Diff for /imach/src/imach.c between versions 1.2 and 1.87

version 1.2, 2001/03/13 18:10:26 version 1.87, 2003/06/18 12:26:01
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.87  2003/06/18 12:26:01  brouard
   individuals from different ages are interviewed on their health status    Version 0.96
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.86  2003/06/17 20:04:08  brouard
   Health expectancies are computed from the transistions observed between    (Module): Change position of html and gnuplot routines and added
   waves and are computed for each degree of severity of disability (number    routine fileappend.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.85  2003/06/17 13:12:43  brouard
   The simplest model is the multinomial logistic model where pij is    * imach.c (Repository): Check when date of death was earlier that
   the probabibility to be observed in state j at the second wave conditional    current date of interview. It may happen when the death was just
   to be observed in state i at the first wave. Therefore the model is:    prior to the death. In this case, dh was negative and likelihood
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    was wrong (infinity). We still send an "Error" but patch by
   is a covariate. If you want to have a more complex model than "constant and    assuming that the date of death was just one stepm after the
   age", you should modify the program where the markup    interview.
     *Covariates have to be included here again* invites you to do it.    (Repository): Because some people have very long ID (first column)
   More covariates you add, less is the speed of the convergence.    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
   The advantage that this computer programme claims, comes from that if the    truncation)
   delay between waves is not identical for each individual, or if some    (Repository): No more line truncation errors.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.84  2003/06/13 21:44:43  brouard
   hPijx is the probability to be    * imach.c (Repository): Replace "freqsummary" at a correct
   observed in state i at age x+h conditional to the observed state i at age    place. It differs from routine "prevalence" which may be called
   x. The delay 'h' can be split into an exact number (nh*stepm) of    many times. Probs is memory consuming and must be used with
   unobserved intermediate  states. This elementary transition (by month or    parcimony.
   quarter trimester, semester or year) is model as a multinomial logistic.    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.  */
   This software have been partly granted by Euro-REVES, a concerted action  /*
   from the European Union.     Interpolated Markov Chain
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Short summary of the programme:
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <math.h>    first survey ("cross") where individuals from different ages are
 #include <stdio.h>    interviewed on their health status or degree of disability (in the
 #include <stdlib.h>    case of a health survey which is our main interest) -2- at least a
 #include <unistd.h>    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define MAXLINE 256    computed from the time spent in each health state according to a
 #define FILENAMELENGTH 80    model. More health states you consider, more time is necessary to reach the
 /*#define DEBUG*/    Maximum Likelihood of the parameters involved in the model.  The
 #define windows    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    conditional to be observed in state i at the first wave. Therefore
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define NINTERVMAX 8    complex model than "constant and age", you should modify the program
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    where the markup *Covariates have to be included here again* invites
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    you to do it.  More covariates you add, slower the
 #define NCOVMAX 8 /* Maximum number of covariates */    convergence.
 #define MAXN 80000  
 #define YEARM 12. /* Number of months per year */    The advantage of this computer programme, compared to a simple
 #define AGESUP 130    multinomial logistic model, is clear when the delay between waves is not
 #define AGEBASE 40    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 int nvar;  
 static int cptcov;    hPijx is the probability to be observed in state i at age x+h
 int cptcovn;    conditional to the observed state i at age x. The delay 'h' can be
 int npar=NPARMAX;    split into an exact number (nh*stepm) of unobserved intermediate
 int nlstate=2; /* Number of live states */    states. This elementary transition (by month, quarter,
 int ndeath=1; /* Number of dead states */    semester or year) is modelled as a multinomial logistic.  The hPx
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 int *wav; /* Number of waves for this individuual 0 is possible */    hPijx.
 int maxwav; /* Maxim number of waves */  
 int mle, weightopt;    Also this programme outputs the covariance matrix of the parameters but also
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    of the life expectancies. It also computes the stable prevalence. 
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */             Institut national d'études démographiques, Paris.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    This software have been partly granted by Euro-REVES, a concerted action
 FILE *ficgp, *fichtm;    from the European Union.
 FILE *ficreseij;    It is copyrighted identically to a GNU software product, ie programme and
   char filerese[FILENAMELENGTH];    software can be distributed freely for non commercial use. Latest version
  FILE  *ficresvij;    can be accessed at http://euroreves.ined.fr/imach .
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   char fileresvpl[FILENAMELENGTH];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
     **********************************************************************/
   /*
     main
 #define NR_END 1    read parameterfile
 #define FREE_ARG char*    read datafile
 #define FTOL 1.0e-10    concatwav
     freqsummary
 #define NRANSI    if (mle >= 1)
 #define ITMAX 200      mlikeli
     print results files
 #define TOL 2.0e-4    if mle==1 
        computes hessian
 #define CGOLD 0.3819660    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define ZEPS 1.0e-10        begin-prev-date,...
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    open gnuplot file
     open html file
 #define GOLD 1.618034    stable prevalence
 #define GLIMIT 100.0     for age prevalim()
 #define TINY 1.0e-20    h Pij x
     variance of p varprob
 static double maxarg1,maxarg2;    forecasting if prevfcast==1 prevforecast call prevalence()
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    health expectancies
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Variance-covariance of DFLE
      prevalence()
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))     movingaverage()
 #define rint(a) floor(a+0.5)    varevsij() 
     if popbased==1 varevsij(,popbased)
 static double sqrarg;    total life expectancies
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Variance of stable prevalence
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   end
   */
 int imx;  
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  
    
 int m,nb;  #include <math.h>
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;  #include <stdio.h>
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include <stdlib.h>
 double **pmmij;  #include <unistd.h>
   
 double *weight;  #include <sys/time.h>
 int **s; /* Status */  #include <time.h>
 double *agedc, **covar, idx;  #include "timeval.h"
 int **nbcode, *Tcode, *Tvar, **codtab;  
   #define MAXLINE 256
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define GNUPLOTPROGRAM "gnuplot"
 double ftolhess; /* Tolerance for computing hessian */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   /*#define DEBUG*/
 /******************************************/  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 void replace(char *s, char*t)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   int i;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   int lg=20;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   i=0;  
   lg=strlen(t);  #define NINTERVMAX 8
   for(i=0; i<= lg; i++) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     (s[i] = t[i]);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     if (t[i]== '\\') s[i]='/';  #define NCOVMAX 8 /* Maximum number of covariates */
   }  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 int nbocc(char *s, char occ)  #define AGEBASE 40
 {  #ifdef unix
   int i,j=0;  #define DIRSEPARATOR '/'
   int lg=20;  #define ODIRSEPARATOR '\\'
   i=0;  #else
   lg=strlen(s);  #define DIRSEPARATOR '\\'
   for(i=0; i<= lg; i++) {  #define ODIRSEPARATOR '/'
   if  (s[i] == occ ) j++;  #endif
   }  
   return j;  /* $Id$ */
 }  /* $State$ */
   
 void cutv(char *u,char *v, char*t, char occ)  char version[]="Imach version 0.96, June 2003, INED-EUROREVES ";
 {  char fullversion[]="$Revision$ $Date$"; 
   int i,lg,j,p;  int erreur; /* Error number */
   i=0;  int nvar;
   if (t[0]== occ) p=0;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for(j=0; j<=strlen(t)-1; j++) {  int npar=NPARMAX;
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   lg=strlen(t);  int popbased=0;
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  int *wav; /* Number of waves for this individuual 0 is possible */
     u[p]='\0';  int maxwav; /* Maxim number of waves */
   }  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
    for(j=0; j<= lg; j++) {                     to the likelihood and the sum of weights (done by funcone)*/
     if (j>=(p+1))(v[j-p-1] = t[j]);  int mle, weightopt;
   }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /********************** nrerror ********************/  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 void nrerror(char error_text[])  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   fprintf(stderr,"ERREUR ...\n");  FILE *ficlog, *ficrespow;
   fprintf(stderr,"%s\n",error_text);  int globpr; /* Global variable for printing or not */
   exit(1);  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
 /*********************** vector *******************/  double sw; /* Sum of weights */
 double *vector(int nl, int nh)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   double *v;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  FILE *ficresprobmorprev;
   if (!v) nrerror("allocation failure in vector");  FILE *fichtm; /* Html File */
   return v-nl+NR_END;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 /************************ free vector ******************/  char fileresv[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  char filelog[FILENAMELENGTH]; /* Log file */
   int *v;  char filerest[FILENAMELENGTH];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char fileregp[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  char popfile[FILENAMELENGTH];
   return v-nl+NR_END;  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   
 /******************free ivector **************************/  #define NR_END 1
 void free_ivector(int *v, long nl, long nh)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NRANSI 
   #define ITMAX 200 
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define TOL 2.0e-4 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  #define CGOLD 0.3819660 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define ZEPS 1.0e-10 
   int **m;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
   /* allocate pointers to rows */  #define GOLD 1.618034 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define GLIMIT 100.0 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define TINY 1.0e-20 
   m += NR_END;  
   m -= nrl;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   /* allocate rows and set pointers to them */    
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define rint(a) floor(a+0.5)
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  static double sqrarg;
    #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    
   /* return pointer to array of pointers to rows */  int imx; 
   return m;  int stepm;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /****************** free_imatrix *************************/  int estepm;
 void free_imatrix(m,nrl,nrh,ncl,nch)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       int **m;  
       long nch,ncl,nrh,nrl;  int m,nb;
      /* free an int matrix allocated by imatrix() */  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG) (m+nrl-NR_END));  double **pmmij, ***probs;
 }  double dateintmean=0;
   
 /******************* matrix *******************************/  double *weight;
 double **matrix(long nrl, long nrh, long ncl, long nch)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double **m;  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double ftolhess; /* Tolerance for computing hessian */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /**************** split *************************/
   m -= nrl;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    char  *ss;                            /* pointer */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int   l1, l2;                         /* length counters */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return m;    if ( ss == NULL ) {                   /* no directory, so use current */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*************************free matrix ************************/      /* get current working directory */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));        return( GLOCK_ERROR_GETCWD );
   free((FREE_ARG)(m+nrl-NR_END));      }
 }      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
 /******************* ma3x *******************************/      ss++;                               /* after this, the filename */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      l2 = strlen( ss );                  /* length of filename */
 {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      strcpy( name, ss );         /* save file name */
   double ***m;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");    l1 = strlen( dirc );                  /* length of directory */
   m += NR_END;    /*#ifdef windows
   m -= nrl;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #endif
   m[nrl] += NR_END;    */
   m[nrl] -= ncl;    ss = strrchr( name, '.' );            /* find last / */
     ss++;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    l2= strlen(ss)+1;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    strncpy( finame, name, l1-l2);
   m[nrl][ncl] += NR_END;    finame[l1-l2]= 0;
   m[nrl][ncl] -= nll;    return( 0 );                          /* we're done */
   for (j=ncl+1; j<=nch; j++)  }
     m[nrl][j]=m[nrl][j-1]+nlay;  
    
   for (i=nrl+1; i<=nrh; i++) {  /******************************************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  void replace(char *s, char*t)
       m[i][j]=m[i][j-1]+nlay;  {
   }    int i;
   return m;    int lg=20;
 }    i=0;
     lg=strlen(t);
 /*************************free ma3x ************************/    for(i=0; i<= lg; i++) {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int nbocc(char *s, char occ)
   {
 /***************** f1dim *************************/    int i,j=0;
 extern int ncom;    int lg=20;
 extern double *pcom,*xicom;    i=0;
 extern double (*nrfunc)(double []);    lg=strlen(s);
      for(i=0; i<= lg; i++) {
 double f1dim(double x)    if  (s[i] == occ ) j++;
 {    }
   int j;    return j;
   double f;  }
   double *xt;  
    void cutv(char *u,char *v, char*t, char occ)
   xt=vector(1,ncom);  {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    /* cuts string t into u and v where u is ended by char occ excluding it
   f=(*nrfunc)(xt);       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   free_vector(xt,1,ncom);       gives u="abcedf" and v="ghi2j" */
   return f;    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /*****************brent *************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    }
 {  
   int iter;    lg=strlen(t);
   double a,b,d,etemp;    for(j=0; j<p; j++) {
   double fu,fv,fw,fx;      (u[j] = t[j]);
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;       u[p]='\0';
   double e=0.0;  
       for(j=0; j<= lg; j++) {
   a=(ax < cx ? ax : cx);      if (j>=(p+1))(v[j-p-1] = t[j]);
   b=(ax > cx ? ax : cx);    }
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /********************** nrerror ********************/
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  void nrerror(char error_text[])
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  {
     printf(".");fflush(stdout);    fprintf(stderr,"ERREUR ...\n");
 #ifdef DEBUG    fprintf(stderr,"%s\n",error_text);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    exit(EXIT_FAILURE);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  }
 #endif  /*********************** vector *******************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double *vector(int nl, int nh)
       *xmin=x;  {
       return fx;    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     ftemp=fu;    if (!v) nrerror("allocation failure in vector");
     if (fabs(e) > tol1) {    return v-nl+NR_END;
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /************************ free vector ******************/
       q=2.0*(q-r);  void free_vector(double*v, int nl, int nh)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    free((FREE_ARG)(v+nl-NR_END));
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /************************ivector *******************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int *ivector(long nl,long nh)
       else {  {
         d=p/q;    int *v;
         u=x+d;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         if (u-a < tol2 || b-u < tol2)    if (!v) nrerror("allocation failure in ivector");
           d=SIGN(tol1,xm-x);    return v-nl+NR_END;
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /******************free ivector **************************/
     }  void free_ivector(int *v, long nl, long nh)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    free((FREE_ARG)(v+nl-NR_END));
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /************************lvector *******************************/
         SHFT(fv,fw,fx,fu)  long *lvector(long nl,long nh)
         } else {  {
           if (u < x) a=u; else b=u;    long *v;
           if (fu <= fw || w == x) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
             v=w;    if (!v) nrerror("allocation failure in ivector");
             w=u;    return v-nl+NR_END;
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /******************free lvector **************************/
             v=u;  void free_lvector(long *v, long nl, long nh)
             fv=fu;  {
           }    free((FREE_ARG)(v+nl-NR_END));
         }  }
   }  
   nrerror("Too many iterations in brent");  /******************* imatrix *******************************/
   *xmin=x;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   return fx;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 }  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 /****************** mnbrak ***********************/    int **m; 
     
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    /* allocate pointers to rows */ 
             double (*func)(double))    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 {    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double ulim,u,r,q, dum;    m += NR_END; 
   double fu;    m -= nrl; 
      
   *fa=(*func)(*ax);    
   *fb=(*func)(*bx);    /* allocate rows and set pointers to them */ 
   if (*fb > *fa) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     SHFT(dum,*ax,*bx,dum)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       SHFT(dum,*fb,*fa,dum)    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
   *cx=(*bx)+GOLD*(*bx-*ax);    
   *fc=(*func)(*cx);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   while (*fb > *fc) {    
     r=(*bx-*ax)*(*fb-*fc);    /* return pointer to array of pointers to rows */ 
     q=(*bx-*cx)*(*fb-*fa);    return m; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  } 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /****************** free_imatrix *************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  void free_imatrix(m,nrl,nrh,ncl,nch)
       fu=(*func)(u);        int **m;
     } else if ((*cx-u)*(u-ulim) > 0.0) {        long nch,ncl,nrh,nrl; 
       fu=(*func)(u);       /* free an int matrix allocated by imatrix() */ 
       if (fu < *fc) {  { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           SHFT(*fb,*fc,fu,(*func)(u))    free((FREE_ARG) (m+nrl-NR_END)); 
           }  } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  /******************* matrix *******************************/
       fu=(*func)(u);  double **matrix(long nrl, long nrh, long ncl, long nch)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       fu=(*func)(u);    double **m;
     }  
     SHFT(*ax,*bx,*cx,u)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       SHFT(*fa,*fb,*fc,fu)    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
 }    m -= nrl;
   
 /*************** linmin ************************/    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 int ncom;    m[nrl] += NR_END;
 double *pcom,*xicom;    m[nrl] -= ncl;
 double (*nrfunc)(double []);  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    return m;
 {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double brent(double ax, double bx, double cx,     */
                double (*f)(double), double tol, double *xmin);  }
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /*************************free matrix ************************/
               double *fc, double (*func)(double));  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   int j;  {
   double xx,xmin,bx,ax;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double fx,fb,fa;    free((FREE_ARG)(m+nrl-NR_END));
    }
   ncom=n;  
   pcom=vector(1,n);  /******************* ma3x *******************************/
   xicom=vector(1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     pcom[j]=p[j];    double ***m;
     xicom[j]=xi[j];  
   }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   ax=0.0;    if (!m) nrerror("allocation failure 1 in matrix()");
   xx=1.0;    m += NR_END;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m -= nrl;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
   for (j=1;j<=n;j++) {    m[nrl] -= ncl;
     xi[j] *= xmin;  
     p[j] += xi[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }  
   free_vector(xicom,1,n);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   free_vector(pcom,1,n);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 }    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
 /*************** powell ************************/    for (j=ncl+1; j<=nch; j++) 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      m[nrl][j]=m[nrl][j-1]+nlay;
             double (*func)(double []))    
 {    for (i=nrl+1; i<=nrh; i++) {
   void linmin(double p[], double xi[], int n, double *fret,      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
               double (*func)(double []));      for (j=ncl+1; j<=nch; j++) 
   int i,ibig,j;        m[i][j]=m[i][j-1]+nlay;
   double del,t,*pt,*ptt,*xit;    }
   double fp,fptt;    return m; 
   double *xits;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   pt=vector(1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   ptt=vector(1,n);    */
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /*************************free ma3x ************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (*iter=1;;++(*iter)) {  {
     fp=(*fret);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     ibig=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     del=0.0;    free((FREE_ARG)(m+nrl-NR_END));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /***************** f1dim *************************/
     printf("\n");  extern int ncom; 
     for (i=1;i<=n;i++) {  extern double *pcom,*xicom;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  extern double (*nrfunc)(double []); 
       fptt=(*fret);   
 #ifdef DEBUG  double f1dim(double x) 
       printf("fret=%lf \n",*fret);  { 
 #endif    int j; 
       printf("%d",i);fflush(stdout);    double f;
       linmin(p,xit,n,fret,func);    double *xt; 
       if (fabs(fptt-(*fret)) > del) {   
         del=fabs(fptt-(*fret));    xt=vector(1,ncom); 
         ibig=i;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
 #ifdef DEBUG    free_vector(xt,1,ncom); 
       printf("%d %.12e",i,(*fret));    return f; 
       for (j=1;j<=n;j++) {  } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /*****************brent *************************/
       }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       for(j=1;j<=n;j++)  { 
         printf(" p=%.12e",p[j]);    int iter; 
       printf("\n");    double a,b,d,etemp;
 #endif    double fu,fv,fw,fx;
     }    double ftemp;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 #ifdef DEBUG    double e=0.0; 
       int k[2],l;   
       k[0]=1;    a=(ax < cx ? ax : cx); 
       k[1]=-1;    b=(ax > cx ? ax : cx); 
       printf("Max: %.12e",(*func)(p));    x=w=v=bx; 
       for (j=1;j<=n;j++)    fw=fv=fx=(*f)(x); 
         printf(" %.12e",p[j]);    for (iter=1;iter<=ITMAX;iter++) { 
       printf("\n");      xm=0.5*(a+b); 
       for(l=0;l<=1;l++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         for (j=1;j<=n;j++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      printf(".");fflush(stdout);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      fprintf(ficlog,".");fflush(ficlog);
         }  #ifdef DEBUG
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #endif      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       free_vector(xit,1,n);        *xmin=x; 
       free_vector(xits,1,n);        return fx; 
       free_vector(ptt,1,n);      } 
       free_vector(pt,1,n);      ftemp=fu;
       return;      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        q=(x-v)*(fx-fw); 
     for (j=1;j<=n;j++) {        p=(x-v)*q-(x-w)*r; 
       ptt[j]=2.0*p[j]-pt[j];        q=2.0*(q-r); 
       xit[j]=p[j]-pt[j];        if (q > 0.0) p = -p; 
       pt[j]=p[j];        q=fabs(q); 
     }        etemp=e; 
     fptt=(*func)(ptt);        e=d; 
     if (fptt < fp) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       if (t < 0.0) {        else { 
         linmin(p,xit,n,fret,func);          d=p/q; 
         for (j=1;j<=n;j++) {          u=x+d; 
           xi[j][ibig]=xi[j][n];          if (u-a < tol2 || b-u < tol2) 
           xi[j][n]=xit[j];            d=SIGN(tol1,xm-x); 
         }        } 
 #ifdef DEBUG      } else { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for(j=1;j<=n;j++)      } 
           printf(" %.12e",xit[j]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         printf("\n");      fu=(*f)(u); 
 #endif      if (fu <= fx) { 
       }        if (u >= x) a=x; else b=x; 
     }        SHFT(v,w,x,u) 
   }          SHFT(fv,fw,fx,fu) 
 }          } else { 
             if (u < x) a=u; else b=u; 
 /**** Prevalence limit ****************/            if (fu <= fw || w == x) { 
               v=w; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)              w=u; 
 {              fv=fw; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit              fw=fu; 
      matrix by transitions matrix until convergence is reached */            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
   int i, ii,j,k;              fv=fu; 
   double min, max, maxmin, maxmax,sumnew=0.;            } 
   double **matprod2();          } 
   double **out, cov[NCOVMAX], **pmij();    } 
   double **newm;    nrerror("Too many iterations in brent"); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    *xmin=x; 
     return fx; 
   for (ii=1;ii<=nlstate+ndeath;ii++)  } 
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /****************** mnbrak ***********************/
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){              double (*func)(double)) 
     newm=savm;  { 
     /* Covariates have to be included here again */    double ulim,u,r,q, dum;
     cov[1]=1.;    double fu; 
     cov[2]=agefin;   
     if (cptcovn>0){    *fa=(*func)(*ax); 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    *fb=(*func)(*bx); 
     }    if (*fb > *fa) { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
     savm=oldm;        } 
     oldm=newm;    *cx=(*bx)+GOLD*(*bx-*ax); 
     maxmax=0.;    *fc=(*func)(*cx); 
     for(j=1;j<=nlstate;j++){    while (*fb > *fc) { 
       min=1.;      r=(*bx-*ax)*(*fb-*fc); 
       max=0.;      q=(*bx-*cx)*(*fb-*fa); 
       for(i=1; i<=nlstate; i++) {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         sumnew=0;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      if ((*bx-u)*(u-*cx) > 0.0) { 
         max=FMAX(max,prlim[i][j]);        fu=(*func)(u); 
         min=FMIN(min,prlim[i][j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       }        fu=(*func)(u); 
       maxmin=max-min;        if (fu < *fc) { 
       maxmax=FMAX(maxmax,maxmin);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
     if(maxmax < ftolpl){            } 
       return prlim;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
   }        fu=(*func)(u); 
 }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 /*************** transition probabilities **********/        fu=(*func)(u); 
       } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      SHFT(*ax,*bx,*cx,u) 
 {        SHFT(*fa,*fb,*fc,fu) 
   double s1, s2;        } 
   /*double t34;*/  } 
   int i,j,j1, nc, ii, jj;  
   /*************** linmin ************************/
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  int ncom; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double *pcom,*xicom;
         /*s2 += param[i][j][nc]*cov[nc];*/  double (*nrfunc)(double []); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       }  { 
       ps[i][j]=s2;    double brent(double ax, double bx, double cx, 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/                 double (*f)(double), double tol, double *xmin); 
     }    double f1dim(double x); 
     for(j=i+1; j<=nlstate+ndeath;j++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){                double *fc, double (*func)(double)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    int j; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double xx,xmin,bx,ax; 
       }    double fx,fb,fa;
       ps[i][j]=s2;   
     }    ncom=n; 
   }    pcom=vector(1,n); 
   for(i=1; i<= nlstate; i++){    xicom=vector(1,n); 
      s1=0;    nrfunc=func; 
     for(j=1; j<i; j++)    for (j=1;j<=n;j++) { 
       s1+=exp(ps[i][j]);      pcom[j]=p[j]; 
     for(j=i+1; j<=nlstate+ndeath; j++)      xicom[j]=xi[j]; 
       s1+=exp(ps[i][j]);    } 
     ps[i][i]=1./(s1+1.);    ax=0.0; 
     for(j=1; j<i; j++)    xx=1.0; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for(j=i+1; j<=nlstate+ndeath; j++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #ifdef DEBUG
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   } /* end i */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    for (j=1;j<=n;j++) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){      xi[j] *= xmin; 
       ps[ii][jj]=0;      p[j] += xi[j]; 
       ps[ii][ii]=1;    } 
     }    free_vector(xicom,1,n); 
   }    free_vector(pcom,1,n); 
   } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** powell ************************/
      printf("%lf ",ps[ii][jj]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
    }              double (*func)(double [])) 
     printf("\n ");  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
     printf("\n ");printf("%lf ",cov[2]);*/                double (*func)(double [])); 
 /*    int i,ibig,j; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double del,t,*pt,*ptt,*xit;
   goto end;*/    double fp,fptt;
     return ps;    double *xits;
 }    pt=vector(1,n); 
     ptt=vector(1,n); 
 /**************** Product of 2 matrices ******************/    xit=vector(1,n); 
     xits=vector(1,n); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    for (*iter=1;;++(*iter)) { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      fp=(*fret); 
   /* in, b, out are matrice of pointers which should have been initialized      ibig=0; 
      before: only the contents of out is modified. The function returns      del=0.0; 
      a pointer to pointers identical to out */      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   long i, j, k;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   for(i=nrl; i<= nrh; i++)      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     for(k=ncolol; k<=ncoloh; k++)      for (i=1;i<=n;i++) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        printf(" %d %.12f",i, p[i]);
         out[i][k] +=in[i][j]*b[j][k];        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   return out;      }
 }      printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");
 /************* Higher Matrix Product ***************/      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        fptt=(*fret); 
 {  #ifdef DEBUG
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        printf("fret=%lf \n",*fret);
      duration (i.e. until        fprintf(ficlog,"fret=%lf \n",*fret);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  #endif
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        printf("%d",i);fflush(stdout);
      (typically every 2 years instead of every month which is too big).        fprintf(ficlog,"%d",i);fflush(ficlog);
      Model is determined by parameters x and covariates have to be        linmin(p,xit,n,fret,func); 
      included manually here.        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
      */          ibig=i; 
         } 
   int i, j, d, h, k;  #ifdef DEBUG
   double **out, cov[NCOVMAX];        printf("%d %.12e",i,(*fret));
   double **newm;        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   /* Hstepm could be zero and should return the unit matrix */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (i=1;i<=nlstate+ndeath;i++)          printf(" x(%d)=%.12e",j,xit[j]);
     for (j=1;j<=nlstate+ndeath;j++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);        }
       po[i][j][0]=(i==j ? 1.0 : 0.0);        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          fprintf(ficlog," p=%.12e",p[j]);
   for(h=1; h <=nhstepm; h++){        }
     for(d=1; d <=hstepm; d++){        printf("\n");
       newm=savm;        fprintf(ficlog,"\n");
       /* Covariates have to be included here again */  #endif
       cov[1]=1.;      } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       if (cptcovn>0){  #ifdef DEBUG
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];        int k[2],l;
     }        k[0]=1;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        k[1]=-1;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        printf("Max: %.12e",(*func)(p));
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"Max: %.12e",(*func)(p));
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        for (j=1;j<=n;j++) {
       savm=oldm;          printf(" %.12e",p[j]);
       oldm=newm;          fprintf(ficlog," %.12e",p[j]);
     }        }
     for(i=1; i<=nlstate+ndeath; i++)        printf("\n");
       for(j=1;j<=nlstate+ndeath;j++) {        fprintf(ficlog,"\n");
         po[i][j][h]=newm[i][j];        for(l=0;l<=1;l++) {
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          for (j=1;j<=n;j++) {
          */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   } /* end h */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   return po;          }
 }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
 /*************** log-likelihood *************/  #endif
 double func( double *x)  
 {  
   int i, ii, j, k, mi, d;        free_vector(xit,1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        free_vector(xits,1,n); 
   double **out;        free_vector(ptt,1,n); 
   double sw; /* Sum of weights */        free_vector(pt,1,n); 
   double lli; /* Individual log likelihood */        return; 
   long ipmx;      } 
   /*extern weight */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   /* We are differentiating ll according to initial status */      for (j=1;j<=n;j++) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        ptt[j]=2.0*p[j]-pt[j]; 
   /*for(i=1;i<imx;i++)        xit[j]=p[j]-pt[j]; 
 printf(" %d\n",s[4][i]);        pt[j]=p[j]; 
   */      } 
       fptt=(*func)(ptt); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      if (fptt < fp) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
        for(mi=1; mi<= wav[i]-1; mi++){        if (t < 0.0) { 
       for (ii=1;ii<=nlstate+ndeath;ii++)          linmin(p,xit,n,fret,func); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for (j=1;j<=n;j++) { 
             for(d=0; d<dh[mi][i]; d++){            xi[j][ibig]=xi[j][n]; 
         newm=savm;            xi[j][n]=xit[j]; 
           cov[1]=1.;          }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #ifdef DEBUG
           if (cptcovn>0){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             for (k=1; k<=cptcovn;k++) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
               cov[2+k]=covar[Tvar[k]][i];          for(j=1;j<=n;j++){
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/            printf(" %.12e",xit[j]);
             }            fprintf(ficlog," %.12e",xit[j]);
             }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          printf("\n");
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog,"\n");
           savm=oldm;  #endif
           oldm=newm;        }
       } /* end mult */      } 
        } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  /**** Prevalence limit (stable prevalence)  ****************/
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     } /* end of wave */  {
   } /* end of individual */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    int i, ii,j,k;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   return -l;    double **out, cov[NCOVMAX], **pmij();
 }    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   
 /*********** Maximum Likelihood Estimation ***************/    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {      }
   int i,j, iter;  
   double **xi,*delti;     cov[1]=1.;
   double fret;   
   xi=matrix(1,npar,1,npar);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (j=1;j<=npar;j++)      newm=savm;
       xi[i][j]=(i==j ? 1.0 : 0.0);      /* Covariates have to be included here again */
   printf("Powell\n");       cov[2]=agefin;
   powell(p,xi,npar,ftol,&iter,&fret,func);    
         for (k=1; k<=cptcovn;k++) {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
 }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 /**** Computes Hessian and covariance matrix ***/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double  **a,**y,*x,pd;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double **hess;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   int i, j,jk;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int *indx;  
       savm=oldm;
   double hessii(double p[], double delta, int theta, double delti[]);      oldm=newm;
   double hessij(double p[], double delti[], int i, int j);      maxmax=0.;
   void lubksb(double **a, int npar, int *indx, double b[]) ;      for(j=1;j<=nlstate;j++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;        min=1.;
         max=0.;
         for(i=1; i<=nlstate; i++) {
   hess=matrix(1,npar,1,npar);          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   printf("\nCalculation of the hessian matrix. Wait...\n");          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (i=1;i<=npar;i++){          max=FMAX(max,prlim[i][j]);
     printf("%d",i);fflush(stdout);          min=FMIN(min,prlim[i][j]);
     hess[i][i]=hessii(p,ftolhess,i,delti);        }
     /*printf(" %f ",p[i]);*/        maxmin=max-min;
   }        maxmax=FMAX(maxmax,maxmin);
       }
   for (i=1;i<=npar;i++) {      if(maxmax < ftolpl){
     for (j=1;j<=npar;j++)  {        return prlim;
       if (j>i) {      }
         printf(".%d%d",i,j);fflush(stdout);    }
         hess[i][j]=hessij(p,delti,i,j);  }
         hess[j][i]=hess[i][j];  
       }  /*************** transition probabilities ***************/ 
     }  
   }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   printf("\n");  {
     double s1, s2;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    /*double t34;*/
      int i,j,j1, nc, ii, jj;
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);      for(i=1; i<= nlstate; i++){
   x=vector(1,npar);      for(j=1; j<i;j++){
   indx=ivector(1,npar);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=npar;i++)          /*s2 += param[i][j][nc]*cov[nc];*/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   ludcmp(a,npar,indx,&pd);          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
   for (j=1;j<=npar;j++) {        ps[i][j]=s2;
     for (i=1;i<=npar;i++) x[i]=0;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     x[j]=1;      }
     lubksb(a,npar,indx,x);      for(j=i+1; j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       matcov[i][j]=x[i];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   }        }
         ps[i][j]=s2;
   printf("\n#Hessian matrix#\n");      }
   for (i=1;i<=npar;i++) {    }
     for (j=1;j<=npar;j++) {      /*ps[3][2]=1;*/
       printf("%.3e ",hess[i][j]);  
     }    for(i=1; i<= nlstate; i++){
     printf("\n");       s1=0;
   }      for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);
   /* Recompute Inverse */      for(j=i+1; j<=nlstate+ndeath; j++)
   for (i=1;i<=npar;i++)        s1+=exp(ps[i][j]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      ps[i][i]=1./(s1+1.);
   ludcmp(a,npar,indx,&pd);      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   /*  printf("\n#Hessian matrix recomputed#\n");      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (j=1;j<=npar;j++) {      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for (i=1;i<=npar;i++) x[i]=0;    } /* end i */
     x[j]=1;  
     lubksb(a,npar,indx,x);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (i=1;i<=npar;i++){      for(jj=1; jj<= nlstate+ndeath; jj++){
       y[i][j]=x[i];        ps[ii][jj]=0;
       printf("%.3e ",y[i][j]);        ps[ii][ii]=1;
     }      }
     printf("\n");    }
   }  
   */  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   free_matrix(a,1,npar,1,npar);      for(jj=1; jj<= nlstate+ndeath; jj++){
   free_matrix(y,1,npar,1,npar);       printf("%lf ",ps[ii][jj]);
   free_vector(x,1,npar);     }
   free_ivector(indx,1,npar);      printf("\n ");
   free_matrix(hess,1,npar,1,npar);      }
       printf("\n ");printf("%lf ",cov[2]);*/
   /*
 }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     goto end;*/
 /*************** hessian matrix ****************/      return ps;
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  /**************** Product of 2 matrices ******************/
   int l=1, lmax=20;  
   double k1,k2;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double p2[NPARMAX+1];  {
   double res;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double fx;    /* in, b, out are matrice of pointers which should have been initialized 
   int k=0,kmax=10;       before: only the contents of out is modified. The function returns
   double l1;       a pointer to pointers identical to out */
     long i, j, k;
   fx=func(x);    for(i=nrl; i<= nrh; i++)
   for (i=1;i<=npar;i++) p2[i]=x[i];      for(k=ncolol; k<=ncoloh; k++)
   for(l=0 ; l <=lmax; l++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     l1=pow(10,l);          out[i][k] +=in[i][j]*b[j][k];
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    return out;
       delt = delta*(l1*k);  }
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /************* Higher Matrix Product ***************/
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  {
          /* Computes the transition matrix starting at age 'age' over 
 #ifdef DEBUG       'nhstepm*hstepm*stepm' months (i.e. until
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 #endif       nhstepm*hstepm matrices. 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){       (typically every 2 years instead of every month which is too big 
         k=kmax;       for the memory).
       }       Model is determined by parameters x and covariates have to be 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */       included manually here. 
         k=kmax; l=lmax*10.;  
       }       */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;    int i, j, d, h, k;
       }    double **out, cov[NCOVMAX];
     }    double **newm;
   }  
   delti[theta]=delts;    /* Hstepm could be zero and should return the unit matrix */
   return res;      for (i=1;i<=nlstate+ndeath;i++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 double hessij( double x[], double delti[], int thetai,int thetaj)        po[i][j][0]=(i==j ? 1.0 : 0.0);
 {      }
   int i;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int l=1, l1, lmax=20;    for(h=1; h <=nhstepm; h++){
   double k1,k2,k3,k4,res,fx;      for(d=1; d <=hstepm; d++){
   double p2[NPARMAX+1];        newm=savm;
   int k;        /* Covariates have to be included here again */
         cov[1]=1.;
   fx=func(x);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   for (k=1; k<=2; k++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovage;k++)
     p2[thetai]=x[thetai]+delti[thetai]/k;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for (k=1; k<=cptcovprod;k++)
     k1=func(p2)-fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     k2=func(p2)-fx;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     p2[thetai]=x[thetai]-delti[thetai]/k;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        savm=oldm;
     k3=func(p2)-fx;        oldm=newm;
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      for(i=1; i<=nlstate+ndeath; i++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(j=1;j<=nlstate+ndeath;j++) {
     k4=func(p2)-fx;          po[i][j][h]=newm[i][j];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 #ifdef DEBUG           */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        }
 #endif    } /* end h */
   }    return po;
   return res;  }
 }  
   
 /************** Inverse of matrix **************/  /*************** log-likelihood *************/
 void ludcmp(double **a, int n, int *indx, double *d)  double func( double *x)
 {  {
   int i,imax,j,k;    int i, ii, j, k, mi, d, kk;
   double big,dum,sum,temp;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double *vv;    double **out;
      double sw; /* Sum of weights */
   vv=vector(1,n);    double lli; /* Individual log likelihood */
   *d=1.0;    int s1, s2;
   for (i=1;i<=n;i++) {    double bbh, survp;
     big=0.0;    long ipmx;
     for (j=1;j<=n;j++)    /*extern weight */
       if ((temp=fabs(a[i][j])) > big) big=temp;    /* We are differentiating ll according to initial status */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     vv[i]=1.0/big;    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
   for (j=1;j<=n;j++) {    */
     for (i=1;i<j;i++) {    cov[1]=1.;
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    for(k=1; k<=nlstate; k++) ll[k]=0.;
       a[i][j]=sum;  
     }    if(mle==1){
     big=0.0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=j;i<=n;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       sum=a[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=1;k<j;k++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         sum -= a[i][k]*a[k][j];            for (j=1;j<=nlstate+ndeath;j++){
       a[i][j]=sum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ( (dum=vv[i]*fabs(sum)) >= big) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         big=dum;            }
         imax=i;          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (j != imax) {            for (kk=1; kk<=cptcovage;kk++) {
       for (k=1;k<=n;k++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         dum=a[imax][k];            }
         a[imax][k]=a[j][k];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         a[j][k]=dum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       *d = -(*d);            oldm=newm;
       vv[imax]=vv[j];          } /* end mult */
     }        
     indx[j]=imax;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if (a[j][j] == 0.0) a[j][j]=TINY;          /* But now since version 0.9 we anticipate for bias and large stepm.
     if (j != n) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       dum=1.0/(a[j][j]);           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * the nearest (and in case of equal distance, to the lowest) interval but now
     }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   free_vector(vv,1,n);  /* Doesn't work */           * probability in order to take into account the bias as a fraction of the way
 ;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 void lubksb(double **a, int n, int *indx, double b[])           * For stepm > 1 the results are less biased than in previous versions. 
 {           */
   int i,ii=0,ip,j;          s1=s[mw[mi][i]][i];
   double sum;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   for (i=1;i<=n;i++) {          /* bias is positive if real duration
     ip=indx[i];           * is higher than the multiple of stepm and negative otherwise.
     sum=b[ip];           */
     b[ip]=b[i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     if (ii)          if( s2 > nlstate){ 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     else if (sum) ii=i;               to the likelihood is the probability to die between last step unit time and current 
     b[i]=sum;               step unit time, which is also the differences between probability to die before dh 
   }               and probability to die before dh-stepm . 
   for (i=n;i>=1;i--) {               In version up to 0.92 likelihood was computed
     sum=b[i];          as if date of death was unknown. Death was treated as any other
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          health state: the date of the interview describes the actual state
     b[i]=sum/a[i][i];          and not the date of a change in health state. The former idea was
   }          to consider that at each interview the state was recorded
 }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
 /************ Frequencies ********************/          the contribution of an exact death to the likelihood. This new
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          contribution is smaller and very dependent of the step unit
 {  /* Some frequencies */          stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          interview up to one month before death multiplied by the
   double ***freq; /* Frequencies */          probability to die within a month. Thanks to Chris
   double *pp;          Jackson for correcting this bug.  Former versions increased
   double pos;          mortality artificially. The bad side is that we add another loop
   FILE *ficresp;          which slows down the processing. The difference can be up to 10%
   char fileresp[FILENAMELENGTH];          lower mortality.
             */
   pp=vector(1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   strcpy(fileresp,"p");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   strcat(fileresp,fileres);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   if((ficresp=fopen(fileresp,"w"))==NULL) {          } 
     printf("Problem with prevalence resultfile: %s\n", fileresp);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     exit(0);          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ipmx +=1;
   j1=0;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   j=cptcovn;        } /* end of wave */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      } /* end of individual */
     }  else if(mle==2){
   for(k1=1; k1<=j;k1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        j1++;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
         for (i=-1; i<=nlstate+ndeath; i++)              for (j=1;j<=nlstate+ndeath;j++){
          for (jk=-1; jk<=nlstate+ndeath; jk++)                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            for(m=agemin; m <= agemax+3; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              freq[i][jk][m]=0;            }
                  for(d=0; d<=dh[mi][i]; d++){
        for (i=1; i<=imx; i++) {            newm=savm;
          bool=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          if  (cptcovn>0) {            for (kk=1; kk<=cptcovage;kk++) {
            for (z1=1; z1<=cptcovn; z1++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;            }
          }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (bool==1) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            for(m=firstpass; m<=lastpass-1; m++){            savm=oldm;
              if(agev[m][i]==0) agev[m][i]=agemax+1;            oldm=newm;
              if(agev[m][i]==1) agev[m][i]=agemax+2;          } /* end mult */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            }          /* But now since version 0.9 we anticipate for bias and large stepm.
          }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
        }           * (in months) between two waves is not a multiple of stepm, we rounded to 
         if  (cptcovn>0) {           * the nearest (and in case of equal distance, to the lowest) interval but now
          fprintf(ficresp, "\n#Variable");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
        }           * probability in order to take into account the bias as a fraction of the way
        fprintf(ficresp, "\n#");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
        for(i=1; i<=nlstate;i++)           * -stepm/2 to stepm/2 .
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * For stepm=1 the results are the same as for previous versions of Imach.
        fprintf(ficresp, "\n");           * For stepm > 1 the results are less biased than in previous versions. 
                   */
   for(i=(int)agemin; i <= (int)agemax+3; i++){          s1=s[mw[mi][i]][i];
     if(i==(int)agemax+3)          s2=s[mw[mi+1][i]][i];
       printf("Total");          bbh=(double)bh[mi][i]/(double)stepm; 
     else          /* bias is positive if real duration
       printf("Age %d", i);           * is higher than the multiple of stepm and negative otherwise.
     for(jk=1; jk <=nlstate ; jk++){           */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         pp[jk] += freq[jk][m][i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     for(jk=1; jk <=nlstate ; jk++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for(m=-1, pos=0; m <=0 ; m++)          /*if(lli ==000.0)*/
         pos += freq[jk][m][i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if(pp[jk]>=1.e-10)          ipmx +=1;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          sw += weight[i];
       else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        } /* end of wave */
     }      } /* end of individual */
     for(jk=1; jk <=nlstate ; jk++){    }  else if(mle==3){  /* exponential inter-extrapolation */
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     for(jk=1,pos=0; jk <=nlstate ; jk++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       pos += pp[jk];            for (j=1;j<=nlstate+ndeath;j++){
     for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(pos>=1.e-5)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            }
       else          for(d=0; d<dh[mi][i]; d++){
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            newm=savm;
       if( i <= (int) agemax){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(pos>=1.e-5)            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else            }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     for(jk=-1; jk <=nlstate+ndeath; jk++)            oldm=newm;
       for(m=-1; m <=nlstate+ndeath; m++)          } /* end mult */
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        
     if(i <= (int) agemax)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       fprintf(ficresp,"\n");          /* But now since version 0.9 we anticipate for bias and large stepm.
     printf("\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
  }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   fclose(ficresp);           * probability in order to take into account the bias as a fraction of the way
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   free_vector(pp,1,nlstate);           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 }  /* End of Freq */           * For stepm > 1 the results are less biased than in previous versions. 
            */
 /************* Waves Concatenation ***************/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          bbh=(double)bh[mi][i]/(double)stepm; 
 {          /* bias is positive if real duration
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * is higher than the multiple of stepm and negative otherwise.
      Death is a valid wave (if date is known).           */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      and mw[mi+1][i]. dh depends on stepm.          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
      */          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int i, mi, m;          ipmx +=1;
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          sw += weight[i];
 float sum=0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   for(i=1; i<=imx; i++){      } /* end of individual */
     mi=0;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     m=firstpass;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     while(s[m][i] <= nlstate){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(s[m][i]>=1)        for(mi=1; mi<= wav[i]-1; mi++){
         mw[++mi][i]=m;          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(m >=lastpass)            for (j=1;j<=nlstate+ndeath;j++){
         break;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         m++;            }
     }/* end while */          for(d=0; d<dh[mi][i]; d++){
     if (s[m][i] > nlstate){            newm=savm;
       mi++;     /* Death is another wave */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /* if(mi==0)  never been interviewed correctly before death */            for (kk=1; kk<=cptcovage;kk++) {
          /* Only death is a correct wave */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mw[mi][i]=m;            }
     }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     wav[i]=mi;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if(mi==0)            savm=oldm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            oldm=newm;
   }          } /* end mult */
         
   for(i=1; i<=imx; i++){          s1=s[mw[mi][i]][i];
     for(mi=1; mi<wav[i];mi++){          s2=s[mw[mi+1][i]][i];
       if (stepm <=0)          if( s2 > nlstate){ 
         dh[mi][i]=1;            lli=log(out[s1][s2] - savm[s1][s2]);
       else{          }else{
         if (s[mw[mi+1][i]][i] > nlstate) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          }
           if(j=0) j=1;  /* Survives at least one month after exam */          ipmx +=1;
         }          sw += weight[i];
         else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/        } /* end of wave */
       } /* end of individual */
           k=k+1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           if (j >= jmax) jmax=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           sum=sum+j;        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         jk= j/stepm;            for (j=1;j<=nlstate+ndeath;j++){
         jl= j -jk*stepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(jl <= -ju)            }
           dh[mi][i]=jk;          for(d=0; d<dh[mi][i]; d++){
         else            newm=savm;
           dh[mi][i]=jk+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(dh[mi][i]==0)            for (kk=1; kk<=cptcovage;kk++) {
           dh[mi][i]=1; /* At least one step */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }          
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
 /*********** Tricode ****************************/            oldm=newm;
 void tricode(int *Tvar, int **nbcode, int imx)          } /* end mult */
 {        
   int Ndum[80],ij, k, j, i;          s1=s[mw[mi][i]][i];
   int cptcode=0;          s2=s[mw[mi+1][i]][i];
   for (k=0; k<79; k++) Ndum[k]=0;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (k=1; k<=7; k++) ncodemax[k]=0;          ipmx +=1;
            sw += weight[i];
   for (j=1; j<=cptcovn; j++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1; i<=imx; i++) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       ij=(int)(covar[Tvar[j]][i]);        } /* end of wave */
       Ndum[ij]++;      } /* end of individual */
       if (ij > cptcode) cptcode=ij;    } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for (i=0; i<=cptcode; i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if(Ndum[i]!=0) ncodemax[j]++;    return -l;
     }  }
    
     ij=1;  /*************** log-likelihood *************/
     for (i=1; i<=ncodemax[j]; i++) {  double funcone( double *x)
       for (k=0; k<=79; k++) {  {
         if (Ndum[k] != 0) {    /* Same as likeli but slower because of a lot of printf and if */
           nbcode[Tvar[j]][ij]=k;    int i, ii, j, k, mi, d, kk;
           ij++;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
         if (ij > ncodemax[j]) break;    double lli; /* Individual log likelihood */
       }      double llt;
     }    int s1, s2;
   }      double bbh, survp;
     /*extern weight */
   }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 /*********** Health Expectancies ****************/    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    */
 {    cov[1]=1.;
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double age, agelim,hf;  
   double ***p3mat;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficreseij,"# Health expectancies\n");      for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"# Age");        for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=nlstate;i++)          for (j=1;j<=nlstate+ndeath;j++){
     for(j=1; j<=nlstate;j++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficreseij," %1d-%1d",i,j);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"\n");          }
         for(d=0; d<dh[mi][i]; d++){
   hstepm=1*YEARM; /*  Every j years of age (in month) */          newm=savm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
   agelim=AGESUP;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     /* nhstepm age range expressed in number of stepm */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* Typically if 20 years = 20*12/6=40 stepm */          savm=oldm;
     if (stepm >= YEARM) hstepm=1;          oldm=newm;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        } /* end mult */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        s1=s[mw[mi][i]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        s2=s[mw[mi+1][i]][i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
     for(i=1; i<=nlstate;i++)         */
       for(j=1; j<=nlstate;j++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          lli=log(out[s1][s2] - savm[s1][s2]);
           eij[i][j][(int)age] +=p3mat[i][j][h];        } else if (mle==1){
         }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
            } else if(mle==2){
     hf=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if (stepm >= YEARM) hf=stepm/YEARM;        } else if(mle==3){  /* exponential inter-extrapolation */
     fprintf(ficreseij,"%.0f",age );          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(i=1; i<=nlstate;i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(j=1; j<=nlstate;j++){          lli=log(out[s1][s2]); /* Original formula */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       }          lli=log(out[s1][s2]); /* Original formula */
     fprintf(ficreseij,"\n");        } /* End of if */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        ipmx +=1;
   }        sw += weight[i];
 }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /************ Variance ******************/        if(globpr){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 {   %10.6f %10.6f %10.6f ", \
   /* Variance of health expectancies */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double **newm;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double **dnewm,**doldm;            llt +=ll[k]*gipmx/gsw;
   int i, j, nhstepm, hstepm, h;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int k, cptcode;          }
    double *xp;          fprintf(ficresilk," %10.6f\n", -llt);
   double **gp, **gm;        }
   double ***gradg, ***trgradg;      } /* end of wave */
   double ***p3mat;    } /* end of individual */
   double age,agelim;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int theta;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    fprintf(ficresvij,"# Covariances of life expectancies\n");    if(globpr==0){ /* First time we count the contributions and weights */
   fprintf(ficresvij,"# Age");      gipmx=ipmx;
   for(i=1; i<=nlstate;i++)      gsw=sw;
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    return -l;
   fprintf(ficresvij,"\n");  }
   
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   doldm=matrix(1,nlstate,1,nlstate);  {
      /* This routine should help understanding what is done with 
   hstepm=1*YEARM; /* Every year of age */       the selection of individuals/waves and
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       to check the exact contribution to the likelihood.
   agelim = AGESUP;       Plotting could be done.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int k;
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if(*globpri !=0){ /* Just counts and sums no printings */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      strcpy(fileresilk,"ilk"); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      strcat(fileresilk,fileres);
     gp=matrix(0,nhstepm,1,nlstate);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     gm=matrix(0,nhstepm,1,nlstate);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(k=1; k<=nlstate; k++) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       for(j=1; j<= nlstate; j++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    *fretone=(*funcone)(p);
         }    if(*globpri !=0){
       }      fclose(ficresilk);
          fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk,fileresilk);
       for(i=1; i<=npar; i++) /* Computes gradient */      fflush(fichtm); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  /*********** Maximum Likelihood Estimation ***************/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         }  {
       }    int i,j, iter;
       for(j=1; j<= nlstate; j++)    double **xi;
         for(h=0; h<=nhstepm; h++){    double fret;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double fretone; /* Only one call to likelihood */
         }    char filerespow[FILENAMELENGTH];
     } /* End theta */    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     for(h=0; h<=nhstepm; h++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(j=1; j<=nlstate;j++)    strcpy(filerespow,"pow"); 
         for(theta=1; theta <=npar; theta++)    strcat(filerespow,fileres);
           trgradg[h][j][theta]=gradg[h][theta][j];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(j=1;j<=nlstate;j++)    }
         vareij[i][j][(int)age] =0.;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(h=0;h<=nhstepm;h++){    for (i=1;i<=nlstate;i++)
       for(k=0;k<=nhstepm;k++){      for(j=1;j<=nlstate+ndeath;j++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fprintf(ficrespow,"\n");
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    powell(p,xi,npar,ftol,&iter,&fret,func);
             vareij[i][j][(int)age] += doldm[i][j];  
       }    fclose(ficrespow);
     }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     h=1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     if (stepm >= YEARM) h=stepm/YEARM;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     fprintf(ficresvij,"\n");  {
     free_matrix(gp,0,nhstepm,1,nlstate);    double  **a,**y,*x,pd;
     free_matrix(gm,0,nhstepm,1,nlstate);    double **hess;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    int i, j,jk;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int *indx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    double hessii(double p[], double delta, int theta, double delti[]);
      double hessij(double p[], double delti[], int i, int j);
   free_vector(xp,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_matrix(doldm,1,nlstate,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     hess=matrix(1,npar,1,npar);
 }  
     printf("\nCalculation of the hessian matrix. Wait...\n");
 /************ Variance of prevlim ******************/    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for (i=1;i<=npar;i++){
 {      printf("%d",i);fflush(stdout);
   /* Variance of prevalence limit */      fprintf(ficlog,"%d",i);fflush(ficlog);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      hess[i][i]=hessii(p,ftolhess,i,delti);
   double **newm;      /*printf(" %f ",p[i]);*/
   double **dnewm,**doldm;      /*printf(" %lf ",hess[i][i]);*/
   int i, j, nhstepm, hstepm;    }
   int k, cptcode;    
   double *xp;    for (i=1;i<=npar;i++) {
   double *gp, *gm;      for (j=1;j<=npar;j++)  {
   double **gradg, **trgradg;        if (j>i) { 
   double age,agelim;          printf(".%d%d",i,j);fflush(stdout);
   int theta;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
              hess[i][j]=hessij(p,delti,i,j);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          hess[j][i]=hess[i][j];    
   fprintf(ficresvpl,"# Age");          /*printf(" %lf ",hess[i][j]);*/
   for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %1d-%1d",i,i);      }
   fprintf(ficresvpl,"\n");    }
     printf("\n");
   xp=vector(1,npar);    fprintf(ficlog,"\n");
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   hstepm=1*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    a=matrix(1,npar,1,npar);
   agelim = AGESUP;    y=matrix(1,npar,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    x=vector(1,npar);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    indx=ivector(1,npar);
     if (stepm >= YEARM) hstepm=1;    for (i=1;i<=npar;i++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     gradg=matrix(1,npar,1,nlstate);    ludcmp(a,npar,indx,&pd);
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     for(theta=1; theta <=npar; theta++){      x[j]=1;
       for(i=1; i<=npar; i++){ /* Computes gradient */      lubksb(a,npar,indx,x);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)    }
         gp[i] = prlim[i][i];  
        printf("\n#Hessian matrix#\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficlog,"\n#Hessian matrix#\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=npar;j++) { 
       for(i=1;i<=nlstate;i++)        printf("%.3e ",hess[i][j]);
         gm[i] = prlim[i][i];        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      fprintf(ficlog,"\n");
     } /* End theta */    }
   
     trgradg =matrix(1,nlstate,1,npar);    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
     for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(theta=1; theta <=npar; theta++)    ludcmp(a,npar,indx,&pd);
         trgradg[j][theta]=gradg[theta][j];  
     /*  printf("\n#Hessian matrix recomputed#\n");
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;    for (j=1;j<=npar;j++) {
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for (i=1;i<=npar;i++) x[i]=0;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      x[j]=1;
     for(i=1;i<=nlstate;i++)      lubksb(a,npar,indx,x);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
     fprintf(ficresvpl,"%.0f ",age );        printf("%.3e ",y[i][j]);
     for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      }
     fprintf(ficresvpl,"\n");      printf("\n");
     free_vector(gp,1,nlstate);      fprintf(ficlog,"\n");
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    */
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   free_vector(xp,1,npar);    free_vector(x,1,npar);
   free_matrix(doldm,1,nlstate,1,npar);    free_ivector(indx,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    free_matrix(hess,1,npar,1,npar);
   
 }  
   }
   
   /*************** hessian matrix ****************/
 /***********************************************/  double hessii( double x[], double delta, int theta, double delti[])
 /**************** Main Program *****************/  {
 /***********************************************/    int i;
     int l=1, lmax=20;
 /*int main(int argc, char *argv[])*/    double k1,k2;
 int main()    double p2[NPARMAX+1];
 {    double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    double fx;
   double agedeb, agefin,hf;    int k=0,kmax=10;
   double agemin=1.e20, agemax=-1.e20;    double l1;
   
   double fret;    fx=func(x);
   double **xi,tmp,delta;    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   double dum; /* Dummy variable */      l1=pow(10,l);
   double ***p3mat;      delts=delt;
   int *indx;      for(k=1 ; k <kmax; k=k+1){
   char line[MAXLINE], linepar[MAXLINE];        delt = delta*(l1*k);
   char title[MAXLINE];        p2[theta]=x[theta] +delt;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        k1=func(p2)-fx;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];        p2[theta]=x[theta]-delt;
   char filerest[FILENAMELENGTH];        k2=func(p2)-fx;
   char fileregp[FILENAMELENGTH];        /*res= (k1-2.0*fx+k2)/delt/delt; */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int firstobs=1, lastobs=10;        
   int sdeb, sfin; /* Status at beginning and end */  #ifdef DEBUG
   int c,  h , cpt,l;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int ju,jl, mi;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int i1,j1, k1,jk,aa,bb, stepsize;  #endif
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int hstepm, nhstepm;          k=kmax;
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **prlim;          k=kmax; l=lmax*10.;
   double *severity;        }
   double ***param; /* Matrix of parameters */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double  *p;          delts=delt;
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */      }
   double *delti; /* Scale */    }
   double ***eij, ***vareij;    delti[theta]=delts;
   double **varpl; /* Variances of prevalence limits by age */    return res; 
   double *epj, vepp;    
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";  }
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   char z[1]="c", occ;  double hessij( double x[], double delti[], int thetai,int thetaj)
 #include <sys/time.h>  {
 #include <time.h>    int i;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int l=1, l1, lmax=20;
   /* long total_usecs;    double k1,k2,k3,k4,res,fx;
   struct timeval start_time, end_time;    double p2[NPARMAX+1];
      int k;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
     fx=func(x);
     for (k=1; k<=2; k++) {
   printf("\nIMACH, Version 0.63");      for (i=1;i<=npar;i++) p2[i]=x[i];
   printf("\nEnter the parameter file name: ");      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 #ifdef windows      k1=func(p2)-fx;
   scanf("%s",pathtot);    
   getcwd(pathcd, size);      p2[thetai]=x[thetai]+delti[thetai]/k;
   cutv(path,optionfile,pathtot,'\\');      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   chdir(path);      k2=func(p2)-fx;
   replace(pathc,path);    
 #endif      p2[thetai]=x[thetai]-delti[thetai]/k;
 #ifdef unix      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   scanf("%s",optionfile);      k3=func(p2)-fx;
 #endif    
       p2[thetai]=x[thetai]-delti[thetai]/k;
 /*-------- arguments in the command line --------*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
   strcpy(fileres,"r");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   strcat(fileres, optionfile);  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /*---------arguments file --------*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);    return res;
     goto end;  }
   }  
   /************** Inverse of matrix **************/
   strcpy(filereso,"o");  void ludcmp(double **a, int n, int *indx, double *d) 
   strcat(filereso,fileres);  { 
   if((ficparo=fopen(filereso,"w"))==NULL) {    int i,imax,j,k; 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double big,dum,sum,temp; 
   }    double *vv; 
    
   /* Reads comments: lines beginning with '#' */    vv=vector(1,n); 
   while((c=getc(ficpar))=='#' && c!= EOF){    *d=1.0; 
     ungetc(c,ficpar);    for (i=1;i<=n;i++) { 
     fgets(line, MAXLINE, ficpar);      big=0.0; 
     puts(line);      for (j=1;j<=n;j++) 
     fputs(line,ficparo);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   ungetc(c,ficpar);      vv[i]=1.0/big; 
     } 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for (j=1;j<=n;j++) { 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      for (i=1;i<j;i++) { 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   covar=matrix(1,NCOVMAX,1,n);            a[i][j]=sum; 
   if (strlen(model)<=1) cptcovn=0;      } 
   else {      big=0.0; 
     j=0;      for (i=j;i<=n;i++) { 
     j=nbocc(model,'+');        sum=a[i][j]; 
     cptcovn=j+1;        for (k=1;k<j;k++) 
   }          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   ncovmodel=2+cptcovn;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          big=dum; 
            imax=i; 
   /* Read guess parameters */        } 
   /* Reads comments: lines beginning with '#' */      } 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (j != imax) { 
     ungetc(c,ficpar);        for (k=1;k<=n;k++) { 
     fgets(line, MAXLINE, ficpar);          dum=a[imax][k]; 
     puts(line);          a[imax][k]=a[j][k]; 
     fputs(line,ficparo);          a[j][k]=dum; 
   }        } 
   ungetc(c,ficpar);        *d = -(*d); 
          vv[imax]=vv[j]; 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      } 
     for(i=1; i <=nlstate; i++)      indx[j]=imax; 
     for(j=1; j <=nlstate+ndeath-1; j++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      if (j != n) { 
       fprintf(ficparo,"%1d%1d",i1,j1);        dum=1.0/(a[j][j]); 
       printf("%1d%1d",i,j);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(k=1; k<=ncovmodel;k++){      } 
         fscanf(ficpar," %lf",&param[i][j][k]);    } 
         printf(" %lf",param[i][j][k]);    free_vector(vv,1,n);  /* Doesn't work */
         fprintf(ficparo," %lf",param[i][j][k]);  ;
       }  } 
       fscanf(ficpar,"\n");  
       printf("\n");  void lubksb(double **a, int n, int *indx, double b[]) 
       fprintf(ficparo,"\n");  { 
     }    int i,ii=0,ip,j; 
      double sum; 
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   
   p=param[1][1];    for (i=1;i<=n;i++) { 
        ip=indx[i]; 
   /* Reads comments: lines beginning with '#' */      sum=b[ip]; 
   while((c=getc(ficpar))=='#' && c!= EOF){      b[ip]=b[i]; 
     ungetc(c,ficpar);      if (ii) 
     fgets(line, MAXLINE, ficpar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     puts(line);      else if (sum) ii=i; 
     fputs(line,ficparo);      b[i]=sum; 
   }    } 
   ungetc(c,ficpar);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      b[i]=sum/a[i][i]; 
   for(i=1; i <=nlstate; i++){    } 
     for(j=1; j <=nlstate+ndeath-1; j++){  } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);  /************ Frequencies ********************/
       fprintf(ficparo,"%1d%1d",i1,j1);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       for(k=1; k<=ncovmodel;k++){  {  /* Some frequencies */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    
         printf(" %le",delti3[i][j][k]);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         fprintf(ficparo," %le",delti3[i][j][k]);    int first;
       }    double ***freq; /* Frequencies */
       fscanf(ficpar,"\n");    double *pp, **prop;
       printf("\n");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       fprintf(ficparo,"\n");    FILE *ficresp;
     }    char fileresp[FILENAMELENGTH];
   }    
   delti=delti3[1][1];    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
   /* Reads comments: lines beginning with '#' */    strcpy(fileresp,"p");
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresp,fileres);
     ungetc(c,ficpar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     puts(line);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     fputs(line,ficparo);      exit(0);
   }    }
   ungetc(c,ficpar);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){    j=cptcoveff;
     fscanf(ficpar,"%s",&str);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("%s",str);  
     fprintf(ficparo,"%s",str);    first=1;
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    for(k1=1; k1<=j;k1++){
       printf(" %.5le",matcov[i][j]);      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficparo," %.5le",matcov[i][j]);        j1++;
     }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     fscanf(ficpar,"\n");          scanf("%d", i);*/
     printf("\n");        for (i=-1; i<=nlstate+ndeath; i++)  
     fprintf(ficparo,"\n");          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
   for(i=1; i <=npar; i++)              freq[i][jk][m]=0;
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];      for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
   printf("\n");          prop[i][m]=0;
         
         dateintsum=0;
    if(mle==1){        k2cpt=0;
     /*-------- data file ----------*/        for (i=1; i<=imx; i++) {
     if((ficres =fopen(fileres,"w"))==NULL) {          bool=1;
       printf("Problem with resultfile: %s\n", fileres);goto end;          if  (cptcovn>0) {
     }            for (z1=1; z1<=cptcoveff; z1++) 
     fprintf(ficres,"#%s\n",version);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                    bool=0;
     if((fic=fopen(datafile,"r"))==NULL)    {          }
       printf("Problem with datafile: %s\n", datafile);goto end;          if (bool==1){
     }            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
     n= lastobs;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     severity = vector(1,maxwav);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     outcome=imatrix(1,maxwav+1,1,n);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     num=ivector(1,n);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     moisnais=vector(1,n);                if (m<lastpass) {
     annais=vector(1,n);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     moisdc=vector(1,n);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     andc=vector(1,n);                }
     agedc=vector(1,n);                
     cod=ivector(1,n);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     weight=vector(1,n);                  dateintsum=dateintsum+k2;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                  k2cpt++;
     mint=matrix(1,maxwav,1,n);                }
     anint=matrix(1,maxwav,1,n);                /*}*/
     s=imatrix(1,maxwav+1,1,n);            }
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);        }
     ncodemax=ivector(1,NCOVMAX);         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {        if  (cptcovn>0) {
       if ((i >= firstobs) && (i <=lastobs)) {          fprintf(ficresp, "\n#********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (j=maxwav;j>=1;j--){          fprintf(ficresp, "**********\n#");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        }
           strcpy(line,stra);        for(i=1; i<=nlstate;i++) 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresp, "\n");
         }        
                for(i=iagemin; i <= iagemax+3; i++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          if(i==iagemax+3){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"Total");
           }else{
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            if(first==1){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              first=0;
               printf("See log file for details...\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         for (j=ncov;j>=1;j--){            fprintf(ficlog,"Age %d", i);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }          for(jk=1; jk <=nlstate ; jk++){
         num[i]=atol(stra);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          }
           for(jk=1; jk <=nlstate ; jk++){
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
         i=i+1;            if(pp[jk]>=1.e-10){
       }              if(first==1){
     }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     /*scanf("%d",i);*/              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   imx=i-1; /* Number of individuals */            }else{
                if(first==1)
   /* Calculation of the number of parameter from char model*/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   Tvar=ivector(1,8);                  fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                }
   if (strlen(model) >1){          }
     j=0;  
     j=nbocc(model,'+');          for(jk=1; jk <=nlstate ; jk++){
     cptcovn=j+1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                pp[jk] += freq[jk][m][i];
     strcpy(modelsav,model);          }       
     if (j==0) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);            pos += pp[jk];
     }            posprop += prop[jk][i];
     else {          }
       for(i=j; i>=1;i--){          for(jk=1; jk <=nlstate ; jk++){
         cutv(stra,strb,modelsav,'+');            if(pos>=1.e-5){
         if (strchr(strb,'*')) {              if(first==1)
           cutv(strd,strc,strb,'*');                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           cutv(strb,strc,strd,'V');            }else{
           for (k=1; k<=lastobs;k++)              if(first==1)
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         else {            }
           cutv(strd,strc,strb,'V');            if( i <= iagemax){
           Tvar[i+1]=atoi(strc);              if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         strcpy(modelsav,stra);                  /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       /*cutv(strd,strc,stra,'V');*/              }
       Tvar[1]=atoi(strc);              else
     }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   }            }
   /*printf("tvar=%d ",Tvar[1]);*/          }
   /*scanf("%d ",i);*/          
     fclose(fic);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
     if (weightopt != 1) { /* Maximisation without weights*/              if(freq[jk][m][i] !=0 ) {
       for(i=1;i<=n;i++) weight[i]=1.0;              if(first==1)
     }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     /*-calculation of age at interview from date of interview and age at death -*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     agev=matrix(1,maxwav,1,imx);              }
              if(i <= iagemax)
     for (i=1; i<=imx; i++)  {            fprintf(ficresp,"\n");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          if(first==1)
       for(m=1; (m<= maxwav); m++){            printf("Others in log...\n");
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;            fprintf(ficlog,"\n");
         if(s[m][i] >0){        }
           if (s[m][i] == nlstate+1) {      }
             if(agedc[i]>0)    }
               if(moisdc[i]!=99 && andc[i]!=9999)    dateintmean=dateintsum/k2cpt; 
               agev[m][i]=agedc[i];   
             else{    fclose(ficresp);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
               agev[m][i]=-1;    free_vector(pp,1,nlstate);
             }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           }    /* End of Freq */
           else if(s[m][i] !=9){ /* Should no more exist */  }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999){  /************ Prevalence ********************/
               agev[m][i]=1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */  {  
             }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             else if(agev[m][i] <agemin){       in each health status at the date of interview (if between dateprev1 and dateprev2).
               agemin=agev[m][i];       We still use firstpass and lastpass as another selection.
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    */
             }   
             else if(agev[m][i] >agemax){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
               agemax=agev[m][i];    double ***freq; /* Frequencies */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double *pp, **prop;
             }    double pos,posprop; 
             /*agev[m][i]=anint[m][i]-annais[i];*/    double  y2; /* in fractional years */
             /*   agev[m][i] = age[i]+2*m;*/    int iagemin, iagemax;
           }  
           else { /* =9 */    iagemin= (int) agemin;
             agev[m][i]=1;    iagemax= (int) agemax;
             s[m][i]=-1;    /*pp=vector(1,nlstate);*/
           }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         else /*= 0 Unknown */    j1=0;
           agev[m][i]=1;    
       }    j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
     }    
     for (i=1; i<=imx; i++)  {    for(k1=1; k1<=j;k1++){
       for(m=1; (m<= maxwav); m++){      for(i1=1; i1<=ncodemax[k1];i1++){
         if (s[m][i] > (nlstate+ndeath)) {        j1++;
           printf("Error: Wrong value in nlstate or ndeath\n");          
           goto end;        for (i=1; i<=nlstate; i++)  
         }          for(m=iagemin; m <= iagemax+3; m++)
       }            prop[i][m]=0.0;
     }       
         for (i=1; i<=imx; i++) { /* Each individual */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          bool=1;
           if  (cptcovn>0) {
     free_vector(severity,1,maxwav);            for (z1=1; z1<=cptcoveff; z1++) 
     free_imatrix(outcome,1,maxwav+1,1,n);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_vector(moisnais,1,n);                bool=0;
     free_vector(annais,1,n);          } 
     free_matrix(mint,1,maxwav,1,n);          if (bool==1) { 
     free_matrix(anint,1,maxwav,1,n);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     free_vector(moisdc,1,n);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     free_vector(andc,1,n);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
     wav=ivector(1,imx);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                      prop[s[m][i]][(int)agev[m][i]] += weight[i];
     /* Concatenates waves */                  prop[s[m][i]][iagemax+3] += weight[i]; 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                } 
               }
             } /* end selection of waves */
 Tcode=ivector(1,100);          }
    nbcode=imatrix(1,nvar,1,8);          }
    ncodemax[1]=1;        for(i=iagemin; i <= iagemax+3; i++){  
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);          
            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
    codtab=imatrix(1,100,1,10);            posprop += prop[jk][i]; 
    h=0;          } 
    m=pow(2,cptcovn);  
            for(jk=1; jk <=nlstate ; jk++){     
    for(k=1;k<=cptcovn; k++){            if( i <=  iagemax){ 
      for(i=1; i <=(m/pow(2,k));i++){              if(posprop>=1.e-5){ 
        for(j=1; j <= ncodemax[k]; j++){                probs[i][jk][j1]= prop[jk][i]/posprop;
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){              } 
            h++;            } 
            if (h>m) h=1;codtab[h][k]=j;          }/* end jk */ 
          }        }/* end i */ 
        }      } /* end i1 */
      }    } /* end k1 */
    }    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
    /*for(i=1; i <=m ;i++){    /*free_vector(pp,1,nlstate);*/
      for(k=1; k <=cptcovn; k++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);  }  /* End of prevalence */
      }  
      printf("\n");  /************* Waves Concatenation ***************/
    }  
   scanf("%d",i);*/  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      {
    /* Calculates basic frequencies. Computes observed prevalence at single age    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        and prints on file fileres'p'. */       Death is a valid wave (if date is known).
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       and mw[mi+1][i]. dh depends on stepm.
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, mi, m;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           double sum=0., jmean=0.;*/
     /* For Powell, parameters are in a vector p[] starting at p[1]    int first;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    int j, k=0,jk, ju, jl;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double sum=0.;
     /*scanf("%d",i);*/    first=0;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    jmin=1e+5;
     jmax=-1;
        jmean=0.;
     /*--------- results files --------------*/    for(i=1; i<=imx; i++){
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      mi=0;
          m=firstpass;
    jk=1;      while(s[m][i] <= nlstate){
    fprintf(ficres,"# Parameters\n");        if(s[m][i]>=1)
    printf("# Parameters\n");          mw[++mi][i]=m;
    for(i=1,jk=1; i <=nlstate; i++){        if(m >=lastpass)
      for(k=1; k <=(nlstate+ndeath); k++){          break;
        if (k != i)        else
          {          m++;
            printf("%d%d ",i,k);      }/* end while */
            fprintf(ficres,"%1d%1d ",i,k);      if (s[m][i] > nlstate){
            for(j=1; j <=ncovmodel; j++){        mi++;     /* Death is another wave */
              printf("%f ",p[jk]);        /* if(mi==0)  never been interviewed correctly before death */
              fprintf(ficres,"%f ",p[jk]);           /* Only death is a correct wave */
              jk++;        mw[mi][i]=m;
            }      }
            printf("\n");  
            fprintf(ficres,"\n");      wav[i]=mi;
          }      if(mi==0){
      }        if(first==0){
    }          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
     /* Computing hessian and covariance matrix */        }
     ftolhess=ftol; /* Usually correct */        if(first==1){
     hesscov(matcov, p, npar, delti, ftolhess, func);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     fprintf(ficres,"# Scales\n");        }
     printf("# Scales\n");      } /* end mi==0 */
      for(i=1,jk=1; i <=nlstate; i++){    } /* End individuals */
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {    for(i=1; i<=imx; i++){
           fprintf(ficres,"%1d%1d",i,j);      for(mi=1; mi<wav[i];mi++){
           printf("%1d%1d",i,j);        if (stepm <=0)
           for(k=1; k<=ncovmodel;k++){          dh[mi][i]=1;
             printf(" %.5e",delti[jk]);        else{
             fprintf(ficres," %.5e",delti[jk]);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             jk++;            if (agedc[i] < 2*AGESUP) {
           }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           printf("\n");              if(j==0) j=1;  /* Survives at least one month after exam */
           fprintf(ficres,"\n");              else if(j<0){
         }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                j=1; /* Careful Patch */
       }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                    printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     k=1;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficres,"# Covariance\n");              }
     printf("# Covariance\n");              k=k+1;
     for(i=1;i<=npar;i++){              if (j >= jmax) jmax=j;
       /*  if (k>nlstate) k=1;              if (j <= jmin) jmin=j;
       i1=(i-1)/(ncovmodel*nlstate)+1;              sum=sum+j;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficres,"%3d",i);            }
       printf("%3d",i);          }
       for(j=1; j<=i;j++){          else{
         fprintf(ficres," %.5e",matcov[i][j]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         printf(" %.5e",matcov[i][j]);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            k=k+1;
       fprintf(ficres,"\n");            if (j >= jmax) jmax=j;
       printf("\n");            else if (j <= jmin)jmin=j;
       k++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                if(j<0){
     while((c=getc(ficpar))=='#' && c!= EOF){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       ungetc(c,ficpar);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fgets(line, MAXLINE, ficpar);            }
       puts(line);            sum=sum+j;
       fputs(line,ficparo);          }
     }          jk= j/stepm;
     ungetc(c,ficpar);          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                if(jl==0){
     if (fage <= 2) {              dh[mi][i]=jk;
       bage = agemin;              bh[mi][i]=0;
       fage = agemax;            }else{ /* We want a negative bias in order to only have interpolation ie
     }                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              bh[mi][i]=ju;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            }
 /*------------ gnuplot -------------*/          }else{
 chdir(pathcd);            if(jl <= -ju){
   if((ficgp=fopen("graph.plt","w"))==NULL) {              dh[mi][i]=jk;
     printf("Problem with file graph.gp");goto end;              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
 #ifdef windows                                   */
   fprintf(ficgp,"cd \"%s\" \n",pathc);            }
 #endif            else{
 m=pow(2,cptcovn);              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
  /* 1eme*/            }
   for (cpt=1; cpt<= nlstate ; cpt ++) {            if(dh[mi][i]==0){
    for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
 #ifdef windows              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            }
 #endif          } /* end if mle */
 #ifdef unix        }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      } /* end wave */
 #endif    }
     jmean=sum/k;
 for (i=1; i<= nlstate ; i ++) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   else fprintf(ficgp," \%%*lf (\%%*lf)");   }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  /*********** Tricode ****************************/
     for (i=1; i<= nlstate ; i ++) {  void tricode(int *Tvar, int **nbcode, int imx)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    int cptcode=0;
      for (i=1; i<= nlstate ; i ++) {    cptcoveff=0; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (k=0; k<maxncov; k++) Ndum[k]=0;
 }      for (k=1; k<=7; k++) ncodemax[k]=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 fprintf(ficgp,"\nset ter gif small size 400,300");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 #endif                                 modality*/ 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
    }        Ndum[ij]++; /*store the modality */
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /*2 eme*/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
   for (k1=1; k1<= m ; k1 ++) {                                         female is 1, then  cptcode=1.*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      }
      
     for (i=1; i<= nlstate+1 ; i ++) {      for (i=0; i<=cptcode; i++) {
       k=2*i;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      ij=1; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1; i<=ncodemax[j]; i++) {
 }          for (k=0; k<= maxncov; k++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          if (Ndum[k] != 0) {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            nbcode[Tvar[j]][ij]=k; 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       for (j=1; j<= nlstate+1 ; j ++) {            
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            ij++;
         else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            if (ij > ncodemax[j]) break; 
       fprintf(ficgp,"\" t\"\" w l 0,");        }  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      } 
       for (j=1; j<= nlstate+1 ; j ++) {    }  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   for (k=0; k< maxncov; k++) Ndum[k]=0;
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");   for (i=1; i<=ncovmodel-2; i++) { 
       else fprintf(ficgp,"\" t\"\" w l 0,");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     }     ij=Tvar[i];
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);     Ndum[ij]++;
   }   }
    
   /*3eme*/   ij=1;
    for (i=1; i<= maxncov; i++) {
   for (k1=1; k1<= m ; k1 ++) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     for (cpt=1; cpt<= nlstate ; cpt ++) {       Tvaraff[ij]=i; /*For printing */
       k=2+nlstate*(cpt-1);       ij++;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);     }
       for (i=1; i< nlstate ; i ++) {   }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);   
       }   cptcoveff=ij-1; /*Number of simple covariates*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  }
     }  
   }  /*********** Health Expectancies ****************/
    
   /* CV preval stat */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {  {
       k=3;    /* Health expectancies */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       for (i=1; i< nlstate ; i ++)    double age, agelim, hf;
         fprintf(ficgp,"+$%d",k+i+1);    double ***p3mat,***varhe;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double **dnewm,**doldm;
          double *xp;
       l=3+(nlstate+ndeath)*cpt;    double **gp, **gm;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    double ***gradg, ***trgradg;
       for (i=1; i< nlstate ; i ++) {    int theta;
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     }    
   }    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
   /* proba elementaires */    for(i=1; i<=nlstate;i++)
   for(i=1,jk=1; i <=nlstate; i++){      for(j=1; j<=nlstate;j++)
     for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       if (k != i) {    fprintf(ficreseij,"\n");
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/  
         for(j=1; j <=ncovmodel; j++){    if(estepm < stepm){
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);      printf ("Problem %d lower than %d\n",estepm, stepm);
           jk++;    }
           fprintf(ficgp,"\n");    else  hstepm=estepm;   
         }    /* We compute the life expectancy from trapezoids spaced every estepm months
       }     * This is mainly to measure the difference between two models: for example
     }     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   for(jk=1; jk <=m; jk++) {     * progression in between and thus overestimating or underestimating according
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);     * to the curvature of the survival function. If, for the same date, we 
   for(i=1; i <=nlstate; i++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for(k=1; k <=(nlstate+ndeath); k++){     * to compare the new estimate of Life expectancy with the same linear 
       if (k != i) {     * hypothesis. A more precise result, taking into account a more precise
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);     * curvature will be obtained if estepm is as small as stepm. */
         for(j=3; j <=ncovmodel; j++)  
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficgp,")/(1");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(k1=1; k1 <=(nlstate+ndeath); k1++)       nhstepm is the number of hstepm from age to agelim 
           if (k1 != i) {       nstepm is the number of stepm from age to agelin. 
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);       Look at hpijx to understand the reason of that which relies in memory size
             for(j=3; j <=ncovmodel; j++)       and note for a fixed period like estepm months */
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             fprintf(ficgp,")");       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed only each two years of age and if
         fprintf(ficgp,") t \"p%d%d\" ", i,k);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       results. So we changed our mind and took the option of the best precision.
       }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      agelim=AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficgp);      /* nhstepm age range expressed in number of stepm */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 chdir(path);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_matrix(agev,1,maxwav,1,imx);      /* if (stepm >= YEARM) hstepm=1;*/
     free_ivector(wav,1,imx);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
          gp=matrix(0,nhstepm,1,nlstate*nlstate);
     free_imatrix(s,1,maxwav+1,1,n);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
      
          /* Computed by stepm unit matrices, product of hstepm matrices, stored
     free_ivector(num,1,n);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     free_vector(agedc,1,n);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     free_vector(weight,1,n);   
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  
     fclose(ficparo);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fclose(ficres);  
    }      /* Computing Variances of health expectancies */
      
    /*________fin mle=1_________*/       for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
     /* No more information from the sample is required now */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){        cptj=0;
     ungetc(c,ficpar);        for(j=1; j<= nlstate; j++){
     fgets(line, MAXLINE, ficpar);          for(i=1; i<=nlstate; i++){
     puts(line);            cptj=cptj+1;
     fputs(line,ficparo);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   ungetc(c,ficpar);            }
            }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);       
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);       
 /*--------- index.htm --------*/        for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if((fichtm=fopen("index.htm","w"))==NULL)    {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with index.htm \n");goto end;        
   }        cptj=0;
         for(j=1; j<= nlstate; j++){
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n          for(i=1;i<=nlstate;i++){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            cptj=cptj+1;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>            }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          }
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        for(j=1; j<= nlstate*nlstate; j++)
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  fprintf(fichtm," <li>Graphs</li>\n<p>");          }
        } 
  m=cptcovn;     
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /* End theta */
   
  j1=0;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){       for(h=0; h<=nhstepm-1; h++)
        j1++;        for(j=1; j<=nlstate*nlstate;j++)
        if (cptcovn > 0) {          for(theta=1; theta <=npar; theta++)
          fprintf(fichtm,"<hr>************ Results for covariates");            trgradg[h][j][theta]=gradg[h][theta][j];
          for (cpt=1; cpt<=cptcovn;cpt++)       
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);  
          fprintf(fichtm," ************\n<hr>");       for(i=1;i<=nlstate*nlstate;i++)
        }        for(j=1;j<=nlstate*nlstate;j++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          varhe[i][j][(int)age] =0.;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){       printf("%d|",(int)age);fflush(stdout);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);       for(h=0;h<=nhstepm-1;h++){
        }        for(k=0;k<=nhstepm-1;k++){
     for(cpt=1; cpt<=nlstate;cpt++) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 interval) in state (%d): v%s%d%d.gif <br>          for(i=1;i<=nlstate*nlstate;i++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              for(j=1;j<=nlstate*nlstate;j++)
      }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
      for(cpt=1; cpt<=nlstate;cpt++) {        }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* Computing expectancies */
      }      for(i=1; i<=nlstate;i++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for(j=1; j<=nlstate;j++)
 health expectancies in states (1) and (2): e%s%d.gif<br>          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 fprintf(fichtm,"\n</body>");            
    }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  }  
 fclose(fichtm);          }
   
   /*--------------- Prevalence limit --------------*/      fprintf(ficreseij,"%3.0f",age );
        cptj=0;
   strcpy(filerespl,"pl");      for(i=1; i<=nlstate;i++)
   strcat(filerespl,fileres);        for(j=1; j<=nlstate;j++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          cptj++;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   }        }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      fprintf(ficreseij,"\n");
   fprintf(ficrespl,"#Prevalence limit\n");     
   fprintf(ficrespl,"#Age ");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   fprintf(ficrespl,"\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   prlim=matrix(1,nlstate,1,nlstate);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"\n");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_vector(xp,1,npar);
   k=0;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   agebase=agemin;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   agelim=agemax;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   ftolpl=1.e-10;  }
   i1=cptcovn;  
   if (cptcovn < 1){i1=1;}  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   for(cptcov=1;cptcov<=i1;cptcov++){  {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* Variance of health expectancies */
         k=k+1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    /* double **newm;*/
         fprintf(ficrespl,"\n#****** ");    double **dnewm,**doldm;
         for(j=1;j<=cptcovn;j++)    double **dnewmp,**doldmp;
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    int i, j, nhstepm, hstepm, h, nstepm ;
         fprintf(ficrespl,"******\n");    int k, cptcode;
            double *xp;
         for (age=agebase; age<=agelim; age++){    double **gp, **gm;  /* for var eij */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double ***gradg, ***trgradg; /*for var eij */
           fprintf(ficrespl,"%.0f",age );    double **gradgp, **trgradgp; /* for var p point j */
           for(i=1; i<=nlstate;i++)    double *gpp, *gmp; /* for var p point j */
           fprintf(ficrespl," %.5f", prlim[i][i]);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           fprintf(ficrespl,"\n");    double ***p3mat;
         }    double age,agelim, hf;
       }    double ***mobaverage;
     }    int theta;
   fclose(ficrespl);    char digit[4];
   /*------------- h Pij x at various ages ------------*/    char digitp[25];
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    char fileresprobmorprev[FILENAMELENGTH];
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    if(popbased==1){
   }      if(mobilav!=0)
   printf("Computing pij: result on file '%s' \n", filerespij);        strcpy(digitp,"-populbased-mobilav-");
        else strcpy(digitp,"-populbased-nomobil-");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=24) stepsize=2;    else 
       strcpy(digitp,"-stablbased-");
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    if (mobilav!=0) {
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   k=0;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   for(cptcov=1;cptcov<=i1;cptcov++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;    }
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcovn;j++)    strcpy(fileresprobmorprev,"prmorprev"); 
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    sprintf(digit,"%-d",ij);
         fprintf(ficrespij,"******\n");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
            strcat(fileresprobmorprev,digit); /* Tvar to be done */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcat(fileresprobmorprev,fileres);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
           fprintf(ficrespij,"# Age");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           for(i=1; i<=nlstate;i++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           fprintf(ficrespij,"\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for (h=0; h<=nhstepm; h++){      fprintf(ficresprobmorprev," p.%-d SE",j);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      for(i=1; i<=nlstate;i++)
             for(i=1; i<=nlstate;i++)        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
               for(j=1; j<=nlstate+ndeath;j++)    }  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    fprintf(ficresprobmorprev,"\n");
             fprintf(ficrespij,"\n");    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           }      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
           fprintf(ficrespij,"\n");      exit(0);
         }    }
     }    else{
   }      fprintf(ficgp,"\n# Routine varevsij");
     }
   fclose(ficrespij);  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with html file: %s\n", optionfilehtm); */
   /*---------- Health expectancies and variances ------------*/  /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
   /*     exit(0); */
   strcpy(filerest,"t");  /*   } */
   strcat(filerest,fileres);  /*   else{ */
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   }  /*   } */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   strcpy(filerese,"e");    fprintf(ficresvij,"# Age");
   strcat(filerese,fileres);    for(i=1; i<=nlstate;i++)
   if((ficreseij=fopen(filerese,"w"))==NULL) {      for(j=1; j<=nlstate;j++)
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   }    fprintf(ficresvij,"\n");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     xp=vector(1,npar);
  strcpy(fileresv,"v");    dnewm=matrix(1,nlstate,1,npar);
   strcat(fileresv,fileres);    doldm=matrix(1,nlstate,1,nlstate);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
   k=0;    gmp=vector(nlstate+1,nlstate+ndeath);
   for(cptcov=1;cptcov<=i1;cptcov++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    if(estepm < stepm){
       fprintf(ficrest,"\n#****** ");      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(j=1;j<=cptcovn;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    else  hstepm=estepm;   
       fprintf(ficrest,"******\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficreseij,"\n#****** ");       nhstepm is the number of hstepm from age to agelim 
       for(j=1;j<=cptcovn;j++)       nstepm is the number of stepm from age to agelin. 
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficreseij,"******\n");       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficresvij,"\n#****** ");       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1;j<=cptcovn;j++)       means that if the survival funtion is printed every two years of age and if
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficresvij,"******\n");       results. So we changed our mind and took the option of the best precision.
     */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       oldm=oldms;savm=savms;    agelim = AGESUP;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       oldm=oldms;savm=savms;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      gp=matrix(0,nhstepm,1,nlstate);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      gm=matrix(0,nhstepm,1,nlstate);
       fprintf(ficrest,"\n");  
          
       hf=1;      for(theta=1; theta <=npar; theta++){
       if (stepm >= YEARM) hf=stepm/YEARM;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       epj=vector(1,nlstate+1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(age=bage; age <=fage ;age++){        }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficrest," %.0f",age);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        if (popbased==1) {
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          if(mobilav ==0){
           }            for(i=1; i<=nlstate;i++)
           epj[nlstate+1] +=epj[j];              prlim[i][i]=probs[(int)age][i][ij];
         }          }else{ /* mobilav */ 
         for(i=1, vepp=0.;i <=nlstate;i++)            for(i=1; i<=nlstate;i++)
           for(j=1;j <=nlstate;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
             vepp += vareij[i][j][(int)age];          }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        }
         for(j=1;j <=nlstate;j++){    
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        for(j=1; j<= nlstate; j++){
         }          for(h=0; h<=nhstepm; h++){
         fprintf(ficrest,"\n");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
   }        }
                /* This for computing probability of death (h=1 means
  fclose(ficreseij);           computed over hstepm matrices product = hstepm*stepm months) 
  fclose(ficresvij);           as a weighted average of prlim.
   fclose(ficrest);        */
   fclose(ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_vector(epj,1,nlstate+1);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   /*  scanf("%d ",i); */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   /*------- Variance limit prevalence------*/          /* end probability of death */
   
 strcpy(fileresvpl,"vpl");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   strcat(fileresvpl,fileres);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     exit(0);   
   }        if (popbased==1) {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
  k=0;              prlim[i][i]=probs[(int)age][i][ij];
  for(cptcov=1;cptcov<=i1;cptcov++){          }else{ /* mobilav */ 
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(i=1; i<=nlstate;i++)
      k=k+1;              prlim[i][i]=mobaverage[(int)age][i][ij];
      fprintf(ficresvpl,"\n#****** ");          }
      for(j=1;j<=cptcovn;j++)        }
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");        for(j=1; j<= nlstate; j++){
                for(h=0; h<=nhstepm; h++){
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
      oldm=oldms;savm=savms;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          }
    }        }
  }        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   fclose(ficresvpl);           as a weighted average of prlim.
         */
   /*---------- End : free ----------------*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }    
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        /* end probability of death */
    
          for(j=1; j<= nlstate; j++) /* vareij */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          for(h=0; h<=nhstepm; h++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   free_matrix(matcov,1,npar,1,npar);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   free_vector(delti,1,npar);        }
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      } /* End theta */
   
   printf("End of Imach\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
        for(h=0; h<=nhstepm; h++) /* veij */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for(j=1; j<=nlstate;j++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/          for(theta=1; theta <=npar; theta++)
   /*------ End -----------*/            trgradg[h][j][theta]=gradg[h][theta][j];
   
  end:      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 #ifdef windows        for(theta=1; theta <=npar; theta++)
  chdir(pathcd);          trgradgp[j][theta]=gradgp[theta][j];
 #endif    
  system("wgnuplot ../gp37mgw/graph.plt");  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 #ifdef windows      for(i=1;i<=nlstate;i++)
   while (z[0] != 'q') {        for(j=1;j<=nlstate;j++)
     chdir(pathcd);          vareij[i][j][(int)age] =0.;
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  
     scanf("%s",z);      for(h=0;h<=nhstepm;h++){
     if (z[0] == 'c') system("./imach");        for(k=0;k<=nhstepm;k++){
     else if (z[0] == 'e') {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       chdir(path);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       system("index.htm");          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
     else if (z[0] == 'q') exit(0);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   }        }
 #endif      }
 }    
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fclose(ficgp);
   /*   fclose(fichtm); */
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
     }
     else{
       fprintf(ficgp,"\n# Routine varprob");
     }
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with html file: %s\n", optionfilehtm); */
   /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
   /*     exit(0); */
   /*   } */
   /*   else{ */
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
   
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
   /*   } */
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): e%s%d.png<br>\
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): v%s%d%d.png <br>\
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with file: %s\n", optionfilehtm); */
   /*     fprintf(ficlog,"Problem with file: %s\n", optionfilehtm); */
   /*   } */
   
   
   /*   if(fileappend(fichtm, optionfilehtm)){ */
       fprintf(fichtm,"\n");
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
   /*     fclose(fichtm); */
   /*   } */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
     fclose(fichtm);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.2  
changed lines
  Added in v.1.87


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>