemp=fu;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     if (fabs(e) > tol1) {  #define FILENAMELENGTH 132
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       p=(x-v)*q-(x-w)*r;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
       q=fabs(q);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       etemp=e;  
       e=d;  #define NINTERVMAX 8
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       else {  #define NCOVMAX 20 /* Maximum number of covariates */
         d=p/q;  #define MAXN 20000
         u=x+d;  #define YEARM 12. /* Number of months per year */
         if (u-a < tol2 || b-u < tol2)  #define AGESUP 130
           d=SIGN(tol1,xm-x);  #define AGEBASE 40
       }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     } else {  #ifdef UNIX
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define DIRSEPARATOR '/'
     }  #define CHARSEPARATOR "/"
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define ODIRSEPARATOR '\\'
     fu=(*f)(u);  #else
     if (fu <= fx) {  #define DIRSEPARATOR '\\'
       if (u >= x) a=x; else b=x;  #define CHARSEPARATOR "\\"
       SHFT(v,w,x,u)  #define ODIRSEPARATOR '/'
         SHFT(fv,fw,fx,fu)  #endif
         } else {  
           if (u < x) a=u; else b=u;  /* $Id$ */
           if (fu <= fw || w == x) {  /* $State$ */
             v=w;  
             w=u;  char version[]="Imach version 0.98k, June 2006, INED-EUROREVES-Institut de longevite ";
             fv=fw;  char fullversion[]="$Revision$ $Date$"; 
             fw=fu;  char strstart[80];
           } else if (fu <= fv || v == x || v == w) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
             v=u;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
             fv=fu;  int nvar=0;
           }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
         }  int npar=NPARMAX;
   }  int nlstate=2; /* Number of live states */
   nrerror("Too many iterations in brent");  int ndeath=1; /* Number of dead states */
   *xmin=x;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   return fx;  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /****************** mnbrak ***********************/  int maxwav=0; /* Maxim number of waves */
   int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
             double (*func)(double))  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   double ulim,u,r,q, dum;  int mle=1, weightopt=0;
   double fu;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   *fa=(*func)(*ax);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   *fb=(*func)(*bx);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if (*fb > *fa) {  double jmean=1; /* Mean space between 2 waves */
     SHFT(dum,*ax,*bx,dum)  double **oldm, **newm, **savm; /* Working pointers to matrices */
       SHFT(dum,*fb,*fa,dum)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       }  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   *cx=(*bx)+GOLD*(*bx-*ax);  FILE *ficlog, *ficrespow;
   *fc=(*func)(*cx);  int globpr=0; /* Global variable for printing or not */
   while (*fb > *fc) {  double fretone; /* Only one call to likelihood */
     r=(*bx-*ax)*(*fb-*fc);  long ipmx=0; /* Number of contributions */
     q=(*bx-*cx)*(*fb-*fa);  double sw; /* Sum of weights */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char filerespow[FILENAMELENGTH];
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  FILE *ficresilk;
     if ((*bx-u)*(u-*cx) > 0.0) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       fu=(*func)(u);  FILE *ficresprobmorprev;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  FILE *fichtm, *fichtmcov; /* Html File */
       fu=(*func)(u);  FILE *ficreseij;
       if (fu < *fc) {  char filerese[FILENAMELENGTH];
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  FILE *ficresstdeij;
           SHFT(*fb,*fc,fu,(*func)(u))  char fileresstde[FILENAMELENGTH];
           }  FILE *ficrescveij;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char filerescve[FILENAMELENGTH];
       u=ulim;  FILE  *ficresvij;
       fu=(*func)(u);  char fileresv[FILENAMELENGTH];
     } else {  FILE  *ficresvpl;
       u=(*cx)+GOLD*(*cx-*bx);  char fileresvpl[FILENAMELENGTH];
       fu=(*func)(u);  char title[MAXLINE];
     }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     SHFT(*ax,*bx,*cx,u)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       SHFT(*fa,*fb,*fc,fu)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       }  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /*************** linmin ************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 int ncom;  char filelog[FILENAMELENGTH]; /* Log file */
 double *pcom,*xicom;  char filerest[FILENAMELENGTH];
 double (*nrfunc)(double []);  char fileregp[FILENAMELENGTH];
    char popfile[FILENAMELENGTH];
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   double f1dim(double x);  struct timezone tzp;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  extern int gettimeofday();
               double *fc, double (*func)(double));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   int j;  long time_value;
   double xx,xmin,bx,ax;  extern long time();
   double fx,fb,fa;  char strcurr[80], strfor[80];
    
   ncom=n;  char *endptr;
   pcom=vector(1,n);  long lval;
   xicom=vector(1,n);  double dval;
   nrfunc=func;  
   for (j=1;j<=n;j++) {  #define NR_END 1
     pcom[j]=p[j];  #define FREE_ARG char*
     xicom[j]=xi[j];  #define FTOL 1.0e-10
   }  
   ax=0.0;  #define NRANSI 
   xx=1.0;  #define ITMAX 200 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define TOL 2.0e-4 
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define CGOLD 0.3819660 
 #endif  #define ZEPS 1.0e-10 
   for (j=1;j<=n;j++) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     xi[j] *= xmin;  
     p[j] += xi[j];  #define GOLD 1.618034 
   }  #define GLIMIT 100.0 
   free_vector(xicom,1,n);  #define TINY 1.0e-20 
   free_vector(pcom,1,n);  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /*************** powell ************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    
             double (*func)(double []))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  static double sqrarg;
   int i,ibig,j;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double del,t,*pt,*ptt,*xit;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double fp,fptt;  int agegomp= AGEGOMP;
   double *xits;  
   pt=vector(1,n);  int imx; 
   ptt=vector(1,n);  int stepm=1;
   xit=vector(1,n);  /* Stepm, step in month: minimum step interpolation*/
   xits=vector(1,n);  
   *fret=(*func)(p);  int estepm;
   for (j=1;j<=n;j++) pt[j]=p[j];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  int m,nb;
     ibig=0;  long *num;
     del=0.0;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     for (i=1;i<=n;i++)  double **pmmij, ***probs;
       printf(" %d %.12f",i, p[i]);  double *ageexmed,*agecens;
     printf("\n");  double dateintmean=0;
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  double *weight;
       fptt=(*fret);  int **s; /* Status */
 #ifdef DEBUG  double *agedc, **covar, idx;
       printf("fret=%lf \n",*fret);  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 #endif  double *lsurv, *lpop, *tpop;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       if (fabs(fptt-(*fret)) > del) {  double ftolhess; /* Tolerance for computing hessian */
         del=fabs(fptt-(*fret));  
         ibig=i;  /**************** split *************************/
       }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 #ifdef DEBUG  {
       printf("%d %.12e",i,(*fret));    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       for (j=1;j<=n;j++) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    */ 
         printf(" x(%d)=%.12e",j,xit[j]);    char  *ss;                            /* pointer */
       }    int   l1, l2;                         /* length counters */
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    l1 = strlen(path );                   /* length of path */
       printf("\n");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #endif    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      strcpy( name, path );               /* we got the fullname name because no directory */
 #ifdef DEBUG      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       int k[2],l;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       k[0]=1;      /* get current working directory */
       k[1]=-1;      /*    extern  char* getcwd ( char *buf , int len);*/
       printf("Max: %.12e",(*func)(p));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       for (j=1;j<=n;j++)        return( GLOCK_ERROR_GETCWD );
         printf(" %.12e",p[j]);      }
       printf("\n");      /* got dirc from getcwd*/
       for(l=0;l<=1;l++) {      printf(" DIRC = %s \n",dirc);
         for (j=1;j<=n;j++) {    } else {                              /* strip direcotry from path */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      ss++;                               /* after this, the filename */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      l2 = strlen( ss );                  /* length of filename */
         }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      strcpy( name, ss );         /* save file name */
       }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 #endif      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
     }
       free_vector(xit,1,n);    /* We add a separator at the end of dirc if not exists */
       free_vector(xits,1,n);    l1 = strlen( dirc );                  /* length of directory */
       free_vector(ptt,1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
       free_vector(pt,1,n);      dirc[l1] =  DIRSEPARATOR;
       return;      dirc[l1+1] = 0; 
     }      printf(" DIRC3 = %s \n",dirc);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    }
     for (j=1;j<=n;j++) {    ss = strrchr( name, '.' );            /* find last / */
       ptt[j]=2.0*p[j]-pt[j];    if (ss >0){
       xit[j]=p[j]-pt[j];      ss++;
       pt[j]=p[j];      strcpy(ext,ss);                     /* save extension */
     }      l1= strlen( name);
     fptt=(*func)(ptt);      l2= strlen(ss)+1;
     if (fptt < fp) {      strncpy( finame, name, l1-l2);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      finame[l1-l2]= 0;
       if (t < 0.0) {    }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {    return( 0 );                          /* we're done */
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  
 #ifdef DEBUG  /******************************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  void replace_back_to_slash(char *s, char*t)
           printf(" %.12e",xit[j]);  {
         printf("\n");    int i;
 #endif    int lg=0;
       }    i=0;
     }    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /**** Prevalence limit ****************/    }
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  char *trimbb(char *out, char *in)
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  { /* Trim multiple blanks in line */
      matrix by transitions matrix until convergence is reached */    char *s;
     s=out;
   int i, ii,j,k;    while (*in != '\0'){
   double min, max, maxmin, maxmax,sumnew=0.;      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
   double **matprod2();        in++;
   double **out, cov[NCOVMAX], **pmij();      }
   double **newm;      *out++ = *in++;
   double agefin, delaymax=50 ; /* Max number of years to converge */    }
     *out='\0';
   for (ii=1;ii<=nlstate+ndeath;ii++)    return s;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  int nbocc(char *s, char occ)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    int i,j=0;
     newm=savm;    int lg=20;
     /* Covariates have to be included here again */    i=0;
     cov[1]=1.;    lg=strlen(s);
     cov[2]=agefin;    for(i=0; i<= lg; i++) {
     if (cptcovn>0){    if  (s[i] == occ ) j++;
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    }
     }    return j;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  void cutv(char *u,char *v, char*t, char occ)
     oldm=newm;  {
     maxmax=0.;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     for(j=1;j<=nlstate;j++){       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       min=1.;       gives u="abcedf" and v="ghi2j" */
       max=0.;    int i,lg,j,p=0;
       for(i=1; i<=nlstate; i++) {    i=0;
         sumnew=0;    for(j=0; j<=strlen(t)-1; j++) {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         prlim[i][j]= newm[i][j]/(1-sumnew);    }
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    lg=strlen(t);
       }    for(j=0; j<p; j++) {
       maxmin=max-min;      (u[j] = t[j]);
       maxmax=FMAX(maxmax,maxmin);    }
     }       u[p]='\0';
     if(maxmax < ftolpl){  
       return prlim;     for(j=0; j<= lg; j++) {
     }      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
 }  }
   
 /*************** transition probabilities **********/  /********************** nrerror ********************/
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  void nrerror(char error_text[])
 {  {
   double s1, s2;    fprintf(stderr,"ERREUR ...\n");
   /*double t34;*/    fprintf(stderr,"%s\n",error_text);
   int i,j,j1, nc, ii, jj;    exit(EXIT_FAILURE);
   }
     for(i=1; i<= nlstate; i++){  /*********************** vector *******************/
     for(j=1; j<i;j++){  double *vector(int nl, int nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    double *v;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    if (!v) nrerror("allocation failure in vector");
       }    return v-nl+NR_END;
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /************************ free vector ******************/
     for(j=i+1; j<=nlstate+ndeath;j++){  void free_vector(double*v, int nl, int nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG)(v+nl-NR_END));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
   }  {
   for(i=1; i<= nlstate; i++){    int *v;
      s1=0;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for(j=1; j<i; j++)    if (!v) nrerror("allocation failure in ivector");
       s1+=exp(ps[i][j]);    return v-nl+NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /******************free ivector **************************/
     for(j=1; j<i; j++)  void free_ivector(int *v, long nl, long nh)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     for(j=i+1; j<=nlstate+ndeath; j++)    free((FREE_ARG)(v+nl-NR_END));
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /************************lvector *******************************/
   long *lvector(long nl,long nh)
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    long *v;
       ps[ii][jj]=0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       ps[ii][ii]=1;    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
   }  }
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /******************free lvector **************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  void free_lvector(long *v, long nl, long nh)
      printf("%lf ",ps[ii][jj]);  {
    }    free((FREE_ARG)(v+nl-NR_END));
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /******************* imatrix *******************************/
 /*  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   goto end;*/  { 
     return ps;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /**************** Product of 2 matrices ******************/    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    if (!m) nrerror("allocation failure 1 in matrix()"); 
 {    m += NR_END; 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    m -= nrl; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    
   /* in, b, out are matrice of pointers which should have been initialized    
      before: only the contents of out is modified. The function returns    /* allocate rows and set pointers to them */ 
      a pointer to pointers identical to out */    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   long i, j, k;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   for(i=nrl; i<= nrh; i++)    m[nrl] += NR_END; 
     for(k=ncolol; k<=ncoloh; k++)    m[nrl] -= ncl; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    
         out[i][k] +=in[i][j]*b[j][k];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
   return out;    /* return pointer to array of pointers to rows */ 
 }    return m; 
   } 
   
 /************* Higher Matrix Product ***************/  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        int **m;
 {        long nch,ncl,nrh,nrl; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month       /* free an int matrix allocated by imatrix() */ 
      duration (i.e. until  { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    free((FREE_ARG) (m+nrl-NR_END)); 
      (typically every 2 years instead of every month which is too big).  } 
      Model is determined by parameters x and covariates have to be  
      included manually here.  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
      */  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   int i, j, d, h, k;    double **m;
   double **out, cov[NCOVMAX];  
   double **newm;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   /* Hstepm could be zero and should return the unit matrix */    m += NR_END;
   for (i=1;i<=nlstate+ndeath;i++)    m -= nrl;
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       po[i][j][0]=(i==j ? 1.0 : 0.0);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl] -= ncl;
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       newm=savm;    return m;
       /* Covariates have to be included here again */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       cov[1]=1.;     */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       if (cptcovn>0){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    free((FREE_ARG)(m+nrl-NR_END));
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  }
       savm=oldm;  
       oldm=newm;  /******************* ma3x *******************************/
     }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         po[i][j][h]=newm[i][j];    double ***m;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
   } /* end h */    m += NR_END;
   return po;    m -= nrl;
 }  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*************** log-likelihood *************/    m[nrl] += NR_END;
 double func( double *x)    m[nrl] -= ncl;
 {  
   int i, ii, j, k, mi, d;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double sw; /* Sum of weights */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double lli; /* Individual log likelihood */    m[nrl][ncl] += NR_END;
   long ipmx;    m[nrl][ncl] -= nll;
   /*extern weight */    for (j=ncl+1; j<=nch; j++) 
   /* We are differentiating ll according to initial status */      m[nrl][j]=m[nrl][j-1]+nlay;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    
   /*for(i=1;i<imx;i++)    for (i=nrl+1; i<=nrh; i++) {
 printf(" %d\n",s[4][i]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   */      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    return m; 
        for(mi=1; mi<= wav[i]-1; mi++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (ii=1;ii<=nlstate+ndeath;ii++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    */
             for(d=0; d<dh[mi][i]; d++){  }
         newm=savm;  
           cov[1]=1.;  /*************************free ma3x ************************/
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           if (cptcovn>0){  {
             for (k=1; k<=cptcovn;k++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
               cov[2+k]=covar[Tvar[k]][i];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/    free((FREE_ARG)(m+nrl-NR_END));
             }  }
             }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** function subdirf ***********/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  char *subdirf(char fileres[])
           savm=oldm;  {
           oldm=newm;    /* Caution optionfilefiname is hidden */
       } /* end mult */    strcpy(tmpout,optionfilefiname);
        strcat(tmpout,"/"); /* Add to the right */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    strcat(tmpout,fileres);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    return tmpout;
       ipmx +=1;  }
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*************** function subdirf2 ***********/
     } /* end of wave */  char *subdirf2(char fileres[], char *preop)
   } /* end of individual */  {
     
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    /* Caution optionfilefiname is hidden */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    strcpy(tmpout,optionfilefiname);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    strcat(tmpout,"/");
     strcat(tmpout,preop);
   return -l;    strcat(tmpout,fileres);
 }    return tmpout;
   }
   
 /*********** Maximum Likelihood Estimation ***************/  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  {
 {    
   int i,j, iter;    /* Caution optionfilefiname is hidden */
   double **xi,*delti;    strcpy(tmpout,optionfilefiname);
   double fret;    strcat(tmpout,"/");
   xi=matrix(1,npar,1,npar);    strcat(tmpout,preop);
   for (i=1;i<=npar;i++)    strcat(tmpout,preop2);
     for (j=1;j<=npar;j++)    strcat(tmpout,fileres);
       xi[i][j]=(i==j ? 1.0 : 0.0);    return tmpout;
   printf("Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /***************** f1dim *************************/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  extern int ncom; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 }   
   double f1dim(double x) 
 /**** Computes Hessian and covariance matrix ***/  { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    int j; 
 {    double f;
   double  **a,**y,*x,pd;    double *xt; 
   double **hess;   
   int i, j,jk;    xt=vector(1,ncom); 
   int *indx;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
   double hessii(double p[], double delta, int theta, double delti[]);    free_vector(xt,1,ncom); 
   double hessij(double p[], double delti[], int i, int j);    return f; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   hess=matrix(1,npar,1,npar);  { 
     int iter; 
   printf("\nCalculation of the hessian matrix. Wait...\n");    double a,b,d,etemp;
   for (i=1;i<=npar;i++){    double fu,fv,fw,fx;
     printf("%d",i);fflush(stdout);    double ftemp;
     hess[i][i]=hessii(p,ftolhess,i,delti);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     /*printf(" %f ",p[i]);*/    double e=0.0; 
   }   
     a=(ax < cx ? ax : cx); 
   for (i=1;i<=npar;i++) {    b=(ax > cx ? ax : cx); 
     for (j=1;j<=npar;j++)  {    x=w=v=bx; 
       if (j>i) {    fw=fv=fx=(*f)(x); 
         printf(".%d%d",i,j);fflush(stdout);    for (iter=1;iter<=ITMAX;iter++) { 
         hess[i][j]=hessij(p,delti,i,j);      xm=0.5*(a+b); 
         hess[j][i]=hess[i][j];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
   }      fprintf(ficlog,".");fflush(ficlog);
   printf("\n");  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   a=matrix(1,npar,1,npar);  #endif
   y=matrix(1,npar,1,npar);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   x=vector(1,npar);        *xmin=x; 
   indx=ivector(1,npar);        return fx; 
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      ftemp=fu;
   ludcmp(a,npar,indx,&pd);      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   for (j=1;j<=npar;j++) {        q=(x-v)*(fx-fw); 
     for (i=1;i<=npar;i++) x[i]=0;        p=(x-v)*q-(x-w)*r; 
     x[j]=1;        q=2.0*(q-r); 
     lubksb(a,npar,indx,x);        if (q > 0.0) p = -p; 
     for (i=1;i<=npar;i++){        q=fabs(q); 
       matcov[i][j]=x[i];        etemp=e; 
     }        e=d; 
   }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   printf("\n#Hessian matrix#\n");        else { 
   for (i=1;i<=npar;i++) {          d=p/q; 
     for (j=1;j<=npar;j++) {          u=x+d; 
       printf("%.3e ",hess[i][j]);          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
     printf("\n");        } 
   }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* Recompute Inverse */      } 
   for (i=1;i<=npar;i++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      fu=(*f)(u); 
   ludcmp(a,npar,indx,&pd);      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   /*  printf("\n#Hessian matrix recomputed#\n");        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   for (j=1;j<=npar;j++) {          } else { 
     for (i=1;i<=npar;i++) x[i]=0;            if (u < x) a=u; else b=u; 
     x[j]=1;            if (fu <= fw || w == x) { 
     lubksb(a,npar,indx,x);              v=w; 
     for (i=1;i<=npar;i++){              w=u; 
       y[i][j]=x[i];              fv=fw; 
       printf("%.3e ",y[i][j]);              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     printf("\n");              v=u; 
   }              fv=fu; 
   */            } 
           } 
   free_matrix(a,1,npar,1,npar);    } 
   free_matrix(y,1,npar,1,npar);    nrerror("Too many iterations in brent"); 
   free_vector(x,1,npar);    *xmin=x; 
   free_ivector(indx,1,npar);    return fx; 
   free_matrix(hess,1,npar,1,npar);  } 
   
   /****************** mnbrak ***********************/
 }  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 /*************** hessian matrix ****************/              double (*func)(double)) 
 double hessii( double x[], double delta, int theta, double delti[])  { 
 {    double ulim,u,r,q, dum;
   int i;    double fu; 
   int l=1, lmax=20;   
   double k1,k2;    *fa=(*func)(*ax); 
   double p2[NPARMAX+1];    *fb=(*func)(*bx); 
   double res;    if (*fb > *fa) { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      SHFT(dum,*ax,*bx,dum) 
   double fx;        SHFT(dum,*fb,*fa,dum) 
   int k=0,kmax=10;        } 
   double l1;    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   fx=func(x);    while (*fb > *fc) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];      r=(*bx-*ax)*(*fb-*fc); 
   for(l=0 ; l <=lmax; l++){      q=(*bx-*cx)*(*fb-*fa); 
     l1=pow(10,l);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     delts=delt;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(k=1 ; k <kmax; k=k+1){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       delt = delta*(l1*k);      if ((*bx-u)*(u-*cx) > 0.0) { 
       p2[theta]=x[theta] +delt;        fu=(*func)(u); 
       k1=func(p2)-fx;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       p2[theta]=x[theta]-delt;        fu=(*func)(u); 
       k2=func(p2)-fx;        if (fu < *fc) { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            SHFT(*fb,*fc,fu,(*func)(u)) 
                  } 
 #ifdef DEBUG      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        u=ulim; 
 #endif        fu=(*func)(u); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      } else { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        u=(*cx)+GOLD*(*cx-*bx); 
         k=kmax;        fu=(*func)(u); 
       }      } 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      SHFT(*ax,*bx,*cx,u) 
         k=kmax; l=lmax*10.;        SHFT(*fa,*fb,*fc,fu) 
       }        } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  } 
         delts=delt;  
       }  /*************** linmin ************************/
     }  
   }  int ncom; 
   delti[theta]=delts;  double *pcom,*xicom;
   return res;    double (*nrfunc)(double []); 
 }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 double hessij( double x[], double delti[], int thetai,int thetaj)  { 
 {    double brent(double ax, double bx, double cx, 
   int i;                 double (*f)(double), double tol, double *xmin); 
   int l=1, l1, lmax=20;    double f1dim(double x); 
   double k1,k2,k3,k4,res,fx;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double p2[NPARMAX+1];                double *fc, double (*func)(double)); 
   int k;    int j; 
     double xx,xmin,bx,ax; 
   fx=func(x);    double fx,fb,fa;
   for (k=1; k<=2; k++) {   
     for (i=1;i<=npar;i++) p2[i]=x[i];    ncom=n; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    pcom=vector(1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    xicom=vector(1,n); 
     k1=func(p2)-fx;    nrfunc=func; 
      for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;      pcom[j]=p[j]; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      xicom[j]=xi[j]; 
     k2=func(p2)-fx;    } 
      ax=0.0; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    xx=1.0; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     k3=func(p2)-fx;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     k4=func(p2)-fx;  #endif
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for (j=1;j<=n;j++) { 
 #ifdef DEBUG      xi[j] *= xmin; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      p[j] += xi[j]; 
 #endif    } 
   }    free_vector(xicom,1,n); 
   return res;    free_vector(pcom,1,n); 
 }  } 
   
 /************** Inverse of matrix **************/  char *asc_diff_time(long time_sec, char ascdiff[])
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    long sec_left, days, hours, minutes;
   int i,imax,j,k;    days = (time_sec) / (60*60*24);
   double big,dum,sum,temp;    sec_left = (time_sec) % (60*60*24);
   double *vv;    hours = (sec_left) / (60*60) ;
      sec_left = (sec_left) %(60*60);
   vv=vector(1,n);    minutes = (sec_left) /60;
   *d=1.0;    sec_left = (sec_left) % (60);
   for (i=1;i<=n;i++) {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     big=0.0;    return ascdiff;
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*************** powell ************************/
     vv[i]=1.0/big;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   }              double (*func)(double [])) 
   for (j=1;j<=n;j++) {  { 
     for (i=1;i<j;i++) {    void linmin(double p[], double xi[], int n, double *fret, 
       sum=a[i][j];                double (*func)(double [])); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    int i,ibig,j; 
       a[i][j]=sum;    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
     big=0.0;    double *xits;
     for (i=j;i<=n;i++) {    int niterf, itmp;
       sum=a[i][j];  
       for (k=1;k<j;k++)    pt=vector(1,n); 
         sum -= a[i][k]*a[k][j];    ptt=vector(1,n); 
       a[i][j]=sum;    xit=vector(1,n); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    xits=vector(1,n); 
         big=dum;    *fret=(*func)(p); 
         imax=i;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
     if (j != imax) {      ibig=0; 
       for (k=1;k<=n;k++) {      del=0.0; 
         dum=a[imax][k];      last_time=curr_time;
         a[imax][k]=a[j][k];      (void) gettimeofday(&curr_time,&tzp);
         a[j][k]=dum;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       *d = -(*d);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       vv[imax]=vv[j];     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
     indx[j]=imax;        fprintf(ficlog," %d %.12lf",i, p[i]);
     if (a[j][j] == 0.0) a[j][j]=TINY;        fprintf(ficrespow," %.12lf", p[i]);
     if (j != n) {      }
       dum=1.0/(a[j][j]);      printf("\n");
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
   }      if(*iter <=3){
   free_vector(vv,1,n);  /* Doesn't work */        tm = *localtime(&curr_time.tv_sec);
 ;        strcpy(strcurr,asctime(&tm));
 }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
 void lubksb(double **a, int n, int *indx, double b[])        itmp = strlen(strcurr);
 {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   int i,ii=0,ip,j;          strcurr[itmp-1]='\0';
   double sum;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=n;i++) {        for(niterf=10;niterf<=30;niterf+=10){
     ip=indx[i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     sum=b[ip];          tmf = *localtime(&forecast_time.tv_sec);
     b[ip]=b[i];  /*      asctime_r(&tmf,strfor); */
     if (ii)          strcpy(strfor,asctime(&tmf));
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          itmp = strlen(strfor);
     else if (sum) ii=i;          if(strfor[itmp-1]=='\n')
     b[i]=sum;          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=n;i>=1;i--) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     sum=b[i];        }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      }
     b[i]=sum/a[i][i];      for (i=1;i<=n;i++) { 
   }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 }        fptt=(*fret); 
   #ifdef DEBUG
 /************ Frequencies ********************/        printf("fret=%lf \n",*fret);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        fprintf(ficlog,"fret=%lf \n",*fret);
 {  /* Some frequencies */  #endif
          printf("%d",i);fflush(stdout);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double ***freq; /* Frequencies */        linmin(p,xit,n,fret,func); 
   double *pp;        if (fabs(fptt-(*fret)) > del) { 
   double pos;          del=fabs(fptt-(*fret)); 
   FILE *ficresp;          ibig=i; 
   char fileresp[FILENAMELENGTH];        } 
   #ifdef DEBUG
   pp=vector(1,nlstate);        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   strcpy(fileresp,"p");        for (j=1;j<=n;j++) {
   strcat(fileresp,fileres);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   if((ficresp=fopen(fileresp,"w"))==NULL) {          printf(" x(%d)=%.12e",j,xit[j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     exit(0);        }
   }        for(j=1;j<=n;j++) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          printf(" p=%.12e",p[j]);
   j1=0;          fprintf(ficlog," p=%.12e",p[j]);
         }
   j=cptcovn;        printf("\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fprintf(ficlog,"\n");
   #endif
   for(k1=1; k1<=j;k1++){      } 
    for(i1=1; i1<=ncodemax[k1];i1++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
        j1++;  #ifdef DEBUG
         int k[2],l;
         for (i=-1; i<=nlstate+ndeath; i++)          k[0]=1;
          for (jk=-1; jk<=nlstate+ndeath; jk++)          k[1]=-1;
            for(m=agemin; m <= agemax+3; m++)        printf("Max: %.12e",(*func)(p));
              freq[i][jk][m]=0;        fprintf(ficlog,"Max: %.12e",(*func)(p));
                for (j=1;j<=n;j++) {
        for (i=1; i<=imx; i++) {          printf(" %.12e",p[j]);
          bool=1;          fprintf(ficlog," %.12e",p[j]);
          if  (cptcovn>0) {        }
            for (z1=1; z1<=cptcovn; z1++)        printf("\n");
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;        fprintf(ficlog,"\n");
          }        for(l=0;l<=1;l++) {
           if (bool==1) {          for (j=1;j<=n;j++) {
            for(m=firstpass; m<=lastpass-1; m++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              if(agev[m][i]==0) agev[m][i]=agemax+1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
              if(agev[m][i]==1) agev[m][i]=agemax+2;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }        }
        }  #endif
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#Variable");  
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);        free_vector(xit,1,n); 
        }        free_vector(xits,1,n); 
        fprintf(ficresp, "\n#");        free_vector(ptt,1,n); 
        for(i=1; i<=nlstate;i++)        free_vector(pt,1,n); 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        return; 
        fprintf(ficresp, "\n");      } 
              if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for(i=(int)agemin; i <= (int)agemax+3; i++){      for (j=1;j<=n;j++) { 
     if(i==(int)agemax+3)        ptt[j]=2.0*p[j]-pt[j]; 
       printf("Total");        xit[j]=p[j]-pt[j]; 
     else        pt[j]=p[j]; 
       printf("Age %d", i);      } 
     for(jk=1; jk <=nlstate ; jk++){      fptt=(*func)(ptt); 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      if (fptt < fp) { 
         pp[jk] += freq[jk][m][i];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
     for(jk=1; jk <=nlstate ; jk++){          linmin(p,xit,n,fret,func); 
       for(m=-1, pos=0; m <=0 ; m++)          for (j=1;j<=n;j++) { 
         pos += freq[jk][m][i];            xi[j][ibig]=xi[j][n]; 
       if(pp[jk]>=1.e-10)            xi[j][n]=xit[j]; 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          }
       else  #ifdef DEBUG
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(jk=1; jk <=nlstate ; jk++){          for(j=1;j<=n;j++){
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)            printf(" %.12e",xit[j]);
         pp[jk] += freq[jk][m][i];            fprintf(ficlog," %.12e",xit[j]);
     }          }
     for(jk=1,pos=0; jk <=nlstate ; jk++)          printf("\n");
       pos += pp[jk];          fprintf(ficlog,"\n");
     for(jk=1; jk <=nlstate ; jk++){  #endif
       if(pos>=1.e-5)        }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } 
       else    } 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  } 
       if( i <= (int) agemax){  
         if(pos>=1.e-5)  /**** Prevalence limit (stable or period prevalence)  ****************/
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
       else  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  {
       }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
     for(jk=-1; jk <=nlstate+ndeath; jk++)  
       for(m=-1; m <=nlstate+ndeath; m++)    int i, ii,j,k;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double min, max, maxmin, maxmax,sumnew=0.;
     if(i <= (int) agemax)    double **matprod2();
       fprintf(ficresp,"\n");    double **out, cov[NCOVMAX+1], **pmij();
     printf("\n");    double **newm;
     }    double agefin, delaymax=50 ; /* Max number of years to converge */
     }  
  }    for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
   fclose(ficresp);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      }
   free_vector(pp,1,nlstate);  
      cov[1]=1.;
 }  /* End of Freq */   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /************* Waves Concatenation ***************/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      /* Covariates have to be included here again */
 {       cov[2]=agefin;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    
      Death is a valid wave (if date is known).        for (k=1; k<=cptcovn;k++) {
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      and mw[mi+1][i]. dh depends on stepm.        }
      */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   int i, mi, m;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
 float sum=0.;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   for(i=1; i<=imx; i++){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     mi=0;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     m=firstpass;  
     while(s[m][i] <= nlstate){      savm=oldm;
       if(s[m][i]>=1)      oldm=newm;
         mw[++mi][i]=m;      maxmax=0.;
       if(m >=lastpass)      for(j=1;j<=nlstate;j++){
         break;        min=1.;
       else        max=0.;
         m++;        for(i=1; i<=nlstate; i++) {
     }/* end while */          sumnew=0;
     if (s[m][i] > nlstate){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       mi++;     /* Death is another wave */          prlim[i][j]= newm[i][j]/(1-sumnew);
       /* if(mi==0)  never been interviewed correctly before death */          max=FMAX(max,prlim[i][j]);
          /* Only death is a correct wave */          min=FMIN(min,prlim[i][j]);
       mw[mi][i]=m;        }
     }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
     wav[i]=mi;      }
     if(mi==0)      if(maxmax < ftolpl){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        return prlim;
   }      }
     }
   for(i=1; i<=imx; i++){  }
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)  /*************** transition probabilities ***************/ 
         dh[mi][i]=1;  
       else{  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         if (s[mw[mi+1][i]][i] > nlstate) {  {
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    double s1, s2;
           if(j=0) j=1;  /* Survives at least one month after exam */    /*double t34;*/
         }    int i,j,j1, nc, ii, jj;
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for(i=1; i<= nlstate; i++){
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           k=k+1;            /*s2 += param[i][j][nc]*cov[nc];*/
           if (j >= jmax) jmax=j;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           else if (j <= jmin)jmin=j;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           sum=sum+j;          }
         }          ps[i][j]=s2;
         jk= j/stepm;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         jl= j -jk*stepm;        }
         ju= j -(jk+1)*stepm;        for(j=i+1; j<=nlstate+ndeath;j++){
         if(jl <= -ju)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           dh[mi][i]=jk;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         else  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           dh[mi][i]=jk+1;          }
         if(dh[mi][i]==0)          ps[i][j]=s2;
           dh[mi][i]=1; /* At least one step */        }
       }      }
     }      /*ps[3][2]=1;*/
   }      
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);      for(i=1; i<= nlstate; i++){
 }        s1=0;
 /*********** Tricode ****************************/        for(j=1; j<i; j++){
 void tricode(int *Tvar, int **nbcode, int imx)          s1+=exp(ps[i][j]);
 {          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   int Ndum[80],ij, k, j, i;        }
   int cptcode=0;        for(j=i+1; j<=nlstate+ndeath; j++){
   for (k=0; k<79; k++) Ndum[k]=0;          s1+=exp(ps[i][j]);
   for (k=1; k<=7; k++) ncodemax[k]=0;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
          }
   for (j=1; j<=cptcovn; j++) {        ps[i][i]=1./(s1+1.);
     for (i=1; i<=imx; i++) {        for(j=1; j<i; j++)
       ij=(int)(covar[Tvar[j]][i]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       Ndum[ij]++;        for(j=i+1; j<=nlstate+ndeath; j++)
       if (ij > cptcode) cptcode=ij;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/      } /* end i */
     for (i=0; i<=cptcode; i++) {      
       if(Ndum[i]!=0) ncodemax[j]++;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     }        for(jj=1; jj<= nlstate+ndeath; jj++){
            ps[ii][jj]=0;
     ij=1;          ps[ii][ii]=1;
     for (i=1; i<=ncodemax[j]; i++) {        }
       for (k=0; k<=79; k++) {      }
         if (Ndum[k] != 0) {      
           nbcode[Tvar[j]][ij]=k;  
           ij++;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         if (ij > ncodemax[j]) break;  /*         printf("ddd %lf ",ps[ii][jj]); */
       }    /*       } */
     }  /*       printf("\n "); */
   }    /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
   }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /*********** Health Expectancies ****************/        goto end;*/
       return ps;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  }
 {  
   /* Health expectancies */  /**************** Product of 2 matrices ******************/
   int i, j, nhstepm, hstepm, h;  
   double age, agelim,hf;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double ***p3mat;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   fprintf(ficreseij,"# Health expectancies\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   fprintf(ficreseij,"# Age");    /* in, b, out are matrice of pointers which should have been initialized 
   for(i=1; i<=nlstate;i++)       before: only the contents of out is modified. The function returns
     for(j=1; j<=nlstate;j++)       a pointer to pointers identical to out */
       fprintf(ficreseij," %1d-%1d",i,j);    long i, j, k;
   fprintf(ficreseij,"\n");    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   hstepm=1*YEARM; /*  Every j years of age (in month) */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          out[i][k] +=in[i][j]*b[j][k];
   
   agelim=AGESUP;    return out;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years = 20*12/6=40 stepm */  /************* Higher Matrix Product ***************/
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* Computes the transition matrix starting at age 'age' over 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       'nhstepm*hstepm*stepm' months (i.e. until
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(i=1; i<=nlstate;i++)       (typically every 2 years instead of every month which is too big 
       for(j=1; j<=nlstate;j++)       for the memory).
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){       Model is determined by parameters x and covariates have to be 
           eij[i][j][(int)age] +=p3mat[i][j][h];       included manually here. 
         }  
           */
     hf=1;  
     if (stepm >= YEARM) hf=stepm/YEARM;    int i, j, d, h, k;
     fprintf(ficreseij,"%.0f",age );    double **out, cov[NCOVMAX+1];
     for(i=1; i<=nlstate;i++)    double **newm;
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    /* Hstepm could be zero and should return the unit matrix */
       }    for (i=1;i<=nlstate+ndeath;i++)
     fprintf(ficreseij,"\n");      for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
 }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /************ Variance ******************/    for(h=1; h <=nhstepm; h++){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for(d=1; d <=hstepm; d++){
 {        newm=savm;
   /* Variance of health expectancies */        /* Covariates have to be included here again */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        cov[1]=1.;
   double **newm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double **dnewm,**doldm;        for (k=1; k<=cptcovn;k++) 
   int i, j, nhstepm, hstepm, h;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int k, cptcode;        for (k=1; k<=cptcovage;k++)
    double *xp;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double **gp, **gm;        for (k=1; k<=cptcovprod;k++)
   double ***gradg, ***trgradg;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double ***p3mat;  
   double age,agelim;  
   int theta;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
    fprintf(ficresvij,"# Covariances of life expectancies\n");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   fprintf(ficresvij,"# Age");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=nlstate;i++)        savm=oldm;
     for(j=1; j<=nlstate;j++)        oldm=newm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      }
   fprintf(ficresvij,"\n");      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   xp=vector(1,npar);          po[i][j][h]=newm[i][j];
   dnewm=matrix(1,nlstate,1,npar);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   doldm=matrix(1,nlstate,1,nlstate);        }
        /*printf("h=%d ",h);*/
   hstepm=1*YEARM; /* Every year of age */    } /* end h */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /*     printf("\n H=%d \n",h); */
   agelim = AGESUP;    return po;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /*************** log-likelihood *************/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  double func( double *x)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  {
     gp=matrix(0,nhstepm,1,nlstate);    int i, ii, j, k, mi, d, kk;
     gm=matrix(0,nhstepm,1,nlstate);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
     for(theta=1; theta <=npar; theta++){    double sw; /* Sum of weights */
       for(i=1; i<=npar; i++){ /* Computes gradient */    double lli; /* Individual log likelihood */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int s1, s2;
       }    double bbh, survp;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      long ipmx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*extern weight */
       for(j=1; j<= nlstate; j++){    /* We are differentiating ll according to initial status */
         for(h=0; h<=nhstepm; h++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      printf(" %d\n",s[4][i]);
         }    */
       }    cov[1]=1.;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    for(k=1; k<=nlstate; k++) ll[k]=0.;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      if(mle==1){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<= nlstate; j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(h=0; h<=nhstepm; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++)            }
         for(h=0; h<=nhstepm; h++){          for(d=0; d<dh[mi][i]; d++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     } /* End theta */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(h=0; h<=nhstepm; h++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate;j++)            savm=oldm;
         for(theta=1; theta <=npar; theta++)            oldm=newm;
           trgradg[h][j][theta]=gradg[h][theta][j];          } /* end mult */
         
     for(i=1;i<=nlstate;i++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for(j=1;j<=nlstate;j++)          /* But now since version 0.9 we anticipate for bias at large stepm.
         vareij[i][j][(int)age] =0.;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(h=0;h<=nhstepm;h++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(k=0;k<=nhstepm;k++){           * the nearest (and in case of equal distance, to the lowest) interval but now
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         for(i=1;i<=nlstate;i++)           * probability in order to take into account the bias as a fraction of the way
           for(j=1;j<=nlstate;j++)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             vareij[i][j][(int)age] += doldm[i][j];           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
     h=1;           */
     if (stepm >= YEARM) h=stepm/YEARM;          s1=s[mw[mi][i]][i];
     fprintf(ficresvij,"%.0f ",age );          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<=nlstate;j++){          /* bias bh is positive if real duration
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);           * is higher than the multiple of stepm and negative otherwise.
       }           */
     fprintf(ficresvij,"\n");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     free_matrix(gp,0,nhstepm,1,nlstate);          if( s2 > nlstate){ 
     free_matrix(gm,0,nhstepm,1,nlstate);            /* i.e. if s2 is a death state and if the date of death is known 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);               then the contribution to the likelihood is the probability to 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);               die between last step unit time and current  step unit time, 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               which is also equal to probability to die before dh 
   } /* End age */               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
   free_vector(xp,1,npar);          as if date of death was unknown. Death was treated as any other
   free_matrix(doldm,1,nlstate,1,npar);          health state: the date of the interview describes the actual state
   free_matrix(dnewm,1,nlstate,1,nlstate);          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
 /************ Variance of prevlim ******************/          the contribution of an exact death to the likelihood. This new
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          contribution is smaller and very dependent of the step unit
 {          stepm. It is no more the probability to die between last interview
   /* Variance of prevalence limit */          and month of death but the probability to survive from last
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          interview up to one month before death multiplied by the
   double **newm;          probability to die within a month. Thanks to Chris
   double **dnewm,**doldm;          Jackson for correcting this bug.  Former versions increased
   int i, j, nhstepm, hstepm;          mortality artificially. The bad side is that we add another loop
   int k, cptcode;          which slows down the processing. The difference can be up to 10%
   double *xp;          lower mortality.
   double *gp, *gm;            */
   double **gradg, **trgradg;            lli=log(out[s1][s2] - savm[s1][s2]);
   double age,agelim;  
   int theta;  
              } else if  (s2==-2) {
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            for (j=1,survp=0. ; j<=nlstate; j++) 
   fprintf(ficresvpl,"# Age");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for(i=1; i<=nlstate;i++)            /*survp += out[s1][j]; */
       fprintf(ficresvpl," %1d-%1d",i,i);            lli= log(survp);
   fprintf(ficresvpl,"\n");          }
           
   xp=vector(1,npar);          else if  (s2==-4) { 
   dnewm=matrix(1,nlstate,1,npar);            for (j=3,survp=0. ; j<=nlstate; j++)  
   doldm=matrix(1,nlstate,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
   hstepm=1*YEARM; /* Every year of age */          } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;          else if  (s2==-5) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (j=1,survp=0. ; j<=2; j++)  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     if (stepm >= YEARM) hstepm=1;            lli= log(survp); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          } 
     gradg=matrix(1,npar,1,nlstate);          
     gp=vector(1,nlstate);          else{
     gm=vector(1,nlstate);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for(theta=1; theta <=npar; theta++){          } 
       for(i=1; i<=npar; i++){ /* Computes gradient */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          /*if(lli ==000.0)*/
       }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
       for(i=1;i<=nlstate;i++)          sw += weight[i];
         gp[i] = prlim[i][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
       for(i=1; i<=npar; i++) /* Computes gradient */      } /* end of individual */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }  else if(mle==2){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         gm[i] = prlim[i][i];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* End theta */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     trgradg =matrix(1,nlstate,1,npar);          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
     for(j=1; j<=nlstate;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(theta=1; theta <=npar; theta++)            for (kk=1; kk<=cptcovage;kk++) {
         trgradg[j][theta]=gradg[theta][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       varpl[i][(int)age] =0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            savm=oldm;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            oldm=newm;
     for(i=1;i<=nlstate;i++)          } /* end mult */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        
           s1=s[mw[mi][i]][i];
     fprintf(ficresvpl,"%.0f ",age );          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     fprintf(ficresvpl,"\n");          ipmx +=1;
     free_vector(gp,1,nlstate);          sw += weight[i];
     free_vector(gm,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(gradg,1,npar,1,nlstate);        } /* end of wave */
     free_matrix(trgradg,1,nlstate,1,npar);      } /* end of individual */
   } /* End age */    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(xp,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_matrix(doldm,1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   free_matrix(dnewm,1,nlstate,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<dh[mi][i]; d++){
 /***********************************************/            newm=savm;
 /**************** Main Program *****************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /***********************************************/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*int main(int argc, char *argv[])*/            }
 int main()            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;            oldm=newm;
   double agedeb, agefin,hf;          } /* end mult */
   double agemin=1.e20, agemax=-1.e20;        
           s1=s[mw[mi][i]][i];
   double fret;          s2=s[mw[mi+1][i]][i];
   double **xi,tmp,delta;          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double dum; /* Dummy variable */          ipmx +=1;
   double ***p3mat;          sw += weight[i];
   int *indx;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char line[MAXLINE], linepar[MAXLINE];        } /* end of wave */
   char title[MAXLINE];      } /* end of individual */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char filerest[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char fileregp[FILENAMELENGTH];        for(mi=1; mi<= wav[i]-1; mi++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          for (ii=1;ii<=nlstate+ndeath;ii++)
   int firstobs=1, lastobs=10;            for (j=1;j<=nlstate+ndeath;j++){
   int sdeb, sfin; /* Status at beginning and end */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int c,  h , cpt,l;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int ju,jl, mi;            }
   int i1,j1, k1,jk,aa,bb, stepsize;          for(d=0; d<dh[mi][i]; d++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int hstepm, nhstepm;            for (kk=1; kk<=cptcovage;kk++) {
   double bage, fage, age, agelim, agebase;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ftolpl=FTOL;            }
   double **prlim;          
   double *severity;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***param; /* Matrix of parameters */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double  *p;            savm=oldm;
   double **matcov; /* Matrix of covariance */            oldm=newm;
   double ***delti3; /* Scale */          } /* end mult */
   double *delti; /* Scale */        
   double ***eij, ***vareij;          s1=s[mw[mi][i]][i];
   double **varpl; /* Variances of prevalence limits by age */          s2=s[mw[mi+1][i]][i];
   double *epj, vepp;          if( s2 > nlstate){ 
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";            lli=log(out[s1][s2] - savm[s1][s2]);
   char *alph[]={"a","a","b","c","d","e"}, str[4];          }else{
   char z[1]="c", occ;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 #include <sys/time.h>          }
 #include <time.h>          ipmx +=1;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          sw += weight[i];
   /* long total_usecs;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   struct timeval start_time, end_time;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("\nIMACH, Version 0.63");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   printf("\nEnter the parameter file name: ");        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 #ifdef windows            for (j=1;j<=nlstate+ndeath;j++){
   scanf("%s",pathtot);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   getcwd(pathcd, size);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   cutv(path,optionfile,pathtot,'\\');            }
   chdir(path);          for(d=0; d<dh[mi][i]; d++){
   replace(pathc,path);            newm=savm;
 #endif            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 #ifdef unix            for (kk=1; kk<=cptcovage;kk++) {
   scanf("%s",optionfile);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 #endif            }
           
 /*-------- arguments in the command line --------*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(fileres,"r");            savm=oldm;
   strcat(fileres, optionfile);            oldm=newm;
           } /* end mult */
   /*---------arguments file --------*/        
           s1=s[mw[mi][i]][i];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          s2=s[mw[mi+1][i]][i];
     printf("Problem with optionfile %s\n",optionfile);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     goto end;          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcpy(filereso,"o");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   strcat(filereso,fileres);        } /* end of wave */
   if((ficparo=fopen(filereso,"w"))==NULL) {      } /* end of individual */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    } /* End of if */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* Reads comments: lines beginning with '#' */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   while((c=getc(ficpar))=='#' && c!= EOF){    return -l;
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*************** log-likelihood *************/
     fputs(line,ficparo);  double funcone( double *x)
   }  {
   ungetc(c,ficpar);    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    double **out;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    double lli; /* Individual log likelihood */
     double llt;
   covar=matrix(1,NCOVMAX,1,n);        int s1, s2;
   if (strlen(model)<=1) cptcovn=0;    double bbh, survp;
   else {    /*extern weight */
     j=0;    /* We are differentiating ll according to initial status */
     j=nbocc(model,'+');    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     cptcovn=j+1;    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
     */
   ncovmodel=2+cptcovn;    cov[1]=1.;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   while((c=getc(ficpar))=='#' && c!= EOF){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     ungetc(c,ficpar);      for(mi=1; mi<= wav[i]-1; mi++){
     fgets(line, MAXLINE, ficpar);        for (ii=1;ii<=nlstate+ndeath;ii++)
     puts(line);          for (j=1;j<=nlstate+ndeath;j++){
     fputs(line,ficparo);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   ungetc(c,ficpar);          }
          for(d=0; d<dh[mi][i]; d++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          newm=savm;
     for(i=1; i <=nlstate; i++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(j=1; j <=nlstate+ndeath-1; j++){          for (kk=1; kk<=cptcovage;kk++) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       printf("%1d%1d",i,j);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(k=1; k<=ncovmodel;k++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fscanf(ficpar," %lf",&param[i][j][k]);          savm=oldm;
         printf(" %lf",param[i][j][k]);          oldm=newm;
         fprintf(ficparo," %lf",param[i][j][k]);        } /* end mult */
       }        
       fscanf(ficpar,"\n");        s1=s[mw[mi][i]][i];
       printf("\n");        s2=s[mw[mi+1][i]][i];
       fprintf(ficparo,"\n");        bbh=(double)bh[mi][i]/(double)stepm; 
     }        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;         */
   p=param[1][1];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
            lli=log(out[s1][s2] - savm[s1][s2]);
   /* Reads comments: lines beginning with '#' */        } else if  (s2==-2) {
   while((c=getc(ficpar))=='#' && c!= EOF){          for (j=1,survp=0. ; j<=nlstate; j++) 
     ungetc(c,ficpar);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fgets(line, MAXLINE, ficpar);          lli= log(survp);
     puts(line);        }else if (mle==1){
     fputs(line,ficparo);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }        } else if(mle==2){
   ungetc(c,ficpar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   for(i=1; i <=nlstate; i++){          lli=log(out[s1][s2]); /* Original formula */
     for(j=1; j <=nlstate+ndeath-1; j++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       fscanf(ficpar,"%1d%1d",&i1,&j1);          lli=log(out[s1][s2]); /* Original formula */
       printf("%1d%1d",i,j);        } /* End of if */
       fprintf(ficparo,"%1d%1d",i1,j1);        ipmx +=1;
       for(k=1; k<=ncovmodel;k++){        sw += weight[i];
         fscanf(ficpar,"%le",&delti3[i][j][k]);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         printf(" %le",delti3[i][j][k]);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         fprintf(ficparo," %le",delti3[i][j][k]);        if(globpr){
       }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       fscanf(ficpar,"\n");   %11.6f %11.6f %11.6f ", \
       printf("\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       fprintf(ficparo,"\n");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   }            llt +=ll[k]*gipmx/gsw;
   delti=delti3[1][1];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
            }
   /* Reads comments: lines beginning with '#' */          fprintf(ficresilk," %10.6f\n", -llt);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      } /* end of wave */
     fgets(line, MAXLINE, ficpar);    } /* end of individual */
     puts(line);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     fputs(line,ficparo);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   ungetc(c,ficpar);    if(globpr==0){ /* First time we count the contributions and weights */
        gipmx=ipmx;
   matcov=matrix(1,npar,1,npar);      gsw=sw;
   for(i=1; i <=npar; i++){    }
     fscanf(ficpar,"%s",&str);    return -l;
     printf("%s",str);  }
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);  /*************** function likelione ***********/
       printf(" %.5le",matcov[i][j]);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       fprintf(ficparo," %.5le",matcov[i][j]);  {
     }    /* This routine should help understanding what is done with 
     fscanf(ficpar,"\n");       the selection of individuals/waves and
     printf("\n");       to check the exact contribution to the likelihood.
     fprintf(ficparo,"\n");       Plotting could be done.
   }     */
   for(i=1; i <=npar; i++)    int k;
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    if(*globpri !=0){ /* Just counts and sums, no printings */
          strcpy(fileresilk,"ilk"); 
   printf("\n");      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
    if(mle==1){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     /*-------- data file ----------*/      }
     if((ficres =fopen(fileres,"w"))==NULL) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       printf("Problem with resultfile: %s\n", fileres);goto end;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     fprintf(ficres,"#%s\n",version);      for(k=1; k<=nlstate; k++) 
            fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     if((fic=fopen(datafile,"r"))==NULL)    {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       printf("Problem with datafile: %s\n", datafile);goto end;    }
     }  
     *fretone=(*funcone)(p);
     n= lastobs;    if(*globpri !=0){
     severity = vector(1,maxwav);      fclose(ficresilk);
     outcome=imatrix(1,maxwav+1,1,n);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     num=ivector(1,n);      fflush(fichtm); 
     moisnais=vector(1,n);    } 
     annais=vector(1,n);    return;
     moisdc=vector(1,n);  }
     andc=vector(1,n);  
     agedc=vector(1,n);  
     cod=ivector(1,n);  /*********** Maximum Likelihood Estimation ***************/
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     mint=matrix(1,maxwav,1,n);  {
     anint=matrix(1,maxwav,1,n);    int i,j, iter;
     s=imatrix(1,maxwav+1,1,n);    double **xi;
     adl=imatrix(1,maxwav+1,1,n);        double fret;
     tab=ivector(1,NCOVMAX);    double fretone; /* Only one call to likelihood */
     ncodemax=ivector(1,NCOVMAX);    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
     i=1;    for (i=1;i<=npar;i++)
     while (fgets(line, MAXLINE, fic) != NULL)    {      for (j=1;j<=npar;j++)
       if ((i >= firstobs) && (i <=lastobs)) {        xi[i][j]=(i==j ? 1.0 : 0.0);
            printf("Powell\n");  fprintf(ficlog,"Powell\n");
         for (j=maxwav;j>=1;j--){    strcpy(filerespow,"pow"); 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    strcat(filerespow,fileres);
           strcpy(line,stra);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with resultfile: %s\n", filerespow);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         }    }
            fprintf(ficrespow,"# Powell\n# iter -2*LL");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficrespow,"\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
     powell(p,xi,npar,ftol,&iter,&fret,func);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncov;j>=1;j--){    free_matrix(xi,1,npar,1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         num[i]=atol(stra);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  
   }
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/  
   /**** Computes Hessian and covariance matrix ***/
         i=i+1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
     }    double  **a,**y,*x,pd;
     /*scanf("%d",i);*/    double **hess;
     int i, j,jk;
   imx=i-1; /* Number of individuals */    int *indx;
    
   /* Calculation of the number of parameter from char model*/    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   Tvar=ivector(1,8);        double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
        void lubksb(double **a, int npar, int *indx, double b[]) ;
   if (strlen(model) >1){    void ludcmp(double **a, int npar, int *indx, double *d) ;
     j=0;    double gompertz(double p[]);
     j=nbocc(model,'+');    hess=matrix(1,npar,1,npar);
     cptcovn=j+1;  
      printf("\nCalculation of the hessian matrix. Wait...\n");
     strcpy(modelsav,model);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     if (j==0) {    for (i=1;i<=npar;i++){
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);      printf("%d",i);fflush(stdout);
     }      fprintf(ficlog,"%d",i);fflush(ficlog);
     else {     
       for(i=j; i>=1;i--){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         cutv(stra,strb,modelsav,'+');      
         if (strchr(strb,'*')) {      /*  printf(" %f ",p[i]);
           cutv(strd,strc,strb,'*');          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;    }
           cutv(strb,strc,strd,'V');    
           for (k=1; k<=lastobs;k++)    for (i=1;i<=npar;i++) {
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
         else {          printf(".%d%d",i,j);fflush(stdout);
           cutv(strd,strc,strb,'V');          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           Tvar[i+1]=atoi(strc);          hess[i][j]=hessij(p,delti,i,j,func,npar);
         }          
         strcpy(modelsav,stra);            hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
       /*cutv(strd,strc,stra,'V');*/        }
       Tvar[1]=atoi(strc);      }
     }    }
   }    printf("\n");
   /*printf("tvar=%d ",Tvar[1]);*/    fprintf(ficlog,"\n");
   /*scanf("%d ",i);*/  
     fclose(fic);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     if (weightopt != 1) { /* Maximisation without weights*/    
       for(i=1;i<=n;i++) weight[i]=1.0;    a=matrix(1,npar,1,npar);
     }    y=matrix(1,npar,1,npar);
     /*-calculation of age at interview from date of interview and age at death -*/    x=vector(1,npar);
     agev=matrix(1,maxwav,1,imx);    indx=ivector(1,npar);
        for (i=1;i<=npar;i++)
     for (i=1; i<=imx; i++)  {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    ludcmp(a,npar,indx,&pd);
       for(m=1; (m<= maxwav); m++){  
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;      for (j=1;j<=npar;j++) {
         if(s[m][i] >0){      for (i=1;i<=npar;i++) x[i]=0;
           if (s[m][i] == nlstate+1) {      x[j]=1;
             if(agedc[i]>0)      lubksb(a,npar,indx,x);
               if(moisdc[i]!=99 && andc[i]!=9999)      for (i=1;i<=npar;i++){ 
               agev[m][i]=agedc[i];        matcov[i][j]=x[i];
             else{      }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    }
               agev[m][i]=-1;  
             }    printf("\n#Hessian matrix#\n");
           }    fprintf(ficlog,"\n#Hessian matrix#\n");
           else if(s[m][i] !=9){ /* Should no more exist */    for (i=1;i<=npar;i++) { 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for (j=1;j<=npar;j++) { 
             if(mint[m][i]==99 || anint[m][i]==9999){        printf("%.3e ",hess[i][j]);
               agev[m][i]=1;        fprintf(ficlog,"%.3e ",hess[i][j]);
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */      }
             }      printf("\n");
             else if(agev[m][i] <agemin){      fprintf(ficlog,"\n");
               agemin=agev[m][i];    }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }    /* Recompute Inverse */
             else if(agev[m][i] >agemax){    for (i=1;i<=npar;i++)
               agemax=agev[m][i];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    ludcmp(a,npar,indx,&pd);
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/    /*  printf("\n#Hessian matrix recomputed#\n");
             /*   agev[m][i] = age[i]+2*m;*/  
           }    for (j=1;j<=npar;j++) {
           else { /* =9 */      for (i=1;i<=npar;i++) x[i]=0;
             agev[m][i]=1;      x[j]=1;
             s[m][i]=-1;      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){ 
         }        y[i][j]=x[i];
         else /*= 0 Unknown */        printf("%.3e ",y[i][j]);
           agev[m][i]=1;        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
          printf("\n");
     }      fprintf(ficlog,"\n");
     for (i=1; i<=imx; i++)  {    }
       for(m=1; (m<= maxwav); m++){    */
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");      free_matrix(a,1,npar,1,npar);
           goto end;    free_matrix(y,1,npar,1,npar);
         }    free_vector(x,1,npar);
       }    free_ivector(indx,1,npar);
     }    free_matrix(hess,1,npar,1,npar);
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   }
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);  /*************** hessian matrix ****************/
     free_vector(moisnais,1,n);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     free_vector(annais,1,n);  {
     free_matrix(mint,1,maxwav,1,n);    int i;
     free_matrix(anint,1,maxwav,1,n);    int l=1, lmax=20;
     free_vector(moisdc,1,n);    double k1,k2;
     free_vector(andc,1,n);    double p2[MAXPARM+1]; /* identical to x */
     double res;
        double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     wav=ivector(1,imx);    double fx;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    int k=0,kmax=10;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    double l1;
      
     /* Concatenates waves */    fx=func(x);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
 Tcode=ivector(1,100);      delts=delt;
    nbcode=imatrix(1,nvar,1,8);        for(k=1 ; k <kmax; k=k+1){
    ncodemax[1]=1;        delt = delta*(l1*k);
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
    codtab=imatrix(1,100,1,10);        p2[theta]=x[theta]-delt;
    h=0;        k2=func(p2)-fx;
    m=pow(2,cptcovn);        /*res= (k1-2.0*fx+k2)/delt/delt; */
          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
    for(k=1;k<=cptcovn; k++){        
      for(i=1; i <=(m/pow(2,k));i++){  #ifdef DEBUGHESS
        for(j=1; j <= ncodemax[k]; j++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            h++;  #endif
            if (h>m) h=1;codtab[h][k]=j;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
        }          k=kmax;
      }        }
    }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
    /*for(i=1; i <=m ;i++){        }
      for(k=1; k <=cptcovn; k++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);          delts=delt;
      }        }
      printf("\n");      }
    }    }
   scanf("%d",i);*/    delti[theta]=delts;
        return res; 
    /* Calculates basic frequencies. Computes observed prevalence at single age    
        and prints on file fileres'p'. */  }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int l=1, l1, lmax=20;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double k1,k2,k3,k4,res,fx;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double p2[MAXPARM+1];
        int k;
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fx=func(x);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    for (k=1; k<=2; k++) {
     /*scanf("%d",i);*/      for (i=1;i<=npar;i++) p2[i]=x[i];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
     /*--------- results files --------------*/    
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    jk=1;      k2=func(p2)-fx;
    fprintf(ficres,"# Parameters\n");    
    printf("# Parameters\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
    for(i=1,jk=1; i <=nlstate; i++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      for(k=1; k <=(nlstate+ndeath); k++){      k3=func(p2)-fx;
        if (k != i)    
          {      p2[thetai]=x[thetai]-delti[thetai]/k;
            printf("%d%d ",i,k);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            fprintf(ficres,"%1d%1d ",i,k);      k4=func(p2)-fx;
            for(j=1; j <=ncovmodel; j++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
              printf("%f ",p[jk]);  #ifdef DEBUG
              fprintf(ficres,"%f ",p[jk]);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
              jk++;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
            }  #endif
            printf("\n");    }
            fprintf(ficres,"\n");    return res;
          }  }
      }  
    }  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     /* Computing hessian and covariance matrix */  { 
     ftolhess=ftol; /* Usually correct */    int i,imax,j,k; 
     hesscov(matcov, p, npar, delti, ftolhess, func);    double big,dum,sum,temp; 
     fprintf(ficres,"# Scales\n");    double *vv; 
     printf("# Scales\n");   
      for(i=1,jk=1; i <=nlstate; i++){    vv=vector(1,n); 
       for(j=1; j <=nlstate+ndeath; j++){    *d=1.0; 
         if (j!=i) {    for (i=1;i<=n;i++) { 
           fprintf(ficres,"%1d%1d",i,j);      big=0.0; 
           printf("%1d%1d",i,j);      for (j=1;j<=n;j++) 
           for(k=1; k<=ncovmodel;k++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
             printf(" %.5e",delti[jk]);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
             fprintf(ficres," %.5e",delti[jk]);      vv[i]=1.0/big; 
             jk++;    } 
           }    for (j=1;j<=n;j++) { 
           printf("\n");      for (i=1;i<j;i++) { 
           fprintf(ficres,"\n");        sum=a[i][j]; 
         }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
       }      } 
          big=0.0; 
     k=1;      for (i=j;i<=n;i++) { 
     fprintf(ficres,"# Covariance\n");        sum=a[i][j]; 
     printf("# Covariance\n");        for (k=1;k<j;k++) 
     for(i=1;i<=npar;i++){          sum -= a[i][k]*a[k][j]; 
       /*  if (k>nlstate) k=1;        a[i][j]=sum; 
       i1=(i-1)/(ncovmodel*nlstate)+1;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          big=dum; 
       printf("%s%d%d",alph[k],i1,tab[i]);*/          imax=i; 
       fprintf(ficres,"%3d",i);        } 
       printf("%3d",i);      } 
       for(j=1; j<=i;j++){      if (j != imax) { 
         fprintf(ficres," %.5e",matcov[i][j]);        for (k=1;k<=n;k++) { 
         printf(" %.5e",matcov[i][j]);          dum=a[imax][k]; 
       }          a[imax][k]=a[j][k]; 
       fprintf(ficres,"\n");          a[j][k]=dum; 
       printf("\n");        } 
       k++;        *d = -(*d); 
     }        vv[imax]=vv[j]; 
          } 
     while((c=getc(ficpar))=='#' && c!= EOF){      indx[j]=imax; 
       ungetc(c,ficpar);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       fgets(line, MAXLINE, ficpar);      if (j != n) { 
       puts(line);        dum=1.0/(a[j][j]); 
       fputs(line,ficparo);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     }      } 
     ungetc(c,ficpar);    } 
      free_vector(vv,1,n);  /* Doesn't work */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  ;
      } 
     if (fage <= 2) {  
       bage = agemin;  void lubksb(double **a, int n, int *indx, double b[]) 
       fage = agemax;  { 
     }    int i,ii=0,ip,j; 
     double sum; 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    for (i=1;i<=n;i++) { 
 /*------------ gnuplot -------------*/      ip=indx[i]; 
 chdir(pathcd);      sum=b[ip]; 
   if((ficgp=fopen("graph.plt","w"))==NULL) {      b[ip]=b[i]; 
     printf("Problem with file graph.gp");goto end;      if (ii) 
   }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 #ifdef windows      else if (sum) ii=i; 
   fprintf(ficgp,"cd \"%s\" \n",pathc);      b[i]=sum; 
 #endif    } 
 m=pow(2,cptcovn);    for (i=n;i>=1;i--) { 
        sum=b[i]; 
  /* 1eme*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      b[i]=sum/a[i][i]; 
    for (k1=1; k1<= m ; k1 ++) {    } 
   } 
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  void pstamp(FILE *fichier)
 #endif  {
 #ifdef unix    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);  }
 #endif  
   /************ Frequencies ********************/
 for (i=1; i<= nlstate ; i ++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {  /* Some frequencies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    int i, m, jk, k1,i1, j1, bool, z1,j;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    int first;
     for (i=1; i<= nlstate ; i ++) {    double ***freq; /* Frequencies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *pp, **prop;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
 }    char fileresp[FILENAMELENGTH];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    
      for (i=1; i<= nlstate ; i ++) {    pp=vector(1,nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(fileresp,"p");
 }      strcat(fileresp,fileres);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    if((ficresp=fopen(fileresp,"w"))==NULL) {
 #ifdef unix      printf("Problem with prevalence resultfile: %s\n", fileresp);
 fprintf(ficgp,"\nset ter gif small size 400,300");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 #endif      exit(0);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    }
    }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   /*2 eme*/    
     j=cptcoveff;
   for (k1=1; k1<= m ; k1 ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
        first=1;
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;    for(k1=1; k1<=j;k1++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for(i1=1; i1<=ncodemax[k1];i1++){
       for (j=1; j<= nlstate+1 ; j ++) {        j1++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          scanf("%d", i);*/
 }          for (i=-5; i<=nlstate+ndeath; i++)  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              freq[i][jk][m]=0;
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1; i<=nlstate; i++)  
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0;
       fprintf(ficgp,"\" t\"\" w l 0,");        
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        dateintsum=0;
       for (j=1; j<= nlstate+1 ; j ++) {        k2cpt=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for (i=1; i<=imx; i++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");          bool=1;
 }            if  (cptcovn>0) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            for (z1=1; z1<=cptcoveff; z1++) 
       else fprintf(ficgp,"\" t\"\" w l 0,");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          }
   }          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
   /*3eme*/              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   for (k1=1; k1<= m ; k1 ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for (cpt=1; cpt<= nlstate ; cpt ++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       k=2+nlstate*(cpt-1);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);                if (m<lastpass) {
       for (i=1; i< nlstate ; i ++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                
     }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   }                  dateintsum=dateintsum+k2;
                    k2cpt++;
   /* CV preval stat */                }
   for (k1=1; k1<= m ; k1 ++) {                /*}*/
     for (cpt=1; cpt<nlstate ; cpt ++) {            }
       k=3;          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        }
       for (i=1; i< nlstate ; i ++)         
         fprintf(ficgp,"+$%d",k+i+1);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        pstamp(ficresp);
              if  (cptcovn>0) {
       l=3+(nlstate+ndeath)*cpt;          fprintf(ficresp, "\n#********** Variable "); 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (i=1; i< nlstate ; i ++) {          fprintf(ficresp, "**********\n#");
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);        for(i=1; i<=nlstate;i++) 
       }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          fprintf(ficresp, "\n");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        
     }        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
             fprintf(ficlog,"Total");
   /* proba elementaires */          }else{
   for(i=1,jk=1; i <=nlstate; i++){            if(first==1){
     for(k=1; k <=(nlstate+ndeath); k++){              first=0;
       if (k != i) {              printf("See log file for details...\n");
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/            }
         for(j=1; j <=ncovmodel; j++){            fprintf(ficlog,"Age %d", i);
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);          }
           jk++;          for(jk=1; jk <=nlstate ; jk++){
           fprintf(ficgp,"\n");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         }              pp[jk] += freq[jk][m][i]; 
       }          }
     }          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pos=0; m <=0 ; m++)
   for(jk=1; jk <=m; jk++) {              pos += freq[jk][m][i];
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);            if(pp[jk]>=1.e-10){
   for(i=1; i <=nlstate; i++) {              if(first==1){
     for(k=1; k <=(nlstate+ndeath); k++){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       if (k != i) {              }
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(j=3; j <=ncovmodel; j++)            }else{
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              if(first==1)
         fprintf(ficgp,")/(1");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for(k1=1; k1 <=(nlstate+ndeath); k1++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           if (k1 != i) {            }
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);          }
             for(j=3; j <=ncovmodel; j++)  
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficgp,")");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           }              pp[jk] += freq[jk][m][i];
         fprintf(ficgp,") t \"p%d%d\" ", i,k);          }       
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       }            pos += pp[jk];
     }            posprop += prop[jk][i];
   }          }
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
   fclose(ficgp);              if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 chdir(path);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(agev,1,maxwav,1,imx);            }else{
     free_ivector(wav,1,imx);              if(first==1)
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                }
     free_imatrix(s,1,maxwav+1,1,n);            if( i <= iagemax){
                  if(pos>=1.e-5){
                    fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     free_ivector(num,1,n);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     free_vector(agedc,1,n);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     free_vector(weight,1,n);              }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/              else
     fclose(ficparo);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fclose(ficres);            }
    }          }
              
    /*________fin mle=1_________*/          for(jk=-1; jk <=nlstate+ndeath; jk++)
                for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
                if(first==1)
     /* No more information from the sample is required now */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   /* Reads comments: lines beginning with '#' */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);          if(i <= iagemax)
     fgets(line, MAXLINE, ficpar);            fprintf(ficresp,"\n");
     puts(line);          if(first==1)
     fputs(line,ficparo);            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   ungetc(c,ficpar);        }
        }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    dateintmean=dateintsum/k2cpt; 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);   
 /*--------- index.htm --------*/    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   if((fichtm=fopen("index.htm","w"))==NULL)    {    free_vector(pp,1,nlstate);
     printf("Problem with index.htm \n");goto end;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   }    /* End of Freq */
   }
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n  
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  /************ Prevalence ********************/
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  {  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>       in each health status at the date of interview (if between dateprev1 and dateprev2).
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>       We still use firstpass and lastpass as another selection.
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>   
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    int i, m, jk, k1, i1, j1, bool, z1,j;
     double ***freq; /* Frequencies */
  fprintf(fichtm," <li>Graphs</li>\n<p>");    double *pp, **prop;
     double pos,posprop; 
  m=cptcovn;    double  y2; /* in fractional years */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int iagemin, iagemax;
   
  j1=0;    iagemin= (int) agemin;
  for(k1=1; k1<=m;k1++){    iagemax= (int) agemax;
    for(i1=1; i1<=ncodemax[k1];i1++){    /*pp=vector(1,nlstate);*/
        j1++;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        if (cptcovn > 0) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
          fprintf(fichtm,"<hr>************ Results for covariates");    j1=0;
          for (cpt=1; cpt<=cptcovn;cpt++)    
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);    j=cptcoveff;
          fprintf(fichtm," ************\n<hr>");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        }    
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    for(k1=1; k1<=j;k1++){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          for(i1=1; i1<=ncodemax[k1];i1++){
        for(cpt=1; cpt<nlstate;cpt++){        j1++;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for (i=1; i<=nlstate; i++)  
        }          for(m=iagemin; m <= iagemax+3; m++)
     for(cpt=1; cpt<=nlstate;cpt++) {            prop[i][m]=0.0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       
 interval) in state (%d): v%s%d%d.gif <br>        for (i=1; i<=imx; i++) { /* Each individual */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            bool=1;
      }          if  (cptcovn>0) {
      for(cpt=1; cpt<=nlstate;cpt++) {            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                bool=0;
      }          } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          if (bool==1) { 
 health expectancies in states (1) and (2): e%s%d.gif<br>            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 fprintf(fichtm,"\n</body>");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 fclose(fichtm);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
   /*--------------- Prevalence limit --------------*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
   strcpy(filerespl,"pl");                  prop[s[m][i]][iagemax+3] += weight[i]; 
   strcat(filerespl,fileres);                } 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            } /* end selection of waves */
   }          }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");        for(i=iagemin; i <= iagemax+3; i++){  
   fprintf(ficrespl,"#Age ");          
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fprintf(ficrespl,"\n");            posprop += prop[jk][i]; 
            } 
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(jk=1; jk <=nlstate ; jk++){     
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if( i <=  iagemax){ 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if(posprop>=1.e-5){ 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                probs[i][jk][j1]= prop[jk][i]/posprop;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              } else
   k=0;                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   agebase=agemin;            } 
   agelim=agemax;          }/* end jk */ 
   ftolpl=1.e-10;        }/* end i */ 
   i1=cptcovn;      } /* end i1 */
   if (cptcovn < 1){i1=1;}    } /* end k1 */
     
   for(cptcov=1;cptcov<=i1;cptcov++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*free_vector(pp,1,nlstate);*/
         k=k+1;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  }  /* End of prevalence */
         fprintf(ficrespl,"\n#****** ");  
         for(j=1;j<=cptcovn;j++)  /************* Waves Concatenation ***************/
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          {
         for (age=agebase; age<=agelim; age++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       Death is a valid wave (if date is known).
           fprintf(ficrespl,"%.0f",age );       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           for(i=1; i<=nlstate;i++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           fprintf(ficrespl," %.5f", prlim[i][i]);       and mw[mi+1][i]. dh depends on stepm.
           fprintf(ficrespl,"\n");       */
         }  
       }    int i, mi, m;
     }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fclose(ficrespl);       double sum=0., jmean=0.;*/
   /*------------- h Pij x at various ages ------------*/    int first;
      int j, k=0,jk, ju, jl;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double sum=0.;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    first=0;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    jmin=1e+5;
   }    jmax=-1;
   printf("Computing pij: result on file '%s' \n", filerespij);    jmean=0.;
      for(i=1; i<=imx; i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;      mi=0;
   if (stepm<=24) stepsize=2;      m=firstpass;
       while(s[m][i] <= nlstate){
   agelim=AGESUP;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   hstepm=stepsize*YEARM; /* Every year of age */          mw[++mi][i]=m;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        if(m >=lastpass)
            break;
   k=0;        else
   for(cptcov=1;cptcov<=i1;cptcov++){          m++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }/* end while */
       k=k+1;      if (s[m][i] > nlstate){
         fprintf(ficrespij,"\n#****** ");        mi++;     /* Death is another wave */
         for(j=1;j<=cptcovn;j++)        /* if(mi==0)  never been interviewed correctly before death */
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);           /* Only death is a correct wave */
         fprintf(ficrespij,"******\n");        mw[mi][i]=m;
              }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      wav[i]=mi;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      if(mi==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        nbwarn++;
           oldm=oldms;savm=savms;        if(first==0){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           fprintf(ficrespij,"# Age");          first=1;
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)        if(first==1){
               fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           fprintf(ficrespij,"\n");        }
           for (h=0; h<=nhstepm; h++){      } /* end mi==0 */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    } /* End individuals */
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)    for(i=1; i<=imx; i++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      for(mi=1; mi<wav[i];mi++){
             fprintf(ficrespij,"\n");        if (stepm <=0)
           }          dh[mi][i]=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else{
           fprintf(ficrespij,"\n");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         }            if (agedc[i] < 2*AGESUP) {
     }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   }              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   fclose(ficrespij);                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*---------- Health expectancies and variances ------------*/                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   strcpy(filerest,"t");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcat(filerest,fileres);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if((ficrest=fopen(filerest,"w"))==NULL) {              }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              k=k+1;
   }              if (j >= jmax){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                jmax=j;
                 ijmax=i;
               }
   strcpy(filerese,"e");              if (j <= jmin){
   strcat(filerese,fileres);                jmin=j;
   if((ficreseij=fopen(filerese,"w"))==NULL) {                ijmin=i;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              }
   }              sum=sum+j;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  strcpy(fileresv,"v");            }
   strcat(fileresv,fileres);          }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          else{
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
             k=k+1;
   k=0;            if (j >= jmax) {
   for(cptcov=1;cptcov<=i1;cptcov++){              jmax=j;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              ijmax=i;
       k=k+1;            }
       fprintf(ficrest,"\n#****** ");            else if (j <= jmin){
       for(j=1;j<=cptcovn;j++)              jmin=j;
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);              ijmin=i;
       fprintf(ficrest,"******\n");            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       fprintf(ficreseij,"\n#****** ");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       for(j=1;j<=cptcovn;j++)            if(j<0){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              nberr++;
       fprintf(ficreseij,"******\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresvij,"\n#****** ");            }
       for(j=1;j<=cptcovn;j++)            sum=sum+j;
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          }
       fprintf(ficresvij,"******\n");          jk= j/stepm;
           jl= j -jk*stepm;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          ju= j -(jk+1)*stepm;
       oldm=oldms;savm=savms;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);              if(jl==0){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              dh[mi][i]=jk;
       oldm=oldms;savm=savms;              bh[mi][i]=0;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            }else{ /* We want a negative bias in order to only have interpolation ie
                          * at the price of an extra matrix product in likelihood */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");              dh[mi][i]=jk+1;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              bh[mi][i]=ju;
       fprintf(ficrest,"\n");            }
                  }else{
       hf=1;            if(jl <= -ju){
       if (stepm >= YEARM) hf=stepm/YEARM;              dh[mi][i]=jk;
       epj=vector(1,nlstate+1);              bh[mi][i]=jl;       /* bias is positive if real duration
       for(age=bage; age <=fage ;age++){                                   * is higher than the multiple of stepm and negative otherwise.
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                                   */
         fprintf(ficrest," %.0f",age);            }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            else{
           for(i=1, epj[j]=0.;i <=nlstate;i++) {              dh[mi][i]=jk+1;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];              bh[mi][i]=ju;
           }            }
           epj[nlstate+1] +=epj[j];            if(dh[mi][i]==0){
         }              dh[mi][i]=1; /* At least one step */
         for(i=1, vepp=0.;i <=nlstate;i++)              bh[mi][i]=ju; /* At least one step */
           for(j=1;j <=nlstate;j++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             vepp += vareij[i][j][(int)age];            }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));          } /* end if mle */
         for(j=1;j <=nlstate;j++){        }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));      } /* end wave */
         }    }
         fprintf(ficrest,"\n");    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   }   }
          
  fclose(ficreseij);  /*********** Tricode ****************************/
  fclose(ficresvij);  void tricode(int *Tvar, int **nbcode, int imx)
   fclose(ficrest);  {
   fclose(ficpar);    
   free_vector(epj,1,nlstate+1);    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   /*  scanf("%d ",i); */  
     int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   /*------- Variance limit prevalence------*/      int cptcode=0;
     cptcoveff=0; 
 strcpy(fileresvpl,"vpl");   
   strcat(fileresvpl,fileres);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
   }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
  k=0;        Ndum[ij]++; /*counts the occurence of this modality */
  for(cptcov=1;cptcov<=i1;cptcov++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
      k=k+1;                                         Tvar[j]. If V=sex and male is 0 and 
      fprintf(ficresvpl,"\n#****** ");                                         female is 1, then  cptcode=1.*/
      for(j=1;j<=cptcovn;j++)      }
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
              if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
      varpl=matrix(1,nlstate,(int) bage, (int) fage);                                         th covariate. In fact
      oldm=oldms;savm=savms;                                         ncodemax[j]=2
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                                         (dichotom. variables only) but
    }                                         it can be more */
  }      } /* Ndum[-1] number of undefined modalities */
   
   fclose(ficresvpl);      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
   /*---------- End : free ----------------*/        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
              nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                                       k is a modality. If we have model=V1+V1*sex 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              ij++;
            }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          if (ij > ncodemax[j]) break; 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      } 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    }  
    
   free_matrix(matcov,1,npar,1,npar);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   free_vector(delti,1,npar);  
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   printf("End of Imach\n");     Ndum[ij]++;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   }
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   ij=1;
   /*printf("Total time was %d uSec.\n", total_usecs);*/   for (i=1; i<= maxncov; i++) {
   /*------ End -----------*/     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
  end:       ij++;
 #ifdef windows     }
  chdir(pathcd);   }
 #endif   ij--;
  system("wgnuplot ../gp37mgw/graph.plt");   cptcoveff=ij; /*Number of simple covariates*/
   }
 #ifdef windows  
   while (z[0] != 'q') {  /*********** Health Expectancies ****************/
     chdir(pathcd);  
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");  {
     else if (z[0] == 'e') {    /* Health expectancies, no variances */
       chdir(path);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       system("index.htm");    int nhstepma, nstepma; /* Decreasing with age */
     }    double age, agelim, hf;
     else if (z[0] == 'q') exit(0);    double ***p3mat;
   }    double eip;
 #endif  
 }    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforces= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.132


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>