Diff for /imach/src/imach.c between versions 1.50 and 1.203

version 1.50, 2002/06/26 23:25:02 version 1.203, 2015/09/30 17:45:14
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.203  2015/09/30 17:45:14  brouard
      Summary: looking at better estimation of the hessian
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Also a better criteria for convergence to the period prevalence And
   first survey ("cross") where individuals from different ages are    therefore adding the number of years needed to converge. (The
   interviewed on their health status or degree of disability (in the    prevalence in any alive state shold sum to one
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.202  2015/09/22 19:45:16  brouard
   (if any) in individual health status.  Health expectancies are    Summary: Adding some overall graph on contribution to likelihood. Might change
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.201  2015/09/15 17:34:58  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: 0.98r0
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    - Some new graphs like suvival functions
   conditional to be observed in state i at the first wave. Therefore    - Some bugs fixed like model=1+age+V2.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.200  2015/09/09 16:53:55  brouard
   complex model than "constant and age", you should modify the program    Summary: Big bug thanks to Flavia
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Even model=1+age+V2. did not work anymore
   convergence.  
     Revision 1.199  2015/09/07 14:09:23  brouard
   The advantage of this computer programme, compared to a simple    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.198  2015/09/03 07:14:39  brouard
   intermediate interview, the information is lost, but taken into    Summary: 0.98q5 Flavia
   account using an interpolation or extrapolation.    
     Revision 1.197  2015/09/01 18:24:39  brouard
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.196  2015/08/18 23:17:52  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: 0.98q5
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.195  2015/08/18 16:28:39  brouard
   and the contribution of each individual to the likelihood is simply    Summary: Adding a hack for testing purpose
   hPijx.  
     After reading the title, ftol and model lines, if the comment line has
   Also this programme outputs the covariance matrix of the parameters but also    a q, starting with #q, the answer at the end of the run is quit. It
   of the life expectancies. It also computes the prevalence limits.    permits to run test files in batch with ctest. The former workaround was
      $ echo q | imach foo.imach
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.194  2015/08/18 13:32:00  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.193  2015/08/04 07:17:42  brouard
   software can be distributed freely for non commercial use. Latest version    Summary: 0.98q4
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.192  2015/07/16 16:49:02  brouard
      Summary: Fixing some outputs
 #include <math.h>  
 #include <stdio.h>    Revision 1.191  2015/07/14 10:00:33  brouard
 #include <stdlib.h>    Summary: Some fixes
 #include <unistd.h>  
     Revision 1.190  2015/05/05 08:51:13  brouard
 #define MAXLINE 256    Summary: Adding digits in output parameters (7 digits instead of 6)
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Fix 1+age+.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.189  2015/04/30 14:45:16  brouard
 #define windows    Summary: 0.98q2
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.186  2015/04/23 12:01:52  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: V1*age is working now, version 0.98q1
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Some codes had been disabled in order to simplify and Vn*age was
 #define YEARM 12. /* Number of months per year */    working in the optimization phase, ie, giving correct MLE parameters,
 #define AGESUP 130    but, as usual, outputs were not correct and program core dumped.
 #define AGEBASE 40  
 #ifdef windows    Revision 1.185  2015/03/11 13:26:42  brouard
 #define DIRSEPARATOR '\\'    Summary: Inclusion of compile and links command line for Intel Compiler
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.184  2015/03/11 11:52:39  brouard
 #define DIRSEPARATOR '/'    Summary: Back from Windows 8. Intel Compiler
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    We use directest instead of original Powell test; probably no
 int nvar;    incidence on the results, but better justifications;
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    We fixed Numerical Recipes mnbrak routine which was wrong and gave
 int npar=NPARMAX;    wrong results.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.182  2015/02/12 08:19:57  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: Trying to keep directest which seems simpler and more general
 int popbased=0;    Author: Nicolas Brouard
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.181  2015/02/11 23:22:24  brouard
 int maxwav; /* Maxim number of waves */    Summary: Comments on Powell added
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Author:
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.180  2015/02/11 17:33:45  brouard
 double jmean; /* Mean space between 2 waves */    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.179  2015/01/04 09:57:06  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Summary: back to OS/X
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.178  2015/01/04 09:35:48  brouard
 FILE *ficresprobmorprev;    *** empty log message ***
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.177  2015/01/03 18:40:56  brouard
 char filerese[FILENAMELENGTH];    Summary: Still testing ilc32 on OSX
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.176  2015/01/03 16:45:04  brouard
 FILE  *ficresvpl;    *** empty log message ***
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.175  2015/01/03 16:33:42  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    *** empty log message ***
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.174  2015/01/03 16:15:49  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Summary: Still in cross-compilation
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.173  2015/01/03 12:06:26  brouard
 char fileregp[FILENAMELENGTH];    Summary: trying to detect cross-compilation
 char popfile[FILENAMELENGTH];  
     Revision 1.172  2014/12/27 12:07:47  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
 #define NR_END 1    Revision 1.171  2014/12/23 13:26:59  brouard
 #define FREE_ARG char*    Summary: Back from Visual C
 #define FTOL 1.0e-10  
     Still problem with utsname.h on Windows
 #define NRANSI  
 #define ITMAX 200    Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
 #define TOL 2.0e-4  
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.169  2014/12/22 23:08:31  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: 0.98p
   
 #define GOLD 1.618034    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.167  2014/12/22 13:50:56  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Summary: Testing uname and compiler version and if compiled 32 or 64
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Testing on Linux 64
 #define rint(a) floor(a+0.5)  
     Revision 1.166  2014/12/22 11:40:47  brouard
 static double sqrarg;    *** empty log message ***
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
 int imx;  
 int stepm;    * imach.c (Module): Merging 1.61 to 1.162
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.164  2014/12/16 10:52:11  brouard
 int estepm;    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     * imach.c (Module): Merging 1.61 to 1.162
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.163  2014/12/16 10:30:11  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Module): Merging 1.61 to 1.162
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
 double *weight;  
 int **s; /* Status */    Revision 1.1  2014/09/16 11:06:58  brouard
 double *agedc, **covar, idx;    Summary: With some code (wrong) for nlopt
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Author:
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.160  2014/09/02 09:24:05  brouard
 {    *** empty log message ***
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
    l1 = strlen( path );                 /* length of path */    Author: Brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Revision 1.158  2014/08/27 17:11:51  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    *** empty log message ***
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.157  2014/08/27 16:26:55  brouard
 #if     defined(__bsd__)                /* get current working directory */    Summary: Preparing windows Visual studio version
       extern char       *getwd( );    Author: Brouard
   
       if ( getwd( dirc ) == NULL ) {    In order to compile on Visual studio, time.h is now correct and time_t
 #else    and tm struct should be used. difftime should be used but sometimes I
       extern char       *getcwd( );    just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Add xdg-open for __linux in order to open default browser.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.156  2014/08/25 20:10:10  brouard
       }    *** empty log message ***
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.155  2014/08/25 18:32:34  brouard
       s++;                              /* after this, the filename */    Summary: New compile, minor changes
       l2 = strlen( s );                 /* length of filename */    Author: Brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.154  2014/06/20 17:32:08  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Summary: Outputs now all graphs of convergence to period prevalence
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.153  2014/06/20 16:45:46  brouard
    l1 = strlen( dirc );                 /* length of directory */    Summary: If 3 live state, convergence to period prevalence on same graph
 #ifdef windows    Author: Brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.152  2014/06/18 17:54:09  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.151  2014/06/18 16:43:30  brouard
    s++;    *** empty log message ***
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.150  2014/06/18 16:42:35  brouard
    l2= strlen( s)+1;    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
    strncpy( finame, name, l1-l2);    Author: brouard
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.149  2014/06/18 15:51:14  brouard
 }    Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
 /******************************************/    Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
 void replace(char *s, char*t)    Author: Brouard
 {  
   int i;    Just a new packaging for OS/X version 0.98nS
   int lg=20;  
   i=0;    Revision 1.147  2014/06/16 10:33:11  brouard
   lg=strlen(t);    *** empty log message ***
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.146  2014/06/16 10:20:28  brouard
     if (t[i]== '\\') s[i]='/';    Summary: Merge
   }    Author: Brouard
 }  
     Merge, before building revised version.
 int nbocc(char *s, char occ)  
 {    Revision 1.145  2014/06/10 21:23:15  brouard
   int i,j=0;    Summary: Debugging with valgrind
   int lg=20;    Author: Nicolas Brouard
   i=0;  
   lg=strlen(s);    Lot of changes in order to output the results with some covariates
   for(i=0; i<= lg; i++) {    After the Edimburgh REVES conference 2014, it seems mandatory to
   if  (s[i] == occ ) j++;    improve the code.
   }    No more memory valgrind error but a lot has to be done in order to
   return j;    continue the work of splitting the code into subroutines.
 }    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
 void cutv(char *u,char *v, char*t, char occ)    the source code.
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    Revision 1.143  2014/01/26 09:45:38  brouard
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   i=0;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.142  2014/01/26 03:57:36  brouard
   }    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
   lg=strlen(t);    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.141  2014/01/26 02:42:01  brouard
   }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
      u[p]='\0';  
     Revision 1.140  2011/09/02 10:37:54  brouard
    for(j=0; j<= lg; j++) {    Summary: times.h is ok with mingw32 now.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.139  2010/06/14 07:50:17  brouard
 }    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 /********************** nrerror ********************/  
     Revision 1.138  2010/04/30 18:19:40  brouard
 void nrerror(char error_text[])    *** empty log message ***
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.137  2010/04/29 18:11:38  brouard
   fprintf(stderr,"%s\n",error_text);    (Module): Checking covariates for more complex models
   exit(1);    than V1+V2. A lot of change to be done. Unstable.
 }  
 /*********************** vector *******************/    Revision 1.136  2010/04/26 20:30:53  brouard
 double *vector(int nl, int nh)    (Module): merging some libgsl code. Fixing computation
 {    of likelione (using inter/intrapolation if mle = 0) in order to
   double *v;    get same likelihood as if mle=1.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Some cleaning of code and comments added.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.135  2009/10/29 15:33:14  brouard
 }    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 /************************ free vector ******************/    Revision 1.134  2009/10/29 13:18:53  brouard
 void free_vector(double*v, int nl, int nh)    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.133  2009/07/06 10:21:25  brouard
 }    just nforces
   
 /************************ivector *******************************/    Revision 1.132  2009/07/06 08:22:05  brouard
 int *ivector(long nl,long nh)    Many tings
 {  
   int *v;    Revision 1.131  2009/06/20 16:22:47  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Some dimensions resccaled
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.130  2009/05/26 06:44:34  brouard
 }    (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
 /******************free ivector **************************/    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.129  2007/08/31 13:49:27  lievre
   free((FREE_ARG)(v+nl-NR_END));    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 }  
     Revision 1.128  2006/06/30 13:02:05  brouard
 /******************* imatrix *******************************/    (Module): Clarifications on computing e.j
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.127  2006/04/28 18:11:50  brouard
 {    (Module): Yes the sum of survivors was wrong since
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    imach-114 because nhstepm was no more computed in the age
   int **m;    loop. Now we define nhstepma in the age loop.
      (Module): In order to speed up (in case of numerous covariates) we
   /* allocate pointers to rows */    compute health expectancies (without variances) in a first step
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    and then all the health expectancies with variances or standard
   if (!m) nrerror("allocation failure 1 in matrix()");    deviation (needs data from the Hessian matrices) which slows the
   m += NR_END;    computation.
   m -= nrl;    In the future we should be able to stop the program is only health
      expectancies and graph are needed without standard deviations.
    
   /* allocate rows and set pointers to them */    Revision 1.126  2006/04/28 17:23:28  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): Yes the sum of survivors was wrong since
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    imach-114 because nhstepm was no more computed in the age
   m[nrl] += NR_END;    loop. Now we define nhstepma in the age loop.
   m[nrl] -= ncl;    Version 0.98h
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.125  2006/04/04 15:20:31  lievre
      Errors in calculation of health expectancies. Age was not initialized.
   /* return pointer to array of pointers to rows */    Forecasting file added.
   return m;  
 }    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 /****************** free_imatrix *************************/    The log-likelihood is printed in the log file
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;    Revision 1.123  2006/03/20 10:52:43  brouard
       long nch,ncl,nrh,nrl;    * imach.c (Module): <title> changed, corresponds to .htm file
      /* free an int matrix allocated by imatrix() */    name. <head> headers where missing.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    * imach.c (Module): Weights can have a decimal point as for
   free((FREE_ARG) (m+nrl-NR_END));    English (a comma might work with a correct LC_NUMERIC environment,
 }    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 /******************* matrix *******************************/    1.
 double **matrix(long nrl, long nrh, long ncl, long nch)    Version 0.98g
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.122  2006/03/20 09:45:41  brouard
   double **m;    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    otherwise the weight is truncated).
   if (!m) nrerror("allocation failure 1 in matrix()");    Modification of warning when the covariates values are not 0 or
   m += NR_END;    1.
   m -= nrl;    Version 0.98g
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.121  2006/03/16 17:45:01  lievre
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    * imach.c (Module): Comments concerning covariates added
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    not 1 month. Version 0.98f
   return m;  
 }    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 /*************************free matrix ************************/    status=-2 in order to have more reliable computation if stepm is
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    not 1 month. Version 0.98f
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.119  2006/03/15 17:42:26  brouard
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Bug if status = -2, the loglikelihood was
 }    computed as likelihood omitting the logarithm. Version O.98e
   
 /******************* ma3x *******************************/    Revision 1.118  2006/03/14 18:20:07  brouard
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Module): varevsij Comments added explaining the second
 {    table of variances if popbased=1 .
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   double ***m;    (Module): Function pstamp added
     (Module): Version 0.98d
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.117  2006/03/14 17:16:22  brouard
   m += NR_END;    (Module): varevsij Comments added explaining the second
   m -= nrl;    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Function pstamp added
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Version 0.98d
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    varian-covariance of ej. is needed (Saito).
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Revision 1.115  2006/02/27 12:17:45  brouard
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): One freematrix added in mlikeli! 0.98c
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.114  2006/02/26 12:57:58  brouard
   for (j=ncl+1; j<=nch; j++)    (Module): Some improvements in processing parameter
     m[nrl][j]=m[nrl][j-1]+nlay;    filename with strsep.
    
   for (i=nrl+1; i<=nrh; i++) {    Revision 1.113  2006/02/24 14:20:24  brouard
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    (Module): Memory leaks checks with valgrind and:
     for (j=ncl+1; j<=nch; j++)    datafile was not closed, some imatrix were not freed and on matrix
       m[i][j]=m[i][j-1]+nlay;    allocation too.
   }  
   return m;    Revision 1.112  2006/01/30 09:55:26  brouard
 }    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 /*************************free ma3x ************************/    Revision 1.111  2006/01/25 20:38:18  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    (Module): Lots of cleaning and bugs added (Gompertz)
 {    (Module): Comments can be added in data file. Missing date values
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    can be a simple dot '.'.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.110  2006/01/25 00:51:50  brouard
 }    (Module): Lots of cleaning and bugs added (Gompertz)
   
 /***************** f1dim *************************/    Revision 1.109  2006/01/24 19:37:15  brouard
 extern int ncom;    (Module): Comments (lines starting with a #) are allowed in data.
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    Revision 1.108  2006/01/19 18:05:42  lievre
      Gnuplot problem appeared...
 double f1dim(double x)    To be fixed
 {  
   int j;    Revision 1.107  2006/01/19 16:20:37  brouard
   double f;    Test existence of gnuplot in imach path
   double *xt;  
      Revision 1.106  2006/01/19 13:24:36  brouard
   xt=vector(1,ncom);    Some cleaning and links added in html output
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.105  2006/01/05 20:23:19  lievre
   free_vector(xt,1,ncom);    *** empty log message ***
   return f;  
 }    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 /*****************brent *************************/    (Module): If the status is missing at the last wave but we know
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    that the person is alive, then we can code his/her status as -2
 {    (instead of missing=-1 in earlier versions) and his/her
   int iter;    contributions to the likelihood is 1 - Prob of dying from last
   double a,b,d,etemp;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   double fu,fv,fw,fx;    the healthy state at last known wave). Version is 0.98
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.103  2005/09/30 15:54:49  lievre
   double e=0.0;    (Module): sump fixed, loop imx fixed, and simplifications.
    
   a=(ax < cx ? ax : cx);    Revision 1.102  2004/09/15 17:31:30  brouard
   b=(ax > cx ? ax : cx);    Add the possibility to read data file including tab characters.
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    Revision 1.101  2004/09/15 10:38:38  brouard
   for (iter=1;iter<=ITMAX;iter++) {    Fix on curr_time
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.100  2004/07/12 18:29:06  brouard
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Add version for Mac OS X. Just define UNIX in Makefile
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);    Revision 1.99  2004/06/05 08:57:40  brouard
 #ifdef DEBUG    *** empty log message ***
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Revision 1.98  2004/05/16 15:05:56  brouard
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    New version 0.97 . First attempt to estimate force of mortality
 #endif    directly from the data i.e. without the need of knowing the health
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    state at each age, but using a Gompertz model: log u =a + b*age .
       *xmin=x;    This is the basic analysis of mortality and should be done before any
       return fx;    other analysis, in order to test if the mortality estimated from the
     }    cross-longitudinal survey is different from the mortality estimated
     ftemp=fu;    from other sources like vital statistic data.
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    The same imach parameter file can be used but the option for mle should be -3.
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Agnès, who wrote this part of the code, tried to keep most of the
       q=2.0*(q-r);    former routines in order to include the new code within the former code.
       if (q > 0.0) p = -p;  
       q=fabs(q);    The output is very simple: only an estimate of the intercept and of
       etemp=e;    the slope with 95% confident intervals.
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Current limitations:
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    A) Even if you enter covariates, i.e. with the
       else {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
         d=p/q;    B) There is no computation of Life Expectancy nor Life Table.
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    Revision 1.97  2004/02/20 13:25:42  lievre
           d=SIGN(tol1,xm-x);    Version 0.96d. Population forecasting command line is (temporarily)
       }    suppressed.
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.96  2003/07/15 15:38:55  brouard
     }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    rewritten within the same printf. Workaround: many printfs.
     fu=(*f)(u);  
     if (fu <= fx) {    Revision 1.95  2003/07/08 07:54:34  brouard
       if (u >= x) a=x; else b=x;    * imach.c (Repository):
       SHFT(v,w,x,u)    (Repository): Using imachwizard code to output a more meaningful covariance
         SHFT(fv,fw,fx,fu)    matrix (cov(a12,c31) instead of numbers.
         } else {  
           if (u < x) a=u; else b=u;    Revision 1.94  2003/06/27 13:00:02  brouard
           if (fu <= fw || w == x) {    Just cleaning
             v=w;  
             w=u;    Revision 1.93  2003/06/25 16:33:55  brouard
             fv=fw;    (Module): On windows (cygwin) function asctime_r doesn't
             fw=fu;    exist so I changed back to asctime which exists.
           } else if (fu <= fv || v == x || v == w) {    (Module): Version 0.96b
             v=u;  
             fv=fu;    Revision 1.92  2003/06/25 16:30:45  brouard
           }    (Module): On windows (cygwin) function asctime_r doesn't
         }    exist so I changed back to asctime which exists.
   }  
   nrerror("Too many iterations in brent");    Revision 1.91  2003/06/25 15:30:29  brouard
   *xmin=x;    * imach.c (Repository): Duplicated warning errors corrected.
   return fx;    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 /****************** mnbrak ***********************/    concerning matrix of covariance. It has extension -cov.htm.
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    Revision 1.90  2003/06/24 12:34:15  brouard
             double (*func)(double))    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   double ulim,u,r,q, dum;    of the covariance matrix to be input.
   double fu;  
      Revision 1.89  2003/06/24 12:30:52  brouard
   *fa=(*func)(*ax);    (Module): Some bugs corrected for windows. Also, when
   *fb=(*func)(*bx);    mle=-1 a template is output in file "or"mypar.txt with the design
   if (*fb > *fa) {    of the covariance matrix to be input.
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    Revision 1.88  2003/06/23 17:54:56  brouard
       }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    Revision 1.87  2003/06/18 12:26:01  brouard
   while (*fb > *fc) {    Version 0.96
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Revision 1.86  2003/06/17 20:04:08  brouard
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    (Module): Change position of html and gnuplot routines and added
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    routine fileappend.
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    Revision 1.85  2003/06/17 13:12:43  brouard
       fu=(*func)(u);    * imach.c (Repository): Check when date of death was earlier that
     } else if ((*cx-u)*(u-ulim) > 0.0) {    current date of interview. It may happen when the death was just
       fu=(*func)(u);    prior to the death. In this case, dh was negative and likelihood
       if (fu < *fc) {    was wrong (infinity). We still send an "Error" but patch by
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    assuming that the date of death was just one stepm after the
           SHFT(*fb,*fc,fu,(*func)(u))    interview.
           }    (Repository): Because some people have very long ID (first column)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    we changed int to long in num[] and we added a new lvector for
       u=ulim;    memory allocation. But we also truncated to 8 characters (left
       fu=(*func)(u);    truncation)
     } else {    (Repository): No more line truncation errors.
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    Revision 1.84  2003/06/13 21:44:43  brouard
     }    * imach.c (Repository): Replace "freqsummary" at a correct
     SHFT(*ax,*bx,*cx,u)    place. It differs from routine "prevalence" which may be called
       SHFT(*fa,*fb,*fc,fu)    many times. Probs is memory consuming and must be used with
       }    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /*************** linmin ************************/    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 int ncom;  
 double *pcom,*xicom;    Revision 1.82  2003/06/05 15:57:20  brouard
 double (*nrfunc)(double []);    Add log in  imach.c and  fullversion number is now printed.
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  */
 {  /*
   double brent(double ax, double bx, double cx,     Interpolated Markov Chain
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);    Short summary of the programme:
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    
               double *fc, double (*func)(double));    This program computes Healthy Life Expectancies from
   int j;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   double xx,xmin,bx,ax;    first survey ("cross") where individuals from different ages are
   double fx,fb,fa;    interviewed on their health status or degree of disability (in the
      case of a health survey which is our main interest) -2- at least a
   ncom=n;    second wave of interviews ("longitudinal") which measure each change
   pcom=vector(1,n);    (if any) in individual health status.  Health expectancies are
   xicom=vector(1,n);    computed from the time spent in each health state according to a
   nrfunc=func;    model. More health states you consider, more time is necessary to reach the
   for (j=1;j<=n;j++) {    Maximum Likelihood of the parameters involved in the model.  The
     pcom[j]=p[j];    simplest model is the multinomial logistic model where pij is the
     xicom[j]=xi[j];    probability to be observed in state j at the second wave
   }    conditional to be observed in state i at the first wave. Therefore
   ax=0.0;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   xx=1.0;    'age' is age and 'sex' is a covariate. If you want to have a more
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    complex model than "constant and age", you should modify the program
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    where the markup *Covariates have to be included here again* invites
 #ifdef DEBUG    you to do it.  More covariates you add, slower the
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    convergence.
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    The advantage of this computer programme, compared to a simple
   for (j=1;j<=n;j++) {    multinomial logistic model, is clear when the delay between waves is not
     xi[j] *= xmin;    identical for each individual. Also, if a individual missed an
     p[j] += xi[j];    intermediate interview, the information is lost, but taken into
   }    account using an interpolation or extrapolation.  
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    hPijx is the probability to be observed in state i at age x+h
 }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /*************** powell ************************/    states. This elementary transition (by month, quarter,
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    semester or year) is modelled as a multinomial logistic.  The hPx
             double (*func)(double []))    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   void linmin(double p[], double xi[], int n, double *fret,    hPijx.
               double (*func)(double []));  
   int i,ibig,j;    Also this programme outputs the covariance matrix of the parameters but also
   double del,t,*pt,*ptt,*xit;    of the life expectancies. It also computes the period (stable) prevalence. 
   double fp,fptt;    
   double *xits;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   pt=vector(1,n);             Institut national d'études démographiques, Paris.
   ptt=vector(1,n);    This software have been partly granted by Euro-REVES, a concerted action
   xit=vector(1,n);    from the European Union.
   xits=vector(1,n);    It is copyrighted identically to a GNU software product, ie programme and
   *fret=(*func)(p);    software can be distributed freely for non commercial use. Latest version
   for (j=1;j<=n;j++) pt[j]=p[j];    can be accessed at http://euroreves.ined.fr/imach .
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     ibig=0;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     del=0.0;    
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    **********************************************************************/
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /*
     for (i=1;i<=n;i++)    main
       printf(" %d %.12f",i, p[i]);    read parameterfile
     fprintf(ficlog," %d %.12f",i, p[i]);    read datafile
     printf("\n");    concatwav
     fprintf(ficlog,"\n");    freqsummary
     for (i=1;i<=n;i++) {    if (mle >= 1)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      mlikeli
       fptt=(*fret);    print results files
 #ifdef DEBUG    if mle==1 
       printf("fret=%lf \n",*fret);       computes hessian
       fprintf(ficlog,"fret=%lf \n",*fret);    read end of parameter file: agemin, agemax, bage, fage, estepm
 #endif        begin-prev-date,...
       printf("%d",i);fflush(stdout);    open gnuplot file
       fprintf(ficlog,"%d",i);fflush(ficlog);    open html file
       linmin(p,xit,n,fret,func);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       if (fabs(fptt-(*fret)) > del) {     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
         del=fabs(fptt-(*fret));                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
         ibig=i;      freexexit2 possible for memory heap.
       }  
 #ifdef DEBUG    h Pij x                         | pij_nom  ficrestpij
       printf("%d %.12e",i,(*fret));     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       fprintf(ficlog,"%d %.12e",i,(*fret));         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       for (j=1;j<=n;j++) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       }    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       for(j=1;j<=n;j++) {     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
         printf(" p=%.12e",p[j]);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
         fprintf(ficlog," p=%.12e",p[j]);  
       }    forecasting if prevfcast==1 prevforecast call prevalence()
       printf("\n");    health expectancies
       fprintf(ficlog,"\n");    Variance-covariance of DFLE
 #endif    prevalence()
     }     movingaverage()
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    varevsij() 
 #ifdef DEBUG    if popbased==1 varevsij(,popbased)
       int k[2],l;    total life expectancies
       k[0]=1;    Variance of period (stable) prevalence
       k[1]=-1;   end
       printf("Max: %.12e",(*func)(p));  */
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {  /* #define DEBUG */
         printf(" %.12e",p[j]);  /* #define DEBUGBRENT */
         fprintf(ficlog," %.12e",p[j]);  /* #define DEBUGLINMIN */
       }  /* #define DEBUGHESS */
       printf("\n");  #define DEBUGHESSIJ
       fprintf(ficlog,"\n");  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
       for(l=0;l<=1;l++) {  #define POWELL /* Instead of NLOPT */
         for (j=1;j<=n;j++) {  #define POWELLF1F3 /* Skip test */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  #include <math.h>
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #include <stdio.h>
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #include <stdlib.h>
       }  #include <string.h>
 #endif  
   #ifdef _WIN32
   #include <io.h>
       free_vector(xit,1,n);  #include <windows.h>
       free_vector(xits,1,n);  #include <tchar.h>
       free_vector(ptt,1,n);  #else
       free_vector(pt,1,n);  #include <unistd.h>
       return;  #endif
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #include <limits.h>
     for (j=1;j<=n;j++) {  #include <sys/types.h>
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  #if defined(__GNUC__)
       pt[j]=p[j];  #include <sys/utsname.h> /* Doesn't work on Windows */
     }  #endif
     fptt=(*func)(ptt);  
     if (fptt < fp) {  #include <sys/stat.h>
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #include <errno.h>
       if (t < 0.0) {  /* extern int errno; */
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /* #ifdef LINUX */
           xi[j][ibig]=xi[j][n];  /* #include <time.h> */
           xi[j][n]=xit[j];  /* #include "timeval.h" */
         }  /* #else */
 #ifdef DEBUG  /* #include <sys/time.h> */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /* #endif */
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  #include <time.h>
           printf(" %.12e",xit[j]);  
           fprintf(ficlog," %.12e",xit[j]);  #ifdef GSL
         }  #include <gsl/gsl_errno.h>
         printf("\n");  #include <gsl/gsl_multimin.h>
         fprintf(ficlog,"\n");  #endif
 #endif  
       }  
     }  #ifdef NLOPT
   }  #include <nlopt.h>
 }  typedef struct {
     double (* function)(double [] );
 /**** Prevalence limit ****************/  } myfunc_data ;
   #endif
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /* #include <libintl.h> */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /* #define _(String) gettext (String) */
      matrix by transitions matrix until convergence is reached */  
   #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  #define GNUPLOTPROGRAM "gnuplot"
   double **matprod2();  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double **out, cov[NCOVMAX], **pmij();  #define FILENAMELENGTH 132
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     }  
   #define NINTERVMAX 8
    cov[1]=1.;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
    #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
     newm=savm;  #define MAXN 20000
     /* Covariates have to be included here again */  #define YEARM 12. /**< Number of months per year */
      cov[2]=agefin;  #define AGESUP 130
    #define AGEBASE 40
       for (k=1; k<=cptcovn;k++) {  #define AGEOVERFLOW 1.e20
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #ifdef _WIN32
       }  #define DIRSEPARATOR '\\'
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #define CHARSEPARATOR "\\"
       for (k=1; k<=cptcovprod;k++)  #define ODIRSEPARATOR '/'
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #else
   #define DIRSEPARATOR '/'
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #define CHARSEPARATOR "/"
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #define ODIRSEPARATOR '\\'
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #endif
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /* $Id$ */
     savm=oldm;  /* $State$ */
     oldm=newm;  #include "version.h"
     maxmax=0.;  char version[]=__IMACH_VERSION__;
     for(j=1;j<=nlstate;j++){  char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       min=1.;  char fullversion[]="$Revision$ $Date$"; 
       max=0.;  char strstart[80];
       for(i=1; i<=nlstate; i++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         sumnew=0;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
         prlim[i][j]= newm[i][j]/(1-sumnew);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         max=FMAX(max,prlim[i][j]);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
         min=FMIN(min,prlim[i][j]);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       maxmin=max-min;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       maxmax=FMAX(maxmax,maxmin);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     if(maxmax < ftolpl){  int cptcov=0; /* Working variable */
       return prlim;  int npar=NPARMAX;
     }  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
 }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /*************** transition probabilities ***************/  
   int *wav; /* Number of waves for this individuual 0 is possible */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  int maxwav=0; /* Maxim number of waves */
 {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   double s1, s2;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   /*double t34;*/  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   int i,j,j1, nc, ii, jj;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
     for(i=1; i<= nlstate; i++){  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     for(j=1; j<i;j++){  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         /*s2 += param[i][j][nc]*cov[nc];*/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  int countcallfunc=0;  /* Count the number of calls to func */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  double jmean=1; /* Mean space between 2 waves */
       }  double **matprod2(); /* test */
       ps[i][j]=s2;  double **oldm, **newm, **savm; /* Working pointers to matrices */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     }  /*FILE *fic ; */ /* Used in readdata only */
     for(j=i+1; j<=nlstate+ndeath;j++){  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  FILE *ficlog, *ficrespow;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  int globpr=0; /* Global variable for printing or not */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  double fretone; /* Only one call to likelihood */
       }  long ipmx=0; /* Number of contributions */
       ps[i][j]=s2;  double sw; /* Sum of weights */
     }  char filerespow[FILENAMELENGTH];
   }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     /*ps[3][2]=1;*/  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for(i=1; i<= nlstate; i++){  FILE *ficresprobmorprev;
      s1=0;  FILE *fichtm, *fichtmcov; /* Html File */
     for(j=1; j<i; j++)  FILE *ficreseij;
       s1+=exp(ps[i][j]);  char filerese[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath; j++)  FILE *ficresstdeij;
       s1+=exp(ps[i][j]);  char fileresstde[FILENAMELENGTH];
     ps[i][i]=1./(s1+1.);  FILE *ficrescveij;
     for(j=1; j<i; j++)  char filerescve[FILENAMELENGTH];
       ps[i][j]= exp(ps[i][j])*ps[i][i];  FILE  *ficresvij;
     for(j=i+1; j<=nlstate+ndeath; j++)  char fileresv[FILENAMELENGTH];
       ps[i][j]= exp(ps[i][j])*ps[i][i];  FILE  *ficresvpl;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  char fileresvpl[FILENAMELENGTH];
   } /* end i */  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     for(jj=1; jj<= nlstate+ndeath; jj++){  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       ps[ii][jj]=0;  char command[FILENAMELENGTH];
       ps[ii][ii]=1;  int  outcmd=0;
     }  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char fileresu[FILENAMELENGTH]; /* fileres without r in front */
   char filelog[FILENAMELENGTH]; /* Log file */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  char filerest[FILENAMELENGTH];
     for(jj=1; jj<= nlstate+ndeath; jj++){  char fileregp[FILENAMELENGTH];
      printf("%lf ",ps[ii][jj]);  char popfile[FILENAMELENGTH];
    }  
     printf("\n ");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 /*  /* struct timezone tzp; */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /* extern int gettimeofday(); */
   goto end;*/  struct tm tml, *gmtime(), *localtime();
     return ps;  
 }  extern time_t time();
   
 /**************** Product of 2 matrices ******************/  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  struct tm tm;
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  char strcurr[80], strfor[80];
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  char *endptr;
      before: only the contents of out is modified. The function returns  long lval;
      a pointer to pointers identical to out */  double dval;
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  #define NR_END 1
     for(k=ncolol; k<=ncoloh; k++)  #define FREE_ARG char*
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #define FTOL 1.0e-10
         out[i][k] +=in[i][j]*b[j][k];  
   #define NRANSI 
   return out;  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
   
 /************* Higher Matrix Product ***************/  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #define GOLD 1.618034 
      duration (i.e. until  #define GLIMIT 100.0 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  #define TINY 1.0e-20 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  static double maxarg1,maxarg2;
      Model is determined by parameters x and covariates have to be  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
      included manually here.  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
      */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   int i, j, d, h, k;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   double **out, cov[NCOVMAX];  #define mytinydouble 1.0e-16
   double **newm;  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   /* Hstepm could be zero and should return the unit matrix */  /* static double dsqrarg; */
   for (i=1;i<=nlstate+ndeath;i++)  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     for (j=1;j<=nlstate+ndeath;j++){  static double sqrarg;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       po[i][j][0]=(i==j ? 1.0 : 0.0);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     }  int agegomp= AGEGOMP;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  int imx; 
     for(d=1; d <=hstepm; d++){  int stepm=1;
       newm=savm;  /* Stepm, step in month: minimum step interpolation*/
       /* Covariates have to be included here again */  
       cov[1]=1.;  int estepm;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  int m,nb;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  long *num;
       for (k=1; k<=cptcovprod;k++)  int firstpass=0, lastpass=4,*cod, *cens;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
                      covariate for which somebody answered excluding 
                      undefined. Usually 2: 0 and 1. */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/                               covariate for which somebody answered including 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,                               undefined. Usually 3: -1, 0 and 1. */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       savm=oldm;  double **pmmij, ***probs;
       oldm=newm;  double *ageexmed,*agecens;
     }  double dateintmean=0;
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  double *weight;
         po[i][j][h]=newm[i][j];  int **s; /* Status */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double *agedc;
          */  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       }                    * covar=matrix(0,NCOVMAX,1,n); 
   } /* end h */                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   return po;  double  idx; 
 }  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int *Tage;
   int *Ndum; /** Freq of modality (tricode */
 /*************** log-likelihood *************/  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
 double func( double *x)  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  double *lsurv, *lpop, *tpop;
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   double **out;  double ftolhess; /**< Tolerance for computing hessian */
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /**************** split *************************/
   long ipmx;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /*extern weight */  {
   /* We are differentiating ll according to initial status */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   /*for(i=1;i<imx;i++)    */ 
     printf(" %d\n",s[4][i]);    char  *ss;                            /* pointer */
   */    int   l1=0, l2=0;                             /* length counters */
   cov[1]=1.;  
     l1 = strlen(path );                   /* length of path */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     for(mi=1; mi<= wav[i]-1; mi++){      strcpy( name, path );               /* we got the fullname name because no directory */
       for (ii=1;ii<=nlstate+ndeath;ii++)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       for(d=0; d<dh[mi][i]; d++){      /* get current working directory */
         newm=savm;      /*    extern  char* getcwd ( char *buf , int len);*/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #ifdef WIN32
         for (kk=1; kk<=cptcovage;kk++) {      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #else
         }          if (getcwd(dirc, FILENAME_MAX) == NULL) {
          #endif
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        return( GLOCK_ERROR_GETCWD );
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
         savm=oldm;      /* got dirc from getcwd*/
         oldm=newm;      printf(" DIRC = %s \n",dirc);
            } else {                              /* strip direcotry from path */
              ss++;                               /* after this, the filename */
       } /* end mult */      l2 = strlen( ss );                  /* length of filename */
            if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      strcpy( name, ss );         /* save file name */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       ipmx +=1;      dirc[l1-l2] = '\0';                 /* add zero */
       sw += weight[i];      printf(" DIRC2 = %s \n",dirc);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    }
     } /* end of wave */    /* We add a separator at the end of dirc if not exists */
   } /* end of individual */    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      dirc[l1] =  DIRSEPARATOR;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      dirc[l1+1] = 0; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      printf(" DIRC3 = %s \n",dirc);
   return -l;    }
 }    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
       ss++;
 /*********** Maximum Likelihood Estimation ***************/      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      l2= strlen(ss)+1;
 {      strncpy( finame, name, l1-l2);
   int i,j, iter;      finame[l1-l2]= 0;
   double **xi,*delti;    }
   double fret;  
   xi=matrix(1,npar,1,npar);    return( 0 );                          /* we're done */
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  /******************************************/
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   void replace_back_to_slash(char *s, char*t)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  {
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    int i;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    int lg=0;
     i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /**** Computes Hessian and covariance matrix ***/      (s[i] = t[i]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      if (t[i]== '\\') s[i]='/';
 {    }
   double  **a,**y,*x,pd;  }
   double **hess;  
   int i, j,jk;  char *trimbb(char *out, char *in)
   int *indx;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
   double hessii(double p[], double delta, int theta, double delti[]);    s=out;
   double hessij(double p[], double delti[], int i, int j);    while (*in != '\0'){
   void lubksb(double **a, int npar, int *indx, double b[]) ;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   void ludcmp(double **a, int npar, int *indx, double *d) ;        in++;
       }
   hess=matrix(1,npar,1,npar);      *out++ = *in++;
     }
   printf("\nCalculation of the hessian matrix. Wait...\n");    *out='\0';
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    return s;
   for (i=1;i<=npar;i++){  }
     printf("%d",i);fflush(stdout);  
     fprintf(ficlog,"%d",i);fflush(ficlog);  /* char *substrchaine(char *out, char *in, char *chain) */
     hess[i][i]=hessii(p,ftolhess,i,delti);  /* { */
     /*printf(" %f ",p[i]);*/  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
     /*printf(" %lf ",hess[i][i]);*/  /*   char *s, *t; */
   }  /*   t=in;s=out; */
    /*   while ((*in != *chain) && (*in != '\0')){ */
   for (i=1;i<=npar;i++) {  /*     *out++ = *in++; */
     for (j=1;j<=npar;j++)  {  /*   } */
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*   /\* *in matches *chain *\/ */
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
         hess[i][j]=hessij(p,delti,i,j);  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
         hess[j][i]=hess[i][j];      /*   } */
         /*printf(" %lf ",hess[i][j]);*/  /*   in--; chain--; */
       }  /*   while ( (*in != '\0')){ */
     }  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   }  /*     *out++ = *in++; */
   printf("\n");  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   fprintf(ficlog,"\n");  /*   } */
   /*   *out='\0'; */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*   out=s; */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  /*   return out; */
    /* } */
   a=matrix(1,npar,1,npar);  char *substrchaine(char *out, char *in, char *chain)
   y=matrix(1,npar,1,npar);  {
   x=vector(1,npar);    /* Substract chain 'chain' from 'in', return and output 'out' */
   indx=ivector(1,npar);    /* in="V1+V1*age+age*age+V2", chain="age*age" */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    char *strloc;
   ludcmp(a,npar,indx,&pd);  
     strcpy (out, in); 
   for (j=1;j<=npar;j++) {    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
     for (i=1;i<=npar;i++) x[i]=0;    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
     x[j]=1;    if(strloc != NULL){ 
     lubksb(a,npar,indx,x);      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
     for (i=1;i<=npar;i++){      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
       matcov[i][j]=x[i];      /* strcpy (strloc, strloc +strlen(chain));*/
     }    }
   }    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
     return out;
   printf("\n#Hessian matrix#\n");  }
   fprintf(ficlog,"\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  char *cutl(char *blocc, char *alocc, char *in, char occ)
       printf("%.3e ",hess[i][j]);  {
       fprintf(ficlog,"%.3e ",hess[i][j]);    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
     }       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     printf("\n");       gives blocc="abcdef" and alocc="ghi2j".
     fprintf(ficlog,"\n");       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   }    */
     char *s, *t;
   /* Recompute Inverse */    t=in;s=in;
   for (i=1;i<=npar;i++)    while ((*in != occ) && (*in != '\0')){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      *alocc++ = *in++;
   ludcmp(a,npar,indx,&pd);    }
     if( *in == occ){
   /*  printf("\n#Hessian matrix recomputed#\n");      *(alocc)='\0';
       s=++in;
   for (j=1;j<=npar;j++) {    }
     for (i=1;i<=npar;i++) x[i]=0;   
     x[j]=1;    if (s == t) {/* occ not found */
     lubksb(a,npar,indx,x);      *(alocc-(in-s))='\0';
     for (i=1;i<=npar;i++){      in=s;
       y[i][j]=x[i];    }
       printf("%.3e ",y[i][j]);    while ( *in != '\0'){
       fprintf(ficlog,"%.3e ",y[i][j]);      *blocc++ = *in++;
     }    }
     printf("\n");  
     fprintf(ficlog,"\n");    *blocc='\0';
   }    return t;
   */  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
   free_matrix(a,1,npar,1,npar);  {
   free_matrix(y,1,npar,1,npar);    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
   free_vector(x,1,npar);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   free_ivector(indx,1,npar);       gives blocc="abcdef2ghi" and alocc="j".
   free_matrix(hess,1,npar,1,npar);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
     char *s, *t;
 }    t=in;s=in;
     while (*in != '\0'){
 /*************** hessian matrix ****************/      while( *in == occ){
 double hessii( double x[], double delta, int theta, double delti[])        *blocc++ = *in++;
 {        s=in;
   int i;      }
   int l=1, lmax=20;      *blocc++ = *in++;
   double k1,k2;    }
   double p2[NPARMAX+1];    if (s == t) /* occ not found */
   double res;      *(blocc-(in-s))='\0';
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    else
   double fx;      *(blocc-(in-s)-1)='\0';
   int k=0,kmax=10;    in=s;
   double l1;    while ( *in != '\0'){
       *alocc++ = *in++;
   fx=func(x);    }
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){    *alocc='\0';
     l1=pow(10,l);    return s;
     delts=delt;  }
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  int nbocc(char *s, char occ)
       p2[theta]=x[theta] +delt;  {
       k1=func(p2)-fx;    int i,j=0;
       p2[theta]=x[theta]-delt;    int lg=20;
       k2=func(p2)-fx;    i=0;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    lg=strlen(s);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    for(i=0; i<= lg; i++) {
          if  (s[i] == occ ) j++;
 #ifdef DEBUG    }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    return j;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  }
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /* void cutv(char *u,char *v, char*t, char occ) */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /* { */
         k=kmax;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /*      gives u="abcdef2ghi" and v="j" *\/ */
         k=kmax; l=lmax*10.;  /*   int i,lg,j,p=0; */
       }  /*   i=0; */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*   lg=strlen(t); */
         delts=delt;  /*   for(j=0; j<=lg-1; j++) { */
       }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     }  /*   } */
   }  
   delti[theta]=delts;  /*   for(j=0; j<p; j++) { */
   return res;  /*     (u[j] = t[j]); */
    /*   } */
 }  /*      u[p]='\0'; */
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  /*    for(j=0; j<= lg; j++) { */
 {  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   int i;  /*   } */
   int l=1, l1, lmax=20;  /* } */
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  #ifdef _WIN32
   int k;  char * strsep(char **pp, const char *delim)
   {
   fx=func(x);    char *p, *q;
   for (k=1; k<=2; k++) {           
     for (i=1;i<=npar;i++) p2[i]=x[i];    if ((p = *pp) == NULL)
     p2[thetai]=x[thetai]+delti[thetai]/k;      return 0;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    if ((q = strpbrk (p, delim)) != NULL)
     k1=func(p2)-fx;    {
        *pp = q + 1;
     p2[thetai]=x[thetai]+delti[thetai]/k;      *q = '\0';
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k2=func(p2)-fx;    else
        *pp = 0;
     p2[thetai]=x[thetai]-delti[thetai]/k;    return p;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k3=func(p2)-fx;  #endif
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /********************** nrerror ********************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  void nrerror(char error_text[])
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  {
 #ifdef DEBUG    fprintf(stderr,"ERREUR ...\n");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    fprintf(stderr,"%s\n",error_text);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    exit(EXIT_FAILURE);
 #endif  }
   }  /*********************** vector *******************/
   return res;  double *vector(int nl, int nh)
 }  {
     double *v;
 /************** Inverse of matrix **************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 void ludcmp(double **a, int n, int *indx, double *d)    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   int i,imax,j,k;  }
   double big,dum,sum,temp;  
   double *vv;  /************************ free vector ******************/
    void free_vector(double*v, int nl, int nh)
   vv=vector(1,n);  {
   *d=1.0;    free((FREE_ARG)(v+nl-NR_END));
   for (i=1;i<=n;i++) {  }
     big=0.0;  
     for (j=1;j<=n;j++)  /************************ivector *******************************/
       if ((temp=fabs(a[i][j])) > big) big=temp;  int *ivector(long nl,long nh)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  {
     vv[i]=1.0/big;    int *v;
   }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
     for (i=1;i<j;i++) {    return v-nl+NR_END;
       sum=a[i][j];  }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /******************free ivector **************************/
     }  void free_ivector(int *v, long nl, long nh)
     big=0.0;  {
     for (i=j;i<=n;i++) {    free((FREE_ARG)(v+nl-NR_END));
       sum=a[i][j];  }
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /************************lvector *******************************/
       a[i][j]=sum;  long *lvector(long nl,long nh)
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    long *v;
         imax=i;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       }    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     if (j != imax) {  }
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  /******************free lvector **************************/
         a[imax][k]=a[j][k];  void free_lvector(long *v, long nl, long nh)
         a[j][k]=dum;  {
       }    free((FREE_ARG)(v+nl-NR_END));
       *d = -(*d);  }
       vv[imax]=vv[j];  
     }  /******************* imatrix *******************************/
     indx[j]=imax;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     if (a[j][j] == 0.0) a[j][j]=TINY;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     if (j != n) {  { 
       dum=1.0/(a[j][j]);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    int **m; 
     }    
   }    /* allocate pointers to rows */ 
   free_vector(vv,1,n);  /* Doesn't work */    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 ;    if (!m) nrerror("allocation failure 1 in matrix()"); 
 }    m += NR_END; 
     m -= nrl; 
 void lubksb(double **a, int n, int *indx, double b[])    
 {    
   int i,ii=0,ip,j;    /* allocate rows and set pointers to them */ 
   double sum;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   for (i=1;i<=n;i++) {    m[nrl] += NR_END; 
     ip=indx[i];    m[nrl] -= ncl; 
     sum=b[ip];    
     b[ip]=b[i];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     if (ii)    
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    /* return pointer to array of pointers to rows */ 
     else if (sum) ii=i;    return m; 
     b[i]=sum;  } 
   }  
   for (i=n;i>=1;i--) {  /****************** free_imatrix *************************/
     sum=b[i];  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        int **m;
     b[i]=sum/a[i][i];        long nch,ncl,nrh,nrl; 
   }       /* free an int matrix allocated by imatrix() */ 
 }  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 /************ Frequencies ********************/    free((FREE_ARG) (m+nrl-NR_END)); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  } 
 {  /* Some frequencies */  
    /******************* matrix *******************************/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  double **matrix(long nrl, long nrh, long ncl, long nch)
   int first;  {
   double ***freq; /* Frequencies */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double *pp;    double **m;
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   char fileresp[FILENAMELENGTH];    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   pp=vector(1,nlstate);    m -= nrl;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   strcat(fileresp,fileres);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   if((ficresp=fopen(fileresp,"w"))==NULL) {    m[nrl] += NR_END;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    m[nrl] -= ncl;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }    return m;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   j1=0;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
    that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   j=cptcoveff;     */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
   
   first=1;  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for(k1=1; k1<=j;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       j1++;    free((FREE_ARG)(m+nrl-NR_END));
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  }
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)    /******************* ma3x *******************************/
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
          double ***m;
       dateintsum=0;  
       k2cpt=0;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (i=1; i<=imx; i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         bool=1;    m += NR_END;
         if  (cptcovn>0) {    m -= nrl;
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
               bool=0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         }    m[nrl] += NR_END;
         if (bool==1) {    m[nrl] -= ncl;
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
               if(agev[m][i]==1) agev[m][i]=agemax+2;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
               if (m<lastpass) {    m[nrl][ncl] += NR_END;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    m[nrl][ncl] -= nll;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    for (j=ncl+1; j<=nch; j++) 
               }      m[nrl][j]=m[nrl][j-1]+nlay;
                  
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    for (i=nrl+1; i<=nrh; i++) {
                 dateintsum=dateintsum+k2;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                 k2cpt++;      for (j=ncl+1; j<=nch; j++) 
               }        m[i][j]=m[i][j-1]+nlay;
             }    }
           }    return m; 
         }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
            */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  }
   
       if  (cptcovn>0) {  /*************************free ma3x ************************/
         fprintf(ficresp, "\n#********** Variable ");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {
         fprintf(ficresp, "**********\n#");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for(i=1; i<=nlstate;i++)    free((FREE_ARG)(m+nrl-NR_END));
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  }
       fprintf(ficresp, "\n");  
        /*************** function subdirf ***********/
       for(i=(int)agemin; i <= (int)agemax+3; i++){  char *subdirf(char fileres[])
         if(i==(int)agemax+3){  {
           fprintf(ficlog,"Total");    /* Caution optionfilefiname is hidden */
         }else{    strcpy(tmpout,optionfilefiname);
           if(first==1){    strcat(tmpout,"/"); /* Add to the right */
             first=0;    strcat(tmpout,fileres);
             printf("See log file for details...\n");    return tmpout;
           }  }
           fprintf(ficlog,"Age %d", i);  
         }  /*************** function subdirf2 ***********/
         for(jk=1; jk <=nlstate ; jk++){  char *subdirf2(char fileres[], char *preop)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  {
             pp[jk] += freq[jk][m][i];    
         }    /* Caution optionfilefiname is hidden */
         for(jk=1; jk <=nlstate ; jk++){    strcpy(tmpout,optionfilefiname);
           for(m=-1, pos=0; m <=0 ; m++)    strcat(tmpout,"/");
             pos += freq[jk][m][i];    strcat(tmpout,preop);
           if(pp[jk]>=1.e-10){    strcat(tmpout,fileres);
             if(first==1){    return tmpout;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  }
             }  
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*************** function subdirf3 ***********/
           }else{  char *subdirf3(char fileres[], char *preop, char *preop2)
             if(first==1)  {
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /* Caution optionfilefiname is hidden */
           }    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
     strcat(tmpout,preop);
         for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,preop2);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    strcat(tmpout,fileres);
             pp[jk] += freq[jk][m][i];    return tmpout;
         }  }
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)  char *asc_diff_time(long time_sec, char ascdiff[])
           pos += pp[jk];  {
         for(jk=1; jk <=nlstate ; jk++){    long sec_left, days, hours, minutes;
           if(pos>=1.e-5){    days = (time_sec) / (60*60*24);
             if(first==1)    sec_left = (time_sec) % (60*60*24);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    hours = (sec_left) / (60*60) ;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    sec_left = (sec_left) %(60*60);
           }else{    minutes = (sec_left) /60;
             if(first==1)    sec_left = (sec_left) % (60);
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    return ascdiff;
           }  }
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /***************** f1dim *************************/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  extern int ncom; 
               probs[i][jk][j1]= pp[jk]/pos;  extern double *pcom,*xicom;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  extern double (*nrfunc)(double []); 
             }   
             else  double f1dim(double x) 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  { 
           }    int j; 
         }    double f;
            double *xt; 
         for(jk=-1; jk <=nlstate+ndeath; jk++)   
           for(m=-1; m <=nlstate+ndeath; m++)    xt=vector(1,ncom); 
             if(freq[jk][m][i] !=0 ) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
             if(first==1)    f=(*nrfunc)(xt); 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    free_vector(xt,1,ncom); 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    return f; 
             }  } 
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");  /*****************brent *************************/
         if(first==1)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
           printf("Others in log...\n");  {
         fprintf(ficlog,"\n");    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
       }     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
     }     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
   }     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
   dateintmean=dateintsum/k2cpt;     * returned function value. 
      */
   fclose(ficresp);    int iter; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double a,b,d,etemp;
   free_vector(pp,1,nlstate);    double fu=0,fv,fw,fx;
      double ftemp=0.;
   /* End of Freq */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 }    double e=0.0; 
    
 /************ Prevalence ********************/    a=(ax < cx ? ax : cx); 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    b=(ax > cx ? ax : cx); 
 {  /* Some frequencies */    x=w=v=bx; 
      fw=fv=fx=(*f)(x); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for (iter=1;iter<=ITMAX;iter++) { 
   double ***freq; /* Frequencies */      xm=0.5*(a+b); 
   double *pp;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double pos, k2;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
   pp=vector(1,nlstate);      fprintf(ficlog,".");fflush(ficlog);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  #ifdef DEBUGBRENT
        printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   j1=0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
   j=cptcoveff;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        *xmin=x; 
          return fx; 
   for(k1=1; k1<=j;k1++){      } 
     for(i1=1; i1<=ncodemax[k1];i1++){      ftemp=fu;
       j1++;      if (fabs(e) > tol1) { 
              r=(x-w)*(fx-fv); 
       for (i=-1; i<=nlstate+ndeath; i++)          q=(x-v)*(fx-fw); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          p=(x-v)*q-(x-w)*r; 
           for(m=agemin; m <= agemax+3; m++)        q=2.0*(q-r); 
             freq[i][jk][m]=0;        if (q > 0.0) p = -p; 
              q=fabs(q); 
       for (i=1; i<=imx; i++) {        etemp=e; 
         bool=1;        e=d; 
         if  (cptcovn>0) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           for (z1=1; z1<=cptcoveff; z1++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        else { 
               bool=0;          d=p/q; 
         }          u=x+d; 
         if (bool==1) {          if (u-a < tol2 || b-u < tol2) 
           for(m=firstpass; m<=lastpass; m++){            d=SIGN(tol1,xm-x); 
             k2=anint[m][i]+(mint[m][i]/12.);        } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } else { 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } 
               if (m<lastpass) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                 if (calagedate>0)      fu=(*f)(u); 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      if (fu <= fx) { 
                 else        if (u >= x) a=x; else b=x; 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        SHFT(v,w,x,u) 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        SHFT(fv,fw,fx,fu) 
               }      } else { 
             }        if (u < x) a=u; else b=u; 
           }        if (fu <= fw || w == x) { 
         }          v=w; 
       }          w=u; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){          fv=fw; 
         for(jk=1; jk <=nlstate ; jk++){          fw=fu; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        } else if (fu <= fv || v == x || v == w) { 
             pp[jk] += freq[jk][m][i];          v=u; 
         }          fv=fu; 
         for(jk=1; jk <=nlstate ; jk++){        } 
           for(m=-1, pos=0; m <=0 ; m++)      } 
             pos += freq[jk][m][i];    } 
         }    nrerror("Too many iterations in brent"); 
            *xmin=x; 
         for(jk=1; jk <=nlstate ; jk++){    return fx; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  } 
             pp[jk] += freq[jk][m][i];  
         }  /****************** mnbrak ***********************/
          
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                      double (*func)(double)) 
         for(jk=1; jk <=nlstate ; jk++){      { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
           if( i <= (int) agemax){  the downhill direction (defined by the function as evaluated at the initial points) and returns
             if(pos>=1.e-5){  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
               probs[i][jk][j1]= pp[jk]/pos;  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
             }     */
           }    double ulim,u,r,q, dum;
         }/* end jk */    double fu; 
       }/* end i */  
     } /* end i1 */    double scale=10.;
   } /* end k1 */    int iterscale=0;
   
      *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   free_vector(pp,1,nlstate);  
    
 }  /* End of Freq */    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
     /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
 /************* Waves Concatenation ***************/    /*   *bx = *ax - (*ax - *bx)/scale; */
     /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    /* } */
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    if (*fb > *fa) { 
      Death is a valid wave (if date is known).      SHFT(dum,*ax,*bx,dum) 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      SHFT(dum,*fb,*fa,dum) 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    } 
      and mw[mi+1][i]. dh depends on stepm.    *cx=(*bx)+GOLD*(*bx-*ax); 
      */    *fc=(*func)(*cx); 
   #ifdef DEBUG
   int i, mi, m;    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
      double sum=0., jmean=0.;*/  #endif
   int first;    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
   int j, k=0,jk, ju, jl;      r=(*bx-*ax)*(*fb-*fc); 
   double sum=0.;      q=(*bx-*cx)*(*fb-*fa); 
   first=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   jmin=1e+5;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
   jmax=-1;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
   jmean=0.;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
   for(i=1; i<=imx; i++){        fu=(*func)(u); 
     mi=0;  #ifdef DEBUG
     m=firstpass;        /* f(x)=A(x-u)**2+f(u) */
     while(s[m][i] <= nlstate){        double A, fparabu; 
       if(s[m][i]>=1)        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         mw[++mi][i]=m;        fparabu= *fa - A*(*ax-u)*(*ax-u);
       if(m >=lastpass)        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         break;        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       else        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         m++;        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
     }/* end while */          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
     if (s[m][i] > nlstate){        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
       mi++;     /* Death is another wave */  #endif 
       /* if(mi==0)  never been interviewed correctly before death */  #ifdef MNBRAKORIGINAL
          /* Only death is a correct wave */  #else
       mw[mi][i]=m;  /*       if (fu > *fc) { */
     }  /* #ifdef DEBUG */
   /*       printf("mnbrak4  fu > fc \n"); */
     wav[i]=mi;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
     if(mi==0){  /* #endif */
       if(first==0){  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
         first=1;  /*      dum=u; /\* Shifting c and u *\/ */
       }  /*      u = *cx; */
       if(first==1){  /*      *cx = dum; */
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);  /*      dum = fu; */
       }  /*      fu = *fc; */
     } /* end mi==0 */  /*      *fc =dum; */
   }  /*       } else { /\* end *\/ */
   /* #ifdef DEBUG */
   for(i=1; i<=imx; i++){  /*       printf("mnbrak3  fu < fc \n"); */
     for(mi=1; mi<wav[i];mi++){  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
       if (stepm <=0)  /* #endif */
         dh[mi][i]=1;  /*      dum=u; /\* Shifting c and u *\/ */
       else{  /*      u = *cx; */
         if (s[mw[mi+1][i]][i] > nlstate) {  /*      *cx = dum; */
           if (agedc[i] < 2*AGESUP) {  /*      dum = fu; */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /*      fu = *fc; */
           if(j==0) j=1;  /* Survives at least one month after exam */  /*      *fc =dum; */
           k=k+1;  /*       } */
           if (j >= jmax) jmax=j;  #ifdef DEBUG
           if (j <= jmin) jmin=j;        printf("mnbrak34  fu < or >= fc \n");
           sum=sum+j;        fprintf(ficlog, "mnbrak34 fu < fc\n");
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  #endif
           }        dum=u; /* Shifting c and u */
         }        u = *cx;
         else{        *cx = dum;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        dum = fu;
           k=k+1;        fu = *fc;
           if (j >= jmax) jmax=j;        *fc =dum;
           else if (j <= jmin)jmin=j;  #endif
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
           sum=sum+j;  #ifdef DEBUG
         }        printf("mnbrak2  u after c but before ulim\n");
         jk= j/stepm;        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
         jl= j -jk*stepm;  #endif
         ju= j -(jk+1)*stepm;        fu=(*func)(u); 
         if(jl <= -ju)        if (fu < *fc) { 
           dh[mi][i]=jk;  #ifdef DEBUG
         else        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
           dh[mi][i]=jk+1;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
         if(dh[mi][i]==0)  #endif
           dh[mi][i]=1; /* At least one step */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }          SHFT(*fb,*fc,fu,(*func)(u)) 
     }        } 
   }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   jmean=sum/k;  #ifdef DEBUG
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
  }  #endif
         u=ulim; 
 /*********** Tricode ****************************/        fu=(*func)(u); 
 void tricode(int *Tvar, int **nbcode, int imx)      } else { /* u could be left to b (if r > q parabola has a maximum) */
 {  #ifdef DEBUG
   int Ndum[20],ij=1, k, j, i;        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   int cptcode=0;        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   cptcoveff=0;  #endif
          u=(*cx)+GOLD*(*cx-*bx); 
   for (k=0; k<19; k++) Ndum[k]=0;        fu=(*func)(u); 
   for (k=1; k<=7; k++) ncodemax[k]=0;      } /* end tests */
       SHFT(*ax,*bx,*cx,u) 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      SHFT(*fa,*fb,*fc,fu) 
     for (i=1; i<=imx; i++) {  #ifdef DEBUG
       ij=(int)(covar[Tvar[j]][i]);        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
       Ndum[ij]++;        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  #endif
       if (ij > cptcode) cptcode=ij;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
     }  } 
   
     for (i=0; i<=cptcode; i++) {  /*************** linmin ************************/
       if(Ndum[i]!=0) ncodemax[j]++;  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
     }  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     ij=1;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   the value of func at the returned location p . This is actually all accomplished by calling the
   routines mnbrak and brent .*/
     for (i=1; i<=ncodemax[j]; i++) {  int ncom; 
       for (k=0; k<=19; k++) {  double *pcom,*xicom;
         if (Ndum[k] != 0) {  double (*nrfunc)(double []); 
           nbcode[Tvar[j]][ij]=k;   
            void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           ij++;  { 
         }    double brent(double ax, double bx, double cx, 
         if (ij > ncodemax[j]) break;                 double (*f)(double), double tol, double *xmin); 
       }      double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   }                  double *fc, double (*func)(double)); 
     int j; 
  for (k=0; k<19; k++) Ndum[k]=0;    double xx,xmin,bx,ax; 
     double fx,fb,fa;
  for (i=1; i<=ncovmodel-2; i++) {  
    ij=Tvar[i];  #ifdef LINMINORIGINAL
    Ndum[ij]++;  #else
  }    double scale=10., axs, xxs; /* Scale added for infinity */
   #endif
  ij=1;    
  for (i=1; i<=10; i++) {    ncom=n; 
    if((Ndum[i]!=0) && (i<=ncovcol)){    pcom=vector(1,n); 
      Tvaraff[ij]=i;    xicom=vector(1,n); 
      ij++;    nrfunc=func; 
    }    for (j=1;j<=n;j++) { 
  }      pcom[j]=p[j]; 
        xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
  cptcoveff=ij-1;    } 
 }  
   #ifdef LINMINORIGINAL
 /*********** Health Expectancies ****************/    xx=1.;
   #else
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    axs=0.0;
     xxs=1.;
 {    do{
   /* Health expectancies */      xx= xxs;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  #endif
   double age, agelim, hf;      ax=0.;
   double ***p3mat,***varhe;      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
   double **dnewm,**doldm;      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
   double *xp;      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
   double **gp, **gm;      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
   double ***gradg, ***trgradg;      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
   int theta;      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
       /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  #ifdef LINMINORIGINAL
   xp=vector(1,npar);  #else
   dnewm=matrix(1,nlstate*2,1,npar);      if (fx != fx){
   doldm=matrix(1,nlstate*2,1,nlstate*2);          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
            printf("|");
   fprintf(ficreseij,"# Health expectancies\n");          fprintf(ficlog,"|");
   fprintf(ficreseij,"# Age");  #ifdef DEBUGLINMIN
   for(i=1; i<=nlstate;i++)          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
     for(j=1; j<=nlstate;j++)  #endif
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      }
   fprintf(ficreseij,"\n");    }while(fx != fx);
   #endif
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);  #ifdef DEBUGLINMIN
   }    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   else  hstepm=estepm;      fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   /* We compute the life expectancy from trapezoids spaced every estepm months  #endif
    * This is mainly to measure the difference between two models: for example    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
    * if stepm=24 months pijx are given only every 2 years and by summing them    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
    * we are calculating an estimate of the Life Expectancy assuming a linear    /* fmin = f(p[j] + xmin * xi[j]) */
    * progression inbetween and thus overestimating or underestimating according    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
    * to the curvature of the survival function. If, for the same date, we    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  #ifdef DEBUG
    * to compare the new estimate of Life expectancy with the same linear    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    * hypothesis. A more precise result, taking into account a more precise    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    * curvature will be obtained if estepm is as small as stepm. */  #endif
   #ifdef DEBUGLINMIN
   /* For example we decided to compute the life expectancy with the smallest unit */    printf("linmin end ");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficlog,"linmin end ");
      nhstepm is the number of hstepm from age to agelim  #endif
      nstepm is the number of stepm from age to agelin.    for (j=1;j<=n;j++) { 
      Look at hpijx to understand the reason of that which relies in memory size  #ifdef LINMINORIGINAL
      and note for a fixed period like estepm months */      xi[j] *= xmin; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  #else
      survival function given by stepm (the optimization length). Unfortunately it  #ifdef DEBUGLINMIN
      means that if the survival funtion is printed only each two years of age and if      if(xxs <1.0)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        printf(" before xi[%d]=%12.8f", j,xi[j]);
      results. So we changed our mind and took the option of the best precision.  #endif
   */      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  #ifdef DEBUGLINMIN
       if(xxs <1.0)
   agelim=AGESUP;        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #endif
     /* nhstepm age range expressed in number of stepm */  #endif
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      p[j] += xi[j]; /* Parameters values are updated accordingly */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    } 
     /* if (stepm >= YEARM) hstepm=1;*/  #ifdef DEBUGLINMIN
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    printf("\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     gp=matrix(0,nhstepm,1,nlstate*2);    for (j=1;j<=n;j++) { 
     gm=matrix(0,nhstepm,1,nlstate*2);      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
       fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      if(j % ncovmodel == 0){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        printf("\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          fprintf(ficlog,"\n");
        }
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  #else
   #endif
     /* Computing Variances of health expectancies */    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
      for(theta=1; theta <=npar; theta++){  } 
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /*************** powell ************************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*
    Minimization of a function func of n variables. Input consists of an initial starting point
       cptj=0;  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       for(j=1; j<= nlstate; j++){  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
         for(i=1; i<=nlstate; i++){  such that failure to decrease by more than this amount on one iteration signals doneness. On
           cptj=cptj+1;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  function value at p , and iter is the number of iterations taken. The routine linmin is used.
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;   */
           }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         }              double (*func)(double [])) 
       }  { 
          void linmin(double p[], double xi[], int n, double *fret, 
                      double (*func)(double [])); 
       for(i=1; i<=npar; i++)    int i,ibig,j; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double del,t,*pt,*ptt,*xit;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double directest;
          double fp,fptt;
       cptj=0;    double *xits;
       for(j=1; j<= nlstate; j++){    int niterf, itmp;
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    pt=vector(1,n); 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    ptt=vector(1,n); 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    xit=vector(1,n); 
           }    xits=vector(1,n); 
         }    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
       for(j=1; j<= nlstate*2; j++)    rcurr_time = time(NULL);  
         for(h=0; h<=nhstepm-1; h++){    for (*iter=1;;++(*iter)) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fp=(*fret); /* From former iteration or initial value */
         }      ibig=0; 
      }      del=0.0; 
          rlast_time=rcurr_time;
 /* End theta */      /* (void) gettimeofday(&curr_time,&tzp); */
       rcurr_time = time(NULL);  
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      curr_time = *localtime(&rcurr_time);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
      for(h=0; h<=nhstepm-1; h++)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
       for(j=1; j<=nlstate*2;j++)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
         for(theta=1; theta <=npar; theta++)      for (i=1;i<=n;i++) {
           trgradg[h][j][theta]=gradg[h][theta][j];        printf(" %d %.12f",i, p[i]);
              fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
      for(i=1;i<=nlstate*2;i++)      }
       for(j=1;j<=nlstate*2;j++)      printf("\n");
         varhe[i][j][(int)age] =0.;      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
      printf("%d|",(int)age);fflush(stdout);      if(*iter <=3){
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        tml = *localtime(&rcurr_time);
      for(h=0;h<=nhstepm-1;h++){        strcpy(strcurr,asctime(&tml));
       for(k=0;k<=nhstepm-1;k++){        rforecast_time=rcurr_time; 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        itmp = strlen(strcurr);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         for(i=1;i<=nlstate*2;i++)          strcurr[itmp-1]='\0';
           for(j=1;j<=nlstate*2;j++)        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       }        for(niterf=10;niterf<=30;niterf+=10){
     }          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     /* Computing expectancies */          forecast_time = *localtime(&rforecast_time);
     for(i=1; i<=nlstate;i++)          strcpy(strfor,asctime(&forecast_time));
       for(j=1; j<=nlstate;j++)          itmp = strlen(strfor);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          if(strfor[itmp-1]=='\n')
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          strfor[itmp-1]='\0';
                    printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         }
         }      }
       for (i=1;i<=n;i++) { /* For each direction i */
     fprintf(ficreseij,"%3.0f",age );        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
     cptj=0;        fptt=(*fret); 
     for(i=1; i<=nlstate;i++)  #ifdef DEBUG
       for(j=1; j<=nlstate;j++){        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         cptj++;        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  #endif
       }        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
     fprintf(ficreseij,"\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
            linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
     free_matrix(gm,0,nhstepm,1,nlstate*2);                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
     free_matrix(gp,0,nhstepm,1,nlstate*2);        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          /* because that direction will be replaced unless the gain del is small */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
   }          /* with the new direction. */
   printf("\n");          del=fabs(fptt-(*fret)); 
   fprintf(ficlog,"\n");          ibig=i; 
         } 
   free_vector(xp,1,npar);  #ifdef DEBUG
   free_matrix(dnewm,1,nlstate*2,1,npar);        printf("%d %.12e",i,(*fret));
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        fprintf(ficlog,"%d %.12e",i,(*fret));
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 /************ Variance ******************/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        }
 {        for(j=1;j<=n;j++) {
   /* Variance of health expectancies */          printf(" p(%d)=%.12e",j,p[j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   /* double **newm;*/        }
   double **dnewm,**doldm;        printf("\n");
   double **dnewmp,**doldmp;        fprintf(ficlog,"\n");
   int i, j, nhstepm, hstepm, h, nstepm ;  #endif
   int k, cptcode;      } /* end loop on each direction i */
   double *xp;      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   double **gp, **gm;  /* for var eij */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   double ***gradg, ***trgradg; /*for var eij */      /* New value of last point Pn is not computed, P(n-1) */
   double **gradgp, **trgradgp; /* for var p point j */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
   double *gpp, *gmp; /* for var p point j */        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
   double ***p3mat;        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
   double age,agelim, hf;        /* decreased of more than 3.84  */
   int theta;        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
   char digit[4];        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
   char digitp[16];        /* By adding 10 parameters more the gain should be 18.31 */
   
   char fileresprobmorprev[FILENAMELENGTH];        /* Starting the program with initial values given by a former maximization will simply change */
         /* the scales of the directions and the directions, because the are reset to canonical directions */
   if(popbased==1)        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
     strcpy(digitp,"-populbased-");        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
   else  #ifdef DEBUG
     strcpy(digitp,"-stablbased-");        int k[2],l;
         k[0]=1;
   strcpy(fileresprobmorprev,"prmorprev");        k[1]=-1;
   sprintf(digit,"%-d",ij);        printf("Max: %.12e",(*func)(p));
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        for (j=1;j<=n;j++) {
   strcat(fileresprobmorprev,digitp); /* Popbased or not */          printf(" %.12e",p[j]);
   strcat(fileresprobmorprev,fileres);          fprintf(ficlog," %.12e",p[j]);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        printf("\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          for (j=1;j<=n;j++) {
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          }
     fprintf(ficresprobmorprev," p.%-d SE",j);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(i=1; i<=nlstate;i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);        }
   }    #endif
   fprintf(ficresprobmorprev,"\n");  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        free_vector(xit,1,n); 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        free_vector(xits,1,n); 
     exit(0);        free_vector(ptt,1,n); 
   }        free_vector(pt,1,n); 
   else{        return; 
     fprintf(ficgp,"\n# Routine varevsij");      } /* enough precision */ 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
     printf("Problem with html file: %s\n", optionfilehtm);        ptt[j]=2.0*p[j]-pt[j]; 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        xit[j]=p[j]-pt[j]; 
     exit(0);        pt[j]=p[j]; 
   }      } 
   else{      fptt=(*func)(ptt); /* f_3 */
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  #ifdef POWELLF1F3
   }  #else
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   #endif
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   fprintf(ficresvij,"# Age");        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   for(i=1; i<=nlstate;i++)        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     for(j=1; j<=nlstate;j++)        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   fprintf(ficresvij,"\n");        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
         /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   xp=vector(1,npar);  #ifdef NRCORIGINAL
   dnewm=matrix(1,nlstate,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   doldm=matrix(1,nlstate,1,nlstate);  #else
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        t= t- del*SQR(fp-fptt);
   #endif
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
   gpp=vector(nlstate+1,nlstate+ndeath);  #ifdef DEBUG
   gmp=vector(nlstate+1,nlstate+ndeath);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
          printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   if(estepm < stepm){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   else  hstepm=estepm;          printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   /* For example we decided to compute the life expectancy with the smallest unit */        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #endif
      nhstepm is the number of hstepm from age to agelim  #ifdef POWELLORIGINAL
      nstepm is the number of stepm from age to agelin.        if (t < 0.0) { /* Then we use it for new direction */
      Look at hpijx to understand the reason of that which relies in memory size  #else
      and note for a fixed period like k years */        if (directest*t < 0.0) { /* Contradiction between both tests */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
      survival function given by stepm (the optimization length). Unfortunately it          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
      means that if the survival funtion is printed only each two years of age and if          fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
      results. So we changed our mind and took the option of the best precision.        } 
   */        if (directest < 0.0) { /* Then we use it for new direction */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  #endif
   agelim = AGESUP;  #ifdef DEBUGLINMIN
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          printf("Before linmin in direction P%d-P0\n",n);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for (j=1;j<=n;j++) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            if(j % ncovmodel == 0){
     gp=matrix(0,nhstepm,1,nlstate);              printf("\n");
     gm=matrix(0,nhstepm,1,nlstate);              fprintf(ficlog,"\n");
             }
           }
     for(theta=1; theta <=npar; theta++){  #endif
       for(i=1; i<=npar; i++){ /* Computes gradient */          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #ifdef DEBUGLINMIN
       }          for (j=1;j<=n;j++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             if(j % ncovmodel == 0){
       if (popbased==1) {              printf("\n");
         for(i=1; i<=nlstate;i++)              fprintf(ficlog,"\n");
           prlim[i][i]=probs[(int)age][i][ij];            }
       }          }
    #endif
       for(j=1; j<= nlstate; j++){          for (j=1;j<=n;j++) { 
         for(h=0; h<=nhstepm; h++){            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       }          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       /* This for computing forces of mortality (h=1)as a weighted average */  
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){  #ifdef DEBUG
         for(i=1; i<= nlstate; i++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }              for(j=1;j<=n;j++){
       /* end force of mortality */            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          printf("\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            fprintf(ficlog,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #endif
          } /* end of t or directest negative */
       if (popbased==1) {  #ifdef POWELLF1F3
         for(i=1; i<=nlstate;i++)  #else
           prlim[i][i]=probs[(int)age][i][ij];      } /* end if (fptt < fp)  */
       }  #endif
     } /* loop iteration */ 
       for(j=1; j<= nlstate; j++){  } 
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  /**** Prevalence limit (stable or period prevalence)  ****************/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
       }  {
       /* This for computing force of mortality (h=1)as a weighted average */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){       matrix by transitions matrix until convergence is reached with precision ftolpl */
         for(i=1; i<= nlstate; i++)    
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    int i, ii,j,k;
       }        double min, max, maxmin, maxmax,sumnew=0.;
       /* end force of mortality */    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
       for(j=1; j<= nlstate; j++) /* vareij */    double **newm;
         for(h=0; h<=nhstepm; h++){    double agefin, delaymax=100 ; /* Max number of years to converge */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int ncvloop=0;
         }    
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    for (ii=1;ii<=nlstate+ndeath;ii++)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
     } /* End theta */    
     cov[1]=1.;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=0; h<=nhstepm; h++) /* veij */    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
       for(j=1; j<=nlstate;j++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         for(theta=1; theta <=npar; theta++)      ncvloop++;
           trgradg[h][j][theta]=gradg[h][theta][j];      newm=savm;
       /* Covariates have to be included here again */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      cov[2]=agefin;
       for(theta=1; theta <=npar; theta++)      if(nagesqr==1)
         trgradgp[j][theta]=gradgp[theta][j];        cov[3]= agefin*agefin;;
       for (k=1; k<=cptcovn;k++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
     for(i=1;i<=nlstate;i++)        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
       for(j=1;j<=nlstate;j++)        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
         vareij[i][j][(int)age] =0.;      }
       /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     for(h=0;h<=nhstepm;h++){      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
       for(k=0;k<=nhstepm;k++){      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      for (k=1; k<=cptcovprod;k++) /* Useless */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         for(i=1;i<=nlstate;i++)        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
           for(j=1;j<=nlstate;j++)      
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     /* pptj */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      savm=oldm;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      oldm=newm;
         varppt[j][i]=doldmp[j][i];      maxmax=0.;
     /* end ppptj */      for(j=1;j<=nlstate;j++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          min=1.;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        max=0.;
          for(i=1; i<=nlstate; i++) {
     if (popbased==1) {          sumnew=0;
       for(i=1; i<=nlstate;i++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         prlim[i][i]=probs[(int)age][i][ij];          prlim[i][j]= newm[i][j]/(1-sumnew);
     }          max=FMAX(max,prlim[i][j]);
              min=FMIN(min,prlim[i][j]);
     /* This for computing force of mortality (h=1)as a weighted average */          /* printf(" age= %d prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d max=%f min=%f\n", (int)age, i, j, i, j, prlim[i][j],(int)agefin, max, min); */
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        }
       for(i=1; i<= nlstate; i++)        maxmin=(max-min)/(max+min)*2;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        maxmax=FMAX(maxmax,maxmin);
     }          } /* j loop */
     /* end force of mortality */      *ncvyear= (int)age- (int)agefin;
       /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      if(maxmax < ftolpl){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        return prlim;
       for(i=1; i<=nlstate;i++){      }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    } /* age loop */
       }    printf("Warning: the stable prevalence at age %d did not converge with the required precision %g > ftolpl=%g. \n\
     }  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     fprintf(ficresprobmorprev,"\n");  /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     return prlim; /* should not reach here */
     fprintf(ficresvij,"%.0f ",age );  }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  /*************** transition probabilities ***************/ 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     fprintf(ficresvij,"\n");  {
     free_matrix(gp,0,nhstepm,1,nlstate);    /* According to parameters values stored in x and the covariate's values stored in cov,
     free_matrix(gm,0,nhstepm,1,nlstate);       computes the probability to be observed in state j being in state i by appying the
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);       model to the ncovmodel covariates (including constant and age).
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   } /* End age */       ncth covariate in the global vector x is given by the formula:
   free_vector(gpp,nlstate+1,nlstate+ndeath);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   free_vector(gmp,nlstate+1,nlstate+ndeath);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");       Outputs ps[i][j] the probability to be observed in j being in j according to
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    double s1, lnpijopii;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    /*double t34;*/
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    int i,j, nc, ii, jj;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      for(i=1; i<= nlstate; i++){
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);        for(j=1; j<i;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   free_vector(xp,1,npar);            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   free_matrix(doldm,1,nlstate,1,nlstate);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   free_matrix(dnewm,1,nlstate,1,npar);  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   fclose(ficresprobmorprev);        }
   fclose(ficgp);        for(j=i+1; j<=nlstate+ndeath;j++){
   fclose(fichtm);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 }            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 /************ Variance of prevlim ******************/          }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 {        }
   /* Variance of prevalence limit */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      
   double **newm;      for(i=1; i<= nlstate; i++){
   double **dnewm,**doldm;        s1=0;
   int i, j, nhstepm, hstepm;        for(j=1; j<i; j++){
   int k, cptcode;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   double *xp;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   double *gp, *gm;        }
   double **gradg, **trgradg;        for(j=i+1; j<=nlstate+ndeath; j++){
   double age,agelim;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   int theta;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
            }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   fprintf(ficresvpl,"# Age");        ps[i][i]=1./(s1+1.);
   for(i=1; i<=nlstate;i++)        /* Computing other pijs */
       fprintf(ficresvpl," %1d-%1d",i,i);        for(j=1; j<i; j++)
   fprintf(ficresvpl,"\n");          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
   xp=vector(1,npar);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   dnewm=matrix(1,nlstate,1,npar);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   doldm=matrix(1,nlstate,1,nlstate);      } /* end i */
        
   hstepm=1*YEARM; /* Every year of age */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(jj=1; jj<= nlstate+ndeath; jj++){
   agelim = AGESUP;          ps[ii][jj]=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          ps[ii][ii]=1;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
     if (stepm >= YEARM) hstepm=1;      }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      
     gradg=matrix(1,npar,1,nlstate);      
     gp=vector(1,nlstate);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     gm=vector(1,nlstate);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     for(theta=1; theta <=npar; theta++){      /*   } */
       for(i=1; i<=npar; i++){ /* Computes gradient */      /*   printf("\n "); */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /* } */
       }      /* printf("\n ");printf("%lf ",cov[2]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /*
       for(i=1;i<=nlstate;i++)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         gp[i] = prlim[i][i];        goto end;*/
          return ps;
       for(i=1; i<=npar; i++) /* Computes gradient */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /**************** Product of 2 matrices ******************/
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   {
       for(i=1;i<=nlstate;i++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     } /* End theta */    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
     trgradg =matrix(1,nlstate,1,npar);       a pointer to pointers identical to out */
     int i, j, k;
     for(j=1; j<=nlstate;j++)    for(i=nrl; i<= nrh; i++)
       for(theta=1; theta <=npar; theta++)      for(k=ncolol; k<=ncoloh; k++){
         trgradg[j][theta]=gradg[theta][j];        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
     for(i=1;i<=nlstate;i++)          out[i][k] +=in[i][j]*b[j][k];
       varpl[i][(int)age] =0.;      }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    return out;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   /************* Higher Matrix Product ***************/
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  {
     fprintf(ficresvpl,"\n");    /* Computes the transition matrix starting at age 'age' over 
     free_vector(gp,1,nlstate);       'nhstepm*hstepm*stepm' months (i.e. until
     free_vector(gm,1,nlstate);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     free_matrix(gradg,1,npar,1,nlstate);       nhstepm*hstepm matrices. 
     free_matrix(trgradg,1,nlstate,1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   } /* End age */       (typically every 2 years instead of every month which is too big 
        for the memory).
   free_vector(xp,1,npar);       Model is determined by parameters x and covariates have to be 
   free_matrix(doldm,1,nlstate,1,npar);       included manually here. 
   free_matrix(dnewm,1,nlstate,1,nlstate);  
        */
 }  
     int i, j, d, h, k;
 /************ Variance of one-step probabilities  ******************/    double **out, cov[NCOVMAX+1];
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double **newm;
 {    double agexact;
   int i, j=0,  i1, k1, l1, t, tj;  
   int k2, l2, j1,  z1;    /* Hstepm could be zero and should return the unit matrix */
   int k=0,l, cptcode;    for (i=1;i<=nlstate+ndeath;i++)
   int first=1, first1;      for (j=1;j<=nlstate+ndeath;j++){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double **dnewm,**doldm;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double *xp;      }
   double *gp, *gm;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double **gradg, **trgradg;    for(h=1; h <=nhstepm; h++){
   double **mu;      for(d=1; d <=hstepm; d++){
   double age,agelim, cov[NCOVMAX];        newm=savm;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        /* Covariates have to be included here again */
   int theta;        cov[1]=1.;
   char fileresprob[FILENAMELENGTH];        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   char fileresprobcov[FILENAMELENGTH];        cov[2]=agexact;
   char fileresprobcor[FILENAMELENGTH];        if(nagesqr==1)
           cov[3]= agexact*agexact;
   double ***varpij;        for (k=1; k<=cptcovn;k++) 
           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   strcpy(fileresprob,"prob");          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
   strcat(fileresprob,fileres);        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     printf("Problem with resultfile: %s\n", fileresprob);          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
   }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   strcpy(fileresprobcov,"probcov");          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
   strcat(fileresprobcov,fileres);          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   strcpy(fileresprobcor,"probcor");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   strcat(fileresprobcor,fileres);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        savm=oldm;
     printf("Problem with resultfile: %s\n", fileresprobcor);        oldm=newm;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      }
   }      for(i=1; i<=nlstate+ndeath; i++)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for(j=1;j<=nlstate+ndeath;j++) {
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          po[i][j][h]=newm[i][j];
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      /*printf("h=%d ",h);*/
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    } /* end h */
    /*     printf("\n H=%d \n",h); */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    return po;
   fprintf(ficresprob,"# Age");  }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");  #ifdef NLOPT
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
   fprintf(ficresprobcov,"# Age");    double fret;
     double *xt;
     int j;
   for(i=1; i<=nlstate;i++)    myfunc_data *d2 = (myfunc_data *) pd;
     for(j=1; j<=(nlstate+ndeath);j++){  /* xt = (p1-1); */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    xt=vector(1,n); 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }      fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   fprintf(ficresprob,"\n");    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   fprintf(ficresprobcov,"\n");    printf("Function = %.12lf ",fret);
   fprintf(ficresprobcor,"\n");    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   xp=vector(1,npar);    printf("\n");
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);   free_vector(xt,1,n);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    return fret;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  #endif
   first=1;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  /*************** log-likelihood *************/
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  double func( double *x)
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  {
     exit(0);    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   else{    double **out;
     fprintf(ficgp,"\n# Routine varprob");    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    int s1, s2;
     printf("Problem with html file: %s\n", optionfilehtm);    double bbh, survp;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    long ipmx;
     exit(0);    double agexact;
   }    /*extern weight */
   else{    /* We are differentiating ll according to initial status */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     fprintf(fichtm,"\n");    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    ++countcallfunc;
   
   }    cov[1]=1.;
   
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   cov[1]=1;  
   tj=cptcoveff;    if(mle==1){
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   j1=0;        /* Computes the values of the ncovmodel covariates of the model
   for(t=1; t<=tj;t++){           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     for(i1=1; i1<=ncodemax[t];i1++){           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       j1++;           to be observed in j being in i according to the model.
               */
       if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
         fprintf(ficresprob, "\n#********** Variable ");            cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresprob, "**********\n#");        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         fprintf(ficresprobcov, "\n#********** Variable ");           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           has been calculated etc */
         fprintf(ficresprobcov, "**********\n#");        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficgp, "\n#********** Variable ");            for (j=1;j<=nlstate+ndeath;j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficgp, "**********\n#");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
                  for(d=0; d<dh[mi][i]; d++){
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            newm=savm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");            cov[2]=agexact;
                    if(nagesqr==1)
         fprintf(ficresprobcor, "\n#********** Variable ");                  cov[3]= agexact*agexact;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficgp, "**********\n#");                  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
       }            }
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (age=bage; age<=fage; age ++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         cov[2]=age;            savm=oldm;
         for (k=1; k<=cptcovn;k++) {            oldm=newm;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          } /* end mult */
         }        
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for (k=1; k<=cptcovprod;k++)          /* But now since version 0.9 we anticipate for bias at large stepm.
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   * (in months) between two waves is not a multiple of stepm, we rounded to 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));           * the nearest (and in case of equal distance, to the lowest) interval but now
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         gp=vector(1,(nlstate)*(nlstate+ndeath));           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         gm=vector(1,(nlstate)*(nlstate+ndeath));           * probability in order to take into account the bias as a fraction of the way
               * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         for(theta=1; theta <=npar; theta++){           * -stepm/2 to stepm/2 .
           for(i=1; i<=npar; i++)           * For stepm=1 the results are the same as for previous versions of Imach.
             xp[i] = x[i] + (i==theta ?delti[theta]:0);           * For stepm > 1 the results are less biased than in previous versions. 
                     */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          s1=s[mw[mi][i]][i];
                    s2=s[mw[mi+1][i]][i];
           k=0;          bbh=(double)bh[mi][i]/(double)stepm; 
           for(i=1; i<= (nlstate); i++){          /* bias bh is positive if real duration
             for(j=1; j<=(nlstate+ndeath);j++){           * is higher than the multiple of stepm and negative otherwise.
               k=k+1;           */
               gp[k]=pmmij[i][j];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             }          if( s2 > nlstate){ 
           }            /* i.e. if s2 is a death state and if the date of death is known 
                         then the contribution to the likelihood is the probability to 
           for(i=1; i<=npar; i++)               die between last step unit time and current  step unit time, 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);               which is also equal to probability to die before dh 
                   minus probability to die before dh-stepm . 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);               In version up to 0.92 likelihood was computed
           k=0;          as if date of death was unknown. Death was treated as any other
           for(i=1; i<=(nlstate); i++){          health state: the date of the interview describes the actual state
             for(j=1; j<=(nlstate+ndeath);j++){          and not the date of a change in health state. The former idea was
               k=k+1;          to consider that at each interview the state was recorded
               gm[k]=pmmij[i][j];          (healthy, disable or death) and IMaCh was corrected; but when we
             }          introduced the exact date of death then we should have modified
           }          the contribution of an exact death to the likelihood. This new
                contribution is smaller and very dependent of the step unit
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          stepm. It is no more the probability to die between last interview
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          Jackson for correcting this bug.  Former versions increased
           for(theta=1; theta <=npar; theta++)          mortality artificially. The bad side is that we add another loop
             trgradg[j][theta]=gradg[theta][j];          which slows down the processing. The difference can be up to 10%
                  lower mortality.
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          /* If, at the beginning of the maximization mostly, the
                     cumulative probability or probability to be dead is
         pmij(pmmij,cov,ncovmodel,x,nlstate);             constant (ie = 1) over time d, the difference is equal to
                     0.  out[s1][3] = savm[s1][3]: probability, being at state
         k=0;             s1 at precedent wave, to be dead a month before current
         for(i=1; i<=(nlstate); i++){             wave is equal to probability, being at state s1 at
           for(j=1; j<=(nlstate+ndeath);j++){             precedent wave, to be dead at mont of the current
             k=k+1;             wave. Then the observed probability (that this person died)
             mu[k][(int) age]=pmmij[i][j];             is null according to current estimated parameter. In fact,
           }             it should be very low but not zero otherwise the log go to
         }             infinity.
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  /* #ifdef INFINITYORIGINAL */
             varpij[i][j][(int)age] = doldm[i][j];  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   /* #else */
         /*printf("\n%d ",(int)age);  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  /*          lli=log(mytinydouble); */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /*        else */
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
      }*/  /* #endif */
               lli=log(out[s1][s2] - savm[s1][s2]);
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);          } else if  (s2==-2) {
         fprintf(ficresprobcor,"\n%d ",(int)age);            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            /*survp += out[s1][j]; */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            lli= log(survp);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          else if  (s2==-4) { 
         }            for (j=3,survp=0. ; j<=nlstate; j++)  
         i=0;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for (k=1; k<=(nlstate);k++){            lli= log(survp); 
           for (l=1; l<=(nlstate+ndeath);l++){          } 
             i=i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          else if  (s2==-5) { 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            for (j=1,survp=0. ; j<=2; j++)  
             for (j=1; j<=i;j++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            lli= log(survp); 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          } 
             }          
           }          else{
         }/* end of loop for state */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       } /* end of loop for age */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
       /* Confidence intervalle of pij  */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       /*          /*if(lli ==000.0)*/
       fprintf(ficgp,"\nset noparametric;unset label");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          ipmx +=1;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          sw += weight[i];
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);          /* if (lli < log(mytinydouble)){ */
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
       */          /* } */
         } /* end of wave */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      } /* end of individual */
       first1=1;    }  else if(mle==2){
       for (k1=1; k1<=(nlstate);k1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (l1=1; l1<=(nlstate+ndeath);l1++){        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
           if(l1==k1) continue;        for(mi=1; mi<= wav[i]-1; mi++){
           i=(k1-1)*(nlstate+ndeath)+l1;          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (k2=1; k2<=(nlstate);k2++){            for (j=1;j<=nlstate+ndeath;j++){
             for (l2=1; l2<=(nlstate+ndeath);l2++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(l2==k2) continue;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               j=(k2-1)*(nlstate+ndeath)+l2;            }
               if(j<=i) continue;          for(d=0; d<=dh[mi][i]; d++){
               for (age=bage; age<=fage; age ++){            newm=savm;
                 if ((int)age %5==0){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            cov[2]=agexact;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            if(nagesqr==1)
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              cov[3]= agexact*agexact;
                   mu1=mu[i][(int) age]/stepm*YEARM ;            for (kk=1; kk<=cptcovage;kk++) {
                   mu2=mu[j][(int) age]/stepm*YEARM;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   /* Computing eigen value of matrix of covariance */            }
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   if(first1==1){            savm=oldm;
                     first1=0;            oldm=newm;
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);          } /* end mult */
                   }        
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          s1=s[mw[mi][i]][i];
                   /* Eigen vectors */          s2=s[mw[mi+1][i]][i];
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          bbh=(double)bh[mi][i]/(double)stepm; 
                   v21=sqrt(1.-v11*v11);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   v12=-v21;          ipmx +=1;
                   v22=v11;          sw += weight[i];
                   /*printf(fignu*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        } /* end of wave */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      } /* end of individual */
                   if(first==1){    }  else if(mle==3){  /* exponential inter-extrapolation */
                     first=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                     fprintf(ficgp,"\nset parametric;set nolabel");        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);        for(mi=1; mi<= wav[i]-1; mi++){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for (ii=1;ii<=nlstate+ndeath;ii++)
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);            for (j=1;j<=nlstate+ndeath;j++){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          for(d=0; d<dh[mi][i]; d++){
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            newm=savm;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);            cov[2]=agexact;
                     */            if(nagesqr==1)
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\              cov[3]= agexact*agexact;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for (kk=1; kk<=cptcovage;kk++) {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   }else{            }
                     first=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            savm=oldm;
                     /*            oldm=newm;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          } /* end mult */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          s1=s[mw[mi][i]][i];
                     */          s2=s[mw[mi+1][i]][i];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          bbh=(double)bh[mi][i]/(double)stepm; 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));          ipmx +=1;
                   }/* if first */          sw += weight[i];
                 } /* age mod 5 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               } /* end loop age */        } /* end of wave */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);      } /* end of individual */
               first=1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             } /*l12 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           } /* k12 */        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         } /*l1 */        for(mi=1; mi<= wav[i]-1; mi++){
       }/* k1 */          for (ii=1;ii<=nlstate+ndeath;ii++)
     } /* loop covariates */            for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          for(d=0; d<dh[mi][i]; d++){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            newm=savm;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            cov[2]=agexact;
   free_vector(xp,1,npar);            if(nagesqr==1)
   fclose(ficresprob);              cov[3]= agexact*agexact;
   fclose(ficresprobcov);            for (kk=1; kk<=cptcovage;kk++) {
   fclose(ficresprobcor);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   fclose(ficgp);            }
   fclose(fichtm);          
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /******************* Printing html file ***********/            oldm=newm;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          } /* end mult */
                   int lastpass, int stepm, int weightopt, char model[],\        
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          s1=s[mw[mi][i]][i];
                   int popforecast, int estepm ,\          s2=s[mw[mi+1][i]][i];
                   double jprev1, double mprev1,double anprev1, \          if( s2 > nlstate){ 
                   double jprev2, double mprev2,double anprev2){            lli=log(out[s1][s2] - savm[s1][s2]);
   int jj1, k1, i1, cpt;          }else{
   /*char optionfilehtm[FILENAMELENGTH];*/            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);          ipmx +=1;
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n        } /* end of wave */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      } /* end of individual */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  - Life expectancies by age and initial health status (estepm=%2d months):        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        for(mi=1; mi<= wav[i]-1; mi++){
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
  m=cptcoveff;            }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
  jj1=0;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for(k1=1; k1<=m;k1++){            cov[2]=agexact;
    for(i1=1; i1<=ncodemax[k1];i1++){            if(nagesqr==1)
      jj1++;              cov[3]= agexact*agexact;
      if (cptcovn > 0) {            for (kk=1; kk<=cptcovage;kk++) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
        for (cpt=1; cpt<=cptcoveff;cpt++)            }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      /* Pij */            savm=oldm;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            oldm=newm;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              } /* end mult */
      /* Quasi-incidences */        
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          s1=s[mw[mi][i]][i];
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          s2=s[mw[mi+1][i]][i];
        /* Stable prevalence in each health state */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
        for(cpt=1; cpt<nlstate;cpt++){          ipmx +=1;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          sw += weight[i];
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      for(cpt=1; cpt<=nlstate;cpt++) {        } /* end of wave */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      } /* end of individual */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    } /* End of if */
      }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 health expectancies in states (1) and (2): e%s%d.png<br>    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    return -l;
    } /* end i1 */  }
  }/* End k1 */  
  fprintf(fichtm,"</ul>");  /*************** log-likelihood *************/
   double funcone( double *x)
   {
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    /* Same as likeli but slower because of a lot of printf and if */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    int i, ii, j, k, mi, d, kk;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    double **out;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    double lli; /* Individual log likelihood */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    double llt;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    int s1, s2;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    double bbh, survp;
     double agexact;
  if(popforecast==1) fprintf(fichtm,"\n    /*extern weight */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    /* We are differentiating ll according to initial status */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         <br>",fileres,fileres,fileres,fileres);    /*for(i=1;i<imx;i++) 
  else      printf(" %d\n",s[4][i]);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    cov[1]=1.;
   
  m=cptcoveff;    for(k=1; k<=nlstate; k++) ll[k]=0.;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  jj1=0;      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
  for(k1=1; k1<=m;k1++){      for(mi=1; mi<= wav[i]-1; mi++){
    for(i1=1; i1<=ncodemax[k1];i1++){        for (ii=1;ii<=nlstate+ndeath;ii++)
      jj1++;          for (j=1;j<=nlstate+ndeath;j++){
      if (cptcovn > 0) {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
        for (cpt=1; cpt<=cptcoveff;cpt++)          }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for(d=0; d<dh[mi][i]; d++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          newm=savm;
      }          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
      for(cpt=1; cpt<=nlstate;cpt++) {          cov[2]=agexact;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          if(nagesqr==1)
 interval) in state (%d): v%s%d%d.png <br>            cov[3]= agexact*agexact;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for (kk=1; kk<=cptcovage;kk++) {
      }            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
    } /* end i1 */          }
  }/* End k1 */  
  fprintf(fichtm,"</ul>");          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 fclose(fichtm);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 /******************* Gnuplot file **************/          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          savm=oldm;
           oldm=newm;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        } /* end mult */
   int ng;        
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        s1=s[mw[mi][i]][i];
     printf("Problem with file %s",optionfilegnuplot);        s2=s[mw[mi+1][i]][i];
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        bbh=(double)bh[mi][i]/(double)stepm; 
   }        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 #ifdef windows         */
     fprintf(ficgp,"cd \"%s\" \n",pathc);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
 #endif          lli=log(out[s1][s2] - savm[s1][s2]);
 m=pow(2,cptcoveff);        } else if  (s2==-2) {
            for (j=1,survp=0. ; j<=nlstate; j++) 
  /* 1eme*/            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (cpt=1; cpt<= nlstate ; cpt ++) {          lli= log(survp);
    for (k1=1; k1<= m ; k1 ++) {        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 #ifdef windows        } else if(mle==2){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        } else if(mle==3){  /* exponential inter-extrapolation */
 #endif          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 #ifdef unix        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          lli=log(out[s1][s2]); /* Original formula */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        } else{  /* mle=0 back to 1 */
 #endif          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
 for (i=1; i<= nlstate ; i ++) {        } /* End of if */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        ipmx +=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        sw += weight[i];
 }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for (i=1; i<= nlstate ; i ++) {        if(globpr){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresilk,"%9ld %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f\
   else fprintf(ficgp," \%%*lf (\%%*lf)");   %11.6f %11.6f %11.6f ", \
 }                  num[i], agexact, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
      for (i=1; i<= nlstate ; i ++) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            llt +=ll[k]*gipmx/gsw;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 }            }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          fprintf(ficresilk," %10.6f\n", -llt);
 #ifdef unix        }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      } /* end of wave */
 #endif    } /* end of individual */
    }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /*2 eme*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   for (k1=1; k1<= m ; k1 ++) {      gipmx=ipmx;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      gsw=sw;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    }
        return -l;
     for (i=1; i<= nlstate+1 ; i ++) {  }
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /*************** function likelione ***********/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }      /* This routine should help understanding what is done with 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       the selection of individuals/waves and
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       to check the exact contribution to the likelihood.
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       Plotting could be done.
       for (j=1; j<= nlstate+1 ; j ++) {     */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int k;
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      if(*globpri !=0){ /* Just counts and sums, no printings */
       fprintf(ficgp,"\" t\"\" w l 0,");      strcpy(fileresilk,"ILK_"); 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      strcat(fileresilk,fileresu);
       for (j=1; j<= nlstate+1 ; j ++) {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        printf("Problem with resultfile: %s\n", fileresilk);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 }        }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficresilk, "#num_i age i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   }      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   /*3eme*/      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {    *fretone=(*funcone)(p);
       k=2+nlstate*(2*cpt-2);    if(*globpri !=0){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      fclose(ficresilk);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle >= 1. You should at least run with mle >= 1 and starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      fprintf(fichtm,"<br>- The first 3 individuals are drawn with lines. The function drawn is -2Log(L) in log scale: <a href=\"%s.png\">%s.png</a><br> \
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  <img src=\"%s.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      fflush(fichtm);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    } 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    return;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  }
   
 */  
       for (i=1; i< nlstate ; i ++) {  /*********** Maximum Likelihood Estimation ***************/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       }  {
     }    int i,j, iter=0;
   }    double **xi;
      double fret;
   /* CV preval stat */    double fretone; /* Only one call to likelihood */
     for (k1=1; k1<= m ; k1 ++) {    /*  char filerespow[FILENAMELENGTH];*/
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;  #ifdef NLOPT
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    int creturn;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    nlopt_opt opt;
     /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
       for (i=1; i< nlstate ; i ++)    double *lb;
         fprintf(ficgp,"+$%d",k+i+1);    double minf; /* the minimum objective value, upon return */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double * p1; /* Shifted parameters from 0 instead of 1 */
          myfunc_data dinst, *d = &dinst;
       l=3+(nlstate+ndeath)*cpt;  #endif
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;    xi=matrix(1,npar,1,npar);
         fprintf(ficgp,"+$%d",l+i+1);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          xi[i][j]=(i==j ? 1.0 : 0.0);
     }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }      strcpy(filerespow,"POW_"); 
      strcat(filerespow,fileres);
   /* proba elementaires */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
    for(i=1,jk=1; i <=nlstate; i++){      printf("Problem with resultfile: %s\n", filerespow);
     for(k=1; k <=(nlstate+ndeath); k++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       if (k != i) {    }
         for(j=1; j <=ncovmodel; j++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    for (i=1;i<=nlstate;i++)
           jk++;      for(j=1;j<=nlstate+ndeath;j++)
           fprintf(ficgp,"\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         }    fprintf(ficrespow,"\n");
       }  #ifdef POWELL
     }    powell(p,xi,npar,ftol,&iter,&fret,func);
    }  #endif
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  #ifdef NLOPT
      for(jk=1; jk <=m; jk++) {  #ifdef NEWUOA
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
        if (ng==2)  #else
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
        else  #endif
          fprintf(ficgp,"\nset title \"Probability\"\n");    lb=vector(0,npar-1);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
        i=1;    nlopt_set_lower_bounds(opt, lb);
        for(k2=1; k2<=nlstate; k2++) {    nlopt_set_initial_step1(opt, 0.1);
          k3=i;    
          for(k=1; k<=(nlstate+ndeath); k++) {    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
            if (k != k2){    d->function = func;
              if(ng==2)    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    nlopt_set_min_objective(opt, myfunc, d);
              else    nlopt_set_xtol_rel(opt, ftol);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
              ij=1;      printf("nlopt failed! %d\n",creturn); 
              for(j=3; j <=ncovmodel; j++) {    }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    else {
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                  ij++;      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                }      iter=1; /* not equal */
                else    }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    nlopt_destroy(opt);
              }  #endif
              fprintf(ficgp,")/(1");    free_matrix(xi,1,npar,1,npar);
                  fclose(ficrespow);
              for(k1=1; k1 <=nlstate; k1++){      printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                ij=1;    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;  /**** Computes Hessian and covariance matrix ***/
                  }  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                  else  {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double  **a,**y,*x,pd;
                }    /* double **hess; */
                fprintf(ficgp,")");    int i, j;
              }    int *indx;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
              i=i+ncovmodel;    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
            }    void lubksb(double **a, int npar, int *indx, double b[]) ;
          } /* end k */    void ludcmp(double **a, int npar, int *indx, double *d) ;
        } /* end k2 */    double gompertz(double p[]);
      } /* end jk */    /* hess=matrix(1,npar,1,npar); */
    } /* end ng */  
    fclose(ficgp);    printf("\nCalculation of the hessian matrix. Wait...\n");
 }  /* end gnuplot */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       printf("%d-",i);fflush(stdout);
 /*************** Moving average **************/      fprintf(ficlog,"%d-",i);fflush(ficlog);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   int i, cpt, cptcod;      
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      /*  printf(" %f ",p[i]);
       for (i=1; i<=nlstate;i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    }
           mobaverage[(int)agedeb][i][cptcod]=0.;    
        for (i=1;i<=npar;i++) {
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for (j=1;j<=npar;j++)  {
       for (i=1; i<=nlstate;i++){        if (j>i) { 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          printf(".%d-%d",i,j);fflush(stdout);
           for (cpt=0;cpt<=4;cpt++){          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
           }          
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          hess[j][i]=hess[i][j];    
         }          /*printf(" %lf ",hess[i][j]);*/
       }        }
     }      }
        }
 }    printf("\n");
     fprintf(ficlog,"\n");
   
 /************** Forecasting ******************/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    a=matrix(1,npar,1,npar);
   int *popage;    y=matrix(1,npar,1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    x=vector(1,npar);
   double *popeffectif,*popcount;    indx=ivector(1,npar);
   double ***p3mat;    for (i=1;i<=npar;i++)
   char fileresf[FILENAMELENGTH];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      x[j]=1;
        lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
   strcpy(fileresf,"f");        matcov[i][j]=x[i];
   strcat(fileresf,fileres);      }
   if((ficresf=fopen(fileresf,"w"))==NULL) {    }
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    printf("\n#Hessian matrix#\n");
   }    fprintf(ficlog,"\n#Hessian matrix#\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    for (i=1;i<=npar;i++) { 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      for (j=1;j<=npar;j++) { 
         printf("%.6e ",hess[i][j]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        fprintf(ficlog,"%.6e ",hess[i][j]);
       }
   if (mobilav==1) {      printf("\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    }
   }  
     /* printf("\n#Covariance matrix#\n"); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
   if (stepm<=12) stepsize=1;    /* for (i=1;i<=npar;i++) {  */
      /*   for (j=1;j<=npar;j++) {  */
   agelim=AGESUP;    /*     printf("%.6e ",matcov[i][j]); */
      /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
   hstepm=1;    /*   } */
   hstepm=hstepm/stepm;    /*   printf("\n"); */
   yp1=modf(dateintmean,&yp);    /*   fprintf(ficlog,"\n"); */
   anprojmean=yp;    /* } */
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;    /* Recompute Inverse */
   yp1=modf((yp2*30.5),&yp);    /* for (i=1;i<=npar;i++) */
   jprojmean=yp;    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
   if(jprojmean==0) jprojmean=1;    /* ludcmp(a,npar,indx,&pd); */
   if(mprojmean==0) jprojmean=1;  
      /*  printf("\n#Hessian matrix recomputed#\n"); */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
      /* for (j=1;j<=npar;j++) { */
   for(cptcov=1;cptcov<=i2;cptcov++){    /*   for (i=1;i<=npar;i++) x[i]=0; */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /*   x[j]=1; */
       k=k+1;    /*   lubksb(a,npar,indx,x); */
       fprintf(ficresf,"\n#******");    /*   for (i=1;i<=npar;i++){  */
       for(j=1;j<=cptcoveff;j++) {    /*     y[i][j]=x[i]; */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*     printf("%.3e ",y[i][j]); */
       }    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
       fprintf(ficresf,"******\n");    /*   } */
       fprintf(ficresf,"# StartingAge FinalAge");    /*   printf("\n"); */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /*   fprintf(ficlog,"\n"); */
          /* } */
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    /* Verifying the inverse matrix */
         fprintf(ficresf,"\n");  #ifdef DEBUGHESS
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
           nhstepm = nhstepm/hstepm;  
              for (j=1;j<=npar;j++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++){ 
           oldm=oldms;savm=savms;        printf("%.2f ",y[i][j]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficlog,"%.2f ",y[i][j]);
              }
           for (h=0; h<=nhstepm; h++){      printf("\n");
             if (h==(int) (calagedate+YEARM*cpt)) {      fprintf(ficlog,"\n");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    }
             }  #endif
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    free_matrix(a,1,npar,1,npar);
               for(i=1; i<=nlstate;i++) {                  free_matrix(y,1,npar,1,npar);
                 if (mobilav==1)    free_vector(x,1,npar);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_ivector(indx,1,npar);
                 else {    /* free_matrix(hess,1,npar,1,npar); */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }  
                  }
               }  
               if (h==(int)(calagedate+12*cpt)){  /*************** hessian matrix ****************/
                 fprintf(ficresf," %.3f", kk1);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
                          { /* Around values of x, computes the function func and returns the scales delti and hessian */
               }    int i;
             }    int l=1, lmax=20;
           }    double k1,k2, res, fx;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double p2[MAXPARM+1]; /* identical to x */
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       }    int k=0,kmax=10;
     }    double l1;
   }  
            fx=func(x);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   fclose(ficresf);      l1=pow(10,l);
 }      delts=delt;
 /************** Forecasting ******************/      for(k=1 ; k <kmax; k=k+1){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        delt = delta*(l1*k);
          p2[theta]=x[theta] +delt;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   int *popage;        p2[theta]=x[theta]-delt;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        k2=func(p2)-fx;
   double *popeffectif,*popcount;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   double ***p3mat,***tabpop,***tabpopprev;        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
   char filerespop[FILENAMELENGTH];        
   #ifdef DEBUGHESSII
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   agelim=AGESUP;  #endif
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          k=kmax;
          }
          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   strcpy(filerespop,"pop");          k=kmax; l=lmax*10;
   strcat(filerespop,fileres);        }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     printf("Problem with forecast resultfile: %s\n", filerespop);          delts=delt;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        }
   }      } /* End loop k */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    delti[theta]=delts;
     return res; 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
   }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     movingaverage(agedeb, fage, ageminpar, mobaverage);  {
   }    int i;
     int l=1, lmax=20;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double k1,k2,k3,k4,res,fx;
   if (stepm<=12) stepsize=1;    double p2[MAXPARM+1];
      int k, kmax=1;
   agelim=AGESUP;    double v1, v2, cv12, lc1, lc2;
      
   hstepm=1;    fx=func(x);
   hstepm=hstepm/stepm;    for (k=1; k<=kmax; k=k+10) {
        for (i=1;i<=npar;i++) p2[i]=x[i];
   if (popforecast==1) {      p2[thetai]=x[thetai]+delti[thetai]*k;
     if((ficpop=fopen(popfile,"r"))==NULL) {      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
       printf("Problem with population file : %s\n",popfile);exit(0);      k1=func(p2)-fx;
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    
     }      p2[thetai]=x[thetai]+delti[thetai]*k;
     popage=ivector(0,AGESUP);      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
     popeffectif=vector(0,AGESUP);      k2=func(p2)-fx;
     popcount=vector(0,AGESUP);    
          p2[thetai]=x[thetai]-delti[thetai]*k;
     i=1;        p2[thetaj]=x[thetaj]+delti[thetaj]*k;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      k3=func(p2)-fx;
        
     imx=i;      p2[thetai]=x[thetai]-delti[thetai]*k;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
   }      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
   for(cptcov=1;cptcov<=i2;cptcov++){      if(k1*k2*k3*k4 <0.){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        kmax=kmax+10;
       k=k+1;        if(kmax >=10){
       fprintf(ficrespop,"\n#******");        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
       for(j=1;j<=cptcoveff;j++) {        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficrespop,"******\n");        }
       fprintf(ficrespop,"# Age");      }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  #ifdef DEBUGHESSIJ
       if (popforecast==1)  fprintf(ficrespop," [Population]");      v1=hess[thetai][thetai];
            v2=hess[thetaj][thetaj];
       for (cpt=0; cpt<=0;cpt++) {      cv12=res;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* Computing eigen value of Hessian matrix */
              lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      if ((lc2 <0) || (lc1 <0) ){
           nhstepm = nhstepm/hstepm;        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                  fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           oldm=oldms;savm=savms;        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
          #endif
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    return res;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {      /* Not done yet: Was supposed to fix if not exactly at the maximum */
               kk1=0.;kk2=0;  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
               for(i=1; i<=nlstate;i++) {                /* { */
                 if (mobilav==1)  /*   int i; */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  /*   int l=1, lmax=20; */
                 else {  /*   double k1,k2,k3,k4,res,fx; */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /*   double p2[MAXPARM+1]; */
                 }  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
               }  /*   int k=0,kmax=10; */
               if (h==(int)(calagedate+12*cpt)){  /*   double l1; */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    
                   /*fprintf(ficrespop," %.3f", kk1);  /*   fx=func(x); */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
               }  /*     l1=pow(10,l); */
             }  /*     delts=delt; */
             for(i=1; i<=nlstate;i++){  /*     for(k=1 ; k <kmax; k=k+1){ */
               kk1=0.;  /*       delt = delti*(l1*k); */
                 for(j=1; j<=nlstate;j++){  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
                 }  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  /*       k1=func(p2)-fx; */
             }        
   /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  /*       k2=func(p2)-fx; */
           }        
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
         }  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
       }  /*       k3=func(p2)-fx; */
          
   /******/  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  /*       k4=func(p2)-fx; */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /* #ifdef DEBUGHESSIJ */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
           nhstepm = nhstepm/hstepm;  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
            /* #endif */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
           oldm=oldms;savm=savms;  /*      k=kmax; */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*       } */
           for (h=0; h<=nhstepm; h++){  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
             if (h==(int) (calagedate+YEARM*cpt)) {  /*      k=kmax; l=lmax*10; */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  /*       } */
             }  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
             for(j=1; j<=nlstate+ndeath;j++) {  /*      delts=delt; */
               kk1=0.;kk2=0;  /*       } */
               for(i=1; i<=nlstate;i++) {                /*     } /\* End loop k *\/ */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      /*   } */
               }  /*   delti[theta]=delts; */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  /*   return res;  */
             }  /* } */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  /************** Inverse of matrix **************/
       }  void ludcmp(double **a, int n, int *indx, double *d) 
    }  { 
   }    int i,imax,j,k; 
      double big,dum,sum,temp; 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *vv; 
    
   if (popforecast==1) {    vv=vector(1,n); 
     free_ivector(popage,0,AGESUP);    *d=1.0; 
     free_vector(popeffectif,0,AGESUP);    for (i=1;i<=n;i++) { 
     free_vector(popcount,0,AGESUP);      big=0.0; 
   }      for (j=1;j<=n;j++) 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   fclose(ficrespop);      vv[i]=1.0/big; 
 }    } 
     for (j=1;j<=n;j++) { 
 /***********************************************/      for (i=1;i<j;i++) { 
 /**************** Main Program *****************/        sum=a[i][j]; 
 /***********************************************/        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 int main(int argc, char *argv[])      } 
 {      big=0.0; 
       for (i=j;i<=n;i++) { 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        sum=a[i][j]; 
   double agedeb, agefin,hf;        for (k=1;k<j;k++) 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   double fret;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double **xi,tmp,delta;          big=dum; 
           imax=i; 
   double dum; /* Dummy variable */        } 
   double ***p3mat;      } 
   int *indx;      if (j != imax) { 
   char line[MAXLINE], linepar[MAXLINE];        for (k=1;k<=n;k++) { 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          dum=a[imax][k]; 
   int firstobs=1, lastobs=10;          a[imax][k]=a[j][k]; 
   int sdeb, sfin; /* Status at beginning and end */          a[j][k]=dum; 
   int c,  h , cpt,l;        } 
   int ju,jl, mi;        *d = -(*d); 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        vv[imax]=vv[j]; 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      } 
   int mobilav=0,popforecast=0;      indx[j]=imax; 
   int hstepm, nhstepm;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      if (j != n) { 
         dum=1.0/(a[j][j]); 
   double bage, fage, age, agelim, agebase;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double ftolpl=FTOL;      } 
   double **prlim;    } 
   double *severity;    free_vector(vv,1,n);  /* Doesn't work */
   double ***param; /* Matrix of parameters */  ;
   double  *p;  } 
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */  void lubksb(double **a, int n, int *indx, double b[]) 
   double *delti; /* Scale */  { 
   double ***eij, ***vareij;    int i,ii=0,ip,j; 
   double **varpl; /* Variances of prevalence limits by age */    double sum; 
   double *epj, vepp;   
   double kk1, kk2;    for (i=1;i<=n;i++) { 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      ip=indx[i]; 
        sum=b[ip]; 
       b[ip]=b[i]; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
   char z[1]="c", occ;      b[i]=sum; 
 #include <sys/time.h>    } 
 #include <time.h>    for (i=n;i>=1;i--) { 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      sum=b[i]; 
        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   /* long total_usecs;      b[i]=sum/a[i][i]; 
   struct timeval start_time, end_time;    } 
    } 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);  void pstamp(FILE *fichier)
   {
   printf("\n%s",version);    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
   if(argc <=1){  }
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);  /************ Frequencies ********************/
   }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   else{  {  /* Some frequencies */
     strcpy(pathtot,argv[1]);    
   }    int i, m, jk, j1, bool, z1,j;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    int first;
   /*cygwin_split_path(pathtot,path,optionfile);    double ***freq; /* Frequencies */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double *pp, **prop;
   /* cutv(path,optionfile,pathtot,'\\');*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH];
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    pp=vector(1,nlstate);
   chdir(path);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   replace(pathc,path);    strcpy(fileresp,"P_");
     strcat(fileresp,fileresu);
 /*-------- arguments in the command line --------*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   /* Log file */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   strcat(filelog, optionfilefiname);      exit(0);
   strcat(filelog,".log");    /* */    }
   if((ficlog=fopen(filelog,"w"))==NULL)    {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     printf("Problem with logfile %s\n",filelog);    j1=0;
     goto end;    
   }    j=cptcoveff;
   fprintf(ficlog,"Log filename:%s\n",filelog);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficlog,"\n%s",version);  
   fprintf(ficlog,"\nEnter the parameter file name: ");    first=1;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   fflush(ficlog);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
   /* */    /*    j1++; */
   strcpy(fileres,"r");    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
   strcat(fileres, optionfilefiname);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   strcat(fileres,".txt");    /* Other files have txt extension */          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   /*---------arguments file --------*/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              freq[i][jk][m]=0;
     printf("Problem with optionfile %s\n",optionfile);        
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        for (i=1; i<=nlstate; i++)  
     goto end;          for(m=iagemin; m <= iagemax+3; m++)
   }            prop[i][m]=0;
         
   strcpy(filereso,"o");        dateintsum=0;
   strcat(filereso,fileres);        k2cpt=0;
   if((ficparo=fopen(filereso,"w"))==NULL) {        for (i=1; i<=imx; i++) {
     printf("Problem with Output resultfile: %s\n", filereso);          bool=1;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     goto end;            for (z1=1; z1<=cptcoveff; z1++)       
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
                   /* Tests if the value of each of the covariates of i is equal to filter j1 */
   /* Reads comments: lines beginning with '#' */                bool=0;
   while((c=getc(ficpar))=='#' && c!= EOF){                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
     ungetc(c,ficpar);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
     fgets(line, MAXLINE, ficpar);                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
     puts(line);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
     fputs(line,ficparo);              } 
   }          }
   ungetc(c,ficpar);   
           if (bool==1){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            for(m=firstpass; m<=lastpass; m++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);              k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 while((c=getc(ficpar))=='#' && c!= EOF){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     ungetc(c,ficpar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fgets(line, MAXLINE, ficpar);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     puts(line);                if (m<lastpass) {
     fputs(line,ficparo);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   ungetc(c,ficpar);                }
                  
                    if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   covar=matrix(0,NCOVMAX,1,n);                  dateintsum=dateintsum+k2;
   cptcovn=0;                  k2cpt++;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                }
                 /*}*/
   ncovmodel=2+cptcovn;            }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          }
          } /* end i */
   /* Read guess parameters */         
   /* Reads comments: lines beginning with '#' */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   while((c=getc(ficpar))=='#' && c!= EOF){        pstamp(ficresp);
     ungetc(c,ficpar);        if  (cptcovn>0) {
     fgets(line, MAXLINE, ficpar);          fprintf(ficresp, "\n#********** Variable "); 
     puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     fputs(line,ficparo);          fprintf(ficresp, "**********\n#");
   }          fprintf(ficlog, "\n#********** Variable "); 
   ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
            fprintf(ficlog, "**********\n#");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++)        for(i=1; i<=nlstate;i++) 
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficresp, "\n");
       fprintf(ficparo,"%1d%1d",i1,j1);        
       if(mle==1)        for(i=iagemin; i <= iagemax+3; i++){
         printf("%1d%1d",i,j);          if(i==iagemax+3){
       fprintf(ficlog,"%1d%1d",i,j);            fprintf(ficlog,"Total");
       for(k=1; k<=ncovmodel;k++){          }else{
         fscanf(ficpar," %lf",&param[i][j][k]);            if(first==1){
         if(mle==1){              first=0;
           printf(" %lf",param[i][j][k]);              printf("See log file for details...\n");
           fprintf(ficlog," %lf",param[i][j][k]);            }
         }            fprintf(ficlog,"Age %d", i);
         else          }
           fprintf(ficlog," %lf",param[i][j][k]);          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficparo," %lf",param[i][j][k]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       }              pp[jk] += freq[jk][m][i]; 
       fscanf(ficpar,"\n");          }
       if(mle==1)          for(jk=1; jk <=nlstate ; jk++){
         printf("\n");            for(m=-1, pos=0; m <=0 ; m++)
       fprintf(ficlog,"\n");              pos += freq[jk][m][i];
       fprintf(ficparo,"\n");            if(pp[jk]>=1.e-10){
     }              if(first==1){
                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   p=param[1][1];            }else{
                if(first==1)
   /* Reads comments: lines beginning with '#' */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          }
     puts(line);  
     fputs(line,ficparo);          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   ungetc(c,ficpar);              pp[jk] += freq[jk][m][i];
           }       
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            pos += pp[jk];
   for(i=1; i <=nlstate; i++){            posprop += prop[jk][i];
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(jk=1; jk <=nlstate ; jk++){
       printf("%1d%1d",i,j);            if(pos>=1.e-5){
       fprintf(ficparo,"%1d%1d",i1,j1);              if(first==1)
       for(k=1; k<=ncovmodel;k++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fscanf(ficpar,"%le",&delti3[i][j][k]);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         printf(" %le",delti3[i][j][k]);            }else{
         fprintf(ficparo," %le",delti3[i][j][k]);              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fscanf(ficpar,"\n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       printf("\n");            }
       fprintf(ficparo,"\n");            if( i <= iagemax){
     }              if(pos>=1.e-5){
   }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   delti=delti3[1][1];                /*probs[i][jk][j1]= pp[jk]/pos;*/
                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /* Reads comments: lines beginning with '#' */              }
   while((c=getc(ficpar))=='#' && c!= EOF){              else
     ungetc(c,ficpar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }
     fputs(line,ficparo);          
   }          for(jk=-1; jk <=nlstate+ndeath; jk++)
   ungetc(c,ficpar);            for(m=-1; m <=nlstate+ndeath; m++)
                if(freq[jk][m][i] !=0 ) {
   matcov=matrix(1,npar,1,npar);              if(first==1)
   for(i=1; i <=npar; i++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     fscanf(ficpar,"%s",&str);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     if(mle==1)              }
       printf("%s",str);          if(i <= iagemax)
     fprintf(ficlog,"%s",str);            fprintf(ficresp,"\n");
     fprintf(ficparo,"%s",str);          if(first==1)
     for(j=1; j <=i; j++){            printf("Others in log...\n");
       fscanf(ficpar," %le",&matcov[i][j]);          fprintf(ficlog,"\n");
       if(mle==1){        }
         printf(" %.5le",matcov[i][j]);        /*}*/
         fprintf(ficlog," %.5le",matcov[i][j]);    }
       }    dateintmean=dateintsum/k2cpt; 
       else   
         fprintf(ficlog," %.5le",matcov[i][j]);    fclose(ficresp);
       fprintf(ficparo," %.5le",matcov[i][j]);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     }    free_vector(pp,1,nlstate);
     fscanf(ficpar,"\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     if(mle==1)    /* End of Freq */
       printf("\n");  }
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   for(i=1; i <=npar; i++)  {  
     for(j=i+1;j<=npar;j++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       matcov[i][j]=matcov[j][i];       in each health status at the date of interview (if between dateprev1 and dateprev2).
           We still use firstpass and lastpass as another selection.
   if(mle==1)    */
     printf("\n");   
   fprintf(ficlog,"\n");    int i, m, jk, j1, bool, z1,j;
   
     double **prop;
     /*-------- Rewriting paramater file ----------*/    double posprop; 
      strcpy(rfileres,"r");    /* "Rparameterfile */    double  y2; /* in fractional years */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    int iagemin, iagemax;
      strcat(rfileres,".");    /* */    int first; /** to stop verbosity which is redirected to log file */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {    iagemin= (int) agemin;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    iagemax= (int) agemax;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    /*pp=vector(1,nlstate);*/
     }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     fprintf(ficres,"#%s\n",version);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        j1=0;
     /*-------- data file ----------*/    
     if((fic=fopen(datafile,"r"))==NULL)    {    /*j=cptcoveff;*/
       printf("Problem with datafile: %s\n", datafile);goto end;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    
     }    first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     n= lastobs;      /*for(i1=1; i1<=ncodemax[k1];i1++){
     severity = vector(1,maxwav);        j1++;*/
     outcome=imatrix(1,maxwav+1,1,n);        
     num=ivector(1,n);        for (i=1; i<=nlstate; i++)  
     moisnais=vector(1,n);          for(m=iagemin; m <= iagemax+3; m++)
     annais=vector(1,n);            prop[i][m]=0.0;
     moisdc=vector(1,n);       
     andc=vector(1,n);        for (i=1; i<=imx; i++) { /* Each individual */
     agedc=vector(1,n);          bool=1;
     cod=ivector(1,n);          if  (cptcovn>0) {
     weight=vector(1,n);            for (z1=1; z1<=cptcoveff; z1++) 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
     mint=matrix(1,maxwav,1,n);                bool=0;
     anint=matrix(1,maxwav,1,n);          } 
     s=imatrix(1,maxwav+1,1,n);          if (bool==1) { 
     adl=imatrix(1,maxwav+1,1,n);                for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     tab=ivector(1,NCOVMAX);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     ncodemax=ivector(1,8);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     i=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     while (fgets(line, MAXLINE, fic) != NULL)    {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       if ((i >= firstobs) && (i <=lastobs)) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                          /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         for (j=maxwav;j>=1;j--){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                  prop[s[m][i]][iagemax+3] += weight[i]; 
           strcpy(line,stra);                } 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            } /* end selection of waves */
         }          }
                }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=iagemin; i <= iagemax+3; i++){  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          } 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          
           for(jk=1; jk <=nlstate ; jk++){     
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            if( i <=  iagemax){ 
         for (j=ncovcol;j>=1;j--){              if(posprop>=1.e-5){ 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                probs[i][jk][j1]= prop[jk][i]/posprop;
         }              } else{
         num[i]=atol(stra);                if(first==1){
                          first=0;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                }
               }
         i=i+1;            } 
       }          }/* end jk */ 
     }        }/* end i */ 
     /* printf("ii=%d", ij);      /*} *//* end i1 */
        scanf("%d",i);*/    } /* end j1 */
   imx=i-1; /* Number of individuals */    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   /* for (i=1; i<=imx; i++){    /*free_vector(pp,1,nlstate);*/
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  }  /* End of prevalence */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/  /************* Waves Concatenation ***************/
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
   /* Calculation of the number of parameter from char model*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   Tprod=ivector(1,15);       and mw[mi+1][i]. dh depends on stepm.
   Tvaraff=ivector(1,15);       */
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if (strlen(model) >1){       double sum=0., jmean=0.;*/
     j=0, j1=0, k1=1, k2=1;    int first;
     j=nbocc(model,'+');    int j, k=0,jk, ju, jl;
     j1=nbocc(model,'*');    double sum=0.;
     cptcovn=j+1;    first=0;
     cptcovprod=j1;    jmin=100000;
        jmax=-1;
     strcpy(modelsav,model);    jmean=0.;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    for(i=1; i<=imx; i++){
       printf("Error. Non available option model=%s ",model);      mi=0;
       fprintf(ficlog,"Error. Non available option model=%s ",model);      m=firstpass;
       goto end;      while(s[m][i] <= nlstate){
     }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
              mw[++mi][i]=m;
     for(i=(j+1); i>=1;i--){        if(m >=lastpass)
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */          break;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        else
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          m++;
       /*scanf("%d",i);*/      }/* end while */
       if (strchr(strb,'*')) {  /* Model includes a product */      if (s[m][i] > nlstate){
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        mi++;     /* Death is another wave */
         if (strcmp(strc,"age")==0) { /* Vn*age */        /* if(mi==0)  never been interviewed correctly before death */
           cptcovprod--;           /* Only death is a correct wave */
           cutv(strb,stre,strd,'V');        mw[mi][i]=m;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      }
           cptcovage++;  
             Tage[cptcovage]=i;      wav[i]=mi;
             /*printf("stre=%s ", stre);*/      if(mi==0){
         }        nbwarn++;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        if(first==0){
           cptcovprod--;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           cutv(strb,stre,strc,'V');          first=1;
           Tvar[i]=atoi(stre);        }
           cptcovage++;        if(first==1){
           Tage[cptcovage]=i;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }        }
         else {  /* Age is not in the model */      } /* end mi==0 */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    } /* End individuals */
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    for(i=1; i<=imx; i++){
           Tprod[k1]=i;      for(mi=1; mi<wav[i];mi++){
           Tvard[k1][1]=atoi(strc); /* m*/        if (stepm <=0)
           Tvard[k1][2]=atoi(stre); /* n */          dh[mi][i]=1;
           Tvar[cptcovn+k2]=Tvard[k1][1];        else{
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           for (k=1; k<=lastobs;k++)            if (agedc[i] < 2*AGESUP) {
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           k1++;              if(j==0) j=1;  /* Survives at least one month after exam */
           k2=k2+2;              else if(j<0){
         }                nberr++;
       }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       else { /* no more sum */                j=1; /* Temporary Dangerous patch */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
        /*  scanf("%d",i);*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       cutv(strd,strc,strb,'V');                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       Tvar[i]=atoi(strc);              }
       }              k=k+1;
       strcpy(modelsav,stra);                if (j >= jmax){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                jmax=j;
         scanf("%d",i);*/                ijmax=i;
     } /* end of loop + */              }
   } /* end model */              if (j <= jmin){
                  jmin=j;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                ijmin=i;
   printf("cptcovprod=%d ", cptcovprod);              }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);              sum=sum+j;
   scanf("%d ",i);*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fclose(fic);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
     /*  if(mle==1){*/          }
     if (weightopt != 1) { /* Maximisation without weights*/          else{
       for(i=1;i<=n;i++) weight[i]=1.0;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);            k=k+1;
             if (j >= jmax) {
     for (i=1; i<=imx; i++) {              jmax=j;
       for(m=2; (m<= maxwav); m++) {              ijmax=i;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            }
          anint[m][i]=9999;            else if (j <= jmin){
          s[m][i]=-1;              jmin=j;
        }              ijmin=i;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            }
       }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
     for (i=1; i<=imx; i++)  {              nberr++;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(m=1; (m<= maxwav); m++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         if(s[m][i] >0){            }
           if (s[m][i] >= nlstate+1) {            sum=sum+j;
             if(agedc[i]>0)          }
               if(moisdc[i]!=99 && andc[i]!=9999)          jk= j/stepm;
                 agev[m][i]=agedc[i];          jl= j -jk*stepm;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          ju= j -(jk+1)*stepm;
            else {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
               if (andc[i]!=9999){            if(jl==0){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              dh[mi][i]=jk;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);              bh[mi][i]=0;
               agev[m][i]=-1;            }else{ /* We want a negative bias in order to only have interpolation ie
               }                    * to avoid the price of an extra matrix product in likelihood */
             }              dh[mi][i]=jk+1;
           }              bh[mi][i]=ju;
           else if(s[m][i] !=9){ /* Should no more exist */            }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          }else{
             if(mint[m][i]==99 || anint[m][i]==9999)            if(jl <= -ju){
               agev[m][i]=1;              dh[mi][i]=jk;
             else if(agev[m][i] <agemin){              bh[mi][i]=jl;       /* bias is positive if real duration
               agemin=agev[m][i];                                   * is higher than the multiple of stepm and negative otherwise.
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                                   */
             }            }
             else if(agev[m][i] >agemax){            else{
               agemax=agev[m][i];              dh[mi][i]=jk+1;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              bh[mi][i]=ju;
             }            }
             /*agev[m][i]=anint[m][i]-annais[i];*/            if(dh[mi][i]==0){
             /*   agev[m][i] = age[i]+2*m;*/              dh[mi][i]=1; /* At least one step */
           }              bh[mi][i]=ju; /* At least one step */
           else { /* =9 */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             agev[m][i]=1;            }
             s[m][i]=-1;          } /* end if mle */
           }        }
         }      } /* end wave */
         else /*= 0 Unknown */    }
           agev[m][i]=1;    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){  /*********** Tricode ****************************/
         if (s[m][i] > (nlstate+ndeath)) {  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    {
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      /**< Uses cptcovn+2*cptcovprod as the number of covariates */
           goto end;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         }     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     }     * nbcode[Tvar[j]][1]= 
     */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     free_vector(severity,1,maxwav);    int cptcode=0; /* Modality max of covariates j */
     free_imatrix(outcome,1,maxwav+1,1,n);    int modmincovj=0; /* Modality min of covariates j */
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);    cptcoveff=0; 
        free_matrix(anint,1,maxwav,1,n);*/   
     free_vector(moisdc,1,n);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     free_vector(andc,1,n);  
     /* Loop on covariates without age and products */
        for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
     wav=ivector(1,imx);      for (k=-1; k < maxncov; k++) Ndum[k]=0;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                                 modality of this covariate Vj*/ 
            ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     /* Concatenates waves */                                      * If product of Vn*Vm, still boolean *:
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                       * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
       Tcode=ivector(1,100);                                        modality of the nth covariate of individual i. */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        if (ij > modmaxcovj)
       ncodemax[1]=1;          modmaxcovj=ij; 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        else if (ij < modmincovj) 
                modmincovj=ij; 
    codtab=imatrix(1,100,1,10);        if ((ij < -1) && (ij > NCOVMAX)){
    h=0;          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
    m=pow(2,cptcoveff);          exit(1);
          }else
    for(k=1;k<=cptcoveff; k++){        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
      for(i=1; i <=(m/pow(2,k));i++){        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
        for(j=1; j <= ncodemax[k]; j++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        /* getting the maximum value of the modality of the covariate
            h++;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;           female is 1, then modmaxcovj=1.*/
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      } /* end for loop on individuals i */
          }      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
        }      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
      }      cptcode=modmaxcovj;
    }      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     /*for (i=0; i<=cptcode; i++) {*/
       codtab[1][2]=1;codtab[2][2]=2; */      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
    /* for(i=1; i <=m ;i++){        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
       for(k=1; k <=cptcovn; k++){        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
       }          if( k != -1){
       printf("\n");            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
       }                               covariate for which somebody answered excluding 
       scanf("%d",i);*/                               undefined. Usually 2: 0 and 1. */
              }
    /* Calculates basic frequencies. Computes observed prevalence at single age          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
        and prints on file fileres'p'. */                               covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
            }
            /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* Ndum[-1] number of undefined modalities */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
               If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
     /* For Powell, parameters are in a vector p[] starting at p[1]         modmincovj=3; modmaxcovj = 7;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
          defining two dummy variables: variables V1_1 and V1_2.
     if(mle==1){         nbcode[Tvar[j]][ij]=k;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);         nbcode[Tvar[j]][1]=0;
     }         nbcode[Tvar[j]][2]=1;
             nbcode[Tvar[j]][3]=2;
     /*--------- results files --------------*/         To be continued (not working yet).
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      */
        ij=0; /* ij is similar to i but can jump over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
    jk=1;          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            break;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          }
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          ij++;
    for(i=1,jk=1; i <=nlstate; i++){          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
      for(k=1; k <=(nlstate+ndeath); k++){          cptcode = ij; /* New max modality for covar j */
        if (k != i)      } /* end of loop on modality i=-1 to 1 or more */
          {        
            printf("%d%d ",i,k);      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
            fprintf(ficlog,"%d%d ",i,k);      /*  /\*recode from 0 *\/ */
            fprintf(ficres,"%1d%1d ",i,k);      /*                               k is a modality. If we have model=V1+V1*sex  */
            for(j=1; j <=ncovmodel; j++){      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              printf("%f ",p[jk]);      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
              fprintf(ficlog,"%f ",p[jk]);      /*  } */
              fprintf(ficres,"%f ",p[jk]);      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
              jk++;      /*  if (ij > ncodemax[j]) { */
            }      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
            printf("\n");      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
            fprintf(ficlog,"\n");      /*    break; */
            fprintf(ficres,"\n");      /*  } */
          }      /*   }  /\* end of loop on modality k *\/ */
      }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
    }    
    if(mle==1){   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
      /* Computing hessian and covariance matrix */    
      ftolhess=ftol; /* Usually correct */    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
      hesscov(matcov, p, npar, delti, ftolhess, func);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
    }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     Ndum[ij]++; /* Might be supersed V1 + V1*age */
    printf("# Scales (for hessian or gradient estimation)\n");   } 
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  
    for(i=1,jk=1; i <=nlstate; i++){   ij=0;
      for(j=1; j <=nlstate+ndeath; j++){   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
        if (j!=i) {     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
          fprintf(ficres,"%1d%1d",i,j);     if((Ndum[i]!=0) && (i<=ncovcol)){
          printf("%1d%1d",i,j);       ij++;
          fprintf(ficlog,"%1d%1d",i,j);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
          for(k=1; k<=ncovmodel;k++){       Tvaraff[ij]=i; /*For printing (unclear) */
            printf(" %.5e",delti[jk]);     }else{
            fprintf(ficlog," %.5e",delti[jk]);         /* Tvaraff[ij]=0; */
            fprintf(ficres," %.5e",delti[jk]);     }
            jk++;   }
          }   /* ij--; */
          printf("\n");   cptcoveff=ij; /*Number of total covariates*/
          fprintf(ficlog,"\n");  
          fprintf(ficres,"\n");  }
        }  
      }  
    }  /*********** Health Expectancies ****************/
      
    k=1;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
    if(mle==1)  {
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /* Health expectancies, no variances */
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    int i, j, nhstepm, hstepm, h, nstepm;
    for(i=1;i<=npar;i++){    int nhstepma, nstepma; /* Decreasing with age */
      /*  if (k>nlstate) k=1;    double age, agelim, hf;
          i1=(i-1)/(ncovmodel*nlstate)+1;    double ***p3mat;
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double eip;
          printf("%s%d%d",alph[k],i1,tab[i]);*/  
      fprintf(ficres,"%3d",i);    pstamp(ficreseij);
      if(mle==1)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
        printf("%3d",i);    fprintf(ficreseij,"# Age");
      fprintf(ficlog,"%3d",i);    for(i=1; i<=nlstate;i++){
      for(j=1; j<=i;j++){      for(j=1; j<=nlstate;j++){
        fprintf(ficres," %.5e",matcov[i][j]);        fprintf(ficreseij," e%1d%1d ",i,j);
        if(mle==1)      }
          printf(" %.5e",matcov[i][j]);      fprintf(ficreseij," e%1d. ",i);
        fprintf(ficlog," %.5e",matcov[i][j]);    }
      }    fprintf(ficreseij,"\n");
      fprintf(ficres,"\n");  
      if(mle==1)    
        printf("\n");    if(estepm < stepm){
      fprintf(ficlog,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
      k++;    }
    }    else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
    while((c=getc(ficpar))=='#' && c!= EOF){     * This is mainly to measure the difference between two models: for example
      ungetc(c,ficpar);     * if stepm=24 months pijx are given only every 2 years and by summing them
      fgets(line, MAXLINE, ficpar);     * we are calculating an estimate of the Life Expectancy assuming a linear 
      puts(line);     * progression in between and thus overestimating or underestimating according
      fputs(line,ficparo);     * to the curvature of the survival function. If, for the same date, we 
    }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    ungetc(c,ficpar);     * to compare the new estimate of Life expectancy with the same linear 
    estepm=0;     * hypothesis. A more precise result, taking into account a more precise
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     * curvature will be obtained if estepm is as small as stepm. */
    if (estepm==0 || estepm < stepm) estepm=stepm;  
    if (fage <= 2) {    /* For example we decided to compute the life expectancy with the smallest unit */
      bage = ageminpar;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      fage = agemaxpar;       nhstepm is the number of hstepm from age to agelim 
    }       nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");       and note for a fixed period like estepm months */
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       survival function given by stepm (the optimization length). Unfortunately it
           means that if the survival funtion is printed only each two years of age and if
    while((c=getc(ficpar))=='#' && c!= EOF){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      ungetc(c,ficpar);       results. So we changed our mind and took the option of the best precision.
      fgets(line, MAXLINE, ficpar);    */
      puts(line);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      fputs(line,ficparo);  
    }    agelim=AGESUP;
    ungetc(c,ficpar);    /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /* nhstepm age range expressed in number of stepm */
        nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
    while((c=getc(ficpar))=='#' && c!= EOF){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      ungetc(c,ficpar);    /* if (stepm >= YEARM) hstepm=1;*/
      fgets(line, MAXLINE, ficpar);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      puts(line);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fputs(line,ficparo);  
    }    for (age=bage; age<=fage; age ++){ 
    ungetc(c,ficpar);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
       /* If stepm=6 months */
   fscanf(ficpar,"pop_based=%d\n",&popbased);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   fprintf(ficparo,"pop_based=%d\n",popbased);           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   fprintf(ficres,"pop_based=%d\n",popbased);        
        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fgets(line, MAXLINE, ficpar);      
     puts(line);      printf("%d|",(int)age);fflush(stdout);
     fputs(line,ficparo);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }      
   ungetc(c,ficpar);      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        for(j=1; j<=nlstate;j++)
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficreseij,"%3.0f",age );
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++){
   }        eip=0;
   ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        fprintf(ficreseij,"%9.4f", eip );
       }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fprintf(ficreseij,"\n");
       
 /*------------ gnuplot -------------*/    }
   strcpy(optionfilegnuplot,optionfilefiname);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(optionfilegnuplot,".gp");    printf("\n");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fprintf(ficlog,"\n");
     printf("Problem with file %s",optionfilegnuplot);    
   }  }
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 /*--------- index.htm --------*/  
   {
   strcpy(optionfilehtm,optionfile);    /* Covariances of health expectancies eij and of total life expectancies according
   strcat(optionfilehtm,".htm");     to initial status i, ei. .
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    */
     printf("Problem with %s \n",optionfilehtm), exit(0);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    double ***p3matp, ***p3matm, ***varhe;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    double **dnewm,**doldm;
 \n    double *xp, *xm;
 Total number of observations=%d <br>\n    double **gp, **gm;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    double ***gradg, ***trgradg;
 <hr  size=\"2\" color=\"#EC5E5E\">    int theta;
  <ul><li><h4>Parameter files</h4>\n  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double eip, vip;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fclose(fichtm);    xp=vector(1,npar);
     xm=vector(1,npar);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    dnewm=matrix(1,nlstate*nlstate,1,npar);
      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 /*------------ free_vector  -------------*/    
  chdir(path);    pstamp(ficresstdeij);
      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
  free_ivector(wav,1,imx);    fprintf(ficresstdeij,"# Age");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    for(i=1; i<=nlstate;i++){
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(j=1; j<=nlstate;j++)
  free_ivector(num,1,n);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
  free_vector(agedc,1,n);      fprintf(ficresstdeij," e%1d. ",i);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    }
  fclose(ficparo);    fprintf(ficresstdeij,"\n");
  fclose(ficres);  
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   /*--------------- Prevalence limit --------------*/    fprintf(ficrescveij,"# Age");
      for(i=1; i<=nlstate;i++)
   strcpy(filerespl,"pl");      for(j=1; j<=nlstate;j++){
   strcat(filerespl,fileres);        cptj= (j-1)*nlstate+i;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(i2=1; i2<=nlstate;i2++)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(j2=1; j2<=nlstate;j2++){
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;            cptj2= (j2-1)*nlstate+i2;
   }            if(cptj2 <= cptj)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);          }
   fprintf(ficrespl,"#Prevalence limit\n");      }
   fprintf(ficrespl,"#Age ");    fprintf(ficrescveij,"\n");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    
   fprintf(ficrespl,"\n");    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   prlim=matrix(1,nlstate,1,nlstate);    }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    else  hstepm=estepm;   
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* We compute the life expectancy from trapezoids spaced every estepm months
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * This is mainly to measure the difference between two models: for example
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * if stepm=24 months pijx are given only every 2 years and by summing them
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     * we are calculating an estimate of the Life Expectancy assuming a linear 
   k=0;     * progression in between and thus overestimating or underestimating according
   agebase=ageminpar;     * to the curvature of the survival function. If, for the same date, we 
   agelim=agemaxpar;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   ftolpl=1.e-10;     * to compare the new estimate of Life expectancy with the same linear 
   i1=cptcoveff;     * hypothesis. A more precise result, taking into account a more precise
   if (cptcovn < 1){i1=1;}     * curvature will be obtained if estepm is as small as stepm. */
   
   for(cptcov=1;cptcov<=i1;cptcov++){    /* For example we decided to compute the life expectancy with the smallest unit */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         k=k+1;       nhstepm is the number of hstepm from age to agelim 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       nstepm is the number of stepm from age to agelin. 
         fprintf(ficrespl,"\n#******");       Look at hpijx to understand the reason of that which relies in memory size
         printf("\n#******");       and note for a fixed period like estepm months */
         fprintf(ficlog,"\n#******");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for(j=1;j<=cptcoveff;j++) {       survival function given by stepm (the optimization length). Unfortunately it
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       means that if the survival funtion is printed only each two years of age and if
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       results. So we changed our mind and took the option of the best precision.
         }    */
         fprintf(ficrespl,"******\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         printf("******\n");  
         fprintf(ficlog,"******\n");    /* If stepm=6 months */
            /* nhstepm age range expressed in number of stepm */
         for (age=agebase; age<=agelim; age++){    agelim=AGESUP;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           fprintf(ficrespl,"%.0f",age );    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           for(i=1; i<=nlstate;i++)    /* if (stepm >= YEARM) hstepm=1;*/
           fprintf(ficrespl," %.5f", prlim[i][i]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           fprintf(ficrespl,"\n");    
         }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   fclose(ficrespl);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
   /*------------- h Pij x at various ages ------------*/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    for (age=bage; age<=fage; age ++){ 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      /* if (stepm >= YEARM) hstepm=1;*/
   }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   printf("Computing pij: result on file '%s' \n", filerespij);  
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepma matrices, stored
   stepsize=(int) (stepm+YEARM-1)/YEARM;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   /*if (stepm<=24) stepsize=2;*/      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */      /* Computing  Variances of health expectancies */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
   /* hstepm=1;   aff par mois*/      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   k=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for(cptcov=1;cptcov<=i1;cptcov++){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficrespij,"\n#****** ");        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<= nlstate; j++){
         fprintf(ficrespij,"******\n");          for(i=1; i<=nlstate; i++){
                    for(h=0; h<=nhstepm-1; h++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
           }
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        }
        
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(ij=1; ij<= nlstate*nlstate; ij++)
           oldm=oldms;savm=savms;          for(h=0; h<=nhstepm-1; h++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           fprintf(ficrespij,"# Age");          }
           for(i=1; i<=nlstate;i++)      }/* End theta */
             for(j=1; j<=nlstate+ndeath;j++)      
               fprintf(ficrespij," %1d-%1d",i,j);      
           fprintf(ficrespij,"\n");      for(h=0; h<=nhstepm-1; h++)
            for (h=0; h<=nhstepm; h++){        for(j=1; j<=nlstate*nlstate;j++)
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for(theta=1; theta <=npar; theta++)
             for(i=1; i<=nlstate;i++)            trgradg[h][j][theta]=gradg[h][theta][j];
               for(j=1; j<=nlstate+ndeath;j++)      
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");       for(ij=1;ij<=nlstate*nlstate;ij++)
              }        for(ji=1;ji<=nlstate*nlstate;ji++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          varhe[ij][ji][(int)age] =0.;
           fprintf(ficrespij,"\n");  
         }       printf("%d|",(int)age);fflush(stdout);
     }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fclose(ficrespij);          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   /*---------- Forecasting ------------------*/        }
   if((stepm == 1) && (strcmp(model,".")==0)){      }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      /* Computing expectancies */
   }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   else{      for(i=1; i<=nlstate;i++)
     erreur=108;        for(j=1; j<=nlstate;j++)
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   }            
              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   /*---------- Health expectancies and variances ------------*/          }
   
   strcpy(filerest,"t");      fprintf(ficresstdeij,"%3.0f",age );
   strcat(filerest,fileres);      for(i=1; i<=nlstate;i++){
   if((ficrest=fopen(filerest,"w"))==NULL) {        eip=0.;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        vip=0.;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        for(j=1; j<=nlstate;j++){
   }          eip += eij[i][j][(int)age];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
   strcpy(filerese,"e");        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   strcat(filerese,fileres);      }
   if((ficreseij=fopen(filerese,"w"))==NULL) {      fprintf(ficresstdeij,"\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      fprintf(ficrescveij,"%3.0f",age );
   }      for(i=1; i<=nlstate;i++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        for(j=1; j<=nlstate;j++){
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
   strcpy(fileresv,"v");            for(j2=1; j2<=nlstate;j2++){
   strcat(fileresv,fileres);              cptj2= (j2-1)*nlstate+i2;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              if(cptj2 <= cptj)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);            }
   }        }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      fprintf(ficrescveij,"\n");
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     
   calagedate=-1;    }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   k=0;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=k+1;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrest,"\n#****** ");    printf("\n");
       for(j=1;j<=cptcoveff;j++)    fprintf(ficlog,"\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
       fprintf(ficreseij,"\n#****** ");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       for(j=1;j<=cptcoveff;j++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       fprintf(ficreseij,"******\n");  }
   
       fprintf(ficresvij,"\n#****** ");  /************ Variance ******************/
       for(j=1;j<=cptcoveff;j++)   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  {
       fprintf(ficresvij,"******\n");    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* double **newm;*/
       oldm=oldms;savm=savms;    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      
      int movingaverage();
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double **dnewm,**doldm;
       oldm=oldms;savm=savms;    double **dnewmp,**doldmp;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    int i, j, nhstepm, hstepm, h, nstepm ;
       if(popbased==1){    int k;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    double *xp;
        }    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    double *gpp, *gmp; /* for var p point j */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       fprintf(ficrest,"\n");    double ***p3mat;
     double age,agelim, hf;
       epj=vector(1,nlstate+1);    double ***mobaverage;
       for(age=bage; age <=fage ;age++){    int theta;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    char digit[4];
         if (popbased==1) {    char digitp[25];
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];    char fileresprobmorprev[FILENAMELENGTH];
         }  
            if(popbased==1){
         fprintf(ficrest," %4.0f",age);      if(mobilav!=0)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        strcpy(digitp,"-POPULBASED-MOBILAV_");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    else 
           }      strcpy(digitp,"-STABLBASED_");
           epj[nlstate+1] +=epj[j];  
         }    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(i=1, vepp=0.;i <=nlstate;i++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           for(j=1;j <=nlstate;j++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             vepp += vareij[i][j][(int)age];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      }
         for(j=1;j <=nlstate;j++){    }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    strcpy(fileresprobmorprev,"PRMORPREV-"); 
         fprintf(ficrest,"\n");    sprintf(digit,"%-d",ij);
       }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 free_matrix(mint,1,maxwav,1,n);    strcat(fileresprobmorprev,fileresu);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     free_vector(weight,1,n);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fclose(ficreseij);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   fclose(ficresvij);    }
   fclose(ficrest);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fclose(ficpar);   
   free_vector(epj,1,nlstate+1);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
   /*------- Variance limit prevalence------*/      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   strcpy(fileresvpl,"vpl");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcat(fileresvpl,fileres);      fprintf(ficresprobmorprev," p.%-d SE",j);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     exit(0);    }  
   }    fprintf(ficresprobmorprev,"\n");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficgp,"\nunset title \n");
   k=0;  /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       k=k+1;  /*   } */
       fprintf(ficresvpl,"\n#****** ");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(j=1;j<=cptcoveff;j++)    pstamp(ficresvij);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       fprintf(ficresvpl,"******\n");    if(popbased==1)
            fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    else
       oldm=oldms;savm=savms;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficresvij,"# Age");
     }    for(i=1; i<=nlstate;i++)
  }      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   fclose(ficresvpl);    fprintf(ficresvij,"\n");
   
   /*---------- End : free ----------------*/    xp=vector(1,npar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    gpp=vector(nlstate+1,nlstate+ndeath);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    gmp=vector(nlstate+1,nlstate+ndeath);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    
      if(estepm < stepm){
   free_matrix(matcov,1,npar,1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
   free_vector(delti,1,npar);    }
   free_matrix(agev,1,maxwav,1,imx);    else  hstepm=estepm;   
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fprintf(fichtm,"\n</body>");       nhstepm is the number of hstepm from age to agelim 
   fclose(fichtm);       nstepm is the number of stepm from age to agelin. 
   fclose(ficgp);       Look at function hpijx to understand why (it is linked to memory size questions) */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   if(erreur >0){       means that if the survival funtion is printed every two years of age and if
     printf("End of Imach with error or warning %d\n",erreur);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);       results. So we changed our mind and took the option of the best precision.
   }else{    */
    printf("End of Imach\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    fprintf(ficlog,"End of Imach\n");    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("See log file on %s\n",filelog);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fclose(ficlog);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      gp=matrix(0,nhstepm,1,nlstate);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      gm=matrix(0,nhstepm,1,nlstate);
   /*------ End -----------*/  
   
       for(theta=1; theta <=npar; theta++){
  end:        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 #ifdef windows          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /* chdir(pathcd);*/        }
 #endif        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  /*system("wgnuplot graph.plt");*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/        if (popbased==1) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          if(mobilav ==0){
  strcpy(plotcmd,GNUPLOTPROGRAM);            for(i=1; i<=nlstate;i++)
  strcat(plotcmd," ");              prlim[i][i]=probs[(int)age][i][ij];
  strcat(plotcmd,optionfilegnuplot);          }else{ /* mobilav */ 
  system(plotcmd);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
 #ifdef windows          }
   while (z[0] != 'q') {        }
     /* chdir(path); */    
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        for(j=1; j<= nlstate; j++){
     scanf("%s",z);          for(h=0; h<=nhstepm; h++){
     if (z[0] == 'c') system("./imach");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     else if (z[0] == 'e') system(optionfilehtm);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     else if (z[0] == 'g') system(plotcmd);          }
     else if (z[0] == 'q') exit(0);        }
   }        /* This for computing probability of death (h=1 means
 #endif           computed over hstepm matrices product = hstepm*stepm months) 
 }           as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear, ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyear,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \
   divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in any different live states and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s_%d.svg<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
       fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
       fprintf(ficgp,"\nset ter png size 640, 480");
   /* good for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
       /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       fprintf(ficgp,"\nset out \"%s.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nplot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk));
       fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk));
       fprintf(ficgp,"\nset out;unset log\n");
       /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                if(ng != 1){
                  fprintf(ficgp,")/(1");
                
                  for(k1=1; k1 <=nlstate; k1++){ 
                    if(nagesqr==0)
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                    else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                    
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
                      if(ij <=cptcovage) { /* Bug valgrind */
                        if((j-2)==Tage[ij]) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                      else
                        fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
                    fprintf(ficgp,")");
                  }
                  fprintf(ficgp,")");
                  if(ng ==2)
                    fprintf(ficgp," t \"p%d%d\" ", k2,k);
                  else /* ng= 3 */
                    fprintf(ficgp," t \"i%d%d\" ", k2,k);
                }else{ /* end ng <> 1 */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                }
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyear){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyear);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyearnp=0;
     int *ncvyear=&ncvyearnp; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8\n");
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     ftolpl=6.e-3; /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle !=- 3 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, ncvyear);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* ZZ Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
             /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k); /*ZZ Is it the correct prevalim */
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
               /* printf(" age %4.0f ",age); */
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                 }
                 epj[nlstate+1] +=epj[j];
               }
               /* printf(" age %4.0f \n",age); */
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.50  
changed lines
  Added in v.1.203


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>