Diff for /imach/src/imach.c between versions 1.2 and 1.95

version 1.2, 2001/03/13 18:10:26 version 1.95, 2003/07/08 07:54:34
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.95  2003/07/08 07:54:34  brouard
   individuals from different ages are interviewed on their health status    * imach.c (Repository):
   or degree of  disability. At least a second wave of interviews    (Repository): Using imachwizard code to output a more meaningful covariance
   ("longitudinal") should  measure each new individual health status.    matrix (cov(a12,c31) instead of numbers.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.94  2003/06/27 13:00:02  brouard
   of life states). More degrees you consider, more time is necessary to    Just cleaning
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.93  2003/06/25 16:33:55  brouard
   the probabibility to be observed in state j at the second wave conditional    (Module): On windows (cygwin) function asctime_r doesn't
   to be observed in state i at the first wave. Therefore the model is:    exist so I changed back to asctime which exists.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Module): Version 0.96b
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.92  2003/06/25 16:30:45  brouard
     *Covariates have to be included here again* invites you to do it.    (Module): On windows (cygwin) function asctime_r doesn't
   More covariates you add, less is the speed of the convergence.    exist so I changed back to asctime which exists.
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.91  2003/06/25 15:30:29  brouard
   delay between waves is not identical for each individual, or if some    * imach.c (Repository): Duplicated warning errors corrected.
   individual missed an interview, the information is not rounded or lost, but    (Repository): Elapsed time after each iteration is now output. It
   taken into account using an interpolation or extrapolation.    helps to forecast when convergence will be reached. Elapsed time
   hPijx is the probability to be    is stamped in powell.  We created a new html file for the graphs
   observed in state i at age x+h conditional to the observed state i at age    concerning matrix of covariance. It has extension -cov.htm.
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.90  2003/06/24 12:34:15  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    (Module): Some bugs corrected for windows. Also, when
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    mle=-1 a template is output in file "or"mypar.txt with the design
   and the contribution of each individual to the likelihood is simply hPijx.    of the covariance matrix to be input.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.89  2003/06/24 12:30:52  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    of the covariance matrix to be input.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.88  2003/06/23 17:54:56  brouard
   from the European Union.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.87  2003/06/18 12:26:01  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.96
   **********************************************************************/  
      Revision 1.86  2003/06/17 20:04:08  brouard
 #include <math.h>    (Module): Change position of html and gnuplot routines and added
 #include <stdio.h>    routine fileappend.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 #define MAXLINE 256    current date of interview. It may happen when the death was just
 #define FILENAMELENGTH 80    prior to the death. In this case, dh was negative and likelihood
 /*#define DEBUG*/    was wrong (infinity). We still send an "Error" but patch by
 #define windows    assuming that the date of death was just one stepm after the
     interview.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Repository): Because some people have very long ID (first column)
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define NINTERVMAX 8    truncation)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Repository): No more line truncation errors.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.84  2003/06/13 21:44:43  brouard
 #define MAXN 80000    * imach.c (Repository): Replace "freqsummary" at a correct
 #define YEARM 12. /* Number of months per year */    place. It differs from routine "prevalence" which may be called
 #define AGESUP 130    many times. Probs is memory consuming and must be used with
 #define AGEBASE 40    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 int nvar;    Revision 1.83  2003/06/10 13:39:11  lievre
 static int cptcov;    *** empty log message ***
 int cptcovn;  
 int npar=NPARMAX;    Revision 1.82  2003/06/05 15:57:20  brouard
 int nlstate=2; /* Number of live states */    Add log in  imach.c and  fullversion number is now printed.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  */
   /*
 int *wav; /* Number of waves for this individuual 0 is possible */     Interpolated Markov Chain
 int maxwav; /* Maxim number of waves */  
 int mle, weightopt;    Short summary of the programme:
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    This program computes Healthy Life Expectancies from
 double **oldm, **newm, **savm; /* Working pointers to matrices */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    first survey ("cross") where individuals from different ages are
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    interviewed on their health status or degree of disability (in the
 FILE *ficgp, *fichtm;    case of a health survey which is our main interest) -2- at least a
 FILE *ficreseij;    second wave of interviews ("longitudinal") which measure each change
   char filerese[FILENAMELENGTH];    (if any) in individual health status.  Health expectancies are
  FILE  *ficresvij;    computed from the time spent in each health state according to a
   char fileresv[FILENAMELENGTH];    model. More health states you consider, more time is necessary to reach the
  FILE  *ficresvpl;    Maximum Likelihood of the parameters involved in the model.  The
   char fileresvpl[FILENAMELENGTH];    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define NR_END 1    complex model than "constant and age", you should modify the program
 #define FREE_ARG char*    where the markup *Covariates have to be included here again* invites
 #define FTOL 1.0e-10    you to do it.  More covariates you add, slower the
     convergence.
 #define NRANSI  
 #define ITMAX 200    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define TOL 2.0e-4    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define CGOLD 0.3819660    account using an interpolation or extrapolation.  
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 #define GOLD 1.618034    split into an exact number (nh*stepm) of unobserved intermediate
 #define GLIMIT 100.0    states. This elementary transition (by month, quarter,
 #define TINY 1.0e-20    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 static double maxarg1,maxarg2;    and the contribution of each individual to the likelihood is simply
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    hPijx.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Also this programme outputs the covariance matrix of the parameters but also
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    of the life expectancies. It also computes the stable prevalence. 
 #define rint(a) floor(a+0.5)    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 static double sqrarg;             Institut national d'études démographiques, Paris.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    This software have been partly granted by Euro-REVES, a concerted action
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int imx;    software can be distributed freely for non commercial use. Latest version
 int stepm;    can be accessed at http://euroreves.ined.fr/imach .
 /* Stepm, step in month: minimum step interpolation*/  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int m,nb;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    **********************************************************************/
 double **pmmij;  /*
     main
 double *weight;    read parameterfile
 int **s; /* Status */    read datafile
 double *agedc, **covar, idx;    concatwav
 int **nbcode, *Tcode, *Tvar, **codtab;    freqsummary
     if (mle >= 1)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */      mlikeli
 double ftolhess; /* Tolerance for computing hessian */    print results files
     if mle==1 
        computes hessian
 /******************************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 void replace(char *s, char*t)    open gnuplot file
 {    open html file
   int i;    stable prevalence
   int lg=20;     for age prevalim()
   i=0;    h Pij x
   lg=strlen(t);    variance of p varprob
   for(i=0; i<= lg; i++) {    forecasting if prevfcast==1 prevforecast call prevalence()
     (s[i] = t[i]);    health expectancies
     if (t[i]== '\\') s[i]='/';    Variance-covariance of DFLE
   }    prevalence()
 }     movingaverage()
     varevsij() 
 int nbocc(char *s, char occ)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   int i,j=0;    Variance of stable prevalence
   int lg=20;   end
   i=0;  */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  
   }   
   return j;  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 void cutv(char *u,char *v, char*t, char occ)  #include <unistd.h>
 {  
   int i,lg,j,p;  #include <sys/time.h>
   i=0;  #include <time.h>
   if (t[0]== occ) p=0;  #include "timeval.h"
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;  /* #include <libintl.h> */
   }  /* #define _(String) gettext (String) */
   
   lg=strlen(t);  #define MAXLINE 256
   for(j=0; j<p; j++) {  #define GNUPLOTPROGRAM "gnuplot"
     (u[j] = t[j]);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     u[p]='\0';  #define FILENAMELENGTH 132
   }  /*#define DEBUG*/
   /*#define windows*/
    for(j=0; j<= lg; j++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /********************** nrerror ********************/  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 void nrerror(char error_text[])  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
   fprintf(stderr,"ERREUR ...\n");  #define MAXN 20000
   fprintf(stderr,"%s\n",error_text);  #define YEARM 12. /* Number of months per year */
   exit(1);  #define AGESUP 130
 }  #define AGEBASE 40
 /*********************** vector *******************/  #ifdef unix
 double *vector(int nl, int nh)  #define DIRSEPARATOR '/'
 {  #define ODIRSEPARATOR '\\'
   double *v;  #else
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define DIRSEPARATOR '\\'
   if (!v) nrerror("allocation failure in vector");  #define ODIRSEPARATOR '/'
   return v-nl+NR_END;  #endif
 }  
   /* $Id$ */
 /************************ free vector ******************/  /* $State$ */
 void free_vector(double*v, int nl, int nh)  
 {  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
   free((FREE_ARG)(v+nl-NR_END));  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /************************ivector *******************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int *ivector(long nl,long nh)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   int *v;  int ndeath=1; /* Number of dead states */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if (!v) nrerror("allocation failure in ivector");  int popbased=0;
   return v-nl+NR_END;  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /******************free ivector **************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 void free_ivector(int *v, long nl, long nh)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG)(v+nl-NR_END));  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /******************* imatrix *******************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 int **imatrix(long nrl, long nrh, long ncl, long nch)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   int **m;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
   /* allocate pointers to rows */  int globpr; /* Global variable for printing or not */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double fretone; /* Only one call to likelihood */
   if (!m) nrerror("allocation failure 1 in matrix()");  long ipmx; /* Number of contributions */
   m += NR_END;  double sw; /* Sum of weights */
   m -= nrl;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   /* allocate rows and set pointers to them */  FILE *ficresprobmorprev;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  FILE *fichtm, *fichtmcov; /* Html File */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficreseij;
   m[nrl] += NR_END;  char filerese[FILENAMELENGTH];
   m[nrl] -= ncl;  FILE  *ficresvij;
    char fileresv[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  char title[MAXLINE];
   return m;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH]; 
 /****************** free_imatrix *************************/  char command[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  int  outcmd=0;
       int **m;  
       long nch,ncl,nrh,nrl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char filerest[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /******************* matrix *******************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  struct timezone tzp;
   double **m;  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  long time_value;
   if (!m) nrerror("allocation failure 1 in matrix()");  extern long time();
   m += NR_END;  char strcurr[80], strfor[80];
   m -= nrl;  
   #define NR_END 1
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FREE_ARG char*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FTOL 1.0e-10
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NRANSI 
   #define ITMAX 200 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /*************************free matrix ************************/  #define ZEPS 1.0e-10 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GOLD 1.618034 
   free((FREE_ARG)(m+nrl-NR_END));  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /******************* ma3x *******************************/  static double maxarg1,maxarg2;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    
   double ***m;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double sqrarg;
   m += NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m -= nrl;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int imx; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int stepm;
   m[nrl] += NR_END;  /* Stepm, step in month: minimum step interpolation*/
   m[nrl] -= ncl;  
   int estepm;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int m,nb;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  long *num;
   m[nrl][ncl] += NR_END;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   m[nrl][ncl] -= nll;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (j=ncl+1; j<=nch; j++)  double **pmmij, ***probs;
     m[nrl][j]=m[nrl][j-1]+nlay;  double dateintmean=0;
    
   for (i=nrl+1; i<=nrh; i++) {  double *weight;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int **s; /* Status */
     for (j=ncl+1; j<=nch; j++)  double *agedc, **covar, idx;
       m[i][j]=m[i][j-1]+nlay;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  
   return m;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /*************************free ma3x ************************/  /**************** split *************************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    char  *ss;                            /* pointer */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int   l1, l2;                         /* length counters */
   free((FREE_ARG)(m+nrl-NR_END));  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /***************** f1dim *************************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 extern int ncom;    if ( ss == NULL ) {                   /* no directory, so use current */
 extern double *pcom,*xicom;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 extern double (*nrfunc)(double []);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
        /* get current working directory */
 double f1dim(double x)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int j;        return( GLOCK_ERROR_GETCWD );
   double f;      }
   double *xt;      strcpy( name, path );               /* we've got it */
      } else {                              /* strip direcotry from path */
   xt=vector(1,ncom);      ss++;                               /* after this, the filename */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      l2 = strlen( ss );                  /* length of filename */
   f=(*nrfunc)(xt);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free_vector(xt,1,ncom);      strcpy( name, ss );         /* save file name */
   return f;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
     }
 /*****************brent *************************/    l1 = strlen( dirc );                  /* length of directory */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    /*#ifdef windows
 {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   int iter;  #else
   double a,b,d,etemp;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   double fu,fv,fw,fx;  #endif
   double ftemp;    */
   double p,q,r,tol1,tol2,u,v,w,x,xm;    ss = strrchr( name, '.' );            /* find last / */
   double e=0.0;    ss++;
      strcpy(ext,ss);                       /* save extension */
   a=(ax < cx ? ax : cx);    l1= strlen( name);
   b=(ax > cx ? ax : cx);    l2= strlen(ss)+1;
   x=w=v=bx;    strncpy( finame, name, l1-l2);
   fw=fv=fx=(*f)(x);    finame[l1-l2]= 0;
   for (iter=1;iter<=ITMAX;iter++) {    return( 0 );                          /* we're done */
     xm=0.5*(a+b);  }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /******************************************/
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void replace_back_to_slash(char *s, char*t)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    int i;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    int lg=0;
       *xmin=x;    i=0;
       return fx;    lg=strlen(t);
     }    for(i=0; i<= lg; i++) {
     ftemp=fu;      (s[i] = t[i]);
     if (fabs(e) > tol1) {      if (t[i]== '\\') s[i]='/';
       r=(x-w)*(fx-fv);    }
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  int nbocc(char *s, char occ)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    int i,j=0;
       etemp=e;    int lg=20;
       e=d;    i=0;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    lg=strlen(s);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(i=0; i<= lg; i++) {
       else {    if  (s[i] == occ ) j++;
         d=p/q;    }
         u=x+d;    return j;
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  
       }  void cutv(char *u,char *v, char*t, char occ)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    /* cuts string t into u and v where u is ended by char occ excluding it
     }       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));       gives u="abcedf" and v="ghi2j" */
     fu=(*f)(u);    int i,lg,j,p=0;
     if (fu <= fx) {    i=0;
       if (u >= x) a=x; else b=x;    for(j=0; j<=strlen(t)-1; j++) {
       SHFT(v,w,x,u)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         SHFT(fv,fw,fx,fu)    }
         } else {  
           if (u < x) a=u; else b=u;    lg=strlen(t);
           if (fu <= fw || w == x) {    for(j=0; j<p; j++) {
             v=w;      (u[j] = t[j]);
             w=u;    }
             fv=fw;       u[p]='\0';
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {     for(j=0; j<= lg; j++) {
             v=u;      if (j>=(p+1))(v[j-p-1] = t[j]);
             fv=fu;    }
           }  }
         }  
   }  /********************** nrerror ********************/
   nrerror("Too many iterations in brent");  
   *xmin=x;  void nrerror(char error_text[])
   return fx;  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /****************** mnbrak ***********************/    exit(EXIT_FAILURE);
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /*********************** vector *******************/
             double (*func)(double))  double *vector(int nl, int nh)
 {  {
   double ulim,u,r,q, dum;    double *v;
   double fu;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      if (!v) nrerror("allocation failure in vector");
   *fa=(*func)(*ax);    return v-nl+NR_END;
   *fb=(*func)(*bx);  }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /************************ free vector ******************/
       SHFT(dum,*fb,*fa,dum)  void free_vector(double*v, int nl, int nh)
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    free((FREE_ARG)(v+nl-NR_END));
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /************************ivector *******************************/
     q=(*bx-*cx)*(*fb-*fa);  int *ivector(long nl,long nh)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    int *v;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if ((*bx-u)*(u-*cx) > 0.0) {    if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);    return v-nl+NR_END;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  }
       fu=(*func)(u);  
       if (fu < *fc) {  /******************free ivector **************************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void free_ivector(int *v, long nl, long nh)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    free((FREE_ARG)(v+nl-NR_END));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  /************************lvector *******************************/
     } else {  long *lvector(long nl,long nh)
       u=(*cx)+GOLD*(*cx-*bx);  {
       fu=(*func)(u);    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     SHFT(*ax,*bx,*cx,u)    if (!v) nrerror("allocation failure in ivector");
       SHFT(*fa,*fb,*fc,fu)    return v-nl+NR_END;
       }  }
 }  
   /******************free lvector **************************/
 /*************** linmin ************************/  void free_lvector(long *v, long nl, long nh)
   {
 int ncom;    free((FREE_ARG)(v+nl-NR_END));
 double *pcom,*xicom;  }
 double (*nrfunc)(double []);  
    /******************* imatrix *******************************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double brent(double ax, double bx, double cx,  { 
                double (*f)(double), double tol, double *xmin);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double f1dim(double x);    int **m; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    
               double *fc, double (*func)(double));    /* allocate pointers to rows */ 
   int j;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double xx,xmin,bx,ax;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double fx,fb,fa;    m += NR_END; 
      m -= nrl; 
   ncom=n;    
   pcom=vector(1,n);    
   xicom=vector(1,n);    /* allocate rows and set pointers to them */ 
   nrfunc=func;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     pcom[j]=p[j];    m[nrl] += NR_END; 
     xicom[j]=xi[j];    m[nrl] -= ncl; 
   }    
   ax=0.0;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   xx=1.0;    
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    /* return pointer to array of pointers to rows */ 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    return m; 
 #ifdef DEBUG  } 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /****************** free_imatrix *************************/
   for (j=1;j<=n;j++) {  void free_imatrix(m,nrl,nrh,ncl,nch)
     xi[j] *= xmin;        int **m;
     p[j] += xi[j];        long nch,ncl,nrh,nrl; 
   }       /* free an int matrix allocated by imatrix() */ 
   free_vector(xicom,1,n);  { 
   free_vector(pcom,1,n);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 }    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /******************* matrix *******************************/
             double (*func)(double []))  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
   void linmin(double p[], double xi[], int n, double *fret,    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
               double (*func)(double []));    double **m;
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double fp,fptt;    if (!m) nrerror("allocation failure 1 in matrix()");
   double *xits;    m += NR_END;
   pt=vector(1,n);    m -= nrl;
   ptt=vector(1,n);  
   xit=vector(1,n);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   xits=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fret=(*func)(p);    m[nrl] += NR_END;
   for (j=1;j<=n;j++) pt[j]=p[j];    m[nrl] -= ncl;
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     ibig=0;    return m;
     del=0.0;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);     */
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /*************************free matrix ************************/
     for (i=1;i<=n;i++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /******************* ma3x *******************************/
       linmin(p,xit,n,fret,func);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         ibig=i;    double ***m;
       }  
 #ifdef DEBUG    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("%d %.12e",i,(*fret));    if (!m) nrerror("allocation failure 1 in matrix()");
       for (j=1;j<=n;j++) {    m += NR_END;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m -= nrl;
         printf(" x(%d)=%.12e",j,xit[j]);  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for(j=1;j<=n;j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf(" p=%.12e",p[j]);    m[nrl] += NR_END;
       printf("\n");    m[nrl] -= ncl;
 #endif  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       int k[2],l;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       k[0]=1;    m[nrl][ncl] += NR_END;
       k[1]=-1;    m[nrl][ncl] -= nll;
       printf("Max: %.12e",(*func)(p));    for (j=ncl+1; j<=nch; j++) 
       for (j=1;j<=n;j++)      m[nrl][j]=m[nrl][j-1]+nlay;
         printf(" %.12e",p[j]);    
       printf("\n");    for (i=nrl+1; i<=nrh; i++) {
       for(l=0;l<=1;l++) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         for (j=1;j<=n;j++) {      for (j=ncl+1; j<=nch; j++) 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        m[i][j]=m[i][j-1]+nlay;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    }
         }    return m; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #endif    */
   }
   
       free_vector(xit,1,n);  /*************************free ma3x ************************/
       free_vector(xits,1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       return;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /*************** function subdirf ***********/
       xit[j]=p[j]-pt[j];  char *subdirf(char fileres[])
       pt[j]=p[j];  {
     }    /* Caution optionfilefiname is hidden */
     fptt=(*func)(ptt);    strcpy(tmpout,optionfilefiname);
     if (fptt < fp) {    strcat(tmpout,"/"); /* Add to the right */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcat(tmpout,fileres);
       if (t < 0.0) {    return tmpout;
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /*************** function subdirf2 ***********/
           xi[j][n]=xit[j];  char *subdirf2(char fileres[], char *preop)
         }  {
 #ifdef DEBUG    
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    /* Caution optionfilefiname is hidden */
         for(j=1;j<=n;j++)    strcpy(tmpout,optionfilefiname);
           printf(" %.12e",xit[j]);    strcat(tmpout,"/");
         printf("\n");    strcat(tmpout,preop);
 #endif    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
   }  
 }  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
 /**** Prevalence limit ****************/  {
     
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcat(tmpout,"/");
      matrix by transitions matrix until convergence is reached */    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   int i, ii,j,k;    strcat(tmpout,fileres);
   double min, max, maxmin, maxmax,sumnew=0.;    return tmpout;
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /***************** f1dim *************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  extern int ncom; 
   extern double *pcom,*xicom;
   for (ii=1;ii<=nlstate+ndeath;ii++)  extern double (*nrfunc)(double []); 
     for (j=1;j<=nlstate+ndeath;j++){   
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double f1dim(double x) 
     }  { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int j; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double f;
     newm=savm;    double *xt; 
     /* Covariates have to be included here again */   
     cov[1]=1.;    xt=vector(1,ncom); 
     cov[2]=agefin;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     if (cptcovn>0){    f=(*nrfunc)(xt); 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    free_vector(xt,1,ncom); 
     }    return f; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  } 
   
     savm=oldm;  /*****************brent *************************/
     oldm=newm;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     maxmax=0.;  { 
     for(j=1;j<=nlstate;j++){    int iter; 
       min=1.;    double a,b,d,etemp;
       max=0.;    double fu,fv,fw,fx;
       for(i=1; i<=nlstate; i++) {    double ftemp;
         sumnew=0;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double e=0.0; 
         prlim[i][j]= newm[i][j]/(1-sumnew);   
         max=FMAX(max,prlim[i][j]);    a=(ax < cx ? ax : cx); 
         min=FMIN(min,prlim[i][j]);    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
       maxmin=max-min;    fw=fv=fx=(*f)(x); 
       maxmax=FMAX(maxmax,maxmin);    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     if(maxmax < ftolpl){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       return prlim;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
   }      fprintf(ficlog,".");fflush(ficlog);
 }  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 /*************** transition probabilities **********/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #endif
 {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double s1, s2;        *xmin=x; 
   /*double t34;*/        return fx; 
   int i,j,j1, nc, ii, jj;      } 
       ftemp=fu;
     for(i=1; i<= nlstate; i++){      if (fabs(e) > tol1) { 
     for(j=1; j<i;j++){        r=(x-w)*(fx-fv); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        q=(x-v)*(fx-fw); 
         /*s2 += param[i][j][nc]*cov[nc];*/        p=(x-v)*q-(x-w)*r; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        q=2.0*(q-r); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
       ps[i][j]=s2;        etemp=e; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(j=i+1; j<=nlstate+ndeath;j++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        else { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          d=p/q; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
       ps[i][j]=s2;            d=SIGN(tol1,xm-x); 
     }        } 
   }      } else { 
   for(i=1; i<= nlstate; i++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      s1=0;      } 
     for(j=1; j<i; j++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       s1+=exp(ps[i][j]);      fu=(*f)(u); 
     for(j=i+1; j<=nlstate+ndeath; j++)      if (fu <= fx) { 
       s1+=exp(ps[i][j]);        if (u >= x) a=x; else b=x; 
     ps[i][i]=1./(s1+1.);        SHFT(v,w,x,u) 
     for(j=1; j<i; j++)          SHFT(fv,fw,fx,fu) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          } else { 
     for(j=i+1; j<=nlstate+ndeath; j++)            if (u < x) a=u; else b=u; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            if (fu <= fw || w == x) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */              v=w; 
   } /* end i */              w=u; 
               fv=fw; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){              fw=fu; 
     for(jj=1; jj<= nlstate+ndeath; jj++){            } else if (fu <= fv || v == x || v == w) { 
       ps[ii][jj]=0;              v=u; 
       ps[ii][ii]=1;              fv=fu; 
     }            } 
   }          } 
     } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    nrerror("Too many iterations in brent"); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    *xmin=x; 
      printf("%lf ",ps[ii][jj]);    return fx; 
    }  } 
     printf("\n ");  
     }  /****************** mnbrak ***********************/
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);              double (*func)(double)) 
   goto end;*/  { 
     return ps;    double ulim,u,r,q, dum;
 }    double fu; 
    
 /**************** Product of 2 matrices ******************/    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    if (*fb > *fa) { 
 {      SHFT(dum,*ax,*bx,dum) 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        SHFT(dum,*fb,*fa,dum) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        } 
   /* in, b, out are matrice of pointers which should have been initialized    *cx=(*bx)+GOLD*(*bx-*ax); 
      before: only the contents of out is modified. The function returns    *fc=(*func)(*cx); 
      a pointer to pointers identical to out */    while (*fb > *fc) { 
   long i, j, k;      r=(*bx-*ax)*(*fb-*fc); 
   for(i=nrl; i<= nrh; i++)      q=(*bx-*cx)*(*fb-*fa); 
     for(k=ncolol; k<=ncoloh; k++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         out[i][k] +=in[i][j]*b[j][k];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   return out;        fu=(*func)(u); 
 }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
         if (fu < *fc) { 
 /************* Higher Matrix Product ***************/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )            } 
 {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        u=ulim; 
      duration (i.e. until        fu=(*func)(u); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      } else { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        u=(*cx)+GOLD*(*cx-*bx); 
      (typically every 2 years instead of every month which is too big).        fu=(*func)(u); 
      Model is determined by parameters x and covariates have to be      } 
      included manually here.      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
      */        } 
   } 
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /*************** linmin ************************/
   double **newm;  
   int ncom; 
   /* Hstepm could be zero and should return the unit matrix */  double *pcom,*xicom;
   for (i=1;i<=nlstate+ndeath;i++)  double (*nrfunc)(double []); 
     for (j=1;j<=nlstate+ndeath;j++){   
       oldm[i][j]=(i==j ? 1.0 : 0.0);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  { 
     }    double brent(double ax, double bx, double cx, 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */                 double (*f)(double), double tol, double *xmin); 
   for(h=1; h <=nhstepm; h++){    double f1dim(double x); 
     for(d=1; d <=hstepm; d++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       newm=savm;                double *fc, double (*func)(double)); 
       /* Covariates have to be included here again */    int j; 
       cov[1]=1.;    double xx,xmin,bx,ax; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double fx,fb,fa;
       if (cptcovn>0){   
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    ncom=n; 
     }    pcom=vector(1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    xicom=vector(1,n); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    nrfunc=func; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=1;j<=n;j++) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      pcom[j]=p[j]; 
       savm=oldm;      xicom[j]=xi[j]; 
       oldm=newm;    } 
     }    ax=0.0; 
     for(i=1; i<=nlstate+ndeath; i++)    xx=1.0; 
       for(j=1;j<=nlstate+ndeath;j++) {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         po[i][j][h]=newm[i][j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #ifdef DEBUG
          */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   } /* end h */  #endif
   return po;    for (j=1;j<=n;j++) { 
 }      xi[j] *= xmin; 
       p[j] += xi[j]; 
     } 
 /*************** log-likelihood *************/    free_vector(xicom,1,n); 
 double func( double *x)    free_vector(pcom,1,n); 
 {  } 
   int i, ii, j, k, mi, d;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  char *asc_diff_time(long time_sec, char ascdiff[])
   double **out;  {
   double sw; /* Sum of weights */    long sec_left, days, hours, minutes;
   double lli; /* Individual log likelihood */    days = (time_sec) / (60*60*24);
   long ipmx;    sec_left = (time_sec) % (60*60*24);
   /*extern weight */    hours = (sec_left) / (60*60) ;
   /* We are differentiating ll according to initial status */    sec_left = (sec_left) %(60*60);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    minutes = (sec_left) /60;
   /*for(i=1;i<imx;i++)    sec_left = (sec_left) % (60);
 printf(" %d\n",s[4][i]);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   */    return ascdiff;
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*************** powell ************************/
        for(mi=1; mi<= wav[i]-1; mi++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (ii=1;ii<=nlstate+ndeath;ii++)              double (*func)(double [])) 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  { 
             for(d=0; d<dh[mi][i]; d++){    void linmin(double p[], double xi[], int n, double *fret, 
         newm=savm;                double (*func)(double [])); 
           cov[1]=1.;    int i,ibig,j; 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double del,t,*pt,*ptt,*xit;
           if (cptcovn>0){    double fp,fptt;
             for (k=1; k<=cptcovn;k++) {    double *xits;
               cov[2+k]=covar[Tvar[k]][i];    int niterf, itmp;
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/  
             }    pt=vector(1,n); 
             }    ptt=vector(1,n); 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    xit=vector(1,n); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    xits=vector(1,n); 
           savm=oldm;    *fret=(*func)(p); 
           oldm=newm;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       } /* end mult */    for (*iter=1;;++(*iter)) { 
          fp=(*fret); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      ibig=0; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      del=0.0; 
       ipmx +=1;      last_time=curr_time;
       sw += weight[i];      (void) gettimeofday(&curr_time,&tzp);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     } /* end of wave */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   } /* end of individual */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       for (i=1;i<=n;i++) {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        printf(" %d %.12f",i, p[i]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        fprintf(ficlog," %d %.12lf",i, p[i]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        fprintf(ficrespow," %.12lf", p[i]);
       }
   return -l;      printf("\n");
 }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 /*********** Maximum Likelihood Estimation ***************/        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tmf));
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*       asctime_r(&tm,strcurr); */
 {        forecast_time=curr_time;
   int i,j, iter;        itmp = strlen(strcurr);
   double **xi,*delti;        if(strcurr[itmp-1]=='\n')
   double fret;          strcurr[itmp-1]='\0';
   xi=matrix(1,npar,1,npar);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=npar;j++)        for(niterf=10;niterf<=30;niterf+=10){
       xi[i][j]=(i==j ? 1.0 : 0.0);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   printf("Powell\n");          tmf = *localtime(&forecast_time.tv_sec);
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          itmp = strlen(strfor);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
 }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /**** Computes Hessian and covariance matrix ***/        }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      }
 {      for (i=1;i<=n;i++) { 
   double  **a,**y,*x,pd;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double **hess;        fptt=(*fret); 
   int i, j,jk;  #ifdef DEBUG
   int *indx;        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   double hessii(double p[], double delta, int theta, double delti[]);  #endif
   double hessij(double p[], double delti[], int i, int j);        printf("%d",i);fflush(stdout);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fprintf(ficlog,"%d",i);fflush(ficlog);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   hess=matrix(1,npar,1,npar);          ibig=i; 
         } 
   printf("\nCalculation of the hessian matrix. Wait...\n");  #ifdef DEBUG
   for (i=1;i<=npar;i++){        printf("%d %.12e",i,(*fret));
     printf("%d",i);fflush(stdout);        fprintf(ficlog,"%d %.12e",i,(*fret));
     hess[i][i]=hessii(p,ftolhess,i,delti);        for (j=1;j<=n;j++) {
     /*printf(" %f ",p[i]);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++)  {        for(j=1;j<=n;j++) {
       if (j>i) {          printf(" p=%.12e",p[j]);
         printf(".%d%d",i,j);fflush(stdout);          fprintf(ficlog," p=%.12e",p[j]);
         hess[i][j]=hessij(p,delti,i,j);        }
         hess[j][i]=hess[i][j];        printf("\n");
       }        fprintf(ficlog,"\n");
     }  #endif
   }      } 
   printf("\n");      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        int k[2],l;
          k[0]=1;
   a=matrix(1,npar,1,npar);        k[1]=-1;
   y=matrix(1,npar,1,npar);        printf("Max: %.12e",(*func)(p));
   x=vector(1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   indx=ivector(1,npar);        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++)          printf(" %.12e",p[j]);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          fprintf(ficlog," %.12e",p[j]);
   ludcmp(a,npar,indx,&pd);        }
         printf("\n");
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++) x[i]=0;        for(l=0;l<=1;l++) {
     x[j]=1;          for (j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for (i=1;i<=npar;i++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       matcov[i][j]=x[i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
   }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   printf("\n#Hessian matrix#\n");        }
   for (i=1;i<=npar;i++) {  #endif
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  
     }        free_vector(xit,1,n); 
     printf("\n");        free_vector(xits,1,n); 
   }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   /* Recompute Inverse */        return; 
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   ludcmp(a,npar,indx,&pd);      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   /*  printf("\n#Hessian matrix recomputed#\n");        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   for (j=1;j<=npar;j++) {      } 
     for (i=1;i<=npar;i++) x[i]=0;      fptt=(*func)(ptt); 
     x[j]=1;      if (fptt < fp) { 
     lubksb(a,npar,indx,x);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (i=1;i<=npar;i++){        if (t < 0.0) { 
       y[i][j]=x[i];          linmin(p,xit,n,fret,func); 
       printf("%.3e ",y[i][j]);          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; 
     printf("\n");            xi[j][n]=xit[j]; 
   }          }
   */  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_matrix(a,1,npar,1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_matrix(y,1,npar,1,npar);          for(j=1;j<=n;j++){
   free_vector(x,1,npar);            printf(" %.12e",xit[j]);
   free_ivector(indx,1,npar);            fprintf(ficlog," %.12e",xit[j]);
   free_matrix(hess,1,npar,1,npar);          }
           printf("\n");
           fprintf(ficlog,"\n");
 }  #endif
         }
 /*************** hessian matrix ****************/      } 
 double hessii( double x[], double delta, int theta, double delti[])    } 
 {  } 
   int i;  
   int l=1, lmax=20;  /**** Prevalence limit (stable prevalence)  ****************/
   double k1,k2;  
   double p2[NPARMAX+1];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double res;  {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double fx;       matrix by transitions matrix until convergence is reached */
   int k=0,kmax=10;  
   double l1;    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   fx=func(x);    double **matprod2();
   for (i=1;i<=npar;i++) p2[i]=x[i];    double **out, cov[NCOVMAX], **pmij();
   for(l=0 ; l <=lmax; l++){    double **newm;
     l1=pow(10,l);    double agefin, delaymax=50 ; /* Max number of years to converge */
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    for (ii=1;ii<=nlstate+ndeath;ii++)
       delt = delta*(l1*k);      for (j=1;j<=nlstate+ndeath;j++){
       p2[theta]=x[theta] +delt;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;     cov[1]=1.;
       /*res= (k1-2.0*fx+k2)/delt/delt; */   
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 #ifdef DEBUG      newm=savm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      /* Covariates have to be included here again */
 #endif       cov[2]=agefin;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for (k=1; k<=cptcovn;k++) {
         k=kmax;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        }
         k=kmax; l=lmax*10.;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         delts=delt;  
       }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   delti[theta]=delts;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   return res;    
 }      savm=oldm;
       oldm=newm;
 double hessij( double x[], double delti[], int thetai,int thetaj)      maxmax=0.;
 {      for(j=1;j<=nlstate;j++){
   int i;        min=1.;
   int l=1, l1, lmax=20;        max=0.;
   double k1,k2,k3,k4,res,fx;        for(i=1; i<=nlstate; i++) {
   double p2[NPARMAX+1];          sumnew=0;
   int k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   fx=func(x);          max=FMAX(max,prlim[i][j]);
   for (k=1; k<=2; k++) {          min=FMIN(min,prlim[i][j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;        maxmin=max-min;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        maxmax=FMAX(maxmax,maxmin);
     k1=func(p2)-fx;      }
        if(maxmax < ftolpl){
     p2[thetai]=x[thetai]+delti[thetai]/k;        return prlim;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k2=func(p2)-fx;    }
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*************** transition probabilities ***************/ 
     k3=func(p2)-fx;  
    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     p2[thetai]=x[thetai]-delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double s1, s2;
     k4=func(p2)-fx;    /*double t34;*/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    int i,j,j1, nc, ii, jj;
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for(i=1; i<= nlstate; i++){
 #endif      for(j=1; j<i;j++){
   }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return res;          /*s2 += param[i][j][nc]*cov[nc];*/
 }          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
 /************** Inverse of matrix **************/        }
 void ludcmp(double **a, int n, int *indx, double *d)        ps[i][j]=s2;
 {        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   int i,imax,j,k;      }
   double big,dum,sum,temp;      for(j=i+1; j<=nlstate+ndeath;j++){
   double *vv;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   vv=vector(1,n);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   *d=1.0;        }
   for (i=1;i<=n;i++) {        ps[i][j]=s2;
     big=0.0;      }
     for (j=1;j<=n;j++)    }
       if ((temp=fabs(a[i][j])) > big) big=temp;      /*ps[3][2]=1;*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;    for(i=1; i<= nlstate; i++){
   }       s1=0;
   for (j=1;j<=n;j++) {      for(j=1; j<i; j++)
     for (i=1;i<j;i++) {        s1+=exp(ps[i][j]);
       sum=a[i][j];      for(j=i+1; j<=nlstate+ndeath; j++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        s1+=exp(ps[i][j]);
       a[i][j]=sum;      ps[i][i]=1./(s1+1.);
     }      for(j=1; j<i; j++)
     big=0.0;        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (i=j;i<=n;i++) {      for(j=i+1; j<=nlstate+ndeath; j++)
       sum=a[i][j];        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1;k<j;k++)      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         sum -= a[i][k]*a[k][j];    } /* end i */
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         big=dum;      for(jj=1; jj<= nlstate+ndeath; jj++){
         imax=i;        ps[ii][jj]=0;
       }        ps[ii][ii]=1;
     }      }
     if (j != imax) {    }
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  
         a[imax][k]=a[j][k];    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
         a[j][k]=dum;      for(jj=1; jj<= nlstate+ndeath; jj++){
       }       printf("%lf ",ps[ii][jj]);
       *d = -(*d);     }
       vv[imax]=vv[j];      printf("\n ");
     }      }
     indx[j]=imax;      printf("\n ");printf("%lf ",cov[2]);*/
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*
     if (j != n) {    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       dum=1.0/(a[j][j]);    goto end;*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      return ps;
     }  }
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /**************** Product of 2 matrices ******************/
 ;  
 }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
 void lubksb(double **a, int n, int *indx, double b[])    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int i,ii=0,ip,j;    /* in, b, out are matrice of pointers which should have been initialized 
   double sum;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
   for (i=1;i<=n;i++) {    long i, j, k;
     ip=indx[i];    for(i=nrl; i<= nrh; i++)
     sum=b[ip];      for(k=ncolol; k<=ncoloh; k++)
     b[ip]=b[i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     if (ii)          out[i][k] +=in[i][j]*b[j][k];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;    return out;
     b[i]=sum;  }
   }  
   for (i=n;i>=1;i--) {  
     sum=b[i];  /************* Higher Matrix Product ***************/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
 }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
 /************ Frequencies ********************/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)       nhstepm*hstepm matrices. 
 {  /* Some frequencies */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;       for the memory).
   double ***freq; /* Frequencies */       Model is determined by parameters x and covariates have to be 
   double *pp;       included manually here. 
   double pos;  
   FILE *ficresp;       */
   char fileresp[FILENAMELENGTH];  
     int i, j, d, h, k;
   pp=vector(1,nlstate);    double **out, cov[NCOVMAX];
     double **newm;
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);    /* Hstepm could be zero and should return the unit matrix */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    for (i=1;i<=nlstate+ndeath;i++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for (j=1;j<=nlstate+ndeath;j++){
     exit(0);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      }
   j1=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   j=cptcovn;      for(d=1; d <=hstepm; d++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        newm=savm;
         /* Covariates have to be included here again */
   for(k1=1; k1<=j;k1++){        cov[1]=1.;
    for(i1=1; i1<=ncodemax[k1];i1++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
        j1++;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
         for (i=-1; i<=nlstate+ndeath; i++)            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (jk=-1; jk<=nlstate+ndeath; jk++)          for (k=1; k<=cptcovprod;k++)
            for(m=agemin; m <= agemax+3; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              freq[i][jk][m]=0;  
          
        for (i=1; i<=imx; i++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          bool=1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          if  (cptcovn>0) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
            for (z1=1; z1<=cptcovn; z1++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;        savm=oldm;
          }        oldm=newm;
           if (bool==1) {      }
            for(m=firstpass; m<=lastpass-1; m++){      for(i=1; i<=nlstate+ndeath; i++)
              if(agev[m][i]==0) agev[m][i]=agemax+1;        for(j=1;j<=nlstate+ndeath;j++) {
              if(agev[m][i]==1) agev[m][i]=agemax+2;          po[i][j][h]=newm[i][j];
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           */
            }        }
          }    } /* end h */
        }    return po;
         if  (cptcovn>0) {  }
          fprintf(ficresp, "\n#Variable");  
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);  
        }  /*************** log-likelihood *************/
        fprintf(ficresp, "\n#");  double func( double *x)
        for(i=1; i<=nlstate;i++)  {
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    int i, ii, j, k, mi, d, kk;
        fprintf(ficresp, "\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
            double **out;
   for(i=(int)agemin; i <= (int)agemax+3; i++){    double sw; /* Sum of weights */
     if(i==(int)agemax+3)    double lli; /* Individual log likelihood */
       printf("Total");    int s1, s2;
     else    double bbh, survp;
       printf("Age %d", i);    long ipmx;
     for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /* We are differentiating ll according to initial status */
         pp[jk] += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
     for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
       for(m=-1, pos=0; m <=0 ; m++)    */
         pos += freq[jk][m][i];    cov[1]=1.;
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       else  
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    if(mle==1){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        for(mi=1; mi<= wav[i]-1; mi++){
         pp[jk] += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     for(jk=1,pos=0; jk <=nlstate ; jk++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       pos += pp[jk];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1; jk <=nlstate ; jk++){            }
       if(pos>=1.e-5)          for(d=0; d<dh[mi][i]; d++){
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            newm=savm;
       else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            for (kk=1; kk<=cptcovage;kk++) {
       if( i <= (int) agemax){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(pos>=1.e-5)            }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            savm=oldm;
       }            oldm=newm;
     }          } /* end mult */
     for(jk=-1; jk <=nlstate+ndeath; jk++)        
       for(m=-1; m <=nlstate+ndeath; m++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          /* But now since version 0.9 we anticipate for bias and large stepm.
     if(i <= (int) agemax)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       fprintf(ficresp,"\n");           * (in months) between two waves is not a multiple of stepm, we rounded to 
     printf("\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
     }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
  }           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   fclose(ficresp);           * -stepm/2 to stepm/2 .
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * For stepm=1 the results are the same as for previous versions of Imach.
   free_vector(pp,1,nlstate);           * For stepm > 1 the results are less biased than in previous versions. 
            */
 }  /* End of Freq */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************* Waves Concatenation ***************/          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           * is higher than the multiple of stepm and negative otherwise.
 {           */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
      Death is a valid wave (if date is known).          if( s2 > nlstate){ 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            /* i.e. if s2 is a death state and if the date of death is known then the contribution
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]               to the likelihood is the probability to die between last step unit time and current 
      and mw[mi+1][i]. dh depends on stepm.               step unit time, which is also the differences between probability to die before dh 
      */               and probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
   int i, mi, m;          as if date of death was unknown. Death was treated as any other
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          health state: the date of the interview describes the actual state
 float sum=0.;          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
   for(i=1; i<=imx; i++){          (healthy, disable or death) and IMaCh was corrected; but when we
     mi=0;          introduced the exact date of death then we should have modified
     m=firstpass;          the contribution of an exact death to the likelihood. This new
     while(s[m][i] <= nlstate){          contribution is smaller and very dependent of the step unit
       if(s[m][i]>=1)          stepm. It is no more the probability to die between last interview
         mw[++mi][i]=m;          and month of death but the probability to survive from last
       if(m >=lastpass)          interview up to one month before death multiplied by the
         break;          probability to die within a month. Thanks to Chris
       else          Jackson for correcting this bug.  Former versions increased
         m++;          mortality artificially. The bad side is that we add another loop
     }/* end while */          which slows down the processing. The difference can be up to 10%
     if (s[m][i] > nlstate){          lower mortality.
       mi++;     /* Death is another wave */            */
       /* if(mi==0)  never been interviewed correctly before death */            lli=log(out[s1][s2] - savm[s1][s2]);
          /* Only death is a correct wave */          }else{
       mw[mi][i]=m;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
     wav[i]=mi;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     if(mi==0)          /*if(lli ==000.0)*/
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
           sw += weight[i];
   for(i=1; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(mi=1; mi<wav[i];mi++){        } /* end of wave */
       if (stepm <=0)      } /* end of individual */
         dh[mi][i]=1;    }  else if(mle==2){
       else{      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (s[mw[mi+1][i]][i] > nlstate) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(mi=1; mi<= wav[i]-1; mi++){
           if(j=0) j=1;  /* Survives at least one month after exam */          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/            }
           for(d=0; d<=dh[mi][i]; d++){
           k=k+1;            newm=savm;
           if (j >= jmax) jmax=j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else if (j <= jmin)jmin=j;            for (kk=1; kk<=cptcovage;kk++) {
           sum=sum+j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         jk= j/stepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         jl= j -jk*stepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         ju= j -(jk+1)*stepm;            savm=oldm;
         if(jl <= -ju)            oldm=newm;
           dh[mi][i]=jk;          } /* end mult */
         else        
           dh[mi][i]=jk+1;          s1=s[mw[mi][i]][i];
         if(dh[mi][i]==0)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=1; /* At least one step */          bbh=(double)bh[mi][i]/(double)stepm; 
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }          ipmx +=1;
   }          sw += weight[i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
 /*********** Tricode ****************************/      } /* end of individual */
 void tricode(int *Tvar, int **nbcode, int imx)    }  else if(mle==3){  /* exponential inter-extrapolation */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int Ndum[80],ij, k, j, i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int cptcode=0;        for(mi=1; mi<= wav[i]-1; mi++){
   for (k=0; k<79; k++) Ndum[k]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (k=1; k<=7; k++) ncodemax[k]=0;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1; j<=cptcovn; j++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=imx; i++) {            }
       ij=(int)(covar[Tvar[j]][i]);          for(d=0; d<dh[mi][i]; d++){
       Ndum[ij]++;            newm=savm;
       if (ij > cptcode) cptcode=ij;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=0; i<=cptcode; i++) {            }
       if(Ndum[i]!=0) ncodemax[j]++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
     ij=1;            oldm=newm;
     for (i=1; i<=ncodemax[j]; i++) {          } /* end mult */
       for (k=0; k<=79; k++) {        
         if (Ndum[k] != 0) {          s1=s[mw[mi][i]][i];
           nbcode[Tvar[j]][ij]=k;          s2=s[mw[mi+1][i]][i];
           ij++;          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if (ij > ncodemax[j]) break;          ipmx +=1;
       }            sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }          } /* end of wave */
       } /* end of individual */
   }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Health Expectancies ****************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Health expectancies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim,hf;            }
   double ***p3mat;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   fprintf(ficreseij,"# Health expectancies\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficreseij,"# Age");            for (kk=1; kk<=cptcovage;kk++) {
   for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(j=1; j<=nlstate;j++)            }
       fprintf(ficreseij," %1d-%1d",i,j);          
   fprintf(ficreseij,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=1*YEARM; /*  Every j years of age (in month) */            savm=oldm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            oldm=newm;
           } /* end mult */
   agelim=AGESUP;        
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s1=s[mw[mi][i]][i];
     /* nhstepm age range expressed in number of stepm */          s2=s[mw[mi+1][i]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          if( s2 > nlstate){ 
     /* Typically if 20 years = 20*12/6=40 stepm */            lli=log(out[s1][s2] - savm[s1][s2]);
     if (stepm >= YEARM) hstepm=1;          }else{
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          ipmx +=1;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          sw += weight[i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
     for(i=1; i<=nlstate;i++)      } /* end of individual */
       for(j=1; j<=nlstate;j++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           eij[i][j][(int)age] +=p3mat[i][j][h];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
     hf=1;            for (j=1;j<=nlstate+ndeath;j++){
     if (stepm >= YEARM) hf=stepm/YEARM;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"%.0f",age );              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficreseij,"\n");            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
 }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Variance ******************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            savm=oldm;
 {            oldm=newm;
   /* Variance of health expectancies */          } /* end mult */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   double **newm;          s1=s[mw[mi][i]][i];
   double **dnewm,**doldm;          s2=s[mw[mi+1][i]][i];
   int i, j, nhstepm, hstepm, h;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int k, cptcode;          ipmx +=1;
    double *xp;          sw += weight[i];
   double **gp, **gm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***gradg, ***trgradg;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double ***p3mat;        } /* end of wave */
   double age,agelim;      } /* end of individual */
   int theta;    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
    fprintf(ficresvij,"# Covariances of life expectancies\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficresvij,"# Age");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(i=1; i<=nlstate;i++)    return -l;
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  /*************** log-likelihood *************/
   double funcone( double *x)
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate,1,npar);    /* Same as likeli but slower because of a lot of printf and if */
   doldm=matrix(1,nlstate,1,nlstate);    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   hstepm=1*YEARM; /* Every year of age */    double **out;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double lli; /* Individual log likelihood */
   agelim = AGESUP;    double llt;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int s1, s2;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double bbh, survp;
     if (stepm >= YEARM) hstepm=1;    /*extern weight */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* We are differentiating ll according to initial status */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /*for(i=1;i<imx;i++) 
     gp=matrix(0,nhstepm,1,nlstate);      printf(" %d\n",s[4][i]);
     gm=matrix(0,nhstepm,1,nlstate);    */
     cov[1]=1.;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    for(k=1; k<=nlstate; k++) ll[k]=0.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){        for (ii=1;ii<=nlstate+ndeath;ii++)
         for(h=0; h<=nhstepm; h++){          for (j=1;j<=nlstate+ndeath;j++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
       }        for(d=0; d<dh[mi][i]; d++){
              newm=savm;
       for(i=1; i<=npar; i++) /* Computes gradient */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (kk=1; kk<=cptcovage;kk++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(j=1; j<= nlstate; j++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm; h++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          savm=oldm;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          oldm=newm;
         }        } /* end mult */
       }        
       for(j=1; j<= nlstate; j++)        s1=s[mw[mi][i]][i];
         for(h=0; h<=nhstepm; h++){        s2=s[mw[mi+1][i]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        bbh=(double)bh[mi][i]/(double)stepm; 
         }        /* bias is positive if real duration
     } /* End theta */         * is higher than the multiple of stepm and negative otherwise.
          */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     for(h=0; h<=nhstepm; h++)        } else if (mle==1){
       for(j=1; j<=nlstate;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(theta=1; theta <=npar; theta++)        } else if(mle==2){
           trgradg[h][j][theta]=gradg[h][theta][j];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
     for(i=1;i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(j=1;j<=nlstate;j++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         vareij[i][j][(int)age] =0.;          lli=log(out[s1][s2]); /* Original formula */
     for(h=0;h<=nhstepm;h++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(k=0;k<=nhstepm;k++){          lli=log(out[s1][s2]); /* Original formula */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        } /* End of if */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        ipmx +=1;
         for(i=1;i<=nlstate;i++)        sw += weight[i];
           for(j=1;j<=nlstate;j++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             vareij[i][j][(int)age] += doldm[i][j];  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       }        if(globpr){
     }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     h=1;   %10.6f %10.6f %10.6f ", \
     if (stepm >= YEARM) h=stepm/YEARM;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     fprintf(ficresvij,"%.0f ",age );                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for(i=1; i<=nlstate;i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(j=1; j<=nlstate;j++){            llt +=ll[k]*gipmx/gsw;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       }          }
     fprintf(ficresvij,"\n");          fprintf(ficresilk," %10.6f\n", -llt);
     free_matrix(gp,0,nhstepm,1,nlstate);        }
     free_matrix(gm,0,nhstepm,1,nlstate);      } /* end of wave */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    } /* end of individual */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   } /* End age */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      if(globpr==0){ /* First time we count the contributions and weights */
   free_vector(xp,1,npar);      gipmx=ipmx;
   free_matrix(doldm,1,nlstate,1,npar);      gsw=sw;
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
     return -l;
 }  }
   
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  /*************** function likelione ***********/
 {  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /* Variance of prevalence limit */  {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /* This routine should help understanding what is done with 
   double **newm;       the selection of individuals/waves and
   double **dnewm,**doldm;       to check the exact contribution to the likelihood.
   int i, j, nhstepm, hstepm;       Plotting could be done.
   int k, cptcode;     */
   double *xp;    int k;
   double *gp, *gm;  
   double **gradg, **trgradg;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double age,agelim;      strcpy(fileresilk,"ilk"); 
   int theta;      strcat(fileresilk,fileres);
          if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        printf("Problem with resultfile: %s\n", fileresilk);
   fprintf(ficresvpl,"# Age");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %1d-%1d",i,i);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fprintf(ficresvpl,"\n");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   xp=vector(1,npar);      for(k=1; k<=nlstate; k++) 
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      }
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    *fretone=(*funcone)(p);
   agelim = AGESUP;    if(*globpri !=0){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fclose(ficresilk);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     if (stepm >= YEARM) hstepm=1;      fflush(fichtm); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    } 
     gradg=matrix(1,npar,1,nlstate);    return;
     gp=vector(1,nlstate);  }
     gm=vector(1,nlstate);  
   
     for(theta=1; theta <=npar; theta++){  /*********** Maximum Likelihood Estimation ***************/
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       }  {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,j, iter;
       for(i=1;i<=nlstate;i++)    double **xi;
         gp[i] = prlim[i][i];    double fret;
        double fretone; /* Only one call to likelihood */
       for(i=1; i<=npar; i++) /* Computes gradient */    char filerespow[FILENAMELENGTH];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    xi=matrix(1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++)
       for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++)
         gm[i] = prlim[i][i];        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(i=1;i<=nlstate;i++)    strcpy(filerespow,"pow"); 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    strcat(filerespow,fileres);
     } /* End theta */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     trgradg =matrix(1,nlstate,1,npar);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     for(j=1; j<=nlstate;j++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(theta=1; theta <=npar; theta++)    for (i=1;i<=nlstate;i++)
         trgradg[j][theta]=gradg[theta][j];      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(i=1;i<=nlstate;i++)    fprintf(ficrespow,"\n");
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    powell(p,xi,npar,ftol,&iter,&fret,func);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)    fclose(ficrespow);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficresvpl,"%.0f ",age );    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  }
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);  /**** Computes Hessian and covariance matrix ***/
     free_vector(gm,1,nlstate);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     free_matrix(gradg,1,npar,1,nlstate);  {
     free_matrix(trgradg,1,nlstate,1,npar);    double  **a,**y,*x,pd;
   } /* End age */    double **hess;
     int i, j,jk;
   free_vector(xp,1,npar);    int *indx;
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    double hessii(double p[], double delta, int theta, double delti[]);
     double hessij(double p[], double delti[], int i, int j);
 }    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
   
     hess=matrix(1,npar,1,npar);
 /***********************************************/  
 /**************** Main Program *****************/    printf("\nCalculation of the hessian matrix. Wait...\n");
 /***********************************************/    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
 /*int main(int argc, char *argv[])*/      printf("%d",i);fflush(stdout);
 int main()      fprintf(ficlog,"%d",i);fflush(ficlog);
 {      hess[i][i]=hessii(p,ftolhess,i,delti);
       /*printf(" %f ",p[i]);*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;      /*printf(" %lf ",hess[i][i]);*/
   double agedeb, agefin,hf;    }
   double agemin=1.e20, agemax=-1.e20;    
     for (i=1;i<=npar;i++) {
   double fret;      for (j=1;j<=npar;j++)  {
   double **xi,tmp,delta;        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   double dum; /* Dummy variable */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double ***p3mat;          hess[i][j]=hessij(p,delti,i,j);
   int *indx;          hess[j][i]=hess[i][j];    
   char line[MAXLINE], linepar[MAXLINE];          /*printf(" %lf ",hess[i][j]);*/
   char title[MAXLINE];        }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    }
   char filerest[FILENAMELENGTH];    printf("\n");
   char fileregp[FILENAMELENGTH];    fprintf(ficlog,"\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   int c,  h , cpt,l;    
   int ju,jl, mi;    a=matrix(1,npar,1,npar);
   int i1,j1, k1,jk,aa,bb, stepsize;    y=matrix(1,npar,1,npar);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    x=vector(1,npar);
      indx=ivector(1,npar);
   int hstepm, nhstepm;    for (i=1;i<=npar;i++)
   double bage, fage, age, agelim, agebase;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double ftolpl=FTOL;    ludcmp(a,npar,indx,&pd);
   double **prlim;  
   double *severity;    for (j=1;j<=npar;j++) {
   double ***param; /* Matrix of parameters */      for (i=1;i<=npar;i++) x[i]=0;
   double  *p;      x[j]=1;
   double **matcov; /* Matrix of covariance */      lubksb(a,npar,indx,x);
   double ***delti3; /* Scale */      for (i=1;i<=npar;i++){ 
   double *delti; /* Scale */        matcov[i][j]=x[i];
   double ***eij, ***vareij;      }
   double **varpl; /* Variances of prevalence limits by age */    }
   double *epj, vepp;  
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    printf("\n#Hessian matrix#\n");
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fprintf(ficlog,"\n#Hessian matrix#\n");
   char z[1]="c", occ;    for (i=1;i<=npar;i++) { 
 #include <sys/time.h>      for (j=1;j<=npar;j++) { 
 #include <time.h>        printf("%.3e ",hess[i][j]);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        fprintf(ficlog,"%.3e ",hess[i][j]);
   /* long total_usecs;      }
   struct timeval start_time, end_time;      printf("\n");
        fprintf(ficlog,"\n");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    }
   
     /* Recompute Inverse */
   printf("\nIMACH, Version 0.63");    for (i=1;i<=npar;i++)
   printf("\nEnter the parameter file name: ");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
 #ifdef windows  
   scanf("%s",pathtot);    /*  printf("\n#Hessian matrix recomputed#\n");
   getcwd(pathcd, size);  
   cutv(path,optionfile,pathtot,'\\');    for (j=1;j<=npar;j++) {
   chdir(path);      for (i=1;i<=npar;i++) x[i]=0;
   replace(pathc,path);      x[j]=1;
 #endif      lubksb(a,npar,indx,x);
 #ifdef unix      for (i=1;i<=npar;i++){ 
   scanf("%s",optionfile);        y[i][j]=x[i];
 #endif        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
 /*-------- arguments in the command line --------*/      }
       printf("\n");
   strcpy(fileres,"r");      fprintf(ficlog,"\n");
   strcat(fileres, optionfile);    }
     */
   /*---------arguments file --------*/  
     free_matrix(a,1,npar,1,npar);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_matrix(y,1,npar,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    free_vector(x,1,npar);
     goto end;    free_ivector(indx,1,npar);
   }    free_matrix(hess,1,npar,1,npar);
   
   strcpy(filereso,"o");  
   strcat(filereso,fileres);  }
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  /*************** hessian matrix ****************/
   }  double hessii( double x[], double delta, int theta, double delti[])
   {
   /* Reads comments: lines beginning with '#' */    int i;
   while((c=getc(ficpar))=='#' && c!= EOF){    int l=1, lmax=20;
     ungetc(c,ficpar);    double k1,k2;
     fgets(line, MAXLINE, ficpar);    double p2[NPARMAX+1];
     puts(line);    double res;
     fputs(line,ficparo);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }    double fx;
   ungetc(c,ficpar);    int k=0,kmax=10;
     double l1;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    fx=func(x);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   covar=matrix(1,NCOVMAX,1,n);          l1=pow(10,l);
   if (strlen(model)<=1) cptcovn=0;      delts=delt;
   else {      for(k=1 ; k <kmax; k=k+1){
     j=0;        delt = delta*(l1*k);
     j=nbocc(model,'+');        p2[theta]=x[theta] +delt;
     cptcovn=j+1;        k1=func(p2)-fx;
   }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
   ncovmodel=2+cptcovn;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          
   /* Read guess parameters */  #ifdef DEBUG
   /* Reads comments: lines beginning with '#' */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     ungetc(c,ficpar);  #endif
     fgets(line, MAXLINE, ficpar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     puts(line);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     fputs(line,ficparo);          k=kmax;
   }        }
   ungetc(c,ficpar);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10.;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(j=1; j <=nlstate+ndeath-1; j++){          delts=delt;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       fprintf(ficparo,"%1d%1d",i1,j1);      }
       printf("%1d%1d",i,j);    }
       for(k=1; k<=ncovmodel;k++){    delti[theta]=delts;
         fscanf(ficpar," %lf",&param[i][j][k]);    return res; 
         printf(" %lf",param[i][j][k]);    
         fprintf(ficparo," %lf",param[i][j][k]);  }
       }  
       fscanf(ficpar,"\n");  double hessij( double x[], double delti[], int thetai,int thetaj)
       printf("\n");  {
       fprintf(ficparo,"\n");    int i;
     }    int l=1, l1, lmax=20;
      double k1,k2,k3,k4,res,fx;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double p2[NPARMAX+1];
   p=param[1][1];    int k;
    
   /* Reads comments: lines beginning with '#' */    fx=func(x);
   while((c=getc(ficpar))=='#' && c!= EOF){    for (k=1; k<=2; k++) {
     ungetc(c,ficpar);      for (i=1;i<=npar;i++) p2[i]=x[i];
     fgets(line, MAXLINE, ficpar);      p2[thetai]=x[thetai]+delti[thetai]/k;
     puts(line);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fputs(line,ficparo);      k1=func(p2)-fx;
   }    
   ungetc(c,ficpar);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      k2=func(p2)-fx;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){      p2[thetai]=x[thetai]-delti[thetai]/k;
     for(j=1; j <=nlstate+ndeath-1; j++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fscanf(ficpar,"%1d%1d",&i1,&j1);      k3=func(p2)-fx;
       printf("%1d%1d",i,j);    
       fprintf(ficparo,"%1d%1d",i1,j1);      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(k=1; k<=ncovmodel;k++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         fscanf(ficpar,"%le",&delti3[i][j][k]);      k4=func(p2)-fx;
         printf(" %le",delti3[i][j][k]);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         fprintf(ficparo," %le",delti3[i][j][k]);  #ifdef DEBUG
       }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fscanf(ficpar,"\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       printf("\n");  #endif
       fprintf(ficparo,"\n");    }
     }    return res;
   }  }
   delti=delti3[1][1];  
    /************** Inverse of matrix **************/
   /* Reads comments: lines beginning with '#' */  void ludcmp(double **a, int n, int *indx, double *d) 
   while((c=getc(ficpar))=='#' && c!= EOF){  { 
     ungetc(c,ficpar);    int i,imax,j,k; 
     fgets(line, MAXLINE, ficpar);    double big,dum,sum,temp; 
     puts(line);    double *vv; 
     fputs(line,ficparo);   
   }    vv=vector(1,n); 
   ungetc(c,ficpar);    *d=1.0; 
      for (i=1;i<=n;i++) { 
   matcov=matrix(1,npar,1,npar);      big=0.0; 
   for(i=1; i <=npar; i++){      for (j=1;j<=n;j++) 
     fscanf(ficpar,"%s",&str);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     printf("%s",str);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficparo,"%s",str);      vv[i]=1.0/big; 
     for(j=1; j <=i; j++){    } 
       fscanf(ficpar," %le",&matcov[i][j]);    for (j=1;j<=n;j++) { 
       printf(" %.5le",matcov[i][j]);      for (i=1;i<j;i++) { 
       fprintf(ficparo," %.5le",matcov[i][j]);        sum=a[i][j]; 
     }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     fscanf(ficpar,"\n");        a[i][j]=sum; 
     printf("\n");      } 
     fprintf(ficparo,"\n");      big=0.0; 
   }      for (i=j;i<=n;i++) { 
   for(i=1; i <=npar; i++)        sum=a[i][j]; 
     for(j=i+1;j<=npar;j++)        for (k=1;k<j;k++) 
       matcov[i][j]=matcov[j][i];          sum -= a[i][k]*a[k][j]; 
            a[i][j]=sum; 
   printf("\n");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
           imax=i; 
    if(mle==1){        } 
     /*-------- data file ----------*/      } 
     if((ficres =fopen(fileres,"w"))==NULL) {      if (j != imax) { 
       printf("Problem with resultfile: %s\n", fileres);goto end;        for (k=1;k<=n;k++) { 
     }          dum=a[imax][k]; 
     fprintf(ficres,"#%s\n",version);          a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
     if((fic=fopen(datafile,"r"))==NULL)    {        } 
       printf("Problem with datafile: %s\n", datafile);goto end;        *d = -(*d); 
     }        vv[imax]=vv[j]; 
       } 
     n= lastobs;      indx[j]=imax; 
     severity = vector(1,maxwav);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     outcome=imatrix(1,maxwav+1,1,n);      if (j != n) { 
     num=ivector(1,n);        dum=1.0/(a[j][j]); 
     moisnais=vector(1,n);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     annais=vector(1,n);      } 
     moisdc=vector(1,n);    } 
     andc=vector(1,n);    free_vector(vv,1,n);  /* Doesn't work */
     agedc=vector(1,n);  ;
     cod=ivector(1,n);  } 
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  void lubksb(double **a, int n, int *indx, double b[]) 
     mint=matrix(1,maxwav,1,n);  { 
     anint=matrix(1,maxwav,1,n);    int i,ii=0,ip,j; 
     s=imatrix(1,maxwav+1,1,n);    double sum; 
     adl=imatrix(1,maxwav+1,1,n);       
     tab=ivector(1,NCOVMAX);    for (i=1;i<=n;i++) { 
     ncodemax=ivector(1,NCOVMAX);      ip=indx[i]; 
       sum=b[ip]; 
     i=1;      b[ip]=b[i]; 
     while (fgets(line, MAXLINE, fic) != NULL)    {      if (ii) 
       if ((i >= firstobs) && (i <=lastobs)) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
              else if (sum) ii=i; 
         for (j=maxwav;j>=1;j--){      b[i]=sum; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    } 
           strcpy(line,stra);    for (i=n;i>=1;i--) { 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      sum=b[i]; 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         }      b[i]=sum/a[i][i]; 
            } 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  } 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
   /************ Frequencies ********************/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  {  /* Some frequencies */
     
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for (j=ncov;j>=1;j--){    int first;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double ***freq; /* Frequencies */
         }    double *pp, **prop;
         num[i]=atol(stra);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    char fileresp[FILENAMELENGTH];
     
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
         i=i+1;    strcpy(fileresp,"p");
       }    strcat(fileresp,fileres);
     }    if((ficresp=fopen(fileresp,"w"))==NULL) {
     /*scanf("%d",i);*/      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   imx=i-1; /* Number of individuals */      exit(0);
      }
   /* Calculation of the number of parameter from char model*/    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   Tvar=ivector(1,8);        j1=0;
        
   if (strlen(model) >1){    j=cptcoveff;
     j=0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     j=nbocc(model,'+');  
     cptcovn=j+1;    first=1;
    
     strcpy(modelsav,model);    for(k1=1; k1<=j;k1++){
     if (j==0) {      for(i1=1; i1<=ncodemax[k1];i1++){
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);        j1++;
     }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     else {          scanf("%d", i);*/
       for(i=j; i>=1;i--){        for (i=-1; i<=nlstate+ndeath; i++)  
         cutv(stra,strb,modelsav,'+');          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         if (strchr(strb,'*')) {            for(m=iagemin; m <= iagemax+3; m++)
           cutv(strd,strc,strb,'*');              freq[i][jk][m]=0;
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;  
           cutv(strb,strc,strd,'V');      for (i=1; i<=nlstate; i++)  
           for (k=1; k<=lastobs;k++)        for(m=iagemin; m <= iagemax+3; m++)
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          prop[i][m]=0;
         }        
         else {        dateintsum=0;
           cutv(strd,strc,strb,'V');        k2cpt=0;
           Tvar[i+1]=atoi(strc);        for (i=1; i<=imx; i++) {
         }          bool=1;
         strcpy(modelsav,stra);            if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
       /*cutv(strd,strc,stra,'V');*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       Tvar[1]=atoi(strc);                bool=0;
     }          }
   }          if (bool==1){
   /*printf("tvar=%d ",Tvar[1]);*/            for(m=firstpass; m<=lastpass; m++){
   /*scanf("%d ",i);*/              k2=anint[m][i]+(mint[m][i]/12.);
     fclose(fic);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     if (weightopt != 1) { /* Maximisation without weights*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(i=1;i<=n;i++) weight[i]=1.0;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     }                if (m<lastpass) {
     /*-calculation of age at interview from date of interview and age at death -*/                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     agev=matrix(1,maxwav,1,imx);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                    }
     for (i=1; i<=imx; i++)  {                
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       for(m=1; (m<= maxwav); m++){                  dateintsum=dateintsum+k2;
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;                    k2cpt++;
         if(s[m][i] >0){                }
           if (s[m][i] == nlstate+1) {                /*}*/
             if(agedc[i]>0)            }
               if(moisdc[i]!=99 && andc[i]!=9999)          }
               agev[m][i]=agedc[i];        }
             else{         
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
               agev[m][i]=-1;  
             }        if  (cptcovn>0) {
           }          fprintf(ficresp, "\n#********** Variable "); 
           else if(s[m][i] !=9){ /* Should no more exist */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          fprintf(ficresp, "**********\n#");
             if(mint[m][i]==99 || anint[m][i]==9999){        }
               agev[m][i]=1;        for(i=1; i<=nlstate;i++) 
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             }        fprintf(ficresp, "\n");
             else if(agev[m][i] <agemin){        
               agemin=agev[m][i];        for(i=iagemin; i <= iagemax+3; i++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          if(i==iagemax+3){
             }            fprintf(ficlog,"Total");
             else if(agev[m][i] >agemax){          }else{
               agemax=agev[m][i];            if(first==1){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              first=0;
             }              printf("See log file for details...\n");
             /*agev[m][i]=anint[m][i]-annais[i];*/            }
             /*   agev[m][i] = age[i]+2*m;*/            fprintf(ficlog,"Age %d", i);
           }          }
           else { /* =9 */          for(jk=1; jk <=nlstate ; jk++){
             agev[m][i]=1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             s[m][i]=-1;              pp[jk] += freq[jk][m][i]; 
           }          }
         }          for(jk=1; jk <=nlstate ; jk++){
         else /*= 0 Unknown */            for(m=-1, pos=0; m <=0 ; m++)
           agev[m][i]=1;              pos += freq[jk][m][i];
       }            if(pp[jk]>=1.e-10){
                  if(first==1){
     }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for (i=1; i<=imx; i++)  {              }
       for(m=1; (m<= maxwav); m++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         if (s[m][i] > (nlstate+ndeath)) {            }else{
           printf("Error: Wrong value in nlstate or ndeath\n");                if(first==1)
           goto end;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
     }          }
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     free_vector(severity,1,maxwav);              pp[jk] += freq[jk][m][i];
     free_imatrix(outcome,1,maxwav+1,1,n);          }       
     free_vector(moisnais,1,n);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_vector(annais,1,n);            pos += pp[jk];
     free_matrix(mint,1,maxwav,1,n);            posprop += prop[jk][i];
     free_matrix(anint,1,maxwav,1,n);          }
     free_vector(moisdc,1,n);          for(jk=1; jk <=nlstate ; jk++){
     free_vector(andc,1,n);            if(pos>=1.e-5){
               if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     wav=ivector(1,imx);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            }else{
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              if(first==1)
                    printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     /* Concatenates waves */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            }
             if( i <= iagemax){
               if(pos>=1.e-5){
 Tcode=ivector(1,100);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
    nbcode=imatrix(1,nvar,1,8);                  /*probs[i][jk][j1]= pp[jk]/pos;*/
    ncodemax[1]=1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);              }
                else
    codtab=imatrix(1,100,1,10);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
    h=0;            }
    m=pow(2,cptcovn);          }
            
    for(k=1;k<=cptcovn; k++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
      for(i=1; i <=(m/pow(2,k));i++){            for(m=-1; m <=nlstate+ndeath; m++)
        for(j=1; j <= ncodemax[k]; j++){              if(freq[jk][m][i] !=0 ) {
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){              if(first==1)
            h++;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
            if (h>m) h=1;codtab[h][k]=j;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
          }              }
        }          if(i <= iagemax)
      }            fprintf(ficresp,"\n");
    }          if(first==1)
             printf("Others in log...\n");
    /*for(i=1; i <=m ;i++){          fprintf(ficlog,"\n");
      for(k=1; k <=cptcovn; k++){        }
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);      }
      }    }
      printf("\n");    dateintmean=dateintsum/k2cpt; 
    }   
   scanf("%d",i);*/    fclose(ficresp);
        free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
    /* Calculates basic frequencies. Computes observed prevalence at single age    free_vector(pp,1,nlstate);
        and prints on file fileres'p'. */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    /* End of Freq */
   }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************ Prevalence ********************/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           in each health status at the date of interview (if between dateprev1 and dateprev2).
     /* For Powell, parameters are in a vector p[] starting at p[1]       We still use firstpass and lastpass as another selection.
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   
     /*scanf("%d",i);*/    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double ***freq; /* Frequencies */
     double *pp, **prop;
        double pos,posprop; 
     /*--------- results files --------------*/    double  y2; /* in fractional years */
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    int iagemin, iagemax;
      
    jk=1;    iagemin= (int) agemin;
    fprintf(ficres,"# Parameters\n");    iagemax= (int) agemax;
    printf("# Parameters\n");    /*pp=vector(1,nlstate);*/
    for(i=1,jk=1; i <=nlstate; i++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      for(k=1; k <=(nlstate+ndeath); k++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        if (k != i)    j1=0;
          {    
            printf("%d%d ",i,k);    j=cptcoveff;
            fprintf(ficres,"%1d%1d ",i,k);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            for(j=1; j <=ncovmodel; j++){    
              printf("%f ",p[jk]);    for(k1=1; k1<=j;k1++){
              fprintf(ficres,"%f ",p[jk]);      for(i1=1; i1<=ncodemax[k1];i1++){
              jk++;        j1++;
            }        
            printf("\n");        for (i=1; i<=nlstate; i++)  
            fprintf(ficres,"\n");          for(m=iagemin; m <= iagemax+3; m++)
          }            prop[i][m]=0.0;
      }       
    }        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
     /* Computing hessian and covariance matrix */          if  (cptcovn>0) {
     ftolhess=ftol; /* Usually correct */            for (z1=1; z1<=cptcoveff; z1++) 
     hesscov(matcov, p, npar, delti, ftolhess, func);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fprintf(ficres,"# Scales\n");                bool=0;
     printf("# Scales\n");          } 
      for(i=1,jk=1; i <=nlstate; i++){          if (bool==1) { 
       for(j=1; j <=nlstate+ndeath; j++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         if (j!=i) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           fprintf(ficres,"%1d%1d",i,j);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           printf("%1d%1d",i,j);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           for(k=1; k<=ncovmodel;k++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             printf(" %.5e",delti[jk]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             fprintf(ficres," %.5e",delti[jk]);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             jk++;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           printf("\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
           fprintf(ficres,"\n");                } 
         }              }
       }            } /* end selection of waves */
       }          }
            }
     k=1;        for(i=iagemin; i <= iagemax+3; i++){  
     fprintf(ficres,"# Covariance\n");          
     printf("# Covariance\n");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     for(i=1;i<=npar;i++){            posprop += prop[jk][i]; 
       /*  if (k>nlstate) k=1;          } 
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for(jk=1; jk <=nlstate ; jk++){     
       printf("%s%d%d",alph[k],i1,tab[i]);*/            if( i <=  iagemax){ 
       fprintf(ficres,"%3d",i);              if(posprop>=1.e-5){ 
       printf("%3d",i);                probs[i][jk][j1]= prop[jk][i]/posprop;
       for(j=1; j<=i;j++){              } 
         fprintf(ficres," %.5e",matcov[i][j]);            } 
         printf(" %.5e",matcov[i][j]);          }/* end jk */ 
       }        }/* end i */ 
       fprintf(ficres,"\n");      } /* end i1 */
       printf("\n");    } /* end k1 */
       k++;    
     }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        /*free_vector(pp,1,nlstate);*/
     while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       ungetc(c,ficpar);  }  /* End of prevalence */
       fgets(line, MAXLINE, ficpar);  
       puts(line);  /************* Waves Concatenation ***************/
       fputs(line,ficparo);  
     }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     ungetc(c,ficpar);  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       Death is a valid wave (if date is known).
           mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     if (fage <= 2) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       bage = agemin;       and mw[mi+1][i]. dh depends on stepm.
       fage = agemax;       */
     }  
     int i, mi, m;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);       double sum=0., jmean=0.;*/
 /*------------ gnuplot -------------*/    int first;
 chdir(pathcd);    int j, k=0,jk, ju, jl;
   if((ficgp=fopen("graph.plt","w"))==NULL) {    double sum=0.;
     printf("Problem with file graph.gp");goto end;    first=0;
   }    jmin=1e+5;
 #ifdef windows    jmax=-1;
   fprintf(ficgp,"cd \"%s\" \n",pathc);    jmean=0.;
 #endif    for(i=1; i<=imx; i++){
 m=pow(2,cptcovn);      mi=0;
        m=firstpass;
  /* 1eme*/      while(s[m][i] <= nlstate){
   for (cpt=1; cpt<= nlstate ; cpt ++) {        if(s[m][i]>=1)
    for (k1=1; k1<= m ; k1 ++) {          mw[++mi][i]=m;
         if(m >=lastpass)
 #ifdef windows          break;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);        else
 #endif          m++;
 #ifdef unix      }/* end while */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      if (s[m][i] > nlstate){
 #endif        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
 for (i=1; i<= nlstate ; i ++) {           /* Only death is a correct wave */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        mw[mi][i]=m;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      wav[i]=mi;
     for (i=1; i<= nlstate ; i ++) {      if(mi==0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        nbwarn++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(first==0){
 }          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          first=1;
      for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if(first==1){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 }          }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      } /* end mi==0 */
 #ifdef unix    } /* End individuals */
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif    for(i=1; i<=imx; i++){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(mi=1; mi<wav[i];mi++){
    }        if (stepm <=0)
   }          dh[mi][i]=1;
   /*2 eme*/        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   for (k1=1; k1<= m ; k1 ++) {            if (agedc[i] < 2*AGESUP) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                  if(j==0) j=1;  /* Survives at least one month after exam */
     for (i=1; i<= nlstate+1 ; i ++) {              else if(j<0){
       k=2*i;                nberr++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {                j=1; /* Temporary Dangerous patch */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              k=k+1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              if (j >= jmax) jmax=j;
       for (j=1; j<= nlstate+1 ; j ++) {              if (j <= jmin) jmin=j;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              sum=sum+j;
         else fprintf(ficgp," \%%*lf (\%%*lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 }                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          else{
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }              k=k+1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if (j >= jmax) jmax=j;
       else fprintf(ficgp,"\" t\"\" w l 0,");            else if (j <= jmin)jmin=j;
     }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   }            if(j<0){
                nberr++;
   /*3eme*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<= nlstate ; cpt ++) {            sum=sum+j;
       k=2+nlstate*(cpt-1);          }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          jk= j/stepm;
       for (i=1; i< nlstate ; i ++) {          jl= j -jk*stepm;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          ju= j -(jk+1)*stepm;
       }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            if(jl==0){
     }              dh[mi][i]=jk;
   }              bh[mi][i]=0;
              }else{ /* We want a negative bias in order to only have interpolation ie
   /* CV preval stat */                    * at the price of an extra matrix product in likelihood */
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk+1;
     for (cpt=1; cpt<nlstate ; cpt ++) {              bh[mi][i]=ju;
       k=3;            }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);          }else{
       for (i=1; i< nlstate ; i ++)            if(jl <= -ju){
         fprintf(ficgp,"+$%d",k+i+1);              dh[mi][i]=jk;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              bh[mi][i]=jl;       /* bias is positive if real duration
                                         * is higher than the multiple of stepm and negative otherwise.
       l=3+(nlstate+ndeath)*cpt;                                   */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {            else{
         l=3+(nlstate+ndeath)*cpt;              dh[mi][i]=jk+1;
         fprintf(ficgp,"+$%d",l+i+1);              bh[mi][i]=ju;
       }            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              if(dh[mi][i]==0){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              dh[mi][i]=1; /* At least one step */
     }              bh[mi][i]=ju; /* At least one step */
   }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   /* proba elementaires */          } /* end if mle */
   for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){      } /* end wave */
       if (k != i) {    }
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/    jmean=sum/k;
         for(j=1; j <=ncovmodel; j++){    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           jk++;   }
           fprintf(ficgp,"\n");  
         }  /*********** Tricode ****************************/
       }  void tricode(int *Tvar, int **nbcode, int imx)
     }  {
   }    
   for(jk=1; jk <=m; jk++) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    int cptcode=0;
   for(i=1; i <=nlstate; i++) {    cptcoveff=0; 
     for(k=1; k <=(nlstate+ndeath); k++){   
       if (k != i) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);    for (k=1; k<=7; k++) ncodemax[k]=0;
         for(j=3; j <=ncovmodel; j++)  
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         fprintf(ficgp,")/(1");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         for(k1=1; k1 <=(nlstate+ndeath); k1++)                                 modality*/ 
           if (k1 != i) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);        Ndum[ij]++; /*store the modality */
             for(j=3; j <=ncovmodel; j++)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
             fprintf(ficgp,")");                                         Tvar[j]. If V=sex and male is 0 and 
           }                                         female is 1, then  cptcode=1.*/
         fprintf(ficgp,") t \"p%d%d\" ", i,k);      }
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
       }      for (i=0; i<=cptcode; i++) {
     }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   }      }
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    
   }      ij=1; 
   fclose(ficgp);      for (i=1; i<=ncodemax[j]; i++) {
            for (k=0; k<= maxncov; k++) {
 chdir(path);          if (Ndum[k] != 0) {
     free_matrix(agev,1,maxwav,1,imx);            nbcode[Tvar[j]][ij]=k; 
     free_ivector(wav,1,imx);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            ij++;
              }
     free_imatrix(s,1,maxwav+1,1,n);          if (ij > ncodemax[j]) break; 
            }  
          } 
     free_ivector(num,1,n);    }  
     free_vector(agedc,1,n);  
     free_vector(weight,1,n);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  
     fclose(ficparo);   for (i=1; i<=ncovmodel-2; i++) { 
     fclose(ficres);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    }     ij=Tvar[i];
         Ndum[ij]++;
    /*________fin mle=1_________*/   }
      
    ij=1;
     for (i=1; i<= maxncov; i++) {
     /* No more information from the sample is required now */     if((Ndum[i]!=0) && (i<=ncovcol)){
   /* Reads comments: lines beginning with '#' */       Tvaraff[ij]=i; /*For printing */
   while((c=getc(ficpar))=='#' && c!= EOF){       ij++;
     ungetc(c,ficpar);     }
     fgets(line, MAXLINE, ficpar);   }
     puts(line);   
     fputs(line,ficparo);   cptcoveff=ij-1; /*Number of simple covariates*/
   }  }
   ungetc(c,ficpar);  
    /*********** Health Expectancies ****************/
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*--------- index.htm --------*/  {
     /* Health expectancies */
   if((fichtm=fopen("index.htm","w"))==NULL)    {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     printf("Problem with index.htm \n");goto end;    double age, agelim, hf;
   }    double ***p3mat,***varhe;
     double **dnewm,**doldm;
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n    double *xp;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    double **gp, **gm;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    double ***gradg, ***trgradg;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    int theta;
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    xp=vector(1,npar);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    dnewm=matrix(1,nlstate*nlstate,1,npar);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    
     fprintf(ficreseij,"# Health expectancies\n");
  fprintf(fichtm," <li>Graphs</li>\n<p>");    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
  m=cptcovn;      for(j=1; j<=nlstate;j++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficreseij,"\n");
  j1=0;  
  for(k1=1; k1<=m;k1++){    if(estepm < stepm){
    for(i1=1; i1<=ncodemax[k1];i1++){      printf ("Problem %d lower than %d\n",estepm, stepm);
        j1++;    }
        if (cptcovn > 0) {    else  hstepm=estepm;   
          fprintf(fichtm,"<hr>************ Results for covariates");    /* We compute the life expectancy from trapezoids spaced every estepm months
          for (cpt=1; cpt<=cptcovn;cpt++)     * This is mainly to measure the difference between two models: for example
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);     * if stepm=24 months pijx are given only every 2 years and by summing them
          fprintf(fichtm," ************\n<hr>");     * we are calculating an estimate of the Life Expectancy assuming a linear 
        }     * progression in between and thus overestimating or underestimating according
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>     * to the curvature of the survival function. If, for the same date, we 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);         * estimate the model with stepm=1 month, we can keep estepm to 24 months
        for(cpt=1; cpt<nlstate;cpt++){     * to compare the new estimate of Life expectancy with the same linear 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>     * hypothesis. A more precise result, taking into account a more precise
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);     * curvature will be obtained if estepm is as small as stepm. */
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {    /* For example we decided to compute the life expectancy with the smallest unit */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 interval) in state (%d): v%s%d%d.gif <br>       nhstepm is the number of hstepm from age to agelim 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);         nstepm is the number of stepm from age to agelin. 
      }       Look at hpijx to understand the reason of that which relies in memory size
      for(cpt=1; cpt<=nlstate;cpt++) {       and note for a fixed period like estepm months */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);       survival function given by stepm (the optimization length). Unfortunately it
      }       means that if the survival funtion is printed only each two years of age and if
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 health expectancies in states (1) and (2): e%s%d.gif<br>       results. So we changed our mind and took the option of the best precision.
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    */
 fprintf(fichtm,"\n</body>");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    }  
  }    agelim=AGESUP;
 fclose(fichtm);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
   /*--------------- Prevalence limit --------------*/      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcpy(filerespl,"pl");      /* if (stepm >= YEARM) hstepm=1;*/
   strcat(filerespl,fileres);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(ficrespl,"\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Computing  Variances of health expectancies */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       for(theta=1; theta <=npar; theta++){
   k=0;        for(i=1; i<=npar; i++){ 
   agebase=agemin;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   agelim=agemax;        }
   ftolpl=1.e-10;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   i1=cptcovn;    
   if (cptcovn < 1){i1=1;}        cptj=0;
         for(j=1; j<= nlstate; j++){
   for(cptcov=1;cptcov<=i1;cptcov++){          for(i=1; i<=nlstate; i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            cptj=cptj+1;
         k=k+1;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         fprintf(ficrespl,"\n#****** ");            }
         for(j=1;j<=cptcovn;j++)          }
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        }
         fprintf(ficrespl,"******\n");       
               
         for (age=agebase; age<=agelim; age++){        for(i=1; i<=npar; i++) 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficrespl,"%.0f",age );        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for(i=1; i<=nlstate;i++)        
           fprintf(ficrespl," %.5f", prlim[i][i]);        cptj=0;
           fprintf(ficrespl,"\n");        for(j=1; j<= nlstate; j++){
         }          for(i=1;i<=nlstate;i++){
       }            cptj=cptj+1;
     }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   fclose(ficrespl);  
   /*------------- h Pij x at various ages ------------*/              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for(j=1; j<= nlstate*nlstate; j++)
   }          for(h=0; h<=nhstepm-1; h++){
   printf("Computing pij: result on file '%s' \n", filerespij);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   stepsize=(int) (stepm+YEARM-1)/YEARM;       } 
   if (stepm<=24) stepsize=2;     
   /* End theta */
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
         for(h=0; h<=nhstepm-1; h++)
   k=0;        for(j=1; j<=nlstate*nlstate;j++)
   for(cptcov=1;cptcov<=i1;cptcov++){          for(theta=1; theta <=npar; theta++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            trgradg[h][j][theta]=gradg[h][theta][j];
       k=k+1;       
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcovn;j++)       for(i=1;i<=nlstate*nlstate;i++)
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        for(j=1;j<=nlstate*nlstate;j++)
         fprintf(ficrespij,"******\n");          varhe[i][j][(int)age] =0.;
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       printf("%d|",(int)age);fflush(stdout);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       for(h=0;h<=nhstepm-1;h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(k=0;k<=nhstepm-1;k++){
           oldm=oldms;savm=savms;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           fprintf(ficrespij,"# Age");          for(i=1;i<=nlstate*nlstate;i++)
           for(i=1; i<=nlstate;i++)            for(j=1;j<=nlstate*nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++)              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
               fprintf(ficrespij," %1d-%1d",i,j);        }
           fprintf(ficrespij,"\n");      }
           for (h=0; h<=nhstepm; h++){      /* Computing expectancies */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      for(i=1; i<=nlstate;i++)
             for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
               for(j=1; j<=nlstate+ndeath;j++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             fprintf(ficrespij,"\n");            
           }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");          }
         }  
     }      fprintf(ficreseij,"%3.0f",age );
   }      cptj=0;
       for(i=1; i<=nlstate;i++)
   fclose(ficrespij);        for(j=1; j<=nlstate;j++){
           cptj++;
   /*---------- Health expectancies and variances ------------*/          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
   strcpy(filerest,"t");      fprintf(ficreseij,"\n");
   strcat(filerest,fileres);     
   if((ficrest=fopen(filerest,"w"))==NULL) {      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
   strcpy(filerese,"e");    printf("\n");
   strcat(filerese,fileres);    fprintf(ficlog,"\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    free_vector(xp,1,npar);
   }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  strcpy(fileresv,"v");  }
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  /************ Variance ******************/
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   }  {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   k=0;    /* double **newm;*/
   for(cptcov=1;cptcov<=i1;cptcov++){    double **dnewm,**doldm;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double **dnewmp,**doldmp;
       k=k+1;    int i, j, nhstepm, hstepm, h, nstepm ;
       fprintf(ficrest,"\n#****** ");    int k, cptcode;
       for(j=1;j<=cptcovn;j++)    double *xp;
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    double **gp, **gm;  /* for var eij */
       fprintf(ficrest,"******\n");    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficreseij,"\n#****** ");    double *gpp, *gmp; /* for var p point j */
       for(j=1;j<=cptcovn;j++)    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    double ***p3mat;
       fprintf(ficreseij,"******\n");    double age,agelim, hf;
     double ***mobaverage;
       fprintf(ficresvij,"\n#****** ");    int theta;
       for(j=1;j<=cptcovn;j++)    char digit[4];
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    char digitp[25];
       fprintf(ficresvij,"******\n");  
     char fileresprobmorprev[FILENAMELENGTH];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    if(popbased==1){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        if(mobilav!=0)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        strcpy(digitp,"-populbased-mobilav-");
       oldm=oldms;savm=savms;      else strcpy(digitp,"-populbased-nomobil-");
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    }
          else 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      strcpy(digitp,"-stablbased-");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");    if (mobilav!=0) {
              mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       hf=1;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       if (stepm >= YEARM) hf=stepm/YEARM;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       epj=vector(1,nlstate+1);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for(age=bage; age <=fage ;age++){      }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
         fprintf(ficrest," %.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    strcpy(fileresprobmorprev,"prmorprev"); 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    sprintf(digit,"%-d",ij);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           epj[nlstate+1] +=epj[j];    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         }    strcat(fileresprobmorprev,fileres);
         for(i=1, vepp=0.;i <=nlstate;i++)    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           for(j=1;j <=nlstate;j++)      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             vepp += vareij[i][j][(int)age];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    }
         for(j=1;j <=nlstate;j++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficrest,"\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
                fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  fclose(ficreseij);    }  
  fclose(ficresvij);    fprintf(ficresprobmorprev,"\n");
   fclose(ficrest);    fprintf(ficgp,"\n# Routine varevsij");
   fclose(ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   free_vector(epj,1,nlstate+1);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*  scanf("%d ",i); */  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*------- Variance limit prevalence------*/    
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 strcpy(fileresvpl,"vpl");    fprintf(ficresvij,"# Age");
   strcat(fileresvpl,fileres);    for(i=1; i<=nlstate;i++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for(j=1; j<=nlstate;j++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     exit(0);    fprintf(ficresvij,"\n");
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
  k=0;    doldm=matrix(1,nlstate,1,nlstate);
  for(cptcov=1;cptcov<=i1;cptcov++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      k=k+1;  
      fprintf(ficresvpl,"\n#****** ");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      for(j=1;j<=cptcovn;j++)    gpp=vector(nlstate+1,nlstate+ndeath);
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    gmp=vector(nlstate+1,nlstate+ndeath);
      fprintf(ficresvpl,"******\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    if(estepm < stepm){
      oldm=oldms;savm=savms;      printf ("Problem %d lower than %d\n",estepm, stepm);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    }
    }    else  hstepm=estepm;   
  }    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fclose(ficresvpl);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   /*---------- End : free ----------------*/       Look at hpijx to understand the reason of that which relies in memory size
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       and note for a fixed period like k years */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       survival function given by stepm (the optimization length). Unfortunately it
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    agelim = AGESUP;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   free_matrix(matcov,1,npar,1,npar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   free_vector(delti,1,npar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
        for(theta=1; theta <=npar; theta++){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   /*printf("Total time was %d uSec.\n", total_usecs);*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /*------ End -----------*/        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  end:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 #ifdef windows  
  chdir(pathcd);        if (popbased==1) {
 #endif          if(mobilav ==0){
  system("wgnuplot ../gp37mgw/graph.plt");            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
 #ifdef windows          }else{ /* mobilav */ 
   while (z[0] != 'q') {            for(i=1; i<=nlstate;i++)
     chdir(pathcd);              prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("\nType e to edit output files, c to start again, and q for exiting: ");          }
     scanf("%s",z);        }
     if (z[0] == 'c') system("./imach");    
     else if (z[0] == 'e') {        for(j=1; j<= nlstate; j++){
       chdir(path);          for(h=0; h<=nhstepm; h++){
       system("index.htm");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     else if (z[0] == 'q') exit(0);          }
   }        }
 #endif        /* This for computing probability of death (h=1 means
 }           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){
             printf("%f ",p[jk]);
             fprintf(ficlog,"%f ",p[jk]);
             fprintf(ficres,"%f ",p[jk]);
             jk++; 
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   
   
   /* Just to have a covariance matrix which will be more understandable
      even is we still don't want to manage dictionary of variables
   */
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{
               if(mle>=1)
                 printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }else{
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             if(mle>=1)
               printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
     fflush(ficlog);
     fflush(ficres);
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.95


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>