version 1.41.2.1, 2003/06/12 10:43:20
|
version 1.204, 2015/10/01 16:20:26
|
Line 1
|
Line 1
|
/* $Id$
|
/* $Id$ |
Interpolated Markov Chain
|
$State$ |
|
$Log$ |
Short summary of the programme:
|
Revision 1.204 2015/10/01 16:20:26 brouard |
|
Summary: Some new graphs of contribution to likelihood |
This program computes Healthy Life Expectancies from
|
|
cross-longitudinal data. Cross-longitudinal data consist in: -1- a
|
Revision 1.203 2015/09/30 17:45:14 brouard |
first survey ("cross") where individuals from different ages are
|
Summary: looking at better estimation of the hessian |
interviewed on their health status or degree of disability (in the
|
|
case of a health survey which is our main interest) -2- at least a
|
Also a better criteria for convergence to the period prevalence And |
second wave of interviews ("longitudinal") which measure each change
|
therefore adding the number of years needed to converge. (The |
(if any) in individual health status. Health expectancies are
|
prevalence in any alive state shold sum to one |
computed from the time spent in each health state according to a
|
|
model. More health states you consider, more time is necessary to reach the
|
Revision 1.202 2015/09/22 19:45:16 brouard |
Maximum Likelihood of the parameters involved in the model. The
|
Summary: Adding some overall graph on contribution to likelihood. Might change |
simplest model is the multinomial logistic model where pij is the
|
|
probability to be observed in state j at the second wave
|
Revision 1.201 2015/09/15 17:34:58 brouard |
conditional to be observed in state i at the first wave. Therefore
|
Summary: 0.98r0 |
the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
|
|
'age' is age and 'sex' is a covariate. If you want to have a more
|
- Some new graphs like suvival functions |
complex model than "constant and age", you should modify the program
|
- Some bugs fixed like model=1+age+V2. |
where the markup *Covariates have to be included here again* invites
|
|
you to do it. More covariates you add, slower the
|
Revision 1.200 2015/09/09 16:53:55 brouard |
convergence.
|
Summary: Big bug thanks to Flavia |
|
|
The advantage of this computer programme, compared to a simple
|
Even model=1+age+V2. did not work anymore |
multinomial logistic model, is clear when the delay between waves is not
|
|
identical for each individual. Also, if a individual missed an
|
Revision 1.199 2015/09/07 14:09:23 brouard |
intermediate interview, the information is lost, but taken into
|
Summary: 0.98q6 changing default small png format for graph to vectorized svg. |
account using an interpolation or extrapolation.
|
|
|
Revision 1.198 2015/09/03 07:14:39 brouard |
hPijx is the probability to be observed in state i at age x+h
|
Summary: 0.98q5 Flavia |
conditional to the observed state i at age x. The delay 'h' can be
|
|
split into an exact number (nh*stepm) of unobserved intermediate
|
Revision 1.197 2015/09/01 18:24:39 brouard |
states. This elementary transition (by month or quarter trimester,
|
*** empty log message *** |
semester or year) is model as a multinomial logistic. The hPx
|
|
matrix is simply the matrix product of nh*stepm elementary matrices
|
Revision 1.196 2015/08/18 23:17:52 brouard |
and the contribution of each individual to the likelihood is simply
|
Summary: 0.98q5 |
hPijx.
|
|
|
Revision 1.195 2015/08/18 16:28:39 brouard |
Also this programme outputs the covariance matrix of the parameters but also
|
Summary: Adding a hack for testing purpose |
of the life expectancies. It also computes the prevalence limits.
|
|
|
After reading the title, ftol and model lines, if the comment line has |
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
|
a q, starting with #q, the answer at the end of the run is quit. It |
Institut national d'études démographiques, Paris.
|
permits to run test files in batch with ctest. The former workaround was |
This software have been partly granted by Euro-REVES, a concerted action
|
$ echo q | imach foo.imach |
from the European Union.
|
|
It is copyrighted identically to a GNU software product, ie programme and
|
Revision 1.194 2015/08/18 13:32:00 brouard |
software can be distributed freely for non commercial use. Latest version
|
Summary: Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line. |
can be accessed at http://euroreves.ined.fr/imach .
|
|
**********************************************************************/
|
Revision 1.193 2015/08/04 07:17:42 brouard |
|
Summary: 0.98q4 |
#include <math.h>
|
|
#include <stdio.h>
|
Revision 1.192 2015/07/16 16:49:02 brouard |
#include <stdlib.h>
|
Summary: Fixing some outputs |
#include <unistd.h>
|
|
|
Revision 1.191 2015/07/14 10:00:33 brouard |
#define MAXLINE 256
|
Summary: Some fixes |
#define GNUPLOTPROGRAM "wgnuplot"
|
|
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
|
Revision 1.190 2015/05/05 08:51:13 brouard |
#define FILENAMELENGTH 80
|
Summary: Adding digits in output parameters (7 digits instead of 6) |
/*#define DEBUG*/
|
|
|
Fix 1+age+. |
/*#define windows*/
|
|
#define GLOCK_ERROR_NOPATH -1 /* empty path */
|
Revision 1.189 2015/04/30 14:45:16 brouard |
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */
|
Summary: 0.98q2 |
|
|
#define MAXPARM 30 /* Maximum number of parameters for the optimization */
|
Revision 1.188 2015/04/30 08:27:53 brouard |
#define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
|
*** empty log message *** |
|
|
#define NINTERVMAX 8
|
Revision 1.187 2015/04/29 09:11:15 brouard |
#define NLSTATEMAX 8 /* Maximum number of live states (for func) */
|
*** empty log message *** |
#define NDEATHMAX 8 /* Maximum number of dead states (for func) */
|
|
#define NCOVMAX 8 /* Maximum number of covariates */
|
Revision 1.186 2015/04/23 12:01:52 brouard |
#define MAXN 20000
|
Summary: V1*age is working now, version 0.98q1 |
#define YEARM 12. /* Number of months per year */
|
|
#define AGESUP 130
|
Some codes had been disabled in order to simplify and Vn*age was |
#define AGEBASE 40
|
working in the optimization phase, ie, giving correct MLE parameters, |
|
but, as usual, outputs were not correct and program core dumped. |
|
|
int erreur; /* Error number */
|
Revision 1.185 2015/03/11 13:26:42 brouard |
int nvar;
|
Summary: Inclusion of compile and links command line for Intel Compiler |
int cptcovn, cptcovage=0, cptcoveff=0,cptcov;
|
|
int npar=NPARMAX;
|
Revision 1.184 2015/03/11 11:52:39 brouard |
int nlstate=2; /* Number of live states */
|
Summary: Back from Windows 8. Intel Compiler |
int ndeath=1; /* Number of dead states */
|
|
int ncovmodel, ncovcol; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
|
Revision 1.183 2015/03/10 20:34:32 brouard |
int popbased=0;
|
Summary: 0.98q0, trying with directest, mnbrak fixed |
|
|
int *wav; /* Number of waves for this individuual 0 is possible */
|
We use directest instead of original Powell test; probably no |
int maxwav; /* Maxim number of waves */
|
incidence on the results, but better justifications; |
int jmin, jmax; /* min, max spacing between 2 waves */
|
We fixed Numerical Recipes mnbrak routine which was wrong and gave |
int mle, weightopt;
|
wrong results. |
int **mw; /* mw[mi][i] is number of the mi wave for this individual */
|
|
int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
|
Revision 1.182 2015/02/12 08:19:57 brouard |
double jmean; /* Mean space between 2 waves */
|
Summary: Trying to keep directest which seems simpler and more general |
double **oldm, **newm, **savm; /* Working pointers to matrices */
|
Author: Nicolas Brouard |
double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
|
|
FILE *fic,*ficpar, *ficparo,*ficres, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
|
Revision 1.181 2015/02/11 23:22:24 brouard |
FILE *ficgp,*ficresprob,*ficpop;
|
Summary: Comments on Powell added |
FILE *ficreseij;
|
|
char filerese[FILENAMELENGTH];
|
Author: |
FILE *ficresvij;
|
|
char fileresv[FILENAMELENGTH];
|
Revision 1.180 2015/02/11 17:33:45 brouard |
FILE *ficresvpl;
|
Summary: Finishing move from main to function (hpijx and prevalence_limit) |
char fileresvpl[FILENAMELENGTH];
|
|
|
Revision 1.179 2015/01/04 09:57:06 brouard |
#define NR_END 1
|
Summary: back to OS/X |
#define FREE_ARG char*
|
|
#define FTOL 1.0e-10
|
Revision 1.178 2015/01/04 09:35:48 brouard |
|
*** empty log message *** |
#define NRANSI
|
|
#define ITMAX 200
|
Revision 1.177 2015/01/03 18:40:56 brouard |
|
Summary: Still testing ilc32 on OSX |
#define TOL 2.0e-4
|
|
|
Revision 1.176 2015/01/03 16:45:04 brouard |
#define CGOLD 0.3819660
|
*** empty log message *** |
#define ZEPS 1.0e-10
|
|
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
|
Revision 1.175 2015/01/03 16:33:42 brouard |
|
*** empty log message *** |
#define GOLD 1.618034
|
|
#define GLIMIT 100.0
|
Revision 1.174 2015/01/03 16:15:49 brouard |
#define TINY 1.0e-20
|
Summary: Still in cross-compilation |
|
|
static double maxarg1,maxarg2;
|
Revision 1.173 2015/01/03 12:06:26 brouard |
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
|
Summary: trying to detect cross-compilation |
#define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
|
|
|
Revision 1.172 2014/12/27 12:07:47 brouard |
#define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
|
Summary: Back from Visual Studio and Intel, options for compiling for Windows XP |
#define rint(a) floor(a+0.5)
|
|
|
Revision 1.171 2014/12/23 13:26:59 brouard |
static double sqrarg;
|
Summary: Back from Visual C |
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
|
|
#define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
|
Still problem with utsname.h on Windows |
|
|
int imx;
|
Revision 1.170 2014/12/23 11:17:12 brouard |
int stepm;
|
Summary: Cleaning some \%% back to %% |
/* Stepm, step in month: minimum step interpolation*/
|
|
|
The escape was mandatory for a specific compiler (which one?), but too many warnings. |
int estepm;
|
|
/* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
|
Revision 1.169 2014/12/22 23:08:31 brouard |
|
Summary: 0.98p |
int m,nb;
|
|
int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
|
Outputs some informations on compiler used, OS etc. Testing on different platforms. |
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
|
|
double **pmmij, ***probs, ***mobaverage;
|
Revision 1.168 2014/12/22 15:17:42 brouard |
double dateintmean=0;
|
Summary: update |
|
|
double *weight;
|
Revision 1.167 2014/12/22 13:50:56 brouard |
int **s; /* Status */
|
Summary: Testing uname and compiler version and if compiled 32 or 64 |
double *agedc, **covar, idx;
|
|
int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
|
Testing on Linux 64 |
|
|
double ftol=FTOL; /* Tolerance for computing Max Likelihood */
|
Revision 1.166 2014/12/22 11:40:47 brouard |
double ftolhess; /* Tolerance for computing hessian */
|
*** empty log message *** |
|
|
/**************** split *************************/
|
Revision 1.165 2014/12/16 11:20:36 brouard |
static int split( char *path, char *dirc, char *name, char *ext, char *finame )
|
Summary: After compiling on Visual C |
{
|
|
char *s; /* pointer */
|
* imach.c (Module): Merging 1.61 to 1.162 |
int l1, l2; /* length counters */
|
|
|
Revision 1.164 2014/12/16 10:52:11 brouard |
l1 = strlen( path ); /* length of path */
|
Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn |
if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
|
|
#ifdef windows
|
* imach.c (Module): Merging 1.61 to 1.162 |
s = strrchr( path, '\\' ); /* find last / */
|
|
#else
|
Revision 1.163 2014/12/16 10:30:11 brouard |
s = strrchr( path, '/' ); /* find last / */
|
* imach.c (Module): Merging 1.61 to 1.162 |
#endif
|
|
if ( s == NULL ) { /* no directory, so use current */
|
Revision 1.162 2014/09/25 11:43:39 brouard |
#if defined(__bsd__) /* get current working directory */
|
Summary: temporary backup 0.99! |
extern char *getwd( );
|
|
|
Revision 1.1 2014/09/16 11:06:58 brouard |
if ( getwd( dirc ) == NULL ) {
|
Summary: With some code (wrong) for nlopt |
#else
|
|
extern char *getcwd( );
|
Author: |
|
|
if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
|
Revision 1.161 2014/09/15 20:41:41 brouard |
#endif
|
Summary: Problem with macro SQR on Intel compiler |
return( GLOCK_ERROR_GETCWD );
|
|
}
|
Revision 1.160 2014/09/02 09:24:05 brouard |
strcpy( name, path ); /* we've got it */
|
*** empty log message *** |
} else { /* strip direcotry from path */
|
|
s++; /* after this, the filename */
|
Revision 1.159 2014/09/01 10:34:10 brouard |
l2 = strlen( s ); /* length of filename */
|
Summary: WIN32 |
if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
|
Author: Brouard |
strcpy( name, s ); /* save file name */
|
|
strncpy( dirc, path, l1 - l2 ); /* now the directory */
|
Revision 1.158 2014/08/27 17:11:51 brouard |
dirc[l1-l2] = 0; /* add zero */
|
*** empty log message *** |
}
|
|
l1 = strlen( dirc ); /* length of directory */
|
Revision 1.157 2014/08/27 16:26:55 brouard |
#ifdef windows
|
Summary: Preparing windows Visual studio version |
if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
|
Author: Brouard |
#else
|
|
if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
|
In order to compile on Visual studio, time.h is now correct and time_t |
#endif
|
and tm struct should be used. difftime should be used but sometimes I |
s = strrchr( name, '.' ); /* find last / */
|
just make the differences in raw time format (time(&now). |
s++;
|
Trying to suppress #ifdef LINUX |
strcpy(ext,s); /* save extension */
|
Add xdg-open for __linux in order to open default browser. |
l1= strlen( name);
|
|
l2= strlen( s)+1;
|
Revision 1.156 2014/08/25 20:10:10 brouard |
strncpy( finame, name, l1-l2);
|
*** empty log message *** |
finame[l1-l2]= 0;
|
|
return( 0 ); /* we're done */
|
Revision 1.155 2014/08/25 18:32:34 brouard |
}
|
Summary: New compile, minor changes |
|
Author: Brouard |
|
|
/******************************************/
|
Revision 1.154 2014/06/20 17:32:08 brouard |
|
Summary: Outputs now all graphs of convergence to period prevalence |
void replace(char *s, char*t)
|
|
{
|
Revision 1.153 2014/06/20 16:45:46 brouard |
int i;
|
Summary: If 3 live state, convergence to period prevalence on same graph |
int lg=20;
|
Author: Brouard |
i=0;
|
|
lg=strlen(t);
|
Revision 1.152 2014/06/18 17:54:09 brouard |
for(i=0; i<= lg; i++) {
|
Summary: open browser, use gnuplot on same dir than imach if not found in the path |
(s[i] = t[i]);
|
|
if (t[i]== '\\') s[i]='/';
|
Revision 1.151 2014/06/18 16:43:30 brouard |
}
|
*** empty log message *** |
}
|
|
|
Revision 1.150 2014/06/18 16:42:35 brouard |
int nbocc(char *s, char occ)
|
Summary: If gnuplot is not in the path try on same directory than imach binary (OSX) |
{
|
Author: brouard |
int i,j=0;
|
|
int lg=20;
|
Revision 1.149 2014/06/18 15:51:14 brouard |
i=0;
|
Summary: Some fixes in parameter files errors |
lg=strlen(s);
|
Author: Nicolas Brouard |
for(i=0; i<= lg; i++) {
|
|
if (s[i] == occ ) j++;
|
Revision 1.148 2014/06/17 17:38:48 brouard |
}
|
Summary: Nothing new |
return j;
|
Author: Brouard |
}
|
|
|
Just a new packaging for OS/X version 0.98nS |
void cutv(char *u,char *v, char*t, char occ)
|
|
{
|
Revision 1.147 2014/06/16 10:33:11 brouard |
int i,lg,j,p=0;
|
*** empty log message *** |
i=0;
|
|
for(j=0; j<=strlen(t)-1; j++) {
|
Revision 1.146 2014/06/16 10:20:28 brouard |
if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
|
Summary: Merge |
}
|
Author: Brouard |
|
|
lg=strlen(t);
|
Merge, before building revised version. |
for(j=0; j<p; j++) {
|
|
(u[j] = t[j]);
|
Revision 1.145 2014/06/10 21:23:15 brouard |
}
|
Summary: Debugging with valgrind |
u[p]='\0';
|
Author: Nicolas Brouard |
|
|
for(j=0; j<= lg; j++) {
|
Lot of changes in order to output the results with some covariates |
if (j>=(p+1))(v[j-p-1] = t[j]);
|
After the Edimburgh REVES conference 2014, it seems mandatory to |
}
|
improve the code. |
}
|
No more memory valgrind error but a lot has to be done in order to |
|
continue the work of splitting the code into subroutines. |
/********************** nrerror ********************/
|
Also, decodemodel has been improved. Tricode is still not |
|
optimal. nbcode should be improved. Documentation has been added in |
void nrerror(char error_text[])
|
the source code. |
{
|
|
fprintf(stderr,"ERREUR ...\n");
|
Revision 1.143 2014/01/26 09:45:38 brouard |
fprintf(stderr,"%s\n",error_text);
|
Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising |
exit(1);
|
|
}
|
* imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... |
/*********************** vector *******************/
|
(Module): Version 0.98nR Running ok, but output format still only works for three covariates. |
double *vector(int nl, int nh)
|
|
{
|
Revision 1.142 2014/01/26 03:57:36 brouard |
double *v;
|
Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2 |
v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
|
|
if (!v) nrerror("allocation failure in vector");
|
* imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... |
return v-nl+NR_END;
|
|
}
|
Revision 1.141 2014/01/26 02:42:01 brouard |
|
* imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... |
/************************ free vector ******************/
|
|
void free_vector(double*v, int nl, int nh)
|
Revision 1.140 2011/09/02 10:37:54 brouard |
{
|
Summary: times.h is ok with mingw32 now. |
free((FREE_ARG)(v+nl-NR_END));
|
|
}
|
Revision 1.139 2010/06/14 07:50:17 brouard |
|
After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree. |
/************************ivector *******************************/
|
I remember having already fixed agemin agemax which are pointers now but not cvs saved. |
int *ivector(long nl,long nh)
|
|
{
|
Revision 1.138 2010/04/30 18:19:40 brouard |
int *v;
|
*** empty log message *** |
v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
|
|
if (!v) nrerror("allocation failure in ivector");
|
Revision 1.137 2010/04/29 18:11:38 brouard |
return v-nl+NR_END;
|
(Module): Checking covariates for more complex models |
}
|
than V1+V2. A lot of change to be done. Unstable. |
|
|
/******************free ivector **************************/
|
Revision 1.136 2010/04/26 20:30:53 brouard |
void free_ivector(int *v, long nl, long nh)
|
(Module): merging some libgsl code. Fixing computation |
{
|
of likelione (using inter/intrapolation if mle = 0) in order to |
free((FREE_ARG)(v+nl-NR_END));
|
get same likelihood as if mle=1. |
}
|
Some cleaning of code and comments added. |
|
|
/******************* imatrix *******************************/
|
Revision 1.135 2009/10/29 15:33:14 brouard |
int **imatrix(long nrl, long nrh, long ncl, long nch)
|
(Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code. |
/* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
|
|
{
|
Revision 1.134 2009/10/29 13:18:53 brouard |
long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
|
(Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code. |
int **m;
|
|
|
Revision 1.133 2009/07/06 10:21:25 brouard |
/* allocate pointers to rows */
|
just nforces |
m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
|
|
if (!m) nrerror("allocation failure 1 in matrix()");
|
Revision 1.132 2009/07/06 08:22:05 brouard |
m += NR_END;
|
Many tings |
m -= nrl;
|
|
|
Revision 1.131 2009/06/20 16:22:47 brouard |
|
Some dimensions resccaled |
/* allocate rows and set pointers to them */
|
|
m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
|
Revision 1.130 2009/05/26 06:44:34 brouard |
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
|
(Module): Max Covariate is now set to 20 instead of 8. A |
m[nrl] += NR_END;
|
lot of cleaning with variables initialized to 0. Trying to make |
m[nrl] -= ncl;
|
V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better. |
|
|
for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
|
Revision 1.129 2007/08/31 13:49:27 lievre |
|
Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting |
/* return pointer to array of pointers to rows */
|
|
return m;
|
Revision 1.128 2006/06/30 13:02:05 brouard |
}
|
(Module): Clarifications on computing e.j |
|
|
/****************** free_imatrix *************************/
|
Revision 1.127 2006/04/28 18:11:50 brouard |
void free_imatrix(m,nrl,nrh,ncl,nch)
|
(Module): Yes the sum of survivors was wrong since |
int **m;
|
imach-114 because nhstepm was no more computed in the age |
long nch,ncl,nrh,nrl;
|
loop. Now we define nhstepma in the age loop. |
/* free an int matrix allocated by imatrix() */
|
(Module): In order to speed up (in case of numerous covariates) we |
{
|
compute health expectancies (without variances) in a first step |
free((FREE_ARG) (m[nrl]+ncl-NR_END));
|
and then all the health expectancies with variances or standard |
free((FREE_ARG) (m+nrl-NR_END));
|
deviation (needs data from the Hessian matrices) which slows the |
}
|
computation. |
|
In the future we should be able to stop the program is only health |
/******************* matrix *******************************/
|
expectancies and graph are needed without standard deviations. |
double **matrix(long nrl, long nrh, long ncl, long nch)
|
|
{
|
Revision 1.126 2006/04/28 17:23:28 brouard |
long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
|
(Module): Yes the sum of survivors was wrong since |
double **m;
|
imach-114 because nhstepm was no more computed in the age |
|
loop. Now we define nhstepma in the age loop. |
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
|
Version 0.98h |
if (!m) nrerror("allocation failure 1 in matrix()");
|
|
m += NR_END;
|
Revision 1.125 2006/04/04 15:20:31 lievre |
m -= nrl;
|
Errors in calculation of health expectancies. Age was not initialized. |
|
Forecasting file added. |
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
|
|
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
|
Revision 1.124 2006/03/22 17:13:53 lievre |
m[nrl] += NR_END;
|
Parameters are printed with %lf instead of %f (more numbers after the comma). |
m[nrl] -= ncl;
|
The log-likelihood is printed in the log file |
|
|
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
|
Revision 1.123 2006/03/20 10:52:43 brouard |
return m;
|
* imach.c (Module): <title> changed, corresponds to .htm file |
}
|
name. <head> headers where missing. |
|
|
/*************************free matrix ************************/
|
* imach.c (Module): Weights can have a decimal point as for |
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
|
English (a comma might work with a correct LC_NUMERIC environment, |
{
|
otherwise the weight is truncated). |
free((FREE_ARG)(m[nrl]+ncl-NR_END));
|
Modification of warning when the covariates values are not 0 or |
free((FREE_ARG)(m+nrl-NR_END));
|
1. |
}
|
Version 0.98g |
|
|
/******************* ma3x *******************************/
|
Revision 1.122 2006/03/20 09:45:41 brouard |
double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
|
(Module): Weights can have a decimal point as for |
{
|
English (a comma might work with a correct LC_NUMERIC environment, |
long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
|
otherwise the weight is truncated). |
double ***m;
|
Modification of warning when the covariates values are not 0 or |
|
1. |
m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
|
Version 0.98g |
if (!m) nrerror("allocation failure 1 in matrix()");
|
|
m += NR_END;
|
Revision 1.121 2006/03/16 17:45:01 lievre |
m -= nrl;
|
* imach.c (Module): Comments concerning covariates added |
|
|
m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
|
* imach.c (Module): refinements in the computation of lli if |
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
|
status=-2 in order to have more reliable computation if stepm is |
m[nrl] += NR_END;
|
not 1 month. Version 0.98f |
m[nrl] -= ncl;
|
|
|
Revision 1.120 2006/03/16 15:10:38 lievre |
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
|
(Module): refinements in the computation of lli if |
|
status=-2 in order to have more reliable computation if stepm is |
m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
|
not 1 month. Version 0.98f |
if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
|
|
m[nrl][ncl] += NR_END;
|
Revision 1.119 2006/03/15 17:42:26 brouard |
m[nrl][ncl] -= nll;
|
(Module): Bug if status = -2, the loglikelihood was |
for (j=ncl+1; j<=nch; j++)
|
computed as likelihood omitting the logarithm. Version O.98e |
m[nrl][j]=m[nrl][j-1]+nlay;
|
|
|
Revision 1.118 2006/03/14 18:20:07 brouard |
for (i=nrl+1; i<=nrh; i++) {
|
(Module): varevsij Comments added explaining the second |
m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
|
table of variances if popbased=1 . |
for (j=ncl+1; j<=nch; j++)
|
(Module): Covariances of eij, ekl added, graphs fixed, new html link. |
m[i][j]=m[i][j-1]+nlay;
|
(Module): Function pstamp added |
}
|
(Module): Version 0.98d |
return m;
|
|
}
|
Revision 1.117 2006/03/14 17:16:22 brouard |
|
(Module): varevsij Comments added explaining the second |
/*************************free ma3x ************************/
|
table of variances if popbased=1 . |
void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
|
(Module): Covariances of eij, ekl added, graphs fixed, new html link. |
{
|
(Module): Function pstamp added |
free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
|
(Module): Version 0.98d |
free((FREE_ARG)(m[nrl]+ncl-NR_END));
|
|
free((FREE_ARG)(m+nrl-NR_END));
|
Revision 1.116 2006/03/06 10:29:27 brouard |
}
|
(Module): Variance-covariance wrong links and |
|
varian-covariance of ej. is needed (Saito). |
/***************** f1dim *************************/
|
|
extern int ncom;
|
Revision 1.115 2006/02/27 12:17:45 brouard |
extern double *pcom,*xicom;
|
(Module): One freematrix added in mlikeli! 0.98c |
extern double (*nrfunc)(double []);
|
|
|
Revision 1.114 2006/02/26 12:57:58 brouard |
double f1dim(double x)
|
(Module): Some improvements in processing parameter |
{
|
filename with strsep. |
int j;
|
|
double f;
|
Revision 1.113 2006/02/24 14:20:24 brouard |
double *xt;
|
(Module): Memory leaks checks with valgrind and: |
|
datafile was not closed, some imatrix were not freed and on matrix |
xt=vector(1,ncom);
|
allocation too. |
for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
|
|
f=(*nrfunc)(xt);
|
Revision 1.112 2006/01/30 09:55:26 brouard |
free_vector(xt,1,ncom);
|
(Module): Back to gnuplot.exe instead of wgnuplot.exe |
return f;
|
|
}
|
Revision 1.111 2006/01/25 20:38:18 brouard |
|
(Module): Lots of cleaning and bugs added (Gompertz) |
/*****************brent *************************/
|
(Module): Comments can be added in data file. Missing date values |
double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin)
|
can be a simple dot '.'. |
{
|
|
int iter;
|
Revision 1.110 2006/01/25 00:51:50 brouard |
double a,b,d,etemp;
|
(Module): Lots of cleaning and bugs added (Gompertz) |
double fu,fv,fw,fx;
|
|
double ftemp;
|
Revision 1.109 2006/01/24 19:37:15 brouard |
double p,q,r,tol1,tol2,u,v,w,x,xm;
|
(Module): Comments (lines starting with a #) are allowed in data. |
double e=0.0;
|
|
|
Revision 1.108 2006/01/19 18:05:42 lievre |
a=(ax < cx ? ax : cx);
|
Gnuplot problem appeared... |
b=(ax > cx ? ax : cx);
|
To be fixed |
x=w=v=bx;
|
|
fw=fv=fx=(*f)(x);
|
Revision 1.107 2006/01/19 16:20:37 brouard |
for (iter=1;iter<=ITMAX;iter++) {
|
Test existence of gnuplot in imach path |
xm=0.5*(a+b);
|
|
tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
|
Revision 1.106 2006/01/19 13:24:36 brouard |
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
|
Some cleaning and links added in html output |
printf(".");fflush(stdout);
|
|
#ifdef DEBUG
|
Revision 1.105 2006/01/05 20:23:19 lievre |
printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
|
*** empty log message *** |
/* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
|
|
#endif
|
Revision 1.104 2005/09/30 16:11:43 lievre |
if (fabs(x-xm) <= (tol2-0.5*(b-a))){
|
(Module): sump fixed, loop imx fixed, and simplifications. |
*xmin=x;
|
(Module): If the status is missing at the last wave but we know |
return fx;
|
that the person is alive, then we can code his/her status as -2 |
}
|
(instead of missing=-1 in earlier versions) and his/her |
ftemp=fu;
|
contributions to the likelihood is 1 - Prob of dying from last |
if (fabs(e) > tol1) {
|
health status (= 1-p13= p11+p12 in the easiest case of somebody in |
r=(x-w)*(fx-fv);
|
the healthy state at last known wave). Version is 0.98 |
q=(x-v)*(fx-fw);
|
|
p=(x-v)*q-(x-w)*r;
|
Revision 1.103 2005/09/30 15:54:49 lievre |
q=2.0*(q-r);
|
(Module): sump fixed, loop imx fixed, and simplifications. |
if (q > 0.0) p = -p;
|
|
q=fabs(q);
|
Revision 1.102 2004/09/15 17:31:30 brouard |
etemp=e;
|
Add the possibility to read data file including tab characters. |
e=d;
|
|
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
|
Revision 1.101 2004/09/15 10:38:38 brouard |
d=CGOLD*(e=(x >= xm ? a-x : b-x));
|
Fix on curr_time |
else {
|
|
d=p/q;
|
Revision 1.100 2004/07/12 18:29:06 brouard |
u=x+d;
|
Add version for Mac OS X. Just define UNIX in Makefile |
if (u-a < tol2 || b-u < tol2)
|
|
d=SIGN(tol1,xm-x);
|
Revision 1.99 2004/06/05 08:57:40 brouard |
}
|
*** empty log message *** |
} else {
|
|
d=CGOLD*(e=(x >= xm ? a-x : b-x));
|
Revision 1.98 2004/05/16 15:05:56 brouard |
}
|
New version 0.97 . First attempt to estimate force of mortality |
u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
|
directly from the data i.e. without the need of knowing the health |
fu=(*f)(u);
|
state at each age, but using a Gompertz model: log u =a + b*age . |
if (fu <= fx) {
|
This is the basic analysis of mortality and should be done before any |
if (u >= x) a=x; else b=x;
|
other analysis, in order to test if the mortality estimated from the |
SHFT(v,w,x,u)
|
cross-longitudinal survey is different from the mortality estimated |
SHFT(fv,fw,fx,fu)
|
from other sources like vital statistic data. |
} else {
|
|
if (u < x) a=u; else b=u;
|
The same imach parameter file can be used but the option for mle should be -3. |
if (fu <= fw || w == x) {
|
|
v=w;
|
Agnès, who wrote this part of the code, tried to keep most of the |
w=u;
|
former routines in order to include the new code within the former code. |
fv=fw;
|
|
fw=fu;
|
The output is very simple: only an estimate of the intercept and of |
} else if (fu <= fv || v == x || v == w) {
|
the slope with 95% confident intervals. |
v=u;
|
|
fv=fu;
|
Current limitations: |
}
|
A) Even if you enter covariates, i.e. with the |
}
|
model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates. |
}
|
B) There is no computation of Life Expectancy nor Life Table. |
nrerror("Too many iterations in brent");
|
|
*xmin=x;
|
Revision 1.97 2004/02/20 13:25:42 lievre |
return fx;
|
Version 0.96d. Population forecasting command line is (temporarily) |
}
|
suppressed. |
|
|
/****************** mnbrak ***********************/
|
Revision 1.96 2003/07/15 15:38:55 brouard |
|
* imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is |
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
|
rewritten within the same printf. Workaround: many printfs. |
double (*func)(double))
|
|
{
|
Revision 1.95 2003/07/08 07:54:34 brouard |
double ulim,u,r,q, dum;
|
* imach.c (Repository): |
double fu;
|
(Repository): Using imachwizard code to output a more meaningful covariance |
|
matrix (cov(a12,c31) instead of numbers. |
*fa=(*func)(*ax);
|
|
*fb=(*func)(*bx);
|
Revision 1.94 2003/06/27 13:00:02 brouard |
if (*fb > *fa) {
|
Just cleaning |
SHFT(dum,*ax,*bx,dum)
|
|
SHFT(dum,*fb,*fa,dum)
|
Revision 1.93 2003/06/25 16:33:55 brouard |
}
|
(Module): On windows (cygwin) function asctime_r doesn't |
*cx=(*bx)+GOLD*(*bx-*ax);
|
exist so I changed back to asctime which exists. |
*fc=(*func)(*cx);
|
(Module): Version 0.96b |
while (*fb > *fc) {
|
|
r=(*bx-*ax)*(*fb-*fc);
|
Revision 1.92 2003/06/25 16:30:45 brouard |
q=(*bx-*cx)*(*fb-*fa);
|
(Module): On windows (cygwin) function asctime_r doesn't |
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
|
exist so I changed back to asctime which exists. |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
|
|
ulim=(*bx)+GLIMIT*(*cx-*bx);
|
Revision 1.91 2003/06/25 15:30:29 brouard |
if ((*bx-u)*(u-*cx) > 0.0) {
|
* imach.c (Repository): Duplicated warning errors corrected. |
fu=(*func)(u);
|
(Repository): Elapsed time after each iteration is now output. It |
} else if ((*cx-u)*(u-ulim) > 0.0) {
|
helps to forecast when convergence will be reached. Elapsed time |
fu=(*func)(u);
|
is stamped in powell. We created a new html file for the graphs |
if (fu < *fc) {
|
concerning matrix of covariance. It has extension -cov.htm. |
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
|
|
SHFT(*fb,*fc,fu,(*func)(u))
|
Revision 1.90 2003/06/24 12:34:15 brouard |
}
|
(Module): Some bugs corrected for windows. Also, when |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) {
|
mle=-1 a template is output in file "or"mypar.txt with the design |
u=ulim;
|
of the covariance matrix to be input. |
fu=(*func)(u);
|
|
} else {
|
Revision 1.89 2003/06/24 12:30:52 brouard |
u=(*cx)+GOLD*(*cx-*bx);
|
(Module): Some bugs corrected for windows. Also, when |
fu=(*func)(u);
|
mle=-1 a template is output in file "or"mypar.txt with the design |
}
|
of the covariance matrix to be input. |
SHFT(*ax,*bx,*cx,u)
|
|
SHFT(*fa,*fb,*fc,fu)
|
Revision 1.88 2003/06/23 17:54:56 brouard |
}
|
* imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things. |
}
|
|
|
Revision 1.87 2003/06/18 12:26:01 brouard |
/*************** linmin ************************/
|
Version 0.96 |
|
|
int ncom;
|
Revision 1.86 2003/06/17 20:04:08 brouard |
double *pcom,*xicom;
|
(Module): Change position of html and gnuplot routines and added |
double (*nrfunc)(double []);
|
routine fileappend. |
|
|
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
|
Revision 1.85 2003/06/17 13:12:43 brouard |
{
|
* imach.c (Repository): Check when date of death was earlier that |
double brent(double ax, double bx, double cx,
|
current date of interview. It may happen when the death was just |
double (*f)(double), double tol, double *xmin);
|
prior to the death. In this case, dh was negative and likelihood |
double f1dim(double x);
|
was wrong (infinity). We still send an "Error" but patch by |
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
|
assuming that the date of death was just one stepm after the |
double *fc, double (*func)(double));
|
interview. |
int j;
|
(Repository): Because some people have very long ID (first column) |
double xx,xmin,bx,ax;
|
we changed int to long in num[] and we added a new lvector for |
double fx,fb,fa;
|
memory allocation. But we also truncated to 8 characters (left |
|
truncation) |
ncom=n;
|
(Repository): No more line truncation errors. |
pcom=vector(1,n);
|
|
xicom=vector(1,n);
|
Revision 1.84 2003/06/13 21:44:43 brouard |
nrfunc=func;
|
* imach.c (Repository): Replace "freqsummary" at a correct |
for (j=1;j<=n;j++) {
|
place. It differs from routine "prevalence" which may be called |
pcom[j]=p[j];
|
many times. Probs is memory consuming and must be used with |
xicom[j]=xi[j];
|
parcimony. |
}
|
Version 0.95a3 (should output exactly the same maximization than 0.8a2) |
ax=0.0;
|
|
xx=1.0;
|
Revision 1.83 2003/06/10 13:39:11 lievre |
mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
|
*** empty log message *** |
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
|
|
#ifdef DEBUG
|
Revision 1.82 2003/06/05 15:57:20 brouard |
printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
|
Add log in imach.c and fullversion number is now printed. |
#endif
|
|
for (j=1;j<=n;j++) {
|
*/ |
xi[j] *= xmin;
|
/* |
p[j] += xi[j];
|
Interpolated Markov Chain |
}
|
|
free_vector(xicom,1,n);
|
Short summary of the programme: |
free_vector(pcom,1,n);
|
|
}
|
This program computes Healthy Life Expectancies from |
|
cross-longitudinal data. Cross-longitudinal data consist in: -1- a |
/*************** powell ************************/
|
first survey ("cross") where individuals from different ages are |
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
|
interviewed on their health status or degree of disability (in the |
double (*func)(double []))
|
case of a health survey which is our main interest) -2- at least a |
{
|
second wave of interviews ("longitudinal") which measure each change |
void linmin(double p[], double xi[], int n, double *fret,
|
(if any) in individual health status. Health expectancies are |
double (*func)(double []));
|
computed from the time spent in each health state according to a |
int i,ibig,j;
|
model. More health states you consider, more time is necessary to reach the |
double del,t,*pt,*ptt,*xit;
|
Maximum Likelihood of the parameters involved in the model. The |
double fp,fptt;
|
simplest model is the multinomial logistic model where pij is the |
double *xits;
|
probability to be observed in state j at the second wave |
pt=vector(1,n);
|
conditional to be observed in state i at the first wave. Therefore |
ptt=vector(1,n);
|
the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where |
xit=vector(1,n);
|
'age' is age and 'sex' is a covariate. If you want to have a more |
xits=vector(1,n);
|
complex model than "constant and age", you should modify the program |
*fret=(*func)(p);
|
where the markup *Covariates have to be included here again* invites |
for (j=1;j<=n;j++) pt[j]=p[j];
|
you to do it. More covariates you add, slower the |
for (*iter=1;;++(*iter)) {
|
convergence. |
fp=(*fret);
|
|
ibig=0;
|
The advantage of this computer programme, compared to a simple |
del=0.0;
|
multinomial logistic model, is clear when the delay between waves is not |
printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
|
identical for each individual. Also, if a individual missed an |
for (i=1;i<=n;i++)
|
intermediate interview, the information is lost, but taken into |
printf(" %d %.12f",i, p[i]);
|
account using an interpolation or extrapolation. |
printf("\n");
|
|
for (i=1;i<=n;i++) {
|
hPijx is the probability to be observed in state i at age x+h |
for (j=1;j<=n;j++) xit[j]=xi[j][i];
|
conditional to the observed state i at age x. The delay 'h' can be |
fptt=(*fret);
|
split into an exact number (nh*stepm) of unobserved intermediate |
#ifdef DEBUG
|
states. This elementary transition (by month, quarter, |
printf("fret=%lf \n",*fret);
|
semester or year) is modelled as a multinomial logistic. The hPx |
#endif
|
matrix is simply the matrix product of nh*stepm elementary matrices |
printf("%d",i);fflush(stdout);
|
and the contribution of each individual to the likelihood is simply |
linmin(p,xit,n,fret,func);
|
hPijx. |
if (fabs(fptt-(*fret)) > del) {
|
|
del=fabs(fptt-(*fret));
|
Also this programme outputs the covariance matrix of the parameters but also |
ibig=i;
|
of the life expectancies. It also computes the period (stable) prevalence. |
}
|
|
#ifdef DEBUG
|
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
printf("%d %.12e",i,(*fret));
|
Institut national d'études démographiques, Paris. |
for (j=1;j<=n;j++) {
|
This software have been partly granted by Euro-REVES, a concerted action |
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
|
from the European Union. |
printf(" x(%d)=%.12e",j,xit[j]);
|
It is copyrighted identically to a GNU software product, ie programme and |
}
|
software can be distributed freely for non commercial use. Latest version |
for(j=1;j<=n;j++)
|
can be accessed at http://euroreves.ined.fr/imach . |
printf(" p=%.12e",p[j]);
|
|
printf("\n");
|
Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach |
#endif
|
or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so |
}
|
|
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
|
**********************************************************************/ |
#ifdef DEBUG
|
/* |
int k[2],l;
|
main |
k[0]=1;
|
read parameterfile |
k[1]=-1;
|
read datafile |
printf("Max: %.12e",(*func)(p));
|
concatwav |
for (j=1;j<=n;j++)
|
freqsummary |
printf(" %.12e",p[j]);
|
if (mle >= 1) |
printf("\n");
|
mlikeli |
for(l=0;l<=1;l++) {
|
print results files |
for (j=1;j<=n;j++) {
|
if mle==1 |
ptt[j]=p[j]+(p[j]-pt[j])*k[l];
|
computes hessian |
printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
|
read end of parameter file: agemin, agemax, bage, fage, estepm |
}
|
begin-prev-date,... |
printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
|
open gnuplot file |
}
|
open html file |
#endif
|
period (stable) prevalence | pl_nom 1-1 2-2 etc by covariate |
|
for age prevalim() | #****** V1=0 V2=1 V3=1 V4=0 ****** |
|
| 65 1 0 2 1 3 1 4 0 0.96326 0.03674 |
free_vector(xit,1,n);
|
freexexit2 possible for memory heap. |
free_vector(xits,1,n);
|
|
free_vector(ptt,1,n);
|
h Pij x | pij_nom ficrestpij |
free_vector(pt,1,n);
|
# Cov Agex agex+h hpijx with i,j= 1-1 1-2 1-3 2-1 2-2 2-3 |
return;
|
1 85 85 1.00000 0.00000 0.00000 0.00000 1.00000 0.00000 |
}
|
1 85 86 0.68299 0.22291 0.09410 0.71093 0.00000 0.28907 |
if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
|
|
for (j=1;j<=n;j++) {
|
1 65 99 0.00364 0.00322 0.99314 0.00350 0.00310 0.99340 |
ptt[j]=2.0*p[j]-pt[j];
|
1 65 100 0.00214 0.00204 0.99581 0.00206 0.00196 0.99597 |
xit[j]=p[j]-pt[j];
|
variance of p one-step probabilities varprob | prob_nom ficresprob #One-step probabilities and stand. devi in () |
pt[j]=p[j];
|
Standard deviation of one-step probabilities | probcor_nom ficresprobcor #One-step probabilities and correlation matrix |
}
|
Matrix of variance covariance of one-step probabilities | probcov_nom ficresprobcov #One-step probabilities and covariance matrix |
fptt=(*func)(ptt);
|
|
if (fptt < fp) {
|
forecasting if prevfcast==1 prevforecast call prevalence() |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
|
health expectancies |
if (t < 0.0) {
|
Variance-covariance of DFLE |
linmin(p,xit,n,fret,func);
|
prevalence() |
for (j=1;j<=n;j++) {
|
movingaverage() |
xi[j][ibig]=xi[j][n];
|
varevsij() |
xi[j][n]=xit[j];
|
if popbased==1 varevsij(,popbased) |
}
|
total life expectancies |
#ifdef DEBUG
|
Variance of period (stable) prevalence |
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
|
end |
for(j=1;j<=n;j++)
|
*/ |
printf(" %.12e",xit[j]);
|
|
printf("\n");
|
/* #define DEBUG */ |
#endif
|
/* #define DEBUGBRENT */ |
}
|
/* #define DEBUGLINMIN */ |
}
|
/* #define DEBUGHESS */ |
}
|
#define DEBUGHESSIJ |
}
|
/* #define LINMINORIGINAL /\* Don't use loop on scale in linmin (accepting nan)*\/ */ |
|
#define POWELL /* Instead of NLOPT */ |
/**** Prevalence limit ****************/
|
#define POWELLF1F3 /* Skip test */ |
|
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
|
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
{
|
|
/* Computes the prevalence limit in each live state at age x by left multiplying the unit
|
#include <math.h> |
matrix by transitions matrix until convergence is reached */
|
#include <stdio.h> |
|
#include <stdlib.h> |
int i, ii,j,k;
|
#include <string.h> |
double min, max, maxmin, maxmax,sumnew=0.;
|
|
double **matprod2();
|
#ifdef _WIN32 |
double **out, cov[NCOVMAX], **pmij();
|
#include <io.h> |
double **newm;
|
#include <windows.h> |
double agefin, delaymax=50 ; /* Max number of years to converge */
|
#include <tchar.h> |
|
#else |
for (ii=1;ii<=nlstate+ndeath;ii++)
|
#include <unistd.h> |
for (j=1;j<=nlstate+ndeath;j++){
|
#endif |
oldm[ii][j]=(ii==j ? 1.0 : 0.0);
|
|
}
|
#include <limits.h> |
|
#include <sys/types.h> |
cov[1]=1.;
|
|
|
#if defined(__GNUC__) |
/* Even if hstepm = 1, at least one multiplication by the unit matrix */
|
#include <sys/utsname.h> /* Doesn't work on Windows */ |
for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
|
#endif |
newm=savm;
|
|
/* Covariates have to be included here again */
|
#include <sys/stat.h> |
cov[2]=agefin;
|
#include <errno.h> |
|
/* extern int errno; */ |
for (k=1; k<=cptcovn;k++) {
|
|
cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
|
/* #ifdef LINUX */ |
/* printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
|
/* #include <time.h> */ |
}
|
/* #include "timeval.h" */ |
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
|
/* #else */ |
for (k=1; k<=cptcovprod;k++)
|
/* #include <sys/time.h> */ |
cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
|
/* #endif */ |
|
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
|
#include <time.h> |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
|
|
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
|
#ifdef GSL |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
|
#include <gsl/gsl_errno.h> |
|
#include <gsl/gsl_multimin.h> |
savm=oldm;
|
#endif |
oldm=newm;
|
|
maxmax=0.;
|
|
for(j=1;j<=nlstate;j++){
|
#ifdef NLOPT |
min=1.;
|
#include <nlopt.h> |
max=0.;
|
typedef struct { |
for(i=1; i<=nlstate; i++) {
|
double (* function)(double [] ); |
sumnew=0;
|
} myfunc_data ; |
for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
|
#endif |
prlim[i][j]= newm[i][j]/(1-sumnew);
|
|
max=FMAX(max,prlim[i][j]);
|
/* #include <libintl.h> */ |
min=FMIN(min,prlim[i][j]);
|
/* #define _(String) gettext (String) */ |
}
|
|
maxmin=max-min;
|
#define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
maxmax=FMAX(maxmax,maxmin);
|
|
}
|
#define GNUPLOTPROGRAM "gnuplot" |
if(maxmax < ftolpl){
|
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
return prlim;
|
#define FILENAMELENGTH 132 |
}
|
|
}
|
#define GLOCK_ERROR_NOPATH -1 /* empty path */ |
}
|
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
|
|
/*************** transition probabilities ***************/
|
#define MAXPARM 128 /**< Maximum number of parameters for the optimization */ |
|
#define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */ |
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
|
|
{
|
#define NINTERVMAX 8 |
double s1, s2;
|
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
/*double t34;*/
|
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
int i,j,j1, nc, ii, jj;
|
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
|
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
for(i=1; i<= nlstate; i++){
|
#define MAXN 20000 |
for(j=1; j<i;j++){
|
#define YEARM 12. /**< Number of months per year */ |
for (nc=1, s2=0.;nc <=ncovmodel; nc++){
|
#define AGESUP 130 |
/*s2 += param[i][j][nc]*cov[nc];*/
|
#define AGEBASE 40 |
s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
|
#define AGEOVERFLOW 1.e20 |
/*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
|
#define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */ |
}
|
#ifdef _WIN32 |
ps[i][j]=s2;
|
#define DIRSEPARATOR '\\' |
/*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
|
#define CHARSEPARATOR "\\" |
}
|
#define ODIRSEPARATOR '/' |
for(j=i+1; j<=nlstate+ndeath;j++){
|
#else |
for (nc=1, s2=0.;nc <=ncovmodel; nc++){
|
#define DIRSEPARATOR '/' |
s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
|
#define CHARSEPARATOR "/" |
/*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
|
#define ODIRSEPARATOR '\\' |
}
|
#endif |
ps[i][j]=s2;
|
|
}
|
/* $Id$ */ |
}
|
/* $State$ */ |
/*ps[3][2]=1;*/
|
#include "version.h" |
|
char version[]=__IMACH_VERSION__; |
for(i=1; i<= nlstate; i++){
|
char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015"; |
s1=0;
|
char fullversion[]="$Revision$ $Date$"; |
for(j=1; j<i; j++)
|
char strstart[80]; |
s1+=exp(ps[i][j]);
|
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
for(j=i+1; j<=nlstate+ndeath; j++)
|
int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ |
s1+=exp(ps[i][j]);
|
int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */ |
ps[i][i]=1./(s1+1.);
|
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
for(j=1; j<i; j++)
|
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
ps[i][j]= exp(ps[i][j])*ps[i][i];
|
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
for(j=i+1; j<=nlstate+ndeath; j++)
|
int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */ |
ps[i][j]= exp(ps[i][j])*ps[i][i];
|
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
|
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
} /* end i */
|
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
|
int cptcov=0; /* Working variable */ |
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
|
int npar=NPARMAX; |
for(jj=1; jj<= nlstate+ndeath; jj++){
|
int nlstate=2; /* Number of live states */ |
ps[ii][jj]=0;
|
int ndeath=1; /* Number of dead states */ |
ps[ii][ii]=1;
|
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
}
|
int popbased=0; |
}
|
|
|
int *wav; /* Number of waves for this individuual 0 is possible */ |
|
int maxwav=0; /* Maxim number of waves */ |
/* for(ii=1; ii<= nlstate+ndeath; ii++){
|
int jmin=0, jmax=0; /* min, max spacing between 2 waves */ |
for(jj=1; jj<= nlstate+ndeath; jj++){
|
int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ |
printf("%lf ",ps[ii][jj]);
|
int gipmx=0, gsw=0; /* Global variables on the number of contributions |
}
|
to the likelihood and the sum of weights (done by funcone)*/ |
printf("\n ");
|
int mle=1, weightopt=0; |
}
|
int **mw; /* mw[mi][i] is number of the mi wave for this individual */ |
printf("\n ");printf("%lf ",cov[2]);*/
|
int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ |
/*
|
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
for(i=1; i<= npar; i++) printf("%f ",x[i]);
|
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
goto end;*/
|
int countcallfunc=0; /* Count the number of calls to func */ |
return ps;
|
double jmean=1; /* Mean space between 2 waves */ |
}
|
double **matprod2(); /* test */ |
|
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
/**************** Product of 2 matrices ******************/
|
double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ |
|
/*FILE *fic ; */ /* Used in readdata only */ |
double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
|
FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; |
{
|
FILE *ficlog, *ficrespow; |
/* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
|
int globpr=0; /* Global variable for printing or not */ |
b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
|
double fretone; /* Only one call to likelihood */ |
/* in, b, out are matrice of pointers which should have been initialized
|
long ipmx=0; /* Number of contributions */ |
before: only the contents of out is modified. The function returns
|
double sw; /* Sum of weights */ |
a pointer to pointers identical to out */
|
char filerespow[FILENAMELENGTH]; |
long i, j, k;
|
char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */ |
for(i=nrl; i<= nrh; i++)
|
FILE *ficresilk; |
for(k=ncolol; k<=ncoloh; k++)
|
FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor; |
for(j=ncl,out[i][k]=0.; j<=nch; j++)
|
FILE *ficresprobmorprev; |
out[i][k] +=in[i][j]*b[j][k];
|
FILE *fichtm, *fichtmcov; /* Html File */ |
|
FILE *ficreseij; |
return out;
|
char filerese[FILENAMELENGTH]; |
}
|
FILE *ficresstdeij; |
|
char fileresstde[FILENAMELENGTH]; |
|
FILE *ficrescveij; |
/************* Higher Matrix Product ***************/
|
char filerescve[FILENAMELENGTH]; |
|
FILE *ficresvij; |
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
|
char fileresv[FILENAMELENGTH]; |
{
|
FILE *ficresvpl; |
/* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month
|
char fileresvpl[FILENAMELENGTH]; |
duration (i.e. until
|
char title[MAXLINE]; |
age (in years) age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.
|
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH]; |
Output is stored in matrix po[i][j][h] for h every 'hstepm' step
|
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
(typically every 2 years instead of every month which is too big).
|
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
Model is determined by parameters x and covariates have to be
|
char command[FILENAMELENGTH]; |
included manually here.
|
int outcmd=0; |
|
|
*/
|
char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; |
|
char fileresu[FILENAMELENGTH]; /* fileres without r in front */ |
int i, j, d, h, k;
|
char filelog[FILENAMELENGTH]; /* Log file */ |
double **out, cov[NCOVMAX];
|
char filerest[FILENAMELENGTH]; |
double **newm;
|
char fileregp[FILENAMELENGTH]; |
|
char popfile[FILENAMELENGTH]; |
/* Hstepm could be zero and should return the unit matrix */
|
|
for (i=1;i<=nlstate+ndeath;i++)
|
char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ; |
for (j=1;j<=nlstate+ndeath;j++){
|
|
oldm[i][j]=(i==j ? 1.0 : 0.0);
|
/* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */ |
po[i][j][0]=(i==j ? 1.0 : 0.0);
|
/* struct timezone tzp; */ |
}
|
/* extern int gettimeofday(); */ |
/* Even if hstepm = 1, at least one multiplication by the unit matrix */
|
struct tm tml, *gmtime(), *localtime(); |
for(h=1; h <=nhstepm; h++){
|
|
for(d=1; d <=hstepm; d++){
|
extern time_t time(); |
newm=savm;
|
|
/* Covariates have to be included here again */
|
struct tm start_time, end_time, curr_time, last_time, forecast_time; |
cov[1]=1.;
|
time_t rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */ |
cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
|
struct tm tm; |
for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
|
|
for (k=1; k<=cptcovage;k++)
|
char strcurr[80], strfor[80]; |
cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
|
|
for (k=1; k<=cptcovprod;k++)
|
char *endptr; |
cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
|
long lval; |
|
double dval; |
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
|
#define NR_END 1 |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
|
#define FREE_ARG char* |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
|
#define FTOL 1.0e-10 |
pmij(pmmij,cov,ncovmodel,x,nlstate));
|
|
savm=oldm;
|
#define NRANSI |
oldm=newm;
|
#define ITMAX 200 |
}
|
|
for(i=1; i<=nlstate+ndeath; i++)
|
#define TOL 2.0e-4 |
for(j=1;j<=nlstate+ndeath;j++) {
|
|
po[i][j][h]=newm[i][j];
|
#define CGOLD 0.3819660 |
/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
|
#define ZEPS 1.0e-10 |
*/
|
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); |
}
|
|
} /* end h */
|
#define GOLD 1.618034 |
return po;
|
#define GLIMIT 100.0 |
}
|
#define TINY 1.0e-20 |
|
|
|
static double maxarg1,maxarg2; |
/*************** log-likelihood *************/
|
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) |
double func( double *x)
|
#define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) |
{
|
|
int i, ii, j, k, mi, d, kk;
|
#define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) |
double l, ll[NLSTATEMAX], cov[NCOVMAX];
|
#define rint(a) floor(a+0.5) |
double **out;
|
/* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */ |
double sw; /* Sum of weights */
|
#define mytinydouble 1.0e-16 |
double lli; /* Individual log likelihood */
|
/* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */ |
long ipmx;
|
/* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */ |
/*extern weight */
|
/* static double dsqrarg; */ |
/* We are differentiating ll according to initial status */
|
/* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
|
static double sqrarg; |
/*for(i=1;i<imx;i++)
|
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) |
printf(" %d\n",s[4][i]);
|
#define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} |
*/
|
int agegomp= AGEGOMP; |
cov[1]=1.;
|
|
|
int imx; |
for(k=1; k<=nlstate; k++) ll[k]=0.;
|
int stepm=1; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){
|
/* Stepm, step in month: minimum step interpolation*/ |
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
|
|
for(mi=1; mi<= wav[i]-1; mi++){
|
int estepm; |
for (ii=1;ii<=nlstate+ndeath;ii++)
|
/* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/ |
for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);
|
|
for(d=0; d<dh[mi][i]; d++){
|
int m,nb; |
newm=savm;
|
long *num; |
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
|
int firstpass=0, lastpass=4,*cod, *cens; |
for (kk=1; kk<=cptcovage;kk++) {
|
int *ncodemax; /* ncodemax[j]= Number of modalities of the j th |
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
|
covariate for which somebody answered excluding |
}
|
undefined. Usually 2: 0 and 1. */ |
|
int *ncodemaxwundef; /* ncodemax[j]= Number of modalities of the j th |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
|
covariate for which somebody answered including |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
|
undefined. Usually 3: -1, 0 and 1. */ |
savm=oldm;
|
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
oldm=newm;
|
double **pmmij, ***probs; |
|
double *ageexmed,*agecens; |
|
double dateintmean=0; |
} /* end mult */
|
|
|
double *weight; |
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);
|
int **s; /* Status */ |
/* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
|
double *agedc; |
ipmx +=1;
|
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
sw += weight[i];
|
* covar=matrix(0,NCOVMAX,1,n); |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
|
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
} /* end of wave */
|
double idx; |
} /* end of individual */
|
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
|
int *Tage; |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
|
int *Ndum; /** Freq of modality (tricode */ |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */
|
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
|
int **Tvard, *Tprod, cptcovprod, *Tvaraff; |
return -l;
|
double *lsurv, *lpop, *tpop; |
}
|
|
|
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
|
double ftolhess; /**< Tolerance for computing hessian */ |
/*********** Maximum Likelihood Estimation ***************/
|
|
|
/**************** split *************************/ |
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
|
static int split( char *path, char *dirc, char *name, char *ext, char *finame ) |
{
|
{ |
int i,j, iter;
|
/* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc) |
double **xi,*delti;
|
the name of the file (name), its extension only (ext) and its first part of the name (finame) |
double fret;
|
*/ |
xi=matrix(1,npar,1,npar);
|
char *ss; /* pointer */ |
for (i=1;i<=npar;i++)
|
int l1=0, l2=0; /* length counters */ |
for (j=1;j<=npar;j++)
|
|
xi[i][j]=(i==j ? 1.0 : 0.0);
|
l1 = strlen(path ); /* length of path */ |
printf("Powell\n");
|
if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); |
powell(p,xi,npar,ftol,&iter,&fret,func);
|
ss= strrchr( path, DIRSEPARATOR ); /* find last / */ |
|
if ( ss == NULL ) { /* no directory, so determine current directory */ |
printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
|
strcpy( name, path ); /* we got the fullname name because no directory */ |
fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
|
/*if(strrchr(path, ODIRSEPARATOR )==NULL) |
|
printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/ |
}
|
/* get current working directory */ |
|
/* extern char* getcwd ( char *buf , int len);*/ |
/**** Computes Hessian and covariance matrix ***/
|
#ifdef WIN32 |
void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
|
if (_getcwd( dirc, FILENAME_MAX ) == NULL ) { |
{
|
#else |
double **a,**y,*x,pd;
|
if (getcwd(dirc, FILENAME_MAX) == NULL) { |
double **hess;
|
#endif |
int i, j,jk;
|
return( GLOCK_ERROR_GETCWD ); |
int *indx;
|
} |
|
/* got dirc from getcwd*/ |
double hessii(double p[], double delta, int theta, double delti[]);
|
printf(" DIRC = %s \n",dirc); |
double hessij(double p[], double delti[], int i, int j);
|
} else { /* strip direcotry from path */ |
void lubksb(double **a, int npar, int *indx, double b[]) ;
|
ss++; /* after this, the filename */ |
void ludcmp(double **a, int npar, int *indx, double *d) ;
|
l2 = strlen( ss ); /* length of filename */ |
|
if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); |
hess=matrix(1,npar,1,npar);
|
strcpy( name, ss ); /* save file name */ |
|
strncpy( dirc, path, l1 - l2 ); /* now the directory */ |
printf("\nCalculation of the hessian matrix. Wait...\n");
|
dirc[l1-l2] = '\0'; /* add zero */ |
for (i=1;i<=npar;i++){
|
printf(" DIRC2 = %s \n",dirc); |
printf("%d",i);fflush(stdout);
|
} |
hess[i][i]=hessii(p,ftolhess,i,delti);
|
/* We add a separator at the end of dirc if not exists */ |
/*printf(" %f ",p[i]);*/
|
l1 = strlen( dirc ); /* length of directory */ |
/*printf(" %lf ",hess[i][i]);*/
|
if( dirc[l1-1] != DIRSEPARATOR ){ |
}
|
dirc[l1] = DIRSEPARATOR; |
|
dirc[l1+1] = 0; |
for (i=1;i<=npar;i++) {
|
printf(" DIRC3 = %s \n",dirc); |
for (j=1;j<=npar;j++) {
|
} |
if (j>i) {
|
ss = strrchr( name, '.' ); /* find last / */ |
printf(".%d%d",i,j);fflush(stdout);
|
if (ss >0){ |
hess[i][j]=hessij(p,delti,i,j);
|
ss++; |
hess[j][i]=hess[i][j];
|
strcpy(ext,ss); /* save extension */ |
/*printf(" %lf ",hess[i][j]);*/
|
l1= strlen( name); |
}
|
l2= strlen(ss)+1; |
}
|
strncpy( finame, name, l1-l2); |
}
|
finame[l1-l2]= 0; |
printf("\n");
|
} |
|
|
printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
|
return( 0 ); /* we're done */ |
|
} |
a=matrix(1,npar,1,npar);
|
|
y=matrix(1,npar,1,npar);
|
|
x=vector(1,npar);
|
/******************************************/ |
indx=ivector(1,npar);
|
|
for (i=1;i<=npar;i++)
|
void replace_back_to_slash(char *s, char*t) |
for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
|
{ |
ludcmp(a,npar,indx,&pd);
|
int i; |
|
int lg=0; |
for (j=1;j<=npar;j++) {
|
i=0; |
for (i=1;i<=npar;i++) x[i]=0;
|
lg=strlen(t); |
x[j]=1;
|
for(i=0; i<= lg; i++) { |
lubksb(a,npar,indx,x);
|
(s[i] = t[i]); |
for (i=1;i<=npar;i++){
|
if (t[i]== '\\') s[i]='/'; |
matcov[i][j]=x[i];
|
} |
}
|
} |
}
|
|
|
char *trimbb(char *out, char *in) |
printf("\n#Hessian matrix#\n");
|
{ /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */ |
for (i=1;i<=npar;i++) {
|
char *s; |
for (j=1;j<=npar;j++) {
|
s=out; |
printf("%.3e ",hess[i][j]);
|
while (*in != '\0'){ |
}
|
while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/ |
printf("\n");
|
in++; |
}
|
} |
|
*out++ = *in++; |
/* Recompute Inverse */
|
} |
for (i=1;i<=npar;i++)
|
*out='\0'; |
for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
|
return s; |
ludcmp(a,npar,indx,&pd);
|
} |
|
|
/* printf("\n#Hessian matrix recomputed#\n");
|
/* char *substrchaine(char *out, char *in, char *chain) */ |
|
/* { */ |
for (j=1;j<=npar;j++) {
|
/* /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */ |
for (i=1;i<=npar;i++) x[i]=0;
|
/* char *s, *t; */ |
x[j]=1;
|
/* t=in;s=out; */ |
lubksb(a,npar,indx,x);
|
/* while ((*in != *chain) && (*in != '\0')){ */ |
for (i=1;i<=npar;i++){
|
/* *out++ = *in++; */ |
y[i][j]=x[i];
|
/* } */ |
printf("%.3e ",y[i][j]);
|
|
}
|
/* /\* *in matches *chain *\/ */ |
printf("\n");
|
/* while ((*in++ == *chain++) && (*in != '\0')){ */ |
}
|
/* printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain); */ |
*/
|
/* } */ |
|
/* in--; chain--; */ |
free_matrix(a,1,npar,1,npar);
|
/* while ( (*in != '\0')){ */ |
free_matrix(y,1,npar,1,npar);
|
/* printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain); */ |
free_vector(x,1,npar);
|
/* *out++ = *in++; */ |
free_ivector(indx,1,npar);
|
/* printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain); */ |
free_matrix(hess,1,npar,1,npar);
|
/* } */ |
|
/* *out='\0'; */ |
|
/* out=s; */ |
}
|
/* return out; */ |
|
/* } */ |
/*************** hessian matrix ****************/
|
char *substrchaine(char *out, char *in, char *chain) |
double hessii( double x[], double delta, int theta, double delti[])
|
{ |
{
|
/* Substract chain 'chain' from 'in', return and output 'out' */ |
int i;
|
/* in="V1+V1*age+age*age+V2", chain="age*age" */ |
int l=1, lmax=20;
|
|
double k1,k2;
|
char *strloc; |
double p2[NPARMAX+1];
|
|
double res;
|
strcpy (out, in); |
double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
|
strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */ |
double fx;
|
printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out); |
int k=0,kmax=10;
|
if(strloc != NULL){ |
double l1;
|
/* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */ |
|
memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1); |
fx=func(x);
|
/* strcpy (strloc, strloc +strlen(chain));*/ |
for (i=1;i<=npar;i++) p2[i]=x[i];
|
} |
for(l=0 ; l <=lmax; l++){
|
printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out); |
l1=pow(10,l);
|
return out; |
delts=delt;
|
} |
for(k=1 ; k <kmax; k=k+1){
|
|
delt = delta*(l1*k);
|
|
p2[theta]=x[theta] +delt;
|
char *cutl(char *blocc, char *alocc, char *in, char occ) |
k1=func(p2)-fx;
|
{ |
p2[theta]=x[theta]-delt;
|
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
k2=func(p2)-fx;
|
and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
/*res= (k1-2.0*fx+k2)/delt/delt; */
|
gives blocc="abcdef" and alocc="ghi2j". |
res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
|
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
|
*/ |
#ifdef DEBUG
|
char *s, *t; |
printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
|
t=in;s=in; |
#endif
|
while ((*in != occ) && (*in != '\0')){ |
/*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
|
*alocc++ = *in++; |
if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
|
} |
k=kmax;
|
if( *in == occ){ |
}
|
*(alocc)='\0'; |
else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
|
s=++in; |
k=kmax; l=lmax*10.;
|
} |
}
|
|
else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
|
if (s == t) {/* occ not found */ |
delts=delt;
|
*(alocc-(in-s))='\0'; |
}
|
in=s; |
}
|
} |
}
|
while ( *in != '\0'){ |
delti[theta]=delts;
|
*blocc++ = *in++; |
return res;
|
} |
|
|
}
|
*blocc='\0'; |
|
return t; |
double hessij( double x[], double delti[], int thetai,int thetaj)
|
} |
{
|
char *cutv(char *blocc, char *alocc, char *in, char occ) |
int i;
|
{ |
int l=1, l1, lmax=20;
|
/* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' |
double k1,k2,k3,k4,res,fx;
|
and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
double p2[NPARMAX+1];
|
gives blocc="abcdef2ghi" and alocc="j". |
int k;
|
If occ is not found blocc is null and alocc is equal to in. Returns alocc |
|
*/ |
fx=func(x);
|
char *s, *t; |
for (k=1; k<=2; k++) {
|
t=in;s=in; |
for (i=1;i<=npar;i++) p2[i]=x[i];
|
while (*in != '\0'){ |
p2[thetai]=x[thetai]+delti[thetai]/k;
|
while( *in == occ){ |
p2[thetaj]=x[thetaj]+delti[thetaj]/k;
|
*blocc++ = *in++; |
k1=func(p2)-fx;
|
s=in; |
|
} |
p2[thetai]=x[thetai]+delti[thetai]/k;
|
*blocc++ = *in++; |
p2[thetaj]=x[thetaj]-delti[thetaj]/k;
|
} |
k2=func(p2)-fx;
|
if (s == t) /* occ not found */ |
|
*(blocc-(in-s))='\0'; |
p2[thetai]=x[thetai]-delti[thetai]/k;
|
else |
p2[thetaj]=x[thetaj]+delti[thetaj]/k;
|
*(blocc-(in-s)-1)='\0'; |
k3=func(p2)-fx;
|
in=s; |
|
while ( *in != '\0'){ |
p2[thetai]=x[thetai]-delti[thetai]/k;
|
*alocc++ = *in++; |
p2[thetaj]=x[thetaj]-delti[thetaj]/k;
|
} |
k4=func(p2)-fx;
|
|
res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
|
*alocc='\0'; |
#ifdef DEBUG
|
return s; |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
|
} |
#endif
|
|
}
|
int nbocc(char *s, char occ) |
return res;
|
{ |
}
|
int i,j=0; |
|
int lg=20; |
/************** Inverse of matrix **************/
|
i=0; |
void ludcmp(double **a, int n, int *indx, double *d)
|
lg=strlen(s); |
{
|
for(i=0; i<= lg; i++) { |
int i,imax,j,k;
|
if (s[i] == occ ) j++; |
double big,dum,sum,temp;
|
} |
double *vv;
|
return j; |
|
} |
vv=vector(1,n);
|
|
*d=1.0;
|
/* void cutv(char *u,char *v, char*t, char occ) */ |
for (i=1;i<=n;i++) {
|
/* { */ |
big=0.0;
|
/* /\* cuts string t into u and v where u ends before last occurence of char 'occ' */ |
for (j=1;j<=n;j++)
|
/* and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */ |
if ((temp=fabs(a[i][j])) > big) big=temp;
|
/* gives u="abcdef2ghi" and v="j" *\/ */ |
if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
|
/* int i,lg,j,p=0; */ |
vv[i]=1.0/big;
|
/* i=0; */ |
}
|
/* lg=strlen(t); */ |
for (j=1;j<=n;j++) {
|
/* for(j=0; j<=lg-1; j++) { */ |
for (i=1;i<j;i++) {
|
/* if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */ |
sum=a[i][j];
|
/* } */ |
for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
|
|
a[i][j]=sum;
|
/* for(j=0; j<p; j++) { */ |
}
|
/* (u[j] = t[j]); */ |
big=0.0;
|
/* } */ |
for (i=j;i<=n;i++) {
|
/* u[p]='\0'; */ |
sum=a[i][j];
|
|
for (k=1;k<j;k++)
|
/* for(j=0; j<= lg; j++) { */ |
sum -= a[i][k]*a[k][j];
|
/* if (j>=(p+1))(v[j-p-1] = t[j]); */ |
a[i][j]=sum;
|
/* } */ |
if ( (dum=vv[i]*fabs(sum)) >= big) {
|
/* } */ |
big=dum;
|
|
imax=i;
|
#ifdef _WIN32 |
}
|
char * strsep(char **pp, const char *delim) |
}
|
{ |
if (j != imax) {
|
char *p, *q; |
for (k=1;k<=n;k++) {
|
|
dum=a[imax][k];
|
if ((p = *pp) == NULL) |
a[imax][k]=a[j][k];
|
return 0; |
a[j][k]=dum;
|
if ((q = strpbrk (p, delim)) != NULL) |
}
|
{ |
*d = -(*d);
|
*pp = q + 1; |
vv[imax]=vv[j];
|
*q = '\0'; |
}
|
} |
indx[j]=imax;
|
else |
if (a[j][j] == 0.0) a[j][j]=TINY;
|
*pp = 0; |
if (j != n) {
|
return p; |
dum=1.0/(a[j][j]);
|
} |
for (i=j+1;i<=n;i++) a[i][j] *= dum;
|
#endif |
}
|
|
}
|
/********************** nrerror ********************/ |
free_vector(vv,1,n); /* Doesn't work */
|
|
;
|
void nrerror(char error_text[]) |
}
|
{ |
|
fprintf(stderr,"ERREUR ...\n"); |
void lubksb(double **a, int n, int *indx, double b[])
|
fprintf(stderr,"%s\n",error_text); |
{
|
exit(EXIT_FAILURE); |
int i,ii=0,ip,j;
|
} |
double sum;
|
/*********************** vector *******************/ |
|
double *vector(int nl, int nh) |
for (i=1;i<=n;i++) {
|
{ |
ip=indx[i];
|
double *v; |
sum=b[ip];
|
v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); |
b[ip]=b[i];
|
if (!v) nrerror("allocation failure in vector"); |
if (ii)
|
return v-nl+NR_END; |
for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
|
} |
else if (sum) ii=i;
|
|
b[i]=sum;
|
/************************ free vector ******************/ |
}
|
void free_vector(double*v, int nl, int nh) |
for (i=n;i>=1;i--) {
|
{ |
sum=b[i];
|
free((FREE_ARG)(v+nl-NR_END)); |
for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
|
} |
b[i]=sum/a[i][i];
|
|
}
|
/************************ivector *******************************/ |
}
|
int *ivector(long nl,long nh) |
|
{ |
/************ Frequencies ********************/
|
int *v; |
void freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
|
v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); |
{ /* Some frequencies */
|
if (!v) nrerror("allocation failure in ivector"); |
|
return v-nl+NR_END; |
int i, m, jk, k1,i1, j1, bool, z1,z2,j;
|
} |
double ***freq; /* Frequencies */
|
|
double *pp;
|
/******************free ivector **************************/ |
double pos, k2, dateintsum=0,k2cpt=0;
|
void free_ivector(int *v, long nl, long nh) |
FILE *ficresp;
|
{ |
char fileresp[FILENAMELENGTH];
|
free((FREE_ARG)(v+nl-NR_END)); |
|
} |
pp=vector(1,nlstate);
|
|
probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
/************************lvector *******************************/ |
strcpy(fileresp,"p");
|
long *lvector(long nl,long nh) |
strcat(fileresp,fileres);
|
{ |
if((ficresp=fopen(fileresp,"w"))==NULL) {
|
long *v; |
printf("Problem with prevalence resultfile: %s\n", fileresp);
|
v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long))); |
exit(0);
|
if (!v) nrerror("allocation failure in ivector"); |
}
|
return v-nl+NR_END; |
freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
|
} |
j1=0;
|
|
|
/******************free lvector **************************/ |
j=cptcoveff;
|
void free_lvector(long *v, long nl, long nh) |
if (cptcovn<1) {j=1;ncodemax[1]=1;}
|
{ |
|
free((FREE_ARG)(v+nl-NR_END)); |
for(k1=1; k1<=j;k1++){
|
} |
for(i1=1; i1<=ncodemax[k1];i1++){
|
|
j1++;
|
/******************* imatrix *******************************/ |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
|
int **imatrix(long nrl, long nrh, long ncl, long nch) |
scanf("%d", i);*/
|
/* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ |
for (i=-1; i<=nlstate+ndeath; i++)
|
{ |
for (jk=-1; jk<=nlstate+ndeath; jk++)
|
long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; |
for(m=agemin; m <= agemax+3; m++)
|
int **m; |
freq[i][jk][m]=0;
|
|
|
/* allocate pointers to rows */ |
dateintsum=0;
|
m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); |
k2cpt=0;
|
if (!m) nrerror("allocation failure 1 in matrix()"); |
for (i=1; i<=imx; i++) {
|
m += NR_END; |
bool=1;
|
m -= nrl; |
if (cptcovn>0) {
|
|
for (z1=1; z1<=cptcoveff; z1++)
|
|
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
|
/* allocate rows and set pointers to them */ |
bool=0;
|
m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); |
}
|
if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
if (bool==1) {
|
m[nrl] += NR_END; |
for(m=firstpass; m<=lastpass; m++){
|
m[nrl] -= ncl; |
k2=anint[m][i]+(mint[m][i]/12.);
|
|
if ((k2>=dateprev1) && (k2<=dateprev2)) {
|
for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; |
if(agev[m][i]==0) agev[m][i]=agemax+1;
|
|
if(agev[m][i]==1) agev[m][i]=agemax+2;
|
/* return pointer to array of pointers to rows */ |
if (m<lastpass) {
|
return m; |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
|
} |
freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
|
|
}
|
/****************** free_imatrix *************************/ |
|
void free_imatrix(m,nrl,nrh,ncl,nch) |
if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
|
int **m; |
dateintsum=dateintsum+k2;
|
long nch,ncl,nrh,nrl; |
k2cpt++;
|
/* free an int matrix allocated by imatrix() */ |
}
|
{ |
}
|
free((FREE_ARG) (m[nrl]+ncl-NR_END)); |
}
|
free((FREE_ARG) (m+nrl-NR_END)); |
}
|
} |
}
|
|
|
/******************* matrix *******************************/ |
fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
|
double **matrix(long nrl, long nrh, long ncl, long nch) |
|
{ |
if (cptcovn>0) {
|
long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; |
fprintf(ficresp, "\n#********** Variable ");
|
double **m; |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
|
|
fprintf(ficresp, "**********\n#");
|
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); |
}
|
if (!m) nrerror("allocation failure 1 in matrix()"); |
for(i=1; i<=nlstate;i++)
|
m += NR_END; |
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
|
m -= nrl; |
fprintf(ficresp, "\n");
|
|
|
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); |
for(i=(int)agemin; i <= (int)agemax+3; i++){
|
if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
if(i==(int)agemax+3)
|
m[nrl] += NR_END; |
printf("Total");
|
m[nrl] -= ncl; |
else
|
|
printf("Age %d", i);
|
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |
for(jk=1; jk <=nlstate ; jk++){
|
return m; |
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
|
/* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0]) |
pp[jk] += freq[jk][m][i];
|
m[i] = address of ith row of the table. &(m[i]) is its value which is another adress |
}
|
that of m[i][0]. In order to get the value p m[i][0] but it is unitialized. |
for(jk=1; jk <=nlstate ; jk++){
|
*/ |
for(m=-1, pos=0; m <=0 ; m++)
|
} |
pos += freq[jk][m][i];
|
|
if(pp[jk]>=1.e-10)
|
/*************************free matrix ************************/ |
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
|
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) |
else
|
{ |
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
|
free((FREE_ARG)(m[nrl]+ncl-NR_END)); |
}
|
free((FREE_ARG)(m+nrl-NR_END)); |
|
} |
for(jk=1; jk <=nlstate ; jk++){
|
|
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
|
/******************* ma3x *******************************/ |
pp[jk] += freq[jk][m][i];
|
double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) |
}
|
{ |
|
long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; |
for(jk=1,pos=0; jk <=nlstate ; jk++)
|
double ***m; |
pos += pp[jk];
|
|
for(jk=1; jk <=nlstate ; jk++){
|
m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); |
if(pos>=1.e-5)
|
if (!m) nrerror("allocation failure 1 in matrix()"); |
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
|
m += NR_END; |
else
|
m -= nrl; |
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
|
|
if( i <= (int) agemax){
|
m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); |
if(pos>=1.e-5){
|
if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
|
m[nrl] += NR_END; |
probs[i][jk][j1]= pp[jk]/pos;
|
m[nrl] -= ncl; |
/*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
|
|
}
|
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |
else
|
|
fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
|
m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); |
}
|
if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); |
}
|
m[nrl][ncl] += NR_END; |
|
m[nrl][ncl] -= nll; |
for(jk=-1; jk <=nlstate+ndeath; jk++)
|
for (j=ncl+1; j<=nch; j++) |
for(m=-1; m <=nlstate+ndeath; m++)
|
m[nrl][j]=m[nrl][j-1]+nlay; |
if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
|
|
if(i <= (int) agemax)
|
for (i=nrl+1; i<=nrh; i++) { |
fprintf(ficresp,"\n");
|
m[i][ncl]=m[i-1l][ncl]+ncol*nlay; |
printf("\n");
|
for (j=ncl+1; j<=nch; j++) |
}
|
m[i][j]=m[i][j-1]+nlay; |
}
|
} |
}
|
return m; |
dateintmean=dateintsum/k2cpt;
|
/* gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1]) |
|
&(m[i][j][k]) <=> *((*(m+i) + j)+k) |
fclose(ficresp);
|
*/ |
free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
|
} |
free_vector(pp,1,nlstate);
|
|
|
/*************************free ma3x ************************/ |
/* End of Freq */
|
void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) |
}
|
{ |
|
free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); |
/************ Prevalence ********************/
|
free((FREE_ARG)(m[nrl]+ncl-NR_END)); |
void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
|
free((FREE_ARG)(m+nrl-NR_END)); |
{ /* Some frequencies */
|
} |
|
|
int i, m, jk, k1, i1, j1, bool, z1,z2,j;
|
/*************** function subdirf ***********/ |
double ***freq; /* Frequencies */
|
char *subdirf(char fileres[]) |
double *pp;
|
{ |
double pos, k2;
|
/* Caution optionfilefiname is hidden */ |
|
strcpy(tmpout,optionfilefiname); |
pp=vector(1,nlstate);
|
strcat(tmpout,"/"); /* Add to the right */ |
probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
strcat(tmpout,fileres); |
|
return tmpout; |
freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
|
} |
j1=0;
|
|
|
/*************** function subdirf2 ***********/ |
j=cptcoveff;
|
char *subdirf2(char fileres[], char *preop) |
if (cptcovn<1) {j=1;ncodemax[1]=1;}
|
{ |
|
|
for(k1=1; k1<=j;k1++){
|
/* Caution optionfilefiname is hidden */ |
for(i1=1; i1<=ncodemax[k1];i1++){
|
strcpy(tmpout,optionfilefiname); |
j1++;
|
strcat(tmpout,"/"); |
|
strcat(tmpout,preop); |
for (i=-1; i<=nlstate+ndeath; i++)
|
strcat(tmpout,fileres); |
for (jk=-1; jk<=nlstate+ndeath; jk++)
|
return tmpout; |
for(m=agemin; m <= agemax+3; m++)
|
} |
freq[i][jk][m]=0;
|
|
|
/*************** function subdirf3 ***********/ |
for (i=1; i<=imx; i++) {
|
char *subdirf3(char fileres[], char *preop, char *preop2) |
bool=1;
|
{ |
if (cptcovn>0) {
|
|
for (z1=1; z1<=cptcoveff; z1++)
|
/* Caution optionfilefiname is hidden */ |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
|
strcpy(tmpout,optionfilefiname); |
bool=0;
|
strcat(tmpout,"/"); |
}
|
strcat(tmpout,preop); |
if (bool==1) {
|
strcat(tmpout,preop2); |
for(m=firstpass; m<=lastpass; m++){
|
strcat(tmpout,fileres); |
k2=anint[m][i]+(mint[m][i]/12.);
|
return tmpout; |
if ((k2>=dateprev1) && (k2<=dateprev2)) {
|
} |
if(agev[m][i]==0) agev[m][i]=agemax+1;
|
|
if(agev[m][i]==1) agev[m][i]=agemax+2;
|
char *asc_diff_time(long time_sec, char ascdiff[]) |
if (m<lastpass)
|
{ |
if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
|
long sec_left, days, hours, minutes; |
else
|
days = (time_sec) / (60*60*24); |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
|
sec_left = (time_sec) % (60*60*24); |
freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];
|
hours = (sec_left) / (60*60) ; |
}
|
sec_left = (sec_left) %(60*60); |
}
|
minutes = (sec_left) /60; |
}
|
sec_left = (sec_left) % (60); |
}
|
sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left); |
for(i=(int)agemin; i <= (int)agemax+3; i++){
|
return ascdiff; |
for(jk=1; jk <=nlstate ; jk++){
|
} |
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
|
|
pp[jk] += freq[jk][m][i];
|
/***************** f1dim *************************/ |
}
|
extern int ncom; |
for(jk=1; jk <=nlstate ; jk++){
|
extern double *pcom,*xicom; |
for(m=-1, pos=0; m <=0 ; m++)
|
extern double (*nrfunc)(double []); |
pos += freq[jk][m][i];
|
|
}
|
double f1dim(double x) |
|
{ |
for(jk=1; jk <=nlstate ; jk++){
|
int j; |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
|
double f; |
pp[jk] += freq[jk][m][i];
|
double *xt; |
}
|
|
|
xt=vector(1,ncom); |
for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
|
for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; |
|
f=(*nrfunc)(xt); |
for(jk=1; jk <=nlstate ; jk++){
|
free_vector(xt,1,ncom); |
if( i <= (int) agemax){
|
return f; |
if(pos>=1.e-5){
|
} |
probs[i][jk][j1]= pp[jk]/pos;
|
|
}
|
/*****************brent *************************/ |
}
|
double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin) |
}
|
{ |
|
/* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is |
}
|
* between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates |
}
|
* the minimum to a fractional precision of about tol using Brent’s method. The abscissa of |
}
|
* the minimum is returned as xmin, and the minimum function value is returned as brent , the |
|
* returned function value. |
|
*/ |
free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
|
int iter; |
free_vector(pp,1,nlstate);
|
double a,b,d,etemp; |
|
double fu=0,fv,fw,fx; |
} /* End of Freq */
|
double ftemp=0.; |
|
double p,q,r,tol1,tol2,u,v,w,x,xm; |
/************* Waves Concatenation ***************/
|
double e=0.0; |
|
|
void concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm)
|
a=(ax < cx ? ax : cx); |
{
|
b=(ax > cx ? ax : cx); |
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
|
x=w=v=bx; |
Death is a valid wave (if date is known).
|
fw=fv=fx=(*f)(x); |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i
|
for (iter=1;iter<=ITMAX;iter++) { |
dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
|
xm=0.5*(a+b); |
and mw[mi+1][i]. dh depends on stepm.
|
tol2=2.0*(tol1=tol*fabs(x)+ZEPS); |
*/
|
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ |
|
printf(".");fflush(stdout); |
int i, mi, m;
|
fprintf(ficlog,".");fflush(ficlog); |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
|
#ifdef DEBUGBRENT |
double sum=0., jmean=0.;*/
|
printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); |
|
fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); |
int j, k=0,jk, ju, jl;
|
/* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ |
double sum=0.;
|
#endif |
jmin=1e+5;
|
if (fabs(x-xm) <= (tol2-0.5*(b-a))){ |
jmax=-1;
|
*xmin=x; |
jmean=0.;
|
return fx; |
for(i=1; i<=imx; i++){
|
} |
mi=0;
|
ftemp=fu; |
m=firstpass;
|
if (fabs(e) > tol1) { |
while(s[m][i] <= nlstate){
|
r=(x-w)*(fx-fv); |
if(s[m][i]>=1)
|
q=(x-v)*(fx-fw); |
mw[++mi][i]=m;
|
p=(x-v)*q-(x-w)*r; |
if(m >=lastpass)
|
q=2.0*(q-r); |
break;
|
if (q > 0.0) p = -p; |
else
|
q=fabs(q); |
m++;
|
etemp=e; |
}/* end while */
|
e=d; |
if (s[m][i] > nlstate){
|
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
mi++; /* Death is another wave */
|
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
/* if(mi==0) never been interviewed correctly before death */
|
else { |
/* Only death is a correct wave */
|
d=p/q; |
mw[mi][i]=m;
|
u=x+d; |
}
|
if (u-a < tol2 || b-u < tol2) |
|
d=SIGN(tol1,xm-x); |
wav[i]=mi;
|
} |
if(mi==0)
|
} else { |
printf("Warning, no any valid information for:%d line=%d\n",num[i],i);
|
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
}
|
} |
|
u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); |
for(i=1; i<=imx; i++){
|
fu=(*f)(u); |
for(mi=1; mi<wav[i];mi++){
|
if (fu <= fx) { |
if (stepm <=0)
|
if (u >= x) a=x; else b=x; |
dh[mi][i]=1;
|
SHFT(v,w,x,u) |
else{
|
SHFT(fv,fw,fx,fu) |
if (s[mw[mi+1][i]][i] > nlstate) {
|
} else { |
if (agedc[i] < 2*AGESUP) {
|
if (u < x) a=u; else b=u; |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
|
if (fu <= fw || w == x) { |
if(j==0) j=1; /* Survives at least one month after exam */
|
v=w; |
k=k+1;
|
w=u; |
if (j >= jmax) jmax=j;
|
fv=fw; |
if (j <= jmin) jmin=j;
|
fw=fu; |
sum=sum+j;
|
} else if (fu <= fv || v == x || v == w) { |
/*if (j<0) printf("j=%d num=%d \n",j,i); */
|
v=u; |
}
|
fv=fu; |
}
|
} |
else{
|
} |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
|
} |
k=k+1;
|
nrerror("Too many iterations in brent"); |
if (j >= jmax) jmax=j;
|
*xmin=x; |
else if (j <= jmin)jmin=j;
|
return fx; |
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
|
} |
sum=sum+j;
|
|
}
|
/****************** mnbrak ***********************/ |
jk= j/stepm;
|
|
jl= j -jk*stepm;
|
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, |
ju= j -(jk+1)*stepm;
|
double (*func)(double)) |
if(jl <= -ju)
|
{ /* Given a function func , and given distinct initial points ax and bx , this routine searches in |
dh[mi][i]=jk;
|
the downhill direction (defined by the function as evaluated at the initial points) and returns |
else
|
new points ax , bx , cx that bracket a minimum of the function. Also returned are the function |
dh[mi][i]=jk+1;
|
values at the three points, fa, fb , and fc such that fa > fb and fb < fc. |
if(dh[mi][i]==0)
|
*/ |
dh[mi][i]=1; /* At least one step */
|
double ulim,u,r,q, dum; |
}
|
double fu; |
}
|
|
}
|
double scale=10.; |
jmean=sum/k;
|
int iterscale=0; |
printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
|
|
}
|
*fa=(*func)(*ax); /* xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/ |
/*********** Tricode ****************************/
|
*fb=(*func)(*bx); /* xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */ |
void tricode(int *Tvar, int **nbcode, int imx)
|
|
{
|
|
int Ndum[20],ij=1, k, j, i;
|
/* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */ |
int cptcode=0;
|
/* printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */ |
cptcoveff=0;
|
/* *bx = *ax - (*ax - *bx)/scale; */ |
|
/* *fb=(*func)(*bx); /\* xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */ |
for (k=0; k<19; k++) Ndum[k]=0;
|
/* } */ |
for (k=1; k<=7; k++) ncodemax[k]=0;
|
|
|
if (*fb > *fa) { |
for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
|
SHFT(dum,*ax,*bx,dum) |
for (i=1; i<=imx; i++) {
|
SHFT(dum,*fb,*fa,dum) |
ij=(int)(covar[Tvar[j]][i]);
|
} |
Ndum[ij]++;
|
*cx=(*bx)+GOLD*(*bx-*ax); |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
|
*fc=(*func)(*cx); |
if (ij > cptcode) cptcode=ij;
|
#ifdef DEBUG |
}
|
printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
|
fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
for (i=0; i<=cptcode; i++) {
|
#endif |
if(Ndum[i]!=0) ncodemax[j]++;
|
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */ |
}
|
r=(*bx-*ax)*(*fb-*fc); |
ij=1;
|
q=(*bx-*cx)*(*fb-*fa); |
|
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
|
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
for (i=1; i<=ncodemax[j]; i++) {
|
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
for (k=0; k<=19; k++) {
|
if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */ |
if (Ndum[k] != 0) {
|
fu=(*func)(u); |
nbcode[Tvar[j]][ij]=k;
|
#ifdef DEBUG |
|
/* f(x)=A(x-u)**2+f(u) */ |
ij++;
|
double A, fparabu; |
}
|
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
if (ij > ncodemax[j]) break;
|
fparabu= *fa - A*(*ax-u)*(*ax-u); |
}
|
printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
}
|
fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
}
|
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
|
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
for (k=0; k<19; k++) Ndum[k]=0;
|
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
|
/* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/ |
for (i=1; i<=ncovmodel-2; i++) {
|
#endif |
ij=Tvar[i];
|
#ifdef MNBRAKORIGINAL |
Ndum[ij]++;
|
#else |
}
|
/* if (fu > *fc) { */ |
|
/* #ifdef DEBUG */ |
ij=1;
|
/* printf("mnbrak4 fu > fc \n"); */ |
for (i=1; i<=10; i++) {
|
/* fprintf(ficlog, "mnbrak4 fu > fc\n"); */ |
if((Ndum[i]!=0) && (i<=ncovcol)){
|
/* #endif */ |
Tvaraff[ij]=i;
|
/* /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/ *\/ */ |
ij++;
|
/* /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc will exit *\\/ *\/ */ |
}
|
/* dum=u; /\* Shifting c and u *\/ */ |
}
|
/* u = *cx; */ |
|
/* *cx = dum; */ |
cptcoveff=ij-1;
|
/* dum = fu; */ |
}
|
/* fu = *fc; */ |
|
/* *fc =dum; */ |
/*********** Health Expectancies ****************/
|
/* } else { /\* end *\/ */ |
|
/* #ifdef DEBUG */ |
void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
|
/* printf("mnbrak3 fu < fc \n"); */ |
|
/* fprintf(ficlog, "mnbrak3 fu < fc\n"); */ |
{
|
/* #endif */ |
/* Health expectancies */
|
/* dum=u; /\* Shifting c and u *\/ */ |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
|
/* u = *cx; */ |
double age, agelim, hf;
|
/* *cx = dum; */ |
double ***p3mat,***varhe;
|
/* dum = fu; */ |
double **dnewm,**doldm;
|
/* fu = *fc; */ |
double *xp;
|
/* *fc =dum; */ |
double **gp, **gm;
|
/* } */ |
double ***gradg, ***trgradg;
|
#ifdef DEBUG |
int theta;
|
printf("mnbrak34 fu < or >= fc \n"); |
|
fprintf(ficlog, "mnbrak34 fu < fc\n"); |
varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
|
#endif |
xp=vector(1,npar);
|
dum=u; /* Shifting c and u */ |
dnewm=matrix(1,nlstate*2,1,npar);
|
u = *cx; |
doldm=matrix(1,nlstate*2,1,nlstate*2);
|
*cx = dum; |
|
dum = fu; |
fprintf(ficreseij,"# Health expectancies\n");
|
fu = *fc; |
fprintf(ficreseij,"# Age");
|
*fc =dum; |
for(i=1; i<=nlstate;i++)
|
#endif |
for(j=1; j<=nlstate;j++)
|
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
fprintf(ficreseij," %1d-%1d (SE)",i,j);
|
#ifdef DEBUG |
fprintf(ficreseij,"\n");
|
printf("mnbrak2 u after c but before ulim\n"); |
|
fprintf(ficlog, "mnbrak2 u after c but before ulim\n"); |
if(estepm < stepm){
|
#endif |
printf ("Problem %d lower than %d\n",estepm, stepm);
|
fu=(*func)(u); |
}
|
if (fu < *fc) { |
else hstepm=estepm;
|
#ifdef DEBUG |
/* We compute the life expectancy from trapezoids spaced every estepm months
|
printf("mnbrak2 u after c but before ulim AND fu < fc\n"); |
* This is mainly to measure the difference between two models: for example
|
fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n"); |
* if stepm=24 months pijx are given only every 2 years and by summing them
|
#endif |
* we are calculating an estimate of the Life Expectancy assuming a linear
|
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
* progression inbetween and thus overestimating or underestimating according
|
SHFT(*fb,*fc,fu,(*func)(u)) |
* to the curvature of the survival function. If, for the same date, we
|
} |
* estimate the model with stepm=1 month, we can keep estepm to 24 months
|
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
* to compare the new estimate of Life expectancy with the same linear
|
#ifdef DEBUG |
* hypothesis. A more precise result, taking into account a more precise
|
printf("mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
* curvature will be obtained if estepm is as small as stepm. */
|
fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
|
#endif |
/* For example we decided to compute the life expectancy with the smallest unit */
|
u=ulim; |
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
|
fu=(*func)(u); |
nhstepm is the number of hstepm from age to agelim
|
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
nstepm is the number of stepm from age to agelin.
|
#ifdef DEBUG |
Look at hpijx to understand the reason of that which relies in memory size
|
printf("mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
and note for a fixed period like estepm months */
|
fprintf(ficlog, "mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the
|
#endif |
survival function given by stepm (the optimization length). Unfortunately it
|
u=(*cx)+GOLD*(*cx-*bx); |
means that if the survival funtion is printed only each two years of age and if
|
fu=(*func)(u); |
you sum them up and add 1 year (area under the trapezoids) you won't get the same
|
} /* end tests */ |
results. So we changed our mind and took the option of the best precision.
|
SHFT(*ax,*bx,*cx,u) |
*/
|
SHFT(*fa,*fb,*fc,fu) |
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
|
#ifdef DEBUG |
|
printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
agelim=AGESUP;
|
fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
|
#endif |
/* nhstepm age range expressed in number of stepm */
|
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
nstepm=(int) rint((agelim-age)*YEARM/stepm);
|
} |
/* Typically if 20 years nstepm = 20*12/6=40 stepm */
|
|
/* if (stepm >= YEARM) hstepm=1;*/
|
/*************** linmin ************************/ |
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
|
/* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
resets p to where the function func(p) takes on a minimum along the direction xi from p , |
gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
|
and replaces xi by the actual vector displacement that p was moved. Also returns as fret |
gp=matrix(0,nhstepm,1,nlstate*2);
|
the value of func at the returned location p . This is actually all accomplished by calling the |
gm=matrix(0,nhstepm,1,nlstate*2);
|
routines mnbrak and brent .*/ |
|
int ncom; |
/* Computed by stepm unit matrices, product of hstepm matrices, stored
|
double *pcom,*xicom; |
in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
|
double (*nrfunc)(double []); |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);
|
|
|
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
|
{ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
|
double brent(double ax, double bx, double cx, |
|
double (*f)(double), double tol, double *xmin); |
/* Computing Variances of health expectancies */
|
double f1dim(double x); |
|
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, |
for(theta=1; theta <=npar; theta++){
|
double *fc, double (*func)(double)); |
for(i=1; i<=npar; i++){
|
int j; |
xp[i] = x[i] + (i==theta ?delti[theta]:0);
|
double xx,xmin,bx,ax; |
}
|
double fx,fb,fa; |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
|
|
|
#ifdef LINMINORIGINAL |
cptj=0;
|
#else |
for(j=1; j<= nlstate; j++){
|
double scale=10., axs, xxs; /* Scale added for infinity */ |
for(i=1; i<=nlstate; i++){
|
#endif |
cptj=cptj+1;
|
|
for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
|
ncom=n; |
gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
|
pcom=vector(1,n); |
}
|
xicom=vector(1,n); |
}
|
nrfunc=func; |
}
|
for (j=1;j<=n;j++) { |
|
pcom[j]=p[j]; |
|
xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */ |
for(i=1; i<=npar; i++)
|
} |
xp[i] = x[i] - (i==theta ?delti[theta]:0);
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
|
#ifdef LINMINORIGINAL |
|
xx=1.; |
cptj=0;
|
#else |
for(j=1; j<= nlstate; j++){
|
axs=0.0; |
for(i=1;i<=nlstate;i++){
|
xxs=1.; |
cptj=cptj+1;
|
do{ |
for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
|
xx= xxs; |
gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
|
#endif |
}
|
ax=0.; |
}
|
mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */ |
}
|
/* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */ |
|
/* xt[x,j]=pcom[j]+x*xicom[j] f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j)) */ |
|
/* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */ |
|
/* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */ |
for(j=1; j<= nlstate*2; j++)
|
/* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */ |
for(h=0; h<=nhstepm-1; h++){
|
/* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus [0:xi[j]]*/ |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
|
#ifdef LINMINORIGINAL |
}
|
#else |
|
if (fx != fx){ |
}
|
xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */ |
|
printf("|"); |
/* End theta */
|
fprintf(ficlog,"|"); |
|
#ifdef DEBUGLINMIN |
trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
|
printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); |
|
#endif |
for(h=0; h<=nhstepm-1; h++)
|
} |
for(j=1; j<=nlstate*2;j++)
|
}while(fx != fx); |
for(theta=1; theta <=npar; theta++)
|
#endif |
trgradg[h][j][theta]=gradg[h][theta][j];
|
|
|
#ifdef DEBUGLINMIN |
|
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
for(i=1;i<=nlstate*2;i++)
|
fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
for(j=1;j<=nlstate*2;j++)
|
#endif |
varhe[i][j][(int)age] =0.;
|
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
|
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
for(h=0;h<=nhstepm-1;h++){
|
/* fmin = f(p[j] + xmin * xi[j]) */ |
for(k=0;k<=nhstepm-1;k++){
|
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
|
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
|
#ifdef DEBUG |
for(i=1;i<=nlstate*2;i++)
|
printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
for(j=1;j<=nlstate*2;j++)
|
fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
|
#endif |
}
|
#ifdef DEBUGLINMIN |
}
|
printf("linmin end "); |
|
fprintf(ficlog,"linmin end "); |
|
#endif |
/* Computing expectancies */
|
for (j=1;j<=n;j++) { |
for(i=1; i<=nlstate;i++)
|
#ifdef LINMINORIGINAL |
for(j=1; j<=nlstate;j++)
|
xi[j] *= xmin; |
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
|
#else |
eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
|
#ifdef DEBUGLINMIN |
|
if(xxs <1.0) |
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
|
printf(" before xi[%d]=%12.8f", j,xi[j]); |
|
#endif |
}
|
xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */ |
|
#ifdef DEBUGLINMIN |
fprintf(ficreseij,"%3.0f",age );
|
if(xxs <1.0) |
cptj=0;
|
printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); |
for(i=1; i<=nlstate;i++)
|
#endif |
for(j=1; j<=nlstate;j++){
|
#endif |
cptj++;
|
p[j] += xi[j]; /* Parameters values are updated accordingly */ |
fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
|
} |
}
|
#ifdef DEBUGLINMIN |
fprintf(ficreseij,"\n");
|
printf("\n"); |
|
printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p)); |
free_matrix(gm,0,nhstepm,1,nlstate*2);
|
fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p)); |
free_matrix(gp,0,nhstepm,1,nlstate*2);
|
for (j=1;j<=n;j++) { |
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
|
printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]); |
free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
|
fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
if(j % ncovmodel == 0){ |
}
|
printf("\n"); |
free_vector(xp,1,npar);
|
fprintf(ficlog,"\n"); |
free_matrix(dnewm,1,nlstate*2,1,npar);
|
} |
free_matrix(doldm,1,nlstate*2,1,nlstate*2);
|
} |
free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
|
#else |
}
|
#endif |
|
free_vector(xicom,1,n); |
/************ Variance ******************/
|
free_vector(pcom,1,n); |
void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)
|
} |
{
|
|
/* Variance of health expectancies */
|
|
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
|
/*************** powell ************************/ |
double **newm;
|
/* |
double **dnewm,**doldm;
|
Minimization of a function func of n variables. Input consists of an initial starting point |
int i, j, nhstepm, hstepm, h, nstepm ;
|
p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di- |
int k, cptcode;
|
rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value |
double *xp;
|
such that failure to decrease by more than this amount on one iteration signals doneness. On |
double **gp, **gm;
|
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
double ***gradg, ***trgradg;
|
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
double ***p3mat;
|
*/ |
double age,agelim, hf;
|
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
int theta;
|
double (*func)(double [])) |
|
{ |
fprintf(ficresvij,"# Covariances of life expectancies\n");
|
void linmin(double p[], double xi[], int n, double *fret, |
fprintf(ficresvij,"# Age");
|
double (*func)(double [])); |
for(i=1; i<=nlstate;i++)
|
int i,ibig,j; |
for(j=1; j<=nlstate;j++)
|
double del,t,*pt,*ptt,*xit; |
fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
|
double directest; |
fprintf(ficresvij,"\n");
|
double fp,fptt; |
|
double *xits; |
xp=vector(1,npar);
|
int niterf, itmp; |
dnewm=matrix(1,nlstate,1,npar);
|
|
doldm=matrix(1,nlstate,1,nlstate);
|
pt=vector(1,n); |
|
ptt=vector(1,n); |
if(estepm < stepm){
|
xit=vector(1,n); |
printf ("Problem %d lower than %d\n",estepm, stepm);
|
xits=vector(1,n); |
}
|
*fret=(*func)(p); |
else hstepm=estepm;
|
for (j=1;j<=n;j++) pt[j]=p[j]; |
/* For example we decided to compute the life expectancy with the smallest unit */
|
rcurr_time = time(NULL); |
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
|
for (*iter=1;;++(*iter)) { |
nhstepm is the number of hstepm from age to agelim
|
fp=(*fret); /* From former iteration or initial value */ |
nstepm is the number of stepm from age to agelin.
|
ibig=0; |
Look at hpijx to understand the reason of that which relies in memory size
|
del=0.0; |
and note for a fixed period like k years */
|
rlast_time=rcurr_time; |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the
|
/* (void) gettimeofday(&curr_time,&tzp); */ |
survival function given by stepm (the optimization length). Unfortunately it
|
rcurr_time = time(NULL); |
means that if the survival funtion is printed only each two years of age and if
|
curr_time = *localtime(&rcurr_time); |
you sum them up and add 1 year (area under the trapezoids) you won't get the same
|
printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); |
results. So we changed our mind and took the option of the best precision.
|
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
*/
|
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
|
for (i=1;i<=n;i++) { |
agelim = AGESUP;
|
printf(" %d %.12f",i, p[i]); |
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
|
fprintf(ficlog," %d %.12lf",i, p[i]); |
nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
|
fprintf(ficrespow," %.12lf", p[i]); |
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
|
} |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
printf("\n"); |
gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
|
fprintf(ficlog,"\n"); |
gp=matrix(0,nhstepm,1,nlstate);
|
fprintf(ficrespow,"\n");fflush(ficrespow); |
gm=matrix(0,nhstepm,1,nlstate);
|
if(*iter <=3){ |
|
tml = *localtime(&rcurr_time); |
for(theta=1; theta <=npar; theta++){
|
strcpy(strcurr,asctime(&tml)); |
for(i=1; i<=npar; i++){ /* Computes gradient */
|
rforecast_time=rcurr_time; |
xp[i] = x[i] + (i==theta ?delti[theta]:0);
|
itmp = strlen(strcurr); |
}
|
if(strcurr[itmp-1]=='\n') /* Windows outputs with a new line */ |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
|
strcurr[itmp-1]='\0'; |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
|
printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
|
fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
if (popbased==1) {
|
for(niterf=10;niterf<=30;niterf+=10){ |
for(i=1; i<=nlstate;i++)
|
rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
prlim[i][i]=probs[(int)age][i][ij];
|
forecast_time = *localtime(&rforecast_time); |
}
|
strcpy(strfor,asctime(&forecast_time)); |
|
itmp = strlen(strfor); |
for(j=1; j<= nlstate; j++){
|
if(strfor[itmp-1]=='\n') |
for(h=0; h<=nhstepm; h++){
|
strfor[itmp-1]='\0'; |
for(i=1, gp[h][j]=0.;i<=nlstate;i++)
|
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
gp[h][j] += prlim[i][i]*p3mat[i][j][h];
|
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
}
|
} |
}
|
} |
|
for (i=1;i<=n;i++) { /* For each direction i */ |
for(i=1; i<=npar; i++) /* Computes gradient */
|
for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0);
|
fptt=(*fret); |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
|
#ifdef DEBUG |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
|
printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
|
fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
if (popbased==1) {
|
#endif |
for(i=1; i<=nlstate;i++)
|
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
prlim[i][i]=probs[(int)age][i][ij];
|
fprintf(ficlog,"%d",i);fflush(ficlog); |
}
|
linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
|
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
for(j=1; j<= nlstate; j++){
|
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
for(h=0; h<=nhstepm; h++){
|
/* because that direction will be replaced unless the gain del is small */ |
for(i=1, gm[h][j]=0.;i<=nlstate;i++)
|
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
gm[h][j] += prlim[i][i]*p3mat[i][j][h];
|
/* Unless the n directions are conjugate some gain in the determinant may be obtained */ |
}
|
/* with the new direction. */ |
}
|
del=fabs(fptt-(*fret)); |
|
ibig=i; |
for(j=1; j<= nlstate; j++)
|
} |
for(h=0; h<=nhstepm; h++){
|
#ifdef DEBUG |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
|
printf("%d %.12e",i,(*fret)); |
}
|
fprintf(ficlog,"%d %.12e",i,(*fret)); |
} /* End theta */
|
for (j=1;j<=n;j++) { |
|
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); |
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);
|
printf(" x(%d)=%.12e",j,xit[j]); |
|
fprintf(ficlog," x(%d)=%.12e",j,xit[j]); |
for(h=0; h<=nhstepm; h++)
|
} |
for(j=1; j<=nlstate;j++)
|
for(j=1;j<=n;j++) { |
for(theta=1; theta <=npar; theta++)
|
printf(" p(%d)=%.12e",j,p[j]); |
trgradg[h][j][theta]=gradg[h][theta][j];
|
fprintf(ficlog," p(%d)=%.12e",j,p[j]); |
|
} |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
|
printf("\n"); |
for(i=1;i<=nlstate;i++)
|
fprintf(ficlog,"\n"); |
for(j=1;j<=nlstate;j++)
|
#endif |
vareij[i][j][(int)age] =0.;
|
} /* end loop on each direction i */ |
|
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
for(h=0;h<=nhstepm;h++){
|
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
for(k=0;k<=nhstepm;k++){
|
/* New value of last point Pn is not computed, P(n-1) */ |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
|
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */ |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
|
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
for(i=1;i<=nlstate;i++)
|
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
for(j=1;j<=nlstate;j++)
|
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
|
/* decreased of more than 3.84 */ |
}
|
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
}
|
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
|
/* By adding 10 parameters more the gain should be 18.31 */ |
fprintf(ficresvij,"%.0f ",age );
|
|
for(i=1; i<=nlstate;i++)
|
/* Starting the program with initial values given by a former maximization will simply change */ |
for(j=1; j<=nlstate;j++){
|
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
|
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
}
|
/* under the tolerance value. If the tolerance is very small 1.e-9, it could last long. */ |
fprintf(ficresvij,"\n");
|
#ifdef DEBUG |
free_matrix(gp,0,nhstepm,1,nlstate);
|
int k[2],l; |
free_matrix(gm,0,nhstepm,1,nlstate);
|
k[0]=1; |
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
|
k[1]=-1; |
free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
|
printf("Max: %.12e",(*func)(p)); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
fprintf(ficlog,"Max: %.12e",(*func)(p)); |
} /* End age */
|
for (j=1;j<=n;j++) { |
|
printf(" %.12e",p[j]); |
free_vector(xp,1,npar);
|
fprintf(ficlog," %.12e",p[j]); |
free_matrix(doldm,1,nlstate,1,npar);
|
} |
free_matrix(dnewm,1,nlstate,1,nlstate);
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
}
|
for(l=0;l<=1;l++) { |
|
for (j=1;j<=n;j++) { |
/************ Variance of prevlim ******************/
|
ptt[j]=p[j]+(p[j]-pt[j])*k[l]; |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
|
printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); |
{
|
fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); |
/* Variance of prevalence limit */
|
} |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
|
printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); |
double **newm;
|
fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); |
double **dnewm,**doldm;
|
} |
int i, j, nhstepm, hstepm;
|
#endif |
int k, cptcode;
|
|
double *xp;
|
|
double *gp, *gm;
|
free_vector(xit,1,n); |
double **gradg, **trgradg;
|
free_vector(xits,1,n); |
double age,agelim;
|
free_vector(ptt,1,n); |
int theta;
|
free_vector(pt,1,n); |
|
return; |
fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");
|
} /* enough precision */ |
fprintf(ficresvpl,"# Age");
|
if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); |
for(i=1; i<=nlstate;i++)
|
for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */ |
fprintf(ficresvpl," %1d-%1d",i,i);
|
ptt[j]=2.0*p[j]-pt[j]; |
fprintf(ficresvpl,"\n");
|
xit[j]=p[j]-pt[j]; |
|
pt[j]=p[j]; |
xp=vector(1,npar);
|
} |
dnewm=matrix(1,nlstate,1,npar);
|
fptt=(*func)(ptt); /* f_3 */ |
doldm=matrix(1,nlstate,1,nlstate);
|
#ifdef POWELLF1F3 |
|
#else |
hstepm=1*YEARM; /* Every year of age */
|
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
|
#endif |
agelim = AGESUP;
|
/* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */ |
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
|
/* From x1 (P0) distance of x2 is at h and x3 is 2h */ |
nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
|
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
if (stepm >= YEARM) hstepm=1;
|
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
|
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
gradg=matrix(1,npar,1,nlstate);
|
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */ |
gp=vector(1,nlstate);
|
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
gm=vector(1,nlstate);
|
#ifdef NRCORIGINAL |
|
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
for(theta=1; theta <=npar; theta++){
|
#else |
for(i=1; i<=npar; i++){ /* Computes gradient */
|
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */ |
xp[i] = x[i] + (i==theta ?delti[theta]:0);
|
t= t- del*SQR(fp-fptt); |
}
|
#endif |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
|
directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */ |
for(i=1;i<=nlstate;i++)
|
#ifdef DEBUG |
gp[i] = prlim[i][i];
|
printf("t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); |
|
fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); |
for(i=1; i<=npar; i++) /* Computes gradient */
|
printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt), |
xp[i] = x[i] - (i==theta ?delti[theta]:0);
|
(fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt)); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
|
fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt), |
for(i=1;i<=nlstate;i++)
|
(fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt)); |
gm[i] = prlim[i][i];
|
printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t); |
|
fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t); |
for(i=1;i<=nlstate;i++)
|
#endif |
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
|
#ifdef POWELLORIGINAL |
} /* End theta */
|
if (t < 0.0) { /* Then we use it for new direction */ |
|
#else |
trgradg =matrix(1,nlstate,1,npar);
|
if (directest*t < 0.0) { /* Contradiction between both tests */ |
|
printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
for(j=1; j<=nlstate;j++)
|
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
for(theta=1; theta <=npar; theta++)
|
fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
trgradg[j][theta]=gradg[theta][j];
|
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
|
} |
for(i=1;i<=nlstate;i++)
|
if (directest < 0.0) { /* Then we use it for new direction */ |
varpl[i][(int)age] =0.;
|
#endif |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
|
#ifdef DEBUGLINMIN |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
|
printf("Before linmin in direction P%d-P0\n",n); |
for(i=1;i<=nlstate;i++)
|
for (j=1;j<=n;j++) { |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
|
printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
|
fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
fprintf(ficresvpl,"%.0f ",age );
|
if(j % ncovmodel == 0){ |
for(i=1; i<=nlstate;i++)
|
printf("\n"); |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
|
fprintf(ficlog,"\n"); |
fprintf(ficresvpl,"\n");
|
} |
free_vector(gp,1,nlstate);
|
} |
free_vector(gm,1,nlstate);
|
#endif |
free_matrix(gradg,1,npar,1,nlstate);
|
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
free_matrix(trgradg,1,nlstate,1,npar);
|
#ifdef DEBUGLINMIN |
} /* End age */
|
for (j=1;j<=n;j++) { |
|
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
free_vector(xp,1,npar);
|
fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
free_matrix(doldm,1,nlstate,1,npar);
|
if(j % ncovmodel == 0){ |
free_matrix(dnewm,1,nlstate,1,nlstate);
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
}
|
} |
|
} |
/************ Variance of one-step probabilities ******************/
|
#endif |
void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
|
for (j=1;j<=n;j++) { |
{
|
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
int i, j, i1, k1, j1, z1;
|
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
int k=0, cptcode;
|
} |
double **dnewm,**doldm;
|
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
double *xp;
|
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
double *gp, *gm;
|
|
double **gradg, **trgradg;
|
#ifdef DEBUG |
double age,agelim, cov[NCOVMAX];
|
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
int theta;
|
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
char fileresprob[FILENAMELENGTH];
|
for(j=1;j<=n;j++){ |
|
printf(" %.12e",xit[j]); |
strcpy(fileresprob,"prob");
|
fprintf(ficlog," %.12e",xit[j]); |
strcat(fileresprob,fileres);
|
} |
if((ficresprob=fopen(fileresprob,"w"))==NULL) {
|
printf("\n"); |
printf("Problem with resultfile: %s\n", fileresprob);
|
fprintf(ficlog,"\n"); |
}
|
#endif |
printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
|
} /* end of t or directest negative */ |
|
#ifdef POWELLF1F3 |
fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");
|
#else |
fprintf(ficresprob,"# Age");
|
} /* end if (fptt < fp) */ |
for(i=1; i<=nlstate;i++)
|
#endif |
for(j=1; j<=(nlstate+ndeath);j++)
|
} /* loop iteration */ |
fprintf(ficresprob," p%1d-%1d (SE)",i,j);
|
} |
|
|
|
/**** Prevalence limit (stable or period prevalence) ****************/ |
fprintf(ficresprob,"\n");
|
|
|
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij) |
|
{ |
xp=vector(1,npar);
|
/* Computes the prevalence limit in each live state at age x by left multiplying the unit |
dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
|
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));
|
|
|
int i, ii,j,k; |
cov[1]=1;
|
double min, max, maxmin, maxmax,sumnew=0.; |
j=cptcoveff;
|
/* double **matprod2(); */ /* test */ |
if (cptcovn<1) {j=1;ncodemax[1]=1;}
|
double **out, cov[NCOVMAX+1], **pmij(); |
j1=0;
|
double **newm; |
for(k1=1; k1<=1;k1++){
|
double agefin, delaymax=100 ; /* Max number of years to converge */ |
for(i1=1; i1<=ncodemax[k1];i1++){
|
int ncvloop=0; |
j1++;
|
|
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
if (cptcovn>0) {
|
for (j=1;j<=nlstate+ndeath;j++){ |
fprintf(ficresprob, "\n#********** Variable ");
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
|
} |
fprintf(ficresprob, "**********\n#");
|
|
}
|
cov[1]=1.; |
|
|
for (age=bage; age<=fage; age ++){
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
cov[2]=age;
|
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
for (k=1; k<=cptcovn;k++) {
|
for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ |
cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
|
ncvloop++; |
|
newm=savm; |
}
|
/* Covariates have to be included here again */ |
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
|
cov[2]=agefin; |
for (k=1; k<=cptcovprod;k++)
|
if(nagesqr==1) |
cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
|
cov[3]= agefin*agefin;; |
|
for (k=1; k<=cptcovn;k++) { |
gradg=matrix(1,npar,1,9);
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
trgradg=matrix(1,9,1,npar);
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
|
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
|
} |
|
/*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
for(theta=1; theta <=npar; theta++){
|
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */ |
for(i=1; i<=npar; i++)
|
for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; |
xp[i] = x[i] + (i==theta ?delti[theta]:0);
|
for (k=1; k<=cptcovprod;k++) /* Useless */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
pmij(pmmij,cov,ncovmodel,xp,nlstate);
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
|
k=0;
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
for(i=1; i<= (nlstate+ndeath); i++){
|
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
for(j=1; j<=(nlstate+ndeath);j++){
|
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
k=k+1;
|
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
gp[k]=pmmij[i][j];
|
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
}
|
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
}
|
|
|
savm=oldm; |
for(i=1; i<=npar; i++)
|
oldm=newm; |
xp[i] = x[i] - (i==theta ?delti[theta]:0);
|
maxmax=0.; |
|
for(j=1;j<=nlstate;j++){ |
pmij(pmmij,cov,ncovmodel,xp,nlstate);
|
min=1.; |
k=0;
|
max=0.; |
for(i=1; i<=(nlstate+ndeath); i++){
|
for(i=1; i<=nlstate; i++) { |
for(j=1; j<=(nlstate+ndeath);j++){
|
sumnew=0; |
k=k+1;
|
for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; |
gm[k]=pmmij[i][j];
|
prlim[i][j]= newm[i][j]/(1-sumnew); |
}
|
max=FMAX(max,prlim[i][j]); |
}
|
min=FMIN(min,prlim[i][j]); |
|
/* printf(" age= %d prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d max=%f min=%f\n", (int)age, i, j, i, j, prlim[i][j],(int)agefin, max, min); */ |
for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)
|
} |
gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];
|
maxmin=(max-min)/(max+min)*2; |
}
|
maxmax=FMAX(maxmax,maxmin); |
|
} /* j loop */ |
for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)
|
*ncvyear= (int)age- (int)agefin; |
for(theta=1; theta <=npar; theta++)
|
/* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
trgradg[j][theta]=gradg[theta][j];
|
if(maxmax < ftolpl){ |
|
/* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);
|
return prlim; |
matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);
|
} |
|
} /* age loop */ |
pmij(pmmij,cov,ncovmodel,x,nlstate);
|
printf("Warning: the stable prevalence at age %d did not converge with the required precision %g > ftolpl=%g. \n\ |
|
Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
k=0;
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
for(i=1; i<=(nlstate+ndeath); i++){
|
return prlim; /* should not reach here */ |
for(j=1; j<=(nlstate+ndeath);j++){
|
} |
k=k+1;
|
|
gm[k]=pmmij[i][j];
|
/*************** transition probabilities ***************/ |
}
|
|
}
|
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
|
{ |
/*printf("\n%d ",(int)age);
|
/* According to parameters values stored in x and the covariate's values stored in cov, |
for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){
|
computes the probability to be observed in state j being in state i by appying the |
printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
|
model to the ncovmodel covariates (including constant and age). |
}*/
|
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
|
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
fprintf(ficresprob,"\n%d ",(int)age);
|
ncth covariate in the global vector x is given by the formula: |
|
j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel |
for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)
|
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));
|
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
|
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
}
|
Outputs ps[i][j] the probability to be observed in j being in j according to |
}
|
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
|
*/ |
free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
|
double s1, lnpijopii; |
free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
|
/*double t34;*/ |
free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
|
int i,j, nc, ii, jj; |
}
|
|
free_vector(xp,1,npar);
|
for(i=1; i<= nlstate; i++){ |
fclose(ficresprob);
|
for(j=1; j<i;j++){ |
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
}
|
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
|
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
/******************* Printing html file ***********/
|
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
|
} |
int lastpass, int stepm, int weightopt, char model[],\
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
int imx,int jmin, int jmax, double jmeanint,char optionfile[], \
|
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\
|
} |
char version[], int popforecast, int estepm ){
|
for(j=i+1; j<=nlstate+ndeath;j++){ |
int jj1, k1, i1, cpt;
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
FILE *fichtm;
|
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
/*char optionfilehtm[FILENAMELENGTH];*/
|
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
strcpy(optionfilehtm,optionfile);
|
} |
strcat(optionfilehtm,".htm");
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
if((fichtm=fopen(optionfilehtm,"w"))==NULL) {
|
} |
printf("Problem with %s \n",optionfilehtm), exit(0);
|
} |
}
|
|
|
for(i=1; i<= nlstate; i++){ |
fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
|
s1=0; |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
|
for(j=1; j<i; j++){ |
\n
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
Total number of observations=%d <br>\n
|
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
|
} |
<hr size=\"2\" color=\"#EC5E5E\">
|
for(j=i+1; j<=nlstate+ndeath; j++){ |
<ul><li>Outputs files<br>\n
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
- Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
|
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
- Gnuplot file name: <a href=\"%s\">%s</a><br>\n
|
} |
- Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n
|
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
- Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n
|
ps[i][i]=1./(s1+1.); |
- Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n
|
/* Computing other pijs */ |
- Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
|
for(j=1; j<i; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
fprintf(fichtm,"\n
|
for(j=i+1; j<=nlstate+ndeath; j++) |
- Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
- Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
|
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
- Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n
|
} /* end i */ |
- Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n
|
|
- Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
if(popforecast==1) fprintf(fichtm,"\n
|
ps[ii][jj]=0; |
- Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
|
ps[ii][ii]=1; |
- Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
|
} |
<br>",fileres,fileres,fileres,fileres);
|
} |
else
|
|
fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
|
|
fprintf(fichtm," <li>Graphs</li><p>");
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
|
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
m=cptcoveff;
|
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
if (cptcovn < 1) {m=1;ncodemax[1]=1;}
|
/* } */ |
|
/* printf("\n "); */ |
jj1=0;
|
/* } */ |
for(k1=1; k1<=m;k1++){
|
/* printf("\n ");printf("%lf ",cov[2]);*/ |
for(i1=1; i1<=ncodemax[k1];i1++){
|
/* |
jj1++;
|
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
if (cptcovn > 0) {
|
goto end;*/ |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
|
return ps; |
for (cpt=1; cpt<=cptcoveff;cpt++)
|
} |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
|
|
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
|
/**************** Product of 2 matrices ******************/ |
}
|
|
fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>
|
double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b) |
<img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
|
{ |
for(cpt=1; cpt<nlstate;cpt++){
|
/* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times |
fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>
|
b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ |
<img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
|
/* in, b, out are matrice of pointers which should have been initialized |
}
|
before: only the contents of out is modified. The function returns |
for(cpt=1; cpt<=nlstate;cpt++) {
|
a pointer to pointers identical to out */ |
fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
|
int i, j, k; |
interval) in state (%d): v%s%d%d.gif <br>
|
for(i=nrl; i<= nrh; i++) |
<img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
|
for(k=ncolol; k<=ncoloh; k++){ |
}
|
out[i][k]=0.; |
for(cpt=1; cpt<=nlstate;cpt++) {
|
for(j=ncl; j<=nch; j++) |
fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>
|
out[i][k] +=in[i][j]*b[j][k]; |
<img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
|
} |
}
|
return out; |
fprintf(fichtm,"\n<br>- Total life expectancy by age and
|
} |
health expectancies in states (1) and (2): e%s%d.gif<br>
|
|
<img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
|
|
fprintf(fichtm,"\n</body>");
|
/************* Higher Matrix Product ***************/ |
}
|
|
}
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
fclose(fichtm);
|
{ |
}
|
/* Computes the transition matrix starting at age 'age' over |
|
'nhstepm*hstepm*stepm' months (i.e. until |
/******************* Gnuplot file **************/
|
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
|
nhstepm*hstepm matrices. |
|
Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
|
(typically every 2 years instead of every month which is too big |
|
for the memory). |
strcpy(optionfilegnuplot,optionfilefiname);
|
Model is determined by parameters x and covariates have to be |
strcat(optionfilegnuplot,".gp.txt");
|
included manually here. |
if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
|
|
printf("Problem with file %s",optionfilegnuplot);
|
*/ |
}
|
|
|
int i, j, d, h, k; |
#ifdef windows
|
double **out, cov[NCOVMAX+1]; |
fprintf(ficgp,"cd \"%s\" \n",pathc);
|
double **newm; |
#endif
|
double agexact; |
m=pow(2,cptcoveff);
|
|
|
/* Hstepm could be zero and should return the unit matrix */ |
/* 1eme*/
|
for (i=1;i<=nlstate+ndeath;i++) |
for (cpt=1; cpt<= nlstate ; cpt ++) {
|
for (j=1;j<=nlstate+ndeath;j++){ |
for (k1=1; k1<= m ; k1 ++) {
|
oldm[i][j]=(i==j ? 1.0 : 0.0); |
|
po[i][j][0]=(i==j ? 1.0 : 0.0); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
|
} |
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
for (i=1; i<= nlstate ; i ++) {
|
for(h=1; h <=nhstepm; h++){ |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
|
for(d=1; d <=hstepm; d++){ |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
newm=savm; |
}
|
/* Covariates have to be included here again */ |
fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
|
cov[1]=1.; |
for (i=1; i<= nlstate ; i ++) {
|
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
|
cov[2]=agexact; |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
if(nagesqr==1) |
}
|
cov[3]= agexact*agexact; |
fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);
|
for (k=1; k<=cptcovn;k++) |
for (i=1; i<= nlstate ; i ++) {
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
}
|
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
|
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
}
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
}
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
/*2 eme*/
|
|
|
|
for (k1=1; k1<= m ; k1 ++) {
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);
|
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
for (i=1; i<= nlstate+1 ; i ++) {
|
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
k=2*i;
|
savm=oldm; |
fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
|
oldm=newm; |
for (j=1; j<= nlstate+1 ; j ++) {
|
} |
if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
|
for(i=1; i<=nlstate+ndeath; i++) |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
for(j=1;j<=nlstate+ndeath;j++) { |
}
|
po[i][j][h]=newm[i][j]; |
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
|
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
|
} |
fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
|
/*printf("h=%d ",h);*/ |
for (j=1; j<= nlstate+1 ; j ++) {
|
} /* end h */ |
if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
|
/* printf("\n H=%d \n",h); */ |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
return po; |
}
|
} |
fprintf(ficgp,"\" t\"\" w l 0,");
|
|
fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
|
#ifdef NLOPT |
for (j=1; j<= nlstate+1 ; j ++) {
|
double myfunc(unsigned n, const double *p1, double *grad, void *pd){ |
if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
|
double fret; |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
double *xt; |
}
|
int j; |
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
|
myfunc_data *d2 = (myfunc_data *) pd; |
else fprintf(ficgp,"\" t\"\" w l 0,");
|
/* xt = (p1-1); */ |
}
|
xt=vector(1,n); |
fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);
|
for (j=1;j<=n;j++) xt[j]=p1[j-1]; /* xt[1]=p1[0] */ |
}
|
|
|
fret=(d2->function)(xt); /* p xt[1]@8 is fine */ |
/*3eme*/
|
/* fret=(*func)(xt); /\* p xt[1]@8 is fine *\/ */ |
|
printf("Function = %.12lf ",fret); |
for (k1=1; k1<= m ; k1 ++) {
|
for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); |
for (cpt=1; cpt<= nlstate ; cpt ++) {
|
printf("\n"); |
k=2+nlstate*(2*cpt-2);
|
free_vector(xt,1,n); |
fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
|
return fret; |
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
|
} |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
|
#endif |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
|
|
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
|
/*************** log-likelihood *************/ |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
|
double func( double *x) |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
|
{ |
|
int i, ii, j, k, mi, d, kk; |
*/
|
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
for (i=1; i< nlstate ; i ++) {
|
double **out; |
fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
|
double sw; /* Sum of weights */ |
|
double lli; /* Individual log likelihood */ |
}
|
int s1, s2; |
fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
|
double bbh, survp; |
}
|
long ipmx; |
}
|
double agexact; |
|
/*extern weight */ |
/* CV preval stat */
|
/* We are differentiating ll according to initial status */ |
for (k1=1; k1<= m ; k1 ++) {
|
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
for (cpt=1; cpt<nlstate ; cpt ++) {
|
/*for(i=1;i<imx;i++) |
k=3;
|
printf(" %d\n",s[4][i]); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
|
*/ |
|
|
for (i=1; i< nlstate ; i ++)
|
++countcallfunc; |
fprintf(ficgp,"+$%d",k+i+1);
|
|
fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
|
cov[1]=1.; |
|
|
l=3+(nlstate+ndeath)*cpt;
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
|
|
for (i=1; i< nlstate ; i ++) {
|
if(mle==1){ |
l=3+(nlstate+ndeath)*cpt;
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
fprintf(ficgp,"+$%d",l+i+1);
|
/* Computes the values of the ncovmodel covariates of the model |
}
|
depending if the covariates are fixed or variying (age dependent) and stores them in cov[] |
fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);
|
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
|
to be observed in j being in i according to the model. |
}
|
*/ |
}
|
for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */ |
|
cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
/* proba elementaires */
|
} |
for(i=1,jk=1; i <=nlstate; i++){
|
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
for(k=1; k <=(nlstate+ndeath); k++){
|
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
if (k != i) {
|
has been calculated etc */ |
for(j=1; j <=ncovmodel; j++){
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
fprintf(ficgp,"p%d=%f ",jk,p[jk]);
|
for (j=1;j<=nlstate+ndeath;j++){ |
jk++;
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
fprintf(ficgp,"\n");
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
}
|
} |
}
|
for(d=0; d<dh[mi][i]; d++){ |
}
|
newm=savm; |
}
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
cov[2]=agexact; |
for(jk=1; jk <=m; jk++) {
|
if(nagesqr==1) |
fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot [%.f:%.f] ",ageminpar,agemaxpar);
|
cov[3]= agexact*agexact; |
i=1;
|
for (kk=1; kk<=cptcovage;kk++) { |
for(k2=1; k2<=nlstate; k2++) {
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
k3=i;
|
} |
for(k=1; k<=(nlstate+ndeath); k++) {
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
if (k != k2){
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
|
savm=oldm; |
ij=1;
|
oldm=newm; |
for(j=3; j <=ncovmodel; j++) {
|
} /* end mult */ |
if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
|
|
fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
ij++;
|
/* But now since version 0.9 we anticipate for bias at large stepm. |
}
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
else
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
}
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
fprintf(ficgp,")/(1");
|
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
for(k1=1; k1 <=nlstate; k1++){
|
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
|
* -stepm/2 to stepm/2 . |
ij=1;
|
* For stepm=1 the results are the same as for previous versions of Imach. |
for(j=3; j <=ncovmodel; j++){
|
* For stepm > 1 the results are less biased than in previous versions. |
if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
|
*/ |
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
|
s1=s[mw[mi][i]][i]; |
ij++;
|
s2=s[mw[mi+1][i]][i]; |
}
|
bbh=(double)bh[mi][i]/(double)stepm; |
else
|
/* bias bh is positive if real duration |
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
|
* is higher than the multiple of stepm and negative otherwise. |
}
|
*/ |
fprintf(ficgp,")");
|
/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
}
|
if( s2 > nlstate){ |
fprintf(ficgp,") t \"p%d%d\" ", k2,k);
|
/* i.e. if s2 is a death state and if the date of death is known |
if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
|
then the contribution to the likelihood is the probability to |
i=i+ncovmodel;
|
die between last step unit time and current step unit time, |
}
|
which is also equal to probability to die before dh |
}
|
minus probability to die before dh-stepm . |
}
|
In version up to 0.92 likelihood was computed |
fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);
|
as if date of death was unknown. Death was treated as any other |
}
|
health state: the date of the interview describes the actual state |
|
and not the date of a change in health state. The former idea was |
fclose(ficgp);
|
to consider that at each interview the state was recorded |
} /* end gnuplot */
|
(healthy, disable or death) and IMaCh was corrected; but when we |
|
introduced the exact date of death then we should have modified |
|
the contribution of an exact death to the likelihood. This new |
/*************** Moving average **************/
|
contribution is smaller and very dependent of the step unit |
void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){
|
stepm. It is no more the probability to die between last interview |
|
and month of death but the probability to survive from last |
int i, cpt, cptcod;
|
interview up to one month before death multiplied by the |
for (agedeb=ageminpar; agedeb<=fage; agedeb++)
|
probability to die within a month. Thanks to Chris |
for (i=1; i<=nlstate;i++)
|
Jackson for correcting this bug. Former versions increased |
for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)
|
mortality artificially. The bad side is that we add another loop |
mobaverage[(int)agedeb][i][cptcod]=0.;
|
which slows down the processing. The difference can be up to 10% |
|
lower mortality. |
for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){
|
*/ |
for (i=1; i<=nlstate;i++){
|
/* If, at the beginning of the maximization mostly, the |
for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
|
cumulative probability or probability to be dead is |
for (cpt=0;cpt<=4;cpt++){
|
constant (ie = 1) over time d, the difference is equal to |
mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];
|
0. out[s1][3] = savm[s1][3]: probability, being at state |
}
|
s1 at precedent wave, to be dead a month before current |
mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;
|
wave is equal to probability, being at state s1 at |
}
|
precedent wave, to be dead at mont of the current |
}
|
wave. Then the observed probability (that this person died) |
}
|
is null according to current estimated parameter. In fact, |
|
it should be very low but not zero otherwise the log go to |
}
|
infinity. |
|
*/ |
|
/* #ifdef INFINITYORIGINAL */ |
/************** Forecasting ******************/
|
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
|
/* #else */ |
|
/* if ((out[s1][s2] - savm[s1][s2]) < mytinydouble) */ |
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
|
/* lli=log(mytinydouble); */ |
int *popage;
|
/* else */ |
double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
|
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
double *popeffectif,*popcount;
|
/* #endif */ |
double ***p3mat;
|
lli=log(out[s1][s2] - savm[s1][s2]); |
char fileresf[FILENAMELENGTH];
|
|
|
} else if (s2==-2) { |
agelim=AGESUP;
|
for (j=1,survp=0. ; j<=nlstate; j++) |
calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
|
/*survp += out[s1][j]; */ |
prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
|
lli= log(survp); |
|
} |
|
|
strcpy(fileresf,"f");
|
else if (s2==-4) { |
strcat(fileresf,fileres);
|
for (j=3,survp=0. ; j<=nlstate; j++) |
if((ficresf=fopen(fileresf,"w"))==NULL) {
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
printf("Problem with forecast resultfile: %s\n", fileresf);
|
lli= log(survp); |
}
|
} |
printf("Computing forecasting: result on file '%s' \n", fileresf);
|
|
|
else if (s2==-5) { |
if (cptcoveff==0) ncodemax[cptcoveff]=1;
|
for (j=1,survp=0. ; j<=2; j++) |
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
if (mobilav==1) {
|
lli= log(survp); |
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
} |
movingaverage(agedeb, fage, ageminpar, mobaverage);
|
|
}
|
else{ |
|
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
stepsize=(int) (stepm+YEARM-1)/YEARM;
|
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
if (stepm<=12) stepsize=1;
|
} |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
agelim=AGESUP;
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
hstepm=1;
|
ipmx +=1; |
hstepm=hstepm/stepm;
|
sw += weight[i]; |
yp1=modf(dateintmean,&yp);
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
anprojmean=yp;
|
/* if (lli < log(mytinydouble)){ */ |
yp2=modf((yp1*12),&yp);
|
/* printf("Close to inf lli = %.10lf < %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */ |
mprojmean=yp;
|
/* fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */ |
yp1=modf((yp2*30.5),&yp);
|
/* } */ |
jprojmean=yp;
|
} /* end of wave */ |
if(jprojmean==0) jprojmean=1;
|
} /* end of individual */ |
if(mprojmean==0) jprojmean=1;
|
} else if(mle==2){ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);
|
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
for(cptcov=1;cptcov<=i2;cptcov++){
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
|
for (j=1;j<=nlstate+ndeath;j++){ |
k=k+1;
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
fprintf(ficresf,"\n#******");
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
for(j=1;j<=cptcoveff;j++) {
|
} |
fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
for(d=0; d<=dh[mi][i]; d++){ |
}
|
newm=savm; |
fprintf(ficresf,"******\n");
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
fprintf(ficresf,"# StartingAge FinalAge");
|
cov[2]=agexact; |
for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
|
if(nagesqr==1) |
|
cov[3]= agexact*agexact; |
|
for (kk=1; kk<=cptcovage;kk++) { |
for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
fprintf(ficresf,"\n");
|
} |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){
|
savm=oldm; |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
|
oldm=newm; |
nhstepm = nhstepm/hstepm;
|
} /* end mult */ |
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
s1=s[mw[mi][i]][i]; |
oldm=oldms;savm=savms;
|
s2=s[mw[mi+1][i]][i]; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
for (h=0; h<=nhstepm; h++){
|
ipmx +=1; |
if (h==(int) (calagedate+YEARM*cpt)) {
|
sw += weight[i]; |
fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
}
|
} /* end of wave */ |
for(j=1; j<=nlstate+ndeath;j++) {
|
} /* end of individual */ |
kk1=0.;kk2=0;
|
} else if(mle==3){ /* exponential inter-extrapolation */ |
for(i=1; i<=nlstate;i++) {
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
if (mobilav==1)
|
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
|
for(mi=1; mi<= wav[i]-1; mi++){ |
else {
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
|
for (j=1;j<=nlstate+ndeath;j++){ |
}
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
}
|
} |
if (h==(int)(calagedate+12*cpt)){
|
for(d=0; d<dh[mi][i]; d++){ |
fprintf(ficresf," %.3f", kk1);
|
newm=savm; |
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
}
|
cov[2]=agexact; |
}
|
if(nagesqr==1) |
}
|
cov[3]= agexact*agexact; |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
for (kk=1; kk<=cptcovage;kk++) { |
}
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
}
|
} |
}
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
}
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
oldm=newm; |
|
} /* end mult */ |
fclose(ficresf);
|
|
}
|
s1=s[mw[mi][i]][i]; |
/************** Forecasting ******************/
|
s2=s[mw[mi+1][i]][i]; |
populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
|
ipmx +=1; |
int *popage;
|
sw += weight[i]; |
double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
double *popeffectif,*popcount;
|
} /* end of wave */ |
double ***p3mat,***tabpop,***tabpopprev;
|
} /* end of individual */ |
char filerespop[FILENAMELENGTH];
|
}else if (mle==4){ /* ml=4 no inter-extrapolation */ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
for(mi=1; mi<= wav[i]-1; mi++){ |
agelim=AGESUP;
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
strcpy(filerespop,"pop");
|
newm=savm; |
strcat(filerespop,fileres);
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
if((ficrespop=fopen(filerespop,"w"))==NULL) {
|
cov[2]=agexact; |
printf("Problem with forecast resultfile: %s\n", filerespop);
|
if(nagesqr==1) |
}
|
cov[3]= agexact*agexact; |
printf("Computing forecasting: result on file '%s' \n", filerespop);
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
if (cptcoveff==0) ncodemax[cptcoveff]=1;
|
} |
|
|
if (mobilav==1) {
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
movingaverage(agedeb, fage, ageminpar, mobaverage);
|
savm=oldm; |
}
|
oldm=newm; |
|
} /* end mult */ |
stepsize=(int) (stepm+YEARM-1)/YEARM;
|
|
if (stepm<=12) stepsize=1;
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
agelim=AGESUP;
|
if( s2 > nlstate){ |
|
lli=log(out[s1][s2] - savm[s1][s2]); |
hstepm=1;
|
}else{ |
hstepm=hstepm/stepm;
|
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
|
} |
if (popforecast==1) {
|
ipmx +=1; |
if((ficpop=fopen(popfile,"r"))==NULL) {
|
sw += weight[i]; |
printf("Problem with population file : %s\n",popfile);exit(0);
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
}
|
/* printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
popage=ivector(0,AGESUP);
|
} /* end of wave */ |
popeffectif=vector(0,AGESUP);
|
} /* end of individual */ |
popcount=vector(0,AGESUP);
|
}else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
i=1;
|
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
imx=i;
|
for (j=1;j<=nlstate+ndeath;j++){ |
for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
}
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
for(cptcov=1;cptcov<=i2;cptcov++){
|
for(d=0; d<dh[mi][i]; d++){ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
|
newm=savm; |
k=k+1;
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
fprintf(ficrespop,"\n#******");
|
cov[2]=agexact; |
for(j=1;j<=cptcoveff;j++) {
|
if(nagesqr==1) |
fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
cov[3]= agexact*agexact; |
}
|
for (kk=1; kk<=cptcovage;kk++) { |
fprintf(ficrespop,"******\n");
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
fprintf(ficrespop,"# Age");
|
} |
for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
|
|
if (popforecast==1) fprintf(ficrespop," [Population]");
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
for (cpt=0; cpt<=0;cpt++) {
|
savm=oldm; |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);
|
oldm=newm; |
|
} /* end mult */ |
for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){
|
|
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
|
s1=s[mw[mi][i]][i]; |
nhstepm = nhstepm/hstepm;
|
s2=s[mw[mi+1][i]][i]; |
|
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
ipmx +=1; |
oldm=oldms;savm=savms;
|
sw += weight[i]; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/ |
for (h=0; h<=nhstepm; h++){
|
} /* end of wave */ |
if (h==(int) (calagedate+YEARM*cpt)) {
|
} /* end of individual */ |
fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
|
} /* End of if */ |
}
|
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
for(j=1; j<=nlstate+ndeath;j++) {
|
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
kk1=0.;kk2=0;
|
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
for(i=1; i<=nlstate;i++) {
|
return -l; |
if (mobilav==1)
|
} |
kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
|
|
else {
|
/*************** log-likelihood *************/ |
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
|
double funcone( double *x) |
}
|
{ |
}
|
/* Same as likeli but slower because of a lot of printf and if */ |
if (h==(int)(calagedate+12*cpt)){
|
int i, ii, j, k, mi, d, kk; |
tabpop[(int)(agedeb)][j][cptcod]=kk1;
|
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
/*fprintf(ficrespop," %.3f", kk1);
|
double **out; |
if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
|
double lli; /* Individual log likelihood */ |
}
|
double llt; |
}
|
int s1, s2; |
for(i=1; i<=nlstate;i++){
|
double bbh, survp; |
kk1=0.;
|
double agexact; |
for(j=1; j<=nlstate;j++){
|
/*extern weight */ |
kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
|
/* We are differentiating ll according to initial status */ |
}
|
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
|
/*for(i=1;i<imx;i++) |
}
|
printf(" %d\n",s[4][i]); |
|
*/ |
if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)
|
cov[1]=1.; |
fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
|
|
}
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
|
}
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
}
|
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
/******/
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){
|
} |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
|
for(d=0; d<dh[mi][i]; d++){ |
nhstepm = nhstepm/hstepm;
|
newm=savm; |
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
cov[2]=agexact; |
oldm=oldms;savm=savms;
|
if(nagesqr==1) |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
|
cov[3]= agexact*agexact; |
for (h=0; h<=nhstepm; h++){
|
for (kk=1; kk<=cptcovage;kk++) { |
if (h==(int) (calagedate+YEARM*cpt)) {
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
|
} |
}
|
|
for(j=1; j<=nlstate+ndeath;j++) {
|
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
kk1=0.;kk2=0;
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
for(i=1; i<=nlstate;i++) {
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */ |
}
|
/* 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */ |
if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);
|
savm=oldm; |
}
|
oldm=newm; |
}
|
} /* end mult */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
|
}
|
s1=s[mw[mi][i]][i]; |
}
|
s2=s[mw[mi+1][i]][i]; |
}
|
bbh=(double)bh[mi][i]/(double)stepm; |
}
|
/* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
*/ |
|
if( s2 > nlstate && (mle <5) ){ /* Jackson */ |
if (popforecast==1) {
|
lli=log(out[s1][s2] - savm[s1][s2]); |
free_ivector(popage,0,AGESUP);
|
} else if (s2==-2) { |
free_vector(popeffectif,0,AGESUP);
|
for (j=1,survp=0. ; j<=nlstate; j++) |
free_vector(popcount,0,AGESUP);
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
}
|
lli= log(survp); |
free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
}else if (mle==1){ |
free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
fclose(ficrespop);
|
} else if(mle==2){ |
}
|
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
|
} else if(mle==3){ /* exponential inter-extrapolation */ |
/***********************************************/
|
lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
/**************** Main Program *****************/
|
} else if (mle==4){ /* mle=4 no inter-extrapolation */ |
/***********************************************/
|
lli=log(out[s1][s2]); /* Original formula */ |
|
} else{ /* mle=0 back to 1 */ |
int main(int argc, char *argv[])
|
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
{
|
/*lli=log(out[s1][s2]); */ /* Original formula */ |
|
} /* End of if */ |
int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
|
ipmx +=1; |
double agedeb, agefin,hf;
|
sw += weight[i]; |
double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
double fret;
|
if(globpr){ |
double **xi,tmp,delta;
|
fprintf(ficresilk,"%9ld %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f\ |
|
%11.6f %11.6f %11.6f ", \ |
double dum; /* Dummy variable */
|
num[i], agexact, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i], |
double ***p3mat;
|
2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
int *indx;
|
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
char line[MAXLINE], linepar[MAXLINE];
|
llt +=ll[k]*gipmx/gsw; |
char title[MAXLINE];
|
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH];
|
} |
char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
|
fprintf(ficresilk," %10.6f\n", -llt); |
|
} |
char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
|
} /* end of wave */ |
|
} /* end of individual */ |
char filerest[FILENAMELENGTH];
|
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
char fileregp[FILENAMELENGTH];
|
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
char popfile[FILENAMELENGTH];
|
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
char path[80],pathc[80],pathcd[80],pathtot[80],model[20];
|
if(globpr==0){ /* First time we count the contributions and weights */ |
int firstobs=1, lastobs=10;
|
gipmx=ipmx; |
int sdeb, sfin; /* Status at beginning and end */
|
gsw=sw; |
int c, h , cpt,l;
|
} |
int ju,jl, mi;
|
return -l; |
int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
|
} |
int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;
|
|
int mobilav=0,popforecast=0;
|
|
int hstepm, nhstepm;
|
/*************** function likelione ***********/ |
double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
|
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double [])) |
|
{ |
double bage, fage, age, agelim, agebase;
|
/* This routine should help understanding what is done with |
double ftolpl=FTOL;
|
the selection of individuals/waves and |
double **prlim;
|
to check the exact contribution to the likelihood. |
double *severity;
|
Plotting could be done. |
double ***param; /* Matrix of parameters */
|
*/ |
double *p;
|
int k; |
double **matcov; /* Matrix of covariance */
|
|
double ***delti3; /* Scale */
|
if(*globpri !=0){ /* Just counts and sums, no printings */ |
double *delti; /* Scale */
|
strcpy(fileresilk,"ILK_"); |
double ***eij, ***vareij;
|
strcat(fileresilk,fileresu); |
double **varpl; /* Variances of prevalence limits by age */
|
if((ficresilk=fopen(fileresilk,"w"))==NULL) { |
double *epj, vepp;
|
printf("Problem with resultfile: %s\n", fileresilk); |
double kk1, kk2;
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
|
} |
|
fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
|
fprintf(ficresilk, "#num_i age i s1 s2 mi mw dh likeli weight 2wlli out sav "); |
char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";
|
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
char *alph[]={"a","a","b","c","d","e"}, str[4];
|
for(k=1; k<=nlstate; k++) |
|
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
|
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n"); |
char z[1]="c", occ;
|
} |
#include <sys/time.h>
|
|
#include <time.h>
|
*fretone=(*funcone)(p); |
char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
|
if(*globpri !=0){ |
|
fclose(ficresilk); |
/* long total_usecs;
|
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle >= 1. You should at least run with mle >= 1 and starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
struct timeval start_time, end_time;
|
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
|
<img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
|
fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \ |
getcwd(pathcd, size);
|
<img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
|
fflush(fichtm); |
printf("\n%s",version);
|
|
if(argc <=1){
|
for (k=1; k<= nlstate ; k++) { |
printf("\nEnter the parameter file name: ");
|
fprintf(fichtm,"<br>- Probability p%dj by origin %d and destination j <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
scanf("%s",pathtot);
|
<img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
}
|
|
else{
|
} |
strcpy(pathtot,argv[1]);
|
} |
}
|
return; |
/*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
|
} |
/*cygwin_split_path(pathtot,path,optionfile);
|
|
printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
|
|
/* cutv(path,optionfile,pathtot,'\\');*/
|
/*********** Maximum Likelihood Estimation ***************/ |
|
|
split(pathtot,path,optionfile,optionfilext,optionfilefiname);
|
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
|
{ |
chdir(path);
|
int i,j, iter=0; |
replace(pathc,path);
|
double **xi; |
|
double fret; |
/*-------- arguments in the command line --------*/
|
double fretone; /* Only one call to likelihood */ |
|
/* char filerespow[FILENAMELENGTH];*/ |
strcpy(fileres,"r");
|
|
strcat(fileres, optionfilefiname);
|
#ifdef NLOPT |
strcat(fileres,".txt"); /* Other files have txt extension */
|
int creturn; |
|
nlopt_opt opt; |
/*---------arguments file --------*/
|
/* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */ |
|
double *lb; |
if((ficpar=fopen(optionfile,"r"))==NULL) {
|
double minf; /* the minimum objective value, upon return */ |
printf("Problem with optionfile %s\n",optionfile);
|
double * p1; /* Shifted parameters from 0 instead of 1 */ |
goto end;
|
myfunc_data dinst, *d = &dinst; |
}
|
#endif |
|
|
strcpy(filereso,"o");
|
|
strcat(filereso,fileres);
|
xi=matrix(1,npar,1,npar); |
if((ficparo=fopen(filereso,"w"))==NULL) {
|
for (i=1;i<=npar;i++) |
printf("Problem with Output resultfile: %s\n", filereso);goto end;
|
for (j=1;j<=npar;j++) |
}
|
xi[i][j]=(i==j ? 1.0 : 0.0); |
|
printf("Powell\n"); fprintf(ficlog,"Powell\n"); |
/* Reads comments: lines beginning with '#' */
|
strcpy(filerespow,"POW_"); |
while((c=getc(ficpar))=='#' && c!= EOF){
|
strcat(filerespow,fileres); |
ungetc(c,ficpar);
|
if((ficrespow=fopen(filerespow,"w"))==NULL) { |
fgets(line, MAXLINE, ficpar);
|
printf("Problem with resultfile: %s\n", filerespow); |
puts(line);
|
fprintf(ficlog,"Problem with resultfile: %s\n", filerespow); |
fputs(line,ficparo);
|
} |
}
|
fprintf(ficrespow,"# Powell\n# iter -2*LL"); |
ungetc(c,ficpar);
|
for (i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate+ndeath;j++) |
fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
|
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
|
fprintf(ficrespow,"\n"); |
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
|
#ifdef POWELL |
while((c=getc(ficpar))=='#' && c!= EOF){
|
powell(p,xi,npar,ftol,&iter,&fret,func); |
ungetc(c,ficpar);
|
#endif |
fgets(line, MAXLINE, ficpar);
|
|
puts(line);
|
#ifdef NLOPT |
fputs(line,ficparo);
|
#ifdef NEWUOA |
}
|
opt = nlopt_create(NLOPT_LN_NEWUOA,npar); |
ungetc(c,ficpar);
|
#else |
|
opt = nlopt_create(NLOPT_LN_BOBYQA,npar); |
|
#endif |
covar=matrix(0,NCOVMAX,1,n);
|
lb=vector(0,npar-1); |
cptcovn=0;
|
for (i=0;i<npar;i++) lb[i]= -HUGE_VAL; |
if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
|
nlopt_set_lower_bounds(opt, lb); |
|
nlopt_set_initial_step1(opt, 0.1); |
ncovmodel=2+cptcovn;
|
|
nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
|
p1= (p+1); /* p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */ |
|
d->function = func; |
/* Read guess parameters */
|
printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d)); |
/* Reads comments: lines beginning with '#' */
|
nlopt_set_min_objective(opt, myfunc, d); |
while((c=getc(ficpar))=='#' && c!= EOF){
|
nlopt_set_xtol_rel(opt, ftol); |
ungetc(c,ficpar);
|
if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) { |
fgets(line, MAXLINE, ficpar);
|
printf("nlopt failed! %d\n",creturn); |
puts(line);
|
} |
fputs(line,ficparo);
|
else { |
}
|
printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT); |
ungetc(c,ficpar);
|
printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf); |
|
iter=1; /* not equal */ |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
|
} |
for(i=1; i <=nlstate; i++)
|
nlopt_destroy(opt); |
for(j=1; j <=nlstate+ndeath-1; j++){
|
#endif |
fscanf(ficpar,"%1d%1d",&i1,&j1);
|
free_matrix(xi,1,npar,1,npar); |
fprintf(ficparo,"%1d%1d",i1,j1);
|
fclose(ficrespow); |
printf("%1d%1d",i,j);
|
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
for(k=1; k<=ncovmodel;k++){
|
fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
fscanf(ficpar," %lf",¶m[i][j][k]);
|
fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
printf(" %lf",param[i][j][k]);
|
|
fprintf(ficparo," %lf",param[i][j][k]);
|
} |
}
|
|
fscanf(ficpar,"\n");
|
/**** Computes Hessian and covariance matrix ***/ |
printf("\n");
|
void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) |
fprintf(ficparo,"\n");
|
{ |
}
|
double **a,**y,*x,pd; |
|
/* double **hess; */ |
npar= (nlstate+ndeath-1)*nlstate*ncovmodel;
|
int i, j; |
|
int *indx; |
p=param[1][1];
|
|
|
double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar); |
/* Reads comments: lines beginning with '#' */
|
double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar); |
while((c=getc(ficpar))=='#' && c!= EOF){
|
void lubksb(double **a, int npar, int *indx, double b[]) ; |
ungetc(c,ficpar);
|
void ludcmp(double **a, int npar, int *indx, double *d) ; |
fgets(line, MAXLINE, ficpar);
|
double gompertz(double p[]); |
puts(line);
|
/* hess=matrix(1,npar,1,npar); */ |
fputs(line,ficparo);
|
|
}
|
printf("\nCalculation of the hessian matrix. Wait...\n"); |
ungetc(c,ficpar);
|
fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n"); |
|
for (i=1;i<=npar;i++){ |
delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
|
printf("%d-",i);fflush(stdout); |
delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
|
fprintf(ficlog,"%d-",i);fflush(ficlog); |
for(i=1; i <=nlstate; i++){
|
|
for(j=1; j <=nlstate+ndeath-1; j++){
|
hess[i][i]=hessii(p,ftolhess,i,delti,func,npar); |
fscanf(ficpar,"%1d%1d",&i1,&j1);
|
|
printf("%1d%1d",i,j);
|
/* printf(" %f ",p[i]); |
fprintf(ficparo,"%1d%1d",i1,j1);
|
printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/ |
for(k=1; k<=ncovmodel;k++){
|
} |
fscanf(ficpar,"%le",&delti3[i][j][k]);
|
|
printf(" %le",delti3[i][j][k]);
|
for (i=1;i<=npar;i++) { |
fprintf(ficparo," %le",delti3[i][j][k]);
|
for (j=1;j<=npar;j++) { |
}
|
if (j>i) { |
fscanf(ficpar,"\n");
|
printf(".%d-%d",i,j);fflush(stdout); |
printf("\n");
|
fprintf(ficlog,".%d-%d",i,j);fflush(ficlog); |
fprintf(ficparo,"\n");
|
hess[i][j]=hessij(p,hess, delti,i,j,func,npar); |
}
|
|
}
|
hess[j][i]=hess[i][j]; |
delti=delti3[1][1];
|
/*printf(" %lf ",hess[i][j]);*/ |
|
} |
/* Reads comments: lines beginning with '#' */
|
} |
while((c=getc(ficpar))=='#' && c!= EOF){
|
} |
ungetc(c,ficpar);
|
printf("\n"); |
fgets(line, MAXLINE, ficpar);
|
fprintf(ficlog,"\n"); |
puts(line);
|
|
fputs(line,ficparo);
|
printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); |
}
|
fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n"); |
ungetc(c,ficpar);
|
|
|
a=matrix(1,npar,1,npar); |
matcov=matrix(1,npar,1,npar);
|
y=matrix(1,npar,1,npar); |
for(i=1; i <=npar; i++){
|
x=vector(1,npar); |
fscanf(ficpar,"%s",&str);
|
indx=ivector(1,npar); |
printf("%s",str);
|
for (i=1;i<=npar;i++) |
fprintf(ficparo,"%s",str);
|
for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; |
for(j=1; j <=i; j++){
|
ludcmp(a,npar,indx,&pd); |
fscanf(ficpar," %le",&matcov[i][j]);
|
|
printf(" %.5le",matcov[i][j]);
|
for (j=1;j<=npar;j++) { |
fprintf(ficparo," %.5le",matcov[i][j]);
|
for (i=1;i<=npar;i++) x[i]=0; |
}
|
x[j]=1; |
fscanf(ficpar,"\n");
|
lubksb(a,npar,indx,x); |
printf("\n");
|
for (i=1;i<=npar;i++){ |
fprintf(ficparo,"\n");
|
matcov[i][j]=x[i]; |
}
|
} |
for(i=1; i <=npar; i++)
|
} |
for(j=i+1;j<=npar;j++)
|
|
matcov[i][j]=matcov[j][i];
|
printf("\n#Hessian matrix#\n"); |
|
fprintf(ficlog,"\n#Hessian matrix#\n"); |
printf("\n");
|
for (i=1;i<=npar;i++) { |
|
for (j=1;j<=npar;j++) { |
|
printf("%.6e ",hess[i][j]); |
/*-------- Rewriting paramater file ----------*/
|
fprintf(ficlog,"%.6e ",hess[i][j]); |
strcpy(rfileres,"r"); /* "Rparameterfile */
|
} |
strcat(rfileres,optionfilefiname); /* Parameter file first name*/
|
printf("\n"); |
strcat(rfileres,"."); /* */
|
fprintf(ficlog,"\n"); |
strcat(rfileres,optionfilext); /* Other files have txt extension */
|
} |
if((ficres =fopen(rfileres,"w"))==NULL) {
|
|
printf("Problem writing new parameter file: %s\n", fileres);goto end;
|
/* printf("\n#Covariance matrix#\n"); */ |
}
|
/* fprintf(ficlog,"\n#Covariance matrix#\n"); */ |
fprintf(ficres,"#%s\n",version);
|
/* for (i=1;i<=npar;i++) { */ |
|
/* for (j=1;j<=npar;j++) { */ |
/*-------- data file ----------*/
|
/* printf("%.6e ",matcov[i][j]); */ |
if((fic=fopen(datafile,"r"))==NULL) {
|
/* fprintf(ficlog,"%.6e ",matcov[i][j]); */ |
printf("Problem with datafile: %s\n", datafile);goto end;
|
/* } */ |
}
|
/* printf("\n"); */ |
|
/* fprintf(ficlog,"\n"); */ |
n= lastobs;
|
/* } */ |
severity = vector(1,maxwav);
|
|
outcome=imatrix(1,maxwav+1,1,n);
|
/* Recompute Inverse */ |
num=ivector(1,n);
|
/* for (i=1;i<=npar;i++) */ |
moisnais=vector(1,n);
|
/* for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */ |
annais=vector(1,n);
|
/* ludcmp(a,npar,indx,&pd); */ |
moisdc=vector(1,n);
|
|
andc=vector(1,n);
|
/* printf("\n#Hessian matrix recomputed#\n"); */ |
agedc=vector(1,n);
|
|
cod=ivector(1,n);
|
/* for (j=1;j<=npar;j++) { */ |
weight=vector(1,n);
|
/* for (i=1;i<=npar;i++) x[i]=0; */ |
for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
|
/* x[j]=1; */ |
mint=matrix(1,maxwav,1,n);
|
/* lubksb(a,npar,indx,x); */ |
anint=matrix(1,maxwav,1,n);
|
/* for (i=1;i<=npar;i++){ */ |
s=imatrix(1,maxwav+1,1,n);
|
/* y[i][j]=x[i]; */ |
adl=imatrix(1,maxwav+1,1,n);
|
/* printf("%.3e ",y[i][j]); */ |
tab=ivector(1,NCOVMAX);
|
/* fprintf(ficlog,"%.3e ",y[i][j]); */ |
ncodemax=ivector(1,8);
|
/* } */ |
|
/* printf("\n"); */ |
i=1;
|
/* fprintf(ficlog,"\n"); */ |
while (fgets(line, MAXLINE, fic) != NULL) {
|
/* } */ |
if ((i >= firstobs) && (i <=lastobs)) {
|
|
|
/* Verifying the inverse matrix */ |
for (j=maxwav;j>=1;j--){
|
#ifdef DEBUGHESS |
cutv(stra, strb,line,' '); s[j][i]=atoi(strb);
|
y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov); |
strcpy(line,stra);
|
|
cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
|
printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n"); |
cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
|
fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n"); |
}
|
|
|
for (j=1;j<=npar;j++) { |
cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
|
for (i=1;i<=npar;i++){ |
cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
|
printf("%.2f ",y[i][j]); |
|
fprintf(ficlog,"%.2f ",y[i][j]); |
cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
|
} |
cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
|
} |
for (j=ncovcol;j>=1;j--){
|
#endif |
cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
|
|
}
|
free_matrix(a,1,npar,1,npar); |
num[i]=atol(stra);
|
free_matrix(y,1,npar,1,npar); |
|
free_vector(x,1,npar); |
/*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
|
free_ivector(indx,1,npar); |
printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
|
/* free_matrix(hess,1,npar,1,npar); */ |
|
|
i=i+1;
|
|
}
|
} |
}
|
|
/* printf("ii=%d", ij);
|
/*************** hessian matrix ****************/ |
scanf("%d",i);*/
|
double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar) |
imx=i-1; /* Number of individuals */
|
{ /* Around values of x, computes the function func and returns the scales delti and hessian */ |
|
int i; |
/* for (i=1; i<=imx; i++){
|
int l=1, lmax=20; |
if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
|
double k1,k2, res, fx; |
if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
|
double p2[MAXPARM+1]; /* identical to x */ |
if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
|
double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; |
}*/
|
int k=0,kmax=10; |
/* for (i=1; i<=imx; i++){
|
double l1; |
if (s[4][i]==9) s[4][i]=-1;
|
|
printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
|
fx=func(x); |
|
for (i=1;i<=npar;i++) p2[i]=x[i]; |
|
for(l=0 ; l <=lmax; l++){ /* Enlarging the zone around the Maximum */ |
/* Calculation of the number of parameter from char model*/
|
l1=pow(10,l); |
Tvar=ivector(1,15);
|
delts=delt; |
Tprod=ivector(1,15);
|
for(k=1 ; k <kmax; k=k+1){ |
Tvaraff=ivector(1,15);
|
delt = delta*(l1*k); |
Tvard=imatrix(1,15,1,2);
|
p2[theta]=x[theta] +delt; |
Tage=ivector(1,15);
|
k1=func(p2)-fx; /* Might be negative if too close to the theoretical maximum */ |
|
p2[theta]=x[theta]-delt; |
if (strlen(model) >1){
|
k2=func(p2)-fx; |
j=0, j1=0, k1=1, k2=1;
|
/*res= (k1-2.0*fx+k2)/delt/delt; */ |
j=nbocc(model,'+');
|
res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */ |
j1=nbocc(model,'*');
|
|
cptcovn=j+1;
|
#ifdef DEBUGHESSII |
cptcovprod=j1;
|
printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
|
fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
strcpy(modelsav,model);
|
#endif |
if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
|
/*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ |
printf("Error. Non available option model=%s ",model);
|
if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ |
goto end;
|
k=kmax; |
}
|
} |
|
else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ |
for(i=(j+1); i>=1;i--){
|
k=kmax; l=lmax*10; |
cutv(stra,strb,modelsav,'+');
|
} |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);
|
else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
|
delts=delt; |
/*scanf("%d",i);*/
|
} |
if (strchr(strb,'*')) {
|
} /* End loop k */ |
cutv(strd,strc,strb,'*');
|
} |
if (strcmp(strc,"age")==0) {
|
delti[theta]=delts; |
cptcovprod--;
|
return res; |
cutv(strb,stre,strd,'V');
|
|
Tvar[i]=atoi(stre);
|
} |
cptcovage++;
|
|
Tage[cptcovage]=i;
|
double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar) |
/*printf("stre=%s ", stre);*/
|
{ |
}
|
int i; |
else if (strcmp(strd,"age")==0) {
|
int l=1, lmax=20; |
cptcovprod--;
|
double k1,k2,k3,k4,res,fx; |
cutv(strb,stre,strc,'V');
|
double p2[MAXPARM+1]; |
Tvar[i]=atoi(stre);
|
int k, kmax=1; |
cptcovage++;
|
double v1, v2, cv12, lc1, lc2; |
Tage[cptcovage]=i;
|
|
}
|
fx=func(x); |
else {
|
for (k=1; k<=kmax; k=k+10) { |
cutv(strb,stre,strc,'V');
|
for (i=1;i<=npar;i++) p2[i]=x[i]; |
Tvar[i]=ncovcol+k1;
|
p2[thetai]=x[thetai]+delti[thetai]*k; |
cutv(strb,strc,strd,'V');
|
p2[thetaj]=x[thetaj]+delti[thetaj]*k; |
Tprod[k1]=i;
|
k1=func(p2)-fx; |
Tvard[k1][1]=atoi(strc);
|
|
Tvard[k1][2]=atoi(stre);
|
p2[thetai]=x[thetai]+delti[thetai]*k; |
Tvar[cptcovn+k2]=Tvard[k1][1];
|
p2[thetaj]=x[thetaj]-delti[thetaj]*k; |
Tvar[cptcovn+k2+1]=Tvard[k1][2];
|
k2=func(p2)-fx; |
for (k=1; k<=lastobs;k++)
|
|
covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
|
p2[thetai]=x[thetai]-delti[thetai]*k; |
k1++;
|
p2[thetaj]=x[thetaj]+delti[thetaj]*k; |
k2=k2+2;
|
k3=func(p2)-fx; |
}
|
|
}
|
p2[thetai]=x[thetai]-delti[thetai]*k; |
else {
|
p2[thetaj]=x[thetaj]-delti[thetaj]*k; |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
|
k4=func(p2)-fx; |
/* scanf("%d",i);*/
|
res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */ |
cutv(strd,strc,strb,'V');
|
if(k1*k2*k3*k4 <0.){ |
Tvar[i]=atoi(strc);
|
kmax=kmax+10; |
}
|
if(kmax >=10){ |
strcpy(modelsav,stra);
|
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol); |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
|
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol); |
scanf("%d",i);*/
|
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
}
|
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
}
|
} |
|
} |
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
|
#ifdef DEBUGHESSIJ |
printf("cptcovprod=%d ", cptcovprod);
|
v1=hess[thetai][thetai]; |
scanf("%d ",i);*/
|
v2=hess[thetaj][thetaj]; |
fclose(fic);
|
cv12=res; |
|
/* Computing eigen value of Hessian matrix */ |
/* if(mle==1){*/
|
lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
if (weightopt != 1) { /* Maximisation without weights*/
|
lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
for(i=1;i<=n;i++) weight[i]=1.0;
|
if ((lc2 <0) || (lc1 <0) ){ |
}
|
printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj); |
/*-calculation of age at interview from date of interview and age at death -*/
|
fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj); |
agev=matrix(1,maxwav,1,imx);
|
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
|
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
for (i=1; i<=imx; i++) {
|
} |
for(m=2; (m<= maxwav); m++) {
|
#endif |
if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
|
} |
anint[m][i]=9999;
|
return res; |
s[m][i]=-1;
|
} |
}
|
|
if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
|
/* Not done yet: Was supposed to fix if not exactly at the maximum */ |
}
|
/* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */ |
}
|
/* { */ |
|
/* int i; */ |
for (i=1; i<=imx; i++) {
|
/* int l=1, lmax=20; */ |
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
|
/* double k1,k2,k3,k4,res,fx; */ |
for(m=1; (m<= maxwav); m++){
|
/* double p2[MAXPARM+1]; */ |
if(s[m][i] >0){
|
/* double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */ |
if (s[m][i] >= nlstate+1) {
|
/* int k=0,kmax=10; */ |
if(agedc[i]>0)
|
/* double l1; */ |
if(moisdc[i]!=99 && andc[i]!=9999)
|
|
agev[m][i]=agedc[i];
|
/* fx=func(x); */ |
/*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
|
/* for(l=0 ; l <=lmax; l++){ /\* Enlarging the zone around the Maximum *\/ */ |
else {
|
/* l1=pow(10,l); */ |
if (andc[i]!=9999){
|
/* delts=delt; */ |
printf("Warning negative age at death: %d line:%d\n",num[i],i);
|
/* for(k=1 ; k <kmax; k=k+1){ */ |
agev[m][i]=-1;
|
/* delt = delti*(l1*k); */ |
}
|
/* for (i=1;i<=npar;i++) p2[i]=x[i]; */ |
}
|
/* p2[thetai]=x[thetai]+delti[thetai]/k; */ |
}
|
/* p2[thetaj]=x[thetaj]+delti[thetaj]/k; */ |
else if(s[m][i] !=9){ /* Should no more exist */
|
/* k1=func(p2)-fx; */ |
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
|
|
if(mint[m][i]==99 || anint[m][i]==9999)
|
/* p2[thetai]=x[thetai]+delti[thetai]/k; */ |
agev[m][i]=1;
|
/* p2[thetaj]=x[thetaj]-delti[thetaj]/k; */ |
else if(agev[m][i] <agemin){
|
/* k2=func(p2)-fx; */ |
agemin=agev[m][i];
|
|
/*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
|
/* p2[thetai]=x[thetai]-delti[thetai]/k; */ |
}
|
/* p2[thetaj]=x[thetaj]+delti[thetaj]/k; */ |
else if(agev[m][i] >agemax){
|
/* k3=func(p2)-fx; */ |
agemax=agev[m][i];
|
|
/* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
|
/* p2[thetai]=x[thetai]-delti[thetai]/k; */ |
}
|
/* p2[thetaj]=x[thetaj]-delti[thetaj]/k; */ |
/*agev[m][i]=anint[m][i]-annais[i];*/
|
/* k4=func(p2)-fx; */ |
/* agev[m][i] = age[i]+2*m;*/
|
/* res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */ |
}
|
/* #ifdef DEBUGHESSIJ */ |
else { /* =9 */
|
/* printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */ |
agev[m][i]=1;
|
/* fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */ |
s[m][i]=-1;
|
/* #endif */ |
}
|
/* if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */ |
}
|
/* k=kmax; */ |
else /*= 0 Unknown */
|
/* } */ |
agev[m][i]=1;
|
/* else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */ |
}
|
/* k=kmax; l=lmax*10; */ |
|
/* } */ |
}
|
/* else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ */ |
for (i=1; i<=imx; i++) {
|
/* delts=delt; */ |
for(m=1; (m<= maxwav); m++){
|
/* } */ |
if (s[m][i] > (nlstate+ndeath)) {
|
/* } /\* End loop k *\/ */ |
printf("Error: Wrong value in nlstate or ndeath\n");
|
/* } */ |
goto end;
|
/* delti[theta]=delts; */ |
}
|
/* return res; */ |
}
|
/* } */ |
}
|
|
|
|
printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
|
/************** Inverse of matrix **************/ |
|
void ludcmp(double **a, int n, int *indx, double *d) |
free_vector(severity,1,maxwav);
|
{ |
free_imatrix(outcome,1,maxwav+1,1,n);
|
int i,imax,j,k; |
free_vector(moisnais,1,n);
|
double big,dum,sum,temp; |
free_vector(annais,1,n);
|
double *vv; |
/* free_matrix(mint,1,maxwav,1,n);
|
|
free_matrix(anint,1,maxwav,1,n);*/
|
vv=vector(1,n); |
free_vector(moisdc,1,n);
|
*d=1.0; |
free_vector(andc,1,n);
|
for (i=1;i<=n;i++) { |
|
big=0.0; |
|
for (j=1;j<=n;j++) |
wav=ivector(1,imx);
|
if ((temp=fabs(a[i][j])) > big) big=temp; |
dh=imatrix(1,lastpass-firstpass+1,1,imx);
|
if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); |
mw=imatrix(1,lastpass-firstpass+1,1,imx);
|
vv[i]=1.0/big; |
|
} |
/* Concatenates waves */
|
for (j=1;j<=n;j++) { |
concatwav(wav, dh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm);
|
for (i=1;i<j;i++) { |
|
sum=a[i][j]; |
|
for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; |
Tcode=ivector(1,100);
|
a[i][j]=sum; |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
|
} |
ncodemax[1]=1;
|
big=0.0; |
if (cptcovn > 0) tricode(Tvar,nbcode,imx);
|
for (i=j;i<=n;i++) { |
|
sum=a[i][j]; |
codtab=imatrix(1,100,1,10);
|
for (k=1;k<j;k++) |
h=0;
|
sum -= a[i][k]*a[k][j]; |
m=pow(2,cptcoveff);
|
a[i][j]=sum; |
|
if ( (dum=vv[i]*fabs(sum)) >= big) { |
for(k=1;k<=cptcoveff; k++){
|
big=dum; |
for(i=1; i <=(m/pow(2,k));i++){
|
imax=i; |
for(j=1; j <= ncodemax[k]; j++){
|
} |
for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
|
} |
h++;
|
if (j != imax) { |
if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
|
for (k=1;k<=n;k++) { |
/* printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
|
dum=a[imax][k]; |
}
|
a[imax][k]=a[j][k]; |
}
|
a[j][k]=dum; |
}
|
} |
}
|
*d = -(*d); |
/* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
|
vv[imax]=vv[j]; |
codtab[1][2]=1;codtab[2][2]=2; */
|
} |
/* for(i=1; i <=m ;i++){
|
indx[j]=imax; |
for(k=1; k <=cptcovn; k++){
|
if (a[j][j] == 0.0) a[j][j]=TINY; |
printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
|
if (j != n) { |
}
|
dum=1.0/(a[j][j]); |
printf("\n");
|
for (i=j+1;i<=n;i++) a[i][j] *= dum; |
}
|
} |
scanf("%d",i);*/
|
} |
|
free_vector(vv,1,n); /* Doesn't work */ |
/* Calculates basic frequencies. Computes observed prevalence at single age
|
; |
and prints on file fileres'p'. */
|
} |
|
|
|
void lubksb(double **a, int n, int *indx, double b[]) |
|
{ |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
int i,ii=0,ip,j; |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
double sum; |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
|
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
for (i=1;i<=n;i++) { |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
|
ip=indx[i]; |
|
sum=b[ip]; |
/* For Powell, parameters are in a vector p[] starting at p[1]
|
b[ip]=b[i]; |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
|
if (ii) |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */
|
for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; |
|
else if (sum) ii=i; |
if(mle==1){
|
b[i]=sum; |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
|
} |
}
|
for (i=n;i>=1;i--) { |
|
sum=b[i]; |
/*--------- results files --------------*/
|
for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
|
b[i]=sum/a[i][i]; |
|
} |
|
} |
jk=1;
|
|
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
|
void pstamp(FILE *fichier) |
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
|
{ |
for(i=1,jk=1; i <=nlstate; i++){
|
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
for(k=1; k <=(nlstate+ndeath); k++){
|
} |
if (k != i)
|
|
{
|
/************ Frequencies ********************/ |
printf("%d%d ",i,k);
|
void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[]) |
fprintf(ficres,"%1d%1d ",i,k);
|
{ /* Some frequencies */ |
for(j=1; j <=ncovmodel; j++){
|
|
printf("%f ",p[jk]);
|
int i, m, jk, j1, bool, z1,j; |
fprintf(ficres,"%f ",p[jk]);
|
int first; |
jk++;
|
double ***freq; /* Frequencies */ |
}
|
double *pp, **prop; |
printf("\n");
|
double pos,posprop, k2, dateintsum=0,k2cpt=0; |
fprintf(ficres,"\n");
|
char fileresp[FILENAMELENGTH]; |
}
|
|
}
|
pp=vector(1,nlstate); |
}
|
prop=matrix(1,nlstate,iagemin,iagemax+3); |
if(mle==1){
|
strcpy(fileresp,"P_"); |
/* Computing hessian and covariance matrix */
|
strcat(fileresp,fileresu); |
ftolhess=ftol; /* Usually correct */
|
if((ficresp=fopen(fileresp,"w"))==NULL) { |
hesscov(matcov, p, npar, delti, ftolhess, func);
|
printf("Problem with prevalence resultfile: %s\n", fileresp); |
}
|
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
|
exit(0); |
printf("# Scales (for hessian or gradient estimation)\n");
|
} |
for(i=1,jk=1; i <=nlstate; i++){
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3); |
for(j=1; j <=nlstate+ndeath; j++){
|
j1=0; |
if (j!=i) {
|
|
fprintf(ficres,"%1d%1d",i,j);
|
j=cptcoveff; |
printf("%1d%1d",i,j);
|
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
for(k=1; k<=ncovmodel;k++){
|
|
printf(" %.5e",delti[jk]);
|
first=1; |
fprintf(ficres," %.5e",delti[jk]);
|
|
jk++;
|
/* for(k1=1; k1<=j ; k1++){ */ /* Loop on covariates */ |
}
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */ |
printf("\n");
|
/* j1++; */ |
fprintf(ficres,"\n");
|
for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ |
}
|
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
}
|
scanf("%d", i);*/ |
}
|
for (i=-5; i<=nlstate+ndeath; i++) |
|
for (jk=-5; jk<=nlstate+ndeath; jk++) |
k=1;
|
for(m=iagemin; m <= iagemax+3; m++) |
fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n");
|
freq[i][jk][m]=0; |
printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n");
|
|
for(i=1;i<=npar;i++){
|
for (i=1; i<=nlstate; i++) |
/* if (k>nlstate) k=1;
|
for(m=iagemin; m <= iagemax+3; m++) |
i1=(i-1)/(ncovmodel*nlstate)+1;
|
prop[i][m]=0; |
fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
|
|
printf("%s%d%d",alph[k],i1,tab[i]);*/
|
dateintsum=0; |
fprintf(ficres,"%3d",i);
|
k2cpt=0; |
printf("%3d",i);
|
for (i=1; i<=imx; i++) { |
for(j=1; j<=i;j++){
|
bool=1; |
fprintf(ficres," %.5e",matcov[i][j]);
|
if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
printf(" %.5e",matcov[i][j]);
|
for (z1=1; z1<=cptcoveff; z1++) |
}
|
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ |
fprintf(ficres,"\n");
|
/* Tests if the value of each of the covariates of i is equal to filter j1 */ |
printf("\n");
|
bool=0; |
k++;
|
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
}
|
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
|
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
while((c=getc(ficpar))=='#' && c!= EOF){
|
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
ungetc(c,ficpar);
|
} |
fgets(line, MAXLINE, ficpar);
|
} |
puts(line);
|
|
fputs(line,ficparo);
|
if (bool==1){ |
}
|
for(m=firstpass; m<=lastpass; m++){ |
ungetc(c,ficpar);
|
k2=anint[m][i]+(mint[m][i]/12.); |
estepm=0;
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
|
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if (estepm==0 || estepm < stepm) estepm=stepm;
|
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
if (fage <= 2) {
|
if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
bage = ageminpar;
|
if (m<lastpass) { |
fage = agemaxpar;
|
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; |
}
|
freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; |
|
} |
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
|
|
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
|
if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) { |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
|
dateintsum=dateintsum+k2; |
|
k2cpt++; |
while((c=getc(ficpar))=='#' && c!= EOF){
|
} |
ungetc(c,ficpar);
|
/*}*/ |
fgets(line, MAXLINE, ficpar);
|
} |
puts(line);
|
} |
fputs(line,ficparo);
|
} /* end i */ |
}
|
|
ungetc(c,ficpar);
|
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
|
pstamp(ficresp); |
fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);
|
if (cptcovn>0) { |
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
|
fprintf(ficresp, "\n#********** Variable "); |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresp, "**********\n#"); |
while((c=getc(ficpar))=='#' && c!= EOF){
|
fprintf(ficlog, "\n#********** Variable "); |
ungetc(c,ficpar);
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fgets(line, MAXLINE, ficpar);
|
fprintf(ficlog, "**********\n#"); |
puts(line);
|
} |
fputs(line,ficparo);
|
for(i=1; i<=nlstate;i++) |
}
|
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
ungetc(c,ficpar);
|
fprintf(ficresp, "\n"); |
|
|
|
for(i=iagemin; i <= iagemax+3; i++){ |
dateprev1=anprev1+mprev1/12.+jprev1/365.;
|
if(i==iagemax+3){ |
dateprev2=anprev2+mprev2/12.+jprev2/365.;
|
fprintf(ficlog,"Total"); |
|
}else{ |
fscanf(ficpar,"pop_based=%d\n",&popbased);
|
if(first==1){ |
fprintf(ficparo,"pop_based=%d\n",popbased);
|
first=0; |
fprintf(ficres,"pop_based=%d\n",popbased);
|
printf("See log file for details...\n"); |
|
} |
while((c=getc(ficpar))=='#' && c!= EOF){
|
fprintf(ficlog,"Age %d", i); |
ungetc(c,ficpar);
|
} |
fgets(line, MAXLINE, ficpar);
|
for(jk=1; jk <=nlstate ; jk++){ |
puts(line);
|
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
fputs(line,ficparo);
|
pp[jk] += freq[jk][m][i]; |
}
|
} |
ungetc(c,ficpar);
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pos=0; m <=0 ; m++) |
fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);
|
pos += freq[jk][m][i]; |
fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);
|
if(pp[jk]>=1.e-10){ |
fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);
|
if(first==1){ |
|
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
|
} |
while((c=getc(ficpar))=='#' && c!= EOF){
|
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
ungetc(c,ficpar);
|
}else{ |
fgets(line, MAXLINE, ficpar);
|
if(first==1) |
puts(line);
|
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
fputs(line,ficparo);
|
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
}
|
} |
ungetc(c,ficpar);
|
} |
|
|
fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
|
for(jk=1; jk <=nlstate ; jk++){ |
fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
|
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) |
fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
|
pp[jk] += freq[jk][m][i]; |
|
} |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
|
for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){ |
|
pos += pp[jk]; |
/*------------ gnuplot -------------*/
|
posprop += prop[jk][i]; |
printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
/*------------ free_vector -------------*/
|
if(pos>=1.e-5){ |
chdir(path);
|
if(first==1) |
|
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
free_ivector(wav,1,imx);
|
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
|
}else{ |
free_imatrix(mw,1,lastpass-firstpass+1,1,imx);
|
if(first==1) |
free_ivector(num,1,n);
|
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
free_vector(agedc,1,n);
|
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
/*free_matrix(covar,1,NCOVMAX,1,n);*/
|
} |
fclose(ficparo);
|
if( i <= iagemax){ |
fclose(ficres);
|
if(pos>=1.e-5){ |
|
fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop); |
/*--------- index.htm --------*/
|
/*probs[i][jk][j1]= pp[jk]/pos;*/ |
|
/*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ |
printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);
|
} |
|
else |
|
fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop); |
/*--------------- Prevalence limit --------------*/
|
} |
|
} |
strcpy(filerespl,"pl");
|
|
strcat(filerespl,fileres);
|
for(jk=-1; jk <=nlstate+ndeath; jk++) |
if((ficrespl=fopen(filerespl,"w"))==NULL) {
|
for(m=-1; m <=nlstate+ndeath; m++) |
printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;
|
if(freq[jk][m][i] !=0 ) { |
}
|
if(first==1) |
printf("Computing prevalence limit: result on file '%s' \n", filerespl);
|
printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); |
fprintf(ficrespl,"#Prevalence limit\n");
|
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]); |
fprintf(ficrespl,"#Age ");
|
} |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
|
if(i <= iagemax) |
fprintf(ficrespl,"\n");
|
fprintf(ficresp,"\n"); |
|
if(first==1) |
prlim=matrix(1,nlstate,1,nlstate);
|
printf("Others in log...\n"); |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
fprintf(ficlog,"\n"); |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
} |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
/*}*/ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
} |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
|
dateintmean=dateintsum/k2cpt; |
k=0;
|
|
agebase=ageminpar;
|
fclose(ficresp); |
agelim=agemaxpar;
|
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3); |
ftolpl=1.e-10;
|
free_vector(pp,1,nlstate); |
i1=cptcoveff;
|
free_matrix(prop,1,nlstate,iagemin, iagemax+3); |
if (cptcovn < 1){i1=1;}
|
/* End of Freq */ |
|
} |
for(cptcov=1;cptcov<=i1;cptcov++){
|
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
|
/************ Prevalence ********************/ |
k=k+1;
|
void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
/*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
|
{ |
fprintf(ficrespl,"\n#******");
|
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
for(j=1;j<=cptcoveff;j++)
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
We still use firstpass and lastpass as another selection. |
fprintf(ficrespl,"******\n");
|
*/ |
|
|
for (age=agebase; age<=agelim; age++){
|
int i, m, jk, j1, bool, z1,j; |
prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
|
|
fprintf(ficrespl,"%.0f",age );
|
double **prop; |
for(i=1; i<=nlstate;i++)
|
double posprop; |
fprintf(ficrespl," %.5f", prlim[i][i]);
|
double y2; /* in fractional years */ |
fprintf(ficrespl,"\n");
|
int iagemin, iagemax; |
}
|
int first; /** to stop verbosity which is redirected to log file */ |
}
|
|
}
|
iagemin= (int) agemin; |
fclose(ficrespl);
|
iagemax= (int) agemax; |
|
/*pp=vector(1,nlstate);*/ |
/*------------- h Pij x at various ages ------------*/
|
prop=matrix(1,nlstate,iagemin,iagemax+3); |
|
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
strcpy(filerespij,"pij"); strcat(filerespij,fileres);
|
j1=0; |
if((ficrespij=fopen(filerespij,"w"))==NULL) {
|
|
printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
|
/*j=cptcoveff;*/ |
}
|
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
printf("Computing pij: result on file '%s' \n", filerespij);
|
|
|
first=1; |
stepsize=(int) (stepm+YEARM-1)/YEARM;
|
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ |
/*if (stepm<=24) stepsize=2;*/
|
/*for(i1=1; i1<=ncodemax[k1];i1++){ |
|
j1++;*/ |
agelim=AGESUP;
|
|
hstepm=stepsize*YEARM; /* Every year of age */
|
for (i=1; i<=nlstate; i++) |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
|
for(m=iagemin; m <= iagemax+3; m++) |
|
prop[i][m]=0.0; |
k=0;
|
|
for(cptcov=1;cptcov<=i1;cptcov++){
|
for (i=1; i<=imx; i++) { /* Each individual */ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
|
bool=1; |
k=k+1;
|
if (cptcovn>0) { |
fprintf(ficrespij,"\n#****** ");
|
for (z1=1; z1<=cptcoveff; z1++) |
for(j=1;j<=cptcoveff;j++)
|
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) |
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
bool=0; |
fprintf(ficrespij,"******\n");
|
} |
|
if (bool==1) { |
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
|
for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
|
y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
|
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
oldm=oldms;savm=savms;
|
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
|
if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); |
fprintf(ficrespij,"# Age");
|
if (s[m][i]>0 && s[m][i]<=nlstate) { |
for(i=1; i<=nlstate;i++)
|
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
for(j=1; j<=nlstate+ndeath;j++)
|
prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
fprintf(ficrespij," %1d-%1d",i,j);
|
prop[s[m][i]][iagemax+3] += weight[i]; |
fprintf(ficrespij,"\n");
|
} |
for (h=0; h<=nhstepm; h++){
|
} |
fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
|
} /* end selection of waves */ |
for(i=1; i<=nlstate;i++)
|
} |
for(j=1; j<=nlstate+ndeath;j++)
|
} |
fprintf(ficrespij," %.5f", p3mat[i][j][h]);
|
for(i=iagemin; i <= iagemax+3; i++){ |
fprintf(ficrespij,"\n");
|
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
}
|
posprop += prop[jk][i]; |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
} |
fprintf(ficrespij,"\n");
|
|
}
|
for(jk=1; jk <=nlstate ; jk++){ |
}
|
if( i <= iagemax){ |
}
|
if(posprop>=1.e-5){ |
|
probs[i][jk][j1]= prop[jk][i]/posprop; |
varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
|
} else{ |
|
if(first==1){ |
fclose(ficrespij);
|
first=0; |
|
printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]); |
|
} |
/*---------- Forecasting ------------------*/
|
} |
if((stepm == 1) && (strcmp(model,".")==0)){
|
} |
prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
|
}/* end jk */ |
if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
|
}/* end i */ |
}
|
/*} *//* end i1 */ |
else{
|
} /* end j1 */ |
erreur=108;
|
|
printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
|
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
}
|
/*free_vector(pp,1,nlstate);*/ |
|
free_matrix(prop,1,nlstate, iagemin,iagemax+3); |
|
} /* End of prevalence */ |
/*---------- Health expectancies and variances ------------*/
|
|
|
/************* Waves Concatenation ***************/ |
strcpy(filerest,"t");
|
|
strcat(filerest,fileres);
|
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
if((ficrest=fopen(filerest,"w"))==NULL) {
|
{ |
printf("Problem with total LE resultfile: %s\n", filerest);goto end;
|
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
}
|
Death is a valid wave (if date is known). |
printf("Computing Total LEs with variances: file '%s' \n", filerest);
|
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
|
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
|
and mw[mi+1][i]. dh depends on stepm. |
strcpy(filerese,"e");
|
*/ |
strcat(filerese,fileres);
|
|
if((ficreseij=fopen(filerese,"w"))==NULL) {
|
int i, mi, m; |
printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
|
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
}
|
double sum=0., jmean=0.;*/ |
printf("Computing Health Expectancies: result on file '%s' \n", filerese);
|
int first; |
|
int j, k=0,jk, ju, jl; |
strcpy(fileresv,"v");
|
double sum=0.; |
strcat(fileresv,fileres);
|
first=0; |
if((ficresvij=fopen(fileresv,"w"))==NULL) {
|
jmin=100000; |
printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
|
jmax=-1; |
}
|
jmean=0.; |
printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
|
for(i=1; i<=imx; i++){ |
calagedate=-1;
|
mi=0; |
prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
|
m=firstpass; |
|
while(s[m][i] <= nlstate){ |
k=0;
|
if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5) |
for(cptcov=1;cptcov<=i1;cptcov++){
|
mw[++mi][i]=m; |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
|
if(m >=lastpass) |
k=k+1;
|
break; |
fprintf(ficrest,"\n#****** ");
|
else |
for(j=1;j<=cptcoveff;j++)
|
m++; |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
}/* end while */ |
fprintf(ficrest,"******\n");
|
if (s[m][i] > nlstate){ |
|
mi++; /* Death is another wave */ |
fprintf(ficreseij,"\n#****** ");
|
/* if(mi==0) never been interviewed correctly before death */ |
for(j=1;j<=cptcoveff;j++)
|
/* Only death is a correct wave */ |
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
mw[mi][i]=m; |
fprintf(ficreseij,"******\n");
|
} |
|
|
fprintf(ficresvij,"\n#****** ");
|
wav[i]=mi; |
for(j=1;j<=cptcoveff;j++)
|
if(mi==0){ |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
nbwarn++; |
fprintf(ficresvij,"******\n");
|
if(first==0){ |
|
printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
|
first=1; |
oldm=oldms;savm=savms;
|
} |
evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);
|
if(first==1){ |
|
fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i); |
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
|
} |
oldm=oldms;savm=savms;
|
} /* end mi==0 */ |
varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);
|
} /* End individuals */ |
|
|
|
for(i=1; i<=imx; i++){ |
|
for(mi=1; mi<wav[i];mi++){ |
fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
|
if (stepm <=0) |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
|
dh[mi][i]=1; |
fprintf(ficrest,"\n");
|
else{ |
|
if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ |
epj=vector(1,nlstate+1);
|
if (agedc[i] < 2*AGESUP) { |
for(age=bage; age <=fage ;age++){
|
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
|
if(j==0) j=1; /* Survives at least one month after exam */ |
if (popbased==1) {
|
else if(j<0){ |
for(i=1; i<=nlstate;i++)
|
nberr++; |
prlim[i][i]=probs[(int)age][i][k];
|
printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
}
|
j=1; /* Temporary Dangerous patch */ |
|
printf(" We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
fprintf(ficrest," %4.0f",age);
|
fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
|
fprintf(ficlog," We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
for(i=1, epj[j]=0.;i <=nlstate;i++) {
|
} |
epj[j] += prlim[i][i]*eij[i][j][(int)age];
|
k=k+1; |
/* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
|
if (j >= jmax){ |
}
|
jmax=j; |
epj[nlstate+1] +=epj[j];
|
ijmax=i; |
}
|
} |
|
if (j <= jmin){ |
for(i=1, vepp=0.;i <=nlstate;i++)
|
jmin=j; |
for(j=1;j <=nlstate;j++)
|
ijmin=i; |
vepp += vareij[i][j][(int)age];
|
} |
fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
|
sum=sum+j; |
for(j=1;j <=nlstate;j++){
|
/*if (j<0) printf("j=%d num=%d \n",j,i);*/ |
fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
|
/* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
}
|
} |
fprintf(ficrest,"\n");
|
} |
}
|
else{ |
}
|
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
}
|
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
free_matrix(mint,1,maxwav,1,n);
|
|
free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);
|
k=k+1; |
free_vector(weight,1,n);
|
if (j >= jmax) { |
fclose(ficreseij);
|
jmax=j; |
fclose(ficresvij);
|
ijmax=i; |
fclose(ficrest);
|
} |
fclose(ficpar);
|
else if (j <= jmin){ |
free_vector(epj,1,nlstate+1);
|
jmin=j; |
|
ijmin=i; |
/*------- Variance limit prevalence------*/
|
} |
|
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
strcpy(fileresvpl,"vpl");
|
/*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
strcat(fileresvpl,fileres);
|
if(j<0){ |
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
|
nberr++; |
printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);
|
printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
exit(0);
|
fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
}
|
} |
printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);
|
sum=sum+j; |
|
} |
k=0;
|
jk= j/stepm; |
for(cptcov=1;cptcov<=i1;cptcov++){
|
jl= j -jk*stepm; |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
|
ju= j -(jk+1)*stepm; |
k=k+1;
|
if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */ |
fprintf(ficresvpl,"\n#****** ");
|
if(jl==0){ |
for(j=1;j<=cptcoveff;j++)
|
dh[mi][i]=jk; |
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
bh[mi][i]=0; |
fprintf(ficresvpl,"******\n");
|
}else{ /* We want a negative bias in order to only have interpolation ie |
|
* to avoid the price of an extra matrix product in likelihood */ |
varpl=matrix(1,nlstate,(int) bage, (int) fage);
|
dh[mi][i]=jk+1; |
oldm=oldms;savm=savms;
|
bh[mi][i]=ju; |
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
|
} |
}
|
}else{ |
}
|
if(jl <= -ju){ |
|
dh[mi][i]=jk; |
fclose(ficresvpl);
|
bh[mi][i]=jl; /* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
/*---------- End : free ----------------*/
|
*/ |
free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
|
} |
|
else{ |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
|
dh[mi][i]=jk+1; |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
|
bh[mi][i]=ju; |
|
} |
|
if(dh[mi][i]==0){ |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
|
dh[mi][i]=1; /* At least one step */ |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
|
bh[mi][i]=ju; /* At least one step */ |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
|
/* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
|
} |
|
} /* end if mle */ |
free_matrix(matcov,1,npar,1,npar);
|
} |
free_vector(delti,1,npar);
|
} /* end wave */ |
free_matrix(agev,1,maxwav,1,imx);
|
} |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
|
jmean=sum/k; |
|
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
if(erreur >0)
|
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
printf("End of Imach with error or warning %d\n",erreur);
|
} |
else printf("End of Imach\n");
|
|
/* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */
|
/*********** Tricode ****************************/ |
|
void tricode(int *Tvar, int **nbcode, int imx, int *Ndum) |
/* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
|
{ |
/*printf("Total time was %d uSec.\n", total_usecs);*/
|
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
/*------ End -----------*/
|
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
|
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
|
* Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2) |
end:
|
* nbcode[Tvar[j]][1]= |
/* chdir(pathcd);*/
|
*/ |
/*system("wgnuplot graph.plt");*/
|
|
/*system("../gp37mgw/wgnuplot graph.plt");*/
|
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
/*system("cd ../gp37mgw");*/
|
int modmaxcovj=0; /* Modality max of covariates j */ |
/* system("..\\gp37mgw\\wgnuplot graph.plt");*/
|
int cptcode=0; /* Modality max of covariates j */ |
strcpy(plotcmd,GNUPLOTPROGRAM);
|
int modmincovj=0; /* Modality min of covariates j */ |
strcat(plotcmd," ");
|
|
strcat(plotcmd,optionfilegnuplot);
|
|
system(plotcmd);
|
cptcoveff=0; |
|
|
/*#ifdef windows*/
|
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
while (z[0] != 'q') {
|
|
/* chdir(path); */
|
/* Loop on covariates without age and products */ |
printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
|
for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */ |
scanf("%s",z);
|
for (k=-1; k < maxncov; k++) Ndum[k]=0; |
if (z[0] == 'c') system("./imach");
|
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the |
else if (z[0] == 'e') system(optionfilehtm);
|
modality of this covariate Vj*/ |
else if (z[0] == 'g') system(plotcmd);
|
ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
else if (z[0] == 'q') exit(0);
|
* If product of Vn*Vm, still boolean *: |
}
|
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
/*#endif */
|
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
}
|
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
|
modality of the nth covariate of individual i. */ |
|
if (ij > modmaxcovj) |
|
modmaxcovj=ij; |
|
else if (ij < modmincovj) |
|
modmincovj=ij; |
|
if ((ij < -1) && (ij > NCOVMAX)){ |
|
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
|
exit(1); |
|
}else |
|
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
|
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
|
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
|
/* getting the maximum value of the modality of the covariate |
|
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
|
female is 1, then modmaxcovj=1.*/ |
|
} /* end for loop on individuals i */ |
|
printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
|
fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
|
cptcode=modmaxcovj; |
|
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
|
/*for (i=0; i<=cptcode; i++) {*/ |
|
for (k=modmincovj; k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */ |
|
printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
|
fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
|
if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */ |
|
if( k != -1){ |
|
ncodemax[j]++; /* ncodemax[j]= Number of modalities of the j th |
|
covariate for which somebody answered excluding |
|
undefined. Usually 2: 0 and 1. */ |
|
} |
|
ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th |
|
covariate for which somebody answered including |
|
undefined. Usually 3: -1, 0 and 1. */ |
|
} |
|
/* In fact ncodemax[j]=2 (dichotom. variables only) but it could be more for |
|
historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
|
} /* Ndum[-1] number of undefined modalities */ |
|
|
|
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
|
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. |
|
If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; |
|
modmincovj=3; modmaxcovj = 7; |
|
There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; |
|
which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; |
|
defining two dummy variables: variables V1_1 and V1_2. |
|
nbcode[Tvar[j]][ij]=k; |
|
nbcode[Tvar[j]][1]=0; |
|
nbcode[Tvar[j]][2]=1; |
|
nbcode[Tvar[j]][3]=2; |
|
To be continued (not working yet). |
|
*/ |
|
ij=0; /* ij is similar to i but can jump over null modalities */ |
|
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
|
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
|
break; |
|
} |
|
ij++; |
|
nbcode[Tvar[j]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/ |
|
cptcode = ij; /* New max modality for covar j */ |
|
} /* end of loop on modality i=-1 to 1 or more */ |
|
|
|
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
|
/* /\*recode from 0 *\/ */ |
|
/* k is a modality. If we have model=V1+V1*sex */ |
|
/* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
|
/* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ |
|
/* } */ |
|
/* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ |
|
/* if (ij > ncodemax[j]) { */ |
|
/* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
|
/* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
|
/* break; */ |
|
/* } */ |
|
/* } /\* end of loop on modality k *\/ */ |
|
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
|
|
|
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
|
|
|
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
|
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
|
ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ |
|
Ndum[ij]++; /* Might be supersed V1 + V1*age */ |
|
} |
|
|
|
ij=0; |
|
for (i=0; i<= maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
|
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
if((Ndum[i]!=0) && (i<=ncovcol)){ |
|
ij++; |
|
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
Tvaraff[ij]=i; /*For printing (unclear) */ |
|
}else{ |
|
/* Tvaraff[ij]=0; */ |
|
} |
|
} |
|
/* ij--; */ |
|
cptcoveff=ij; /*Number of total covariates*/ |
|
|
|
} |
|
|
|
|
|
/*********** Health Expectancies ****************/ |
|
|
|
void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] ) |
|
|
|
{ |
|
/* Health expectancies, no variances */ |
|
int i, j, nhstepm, hstepm, h, nstepm; |
|
int nhstepma, nstepma; /* Decreasing with age */ |
|
double age, agelim, hf; |
|
double ***p3mat; |
|
double eip; |
|
|
|
pstamp(ficreseij); |
|
fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n"); |
|
fprintf(ficreseij,"# Age"); |
|
for(i=1; i<=nlstate;i++){ |
|
for(j=1; j<=nlstate;j++){ |
|
fprintf(ficreseij," e%1d%1d ",i,j); |
|
} |
|
fprintf(ficreseij," e%1d. ",i); |
|
} |
|
fprintf(ficreseij,"\n"); |
|
|
|
|
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
/* We compute the life expectancy from trapezoids spaced every estepm months |
|
* This is mainly to measure the difference between two models: for example |
|
* if stepm=24 months pijx are given only every 2 years and by summing them |
|
* we are calculating an estimate of the Life Expectancy assuming a linear |
|
* progression in between and thus overestimating or underestimating according |
|
* to the curvature of the survival function. If, for the same date, we |
|
* estimate the model with stepm=1 month, we can keep estepm to 24 months |
|
* to compare the new estimate of Life expectancy with the same linear |
|
* hypothesis. A more precise result, taking into account a more precise |
|
* curvature will be obtained if estepm is as small as stepm. */ |
|
|
|
/* For example we decided to compute the life expectancy with the smallest unit */ |
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
|
nhstepm is the number of hstepm from age to agelim |
|
nstepm is the number of stepm from age to agelin. |
|
Look at hpijx to understand the reason of that which relies in memory size |
|
and note for a fixed period like estepm months */ |
|
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
|
means that if the survival funtion is printed only each two years of age and if |
|
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
|
results. So we changed our mind and took the option of the best precision. |
|
*/ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
|
|
|
agelim=AGESUP; |
|
/* If stepm=6 months */ |
|
/* Computed by stepm unit matrices, product of hstepm matrices, stored |
|
in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ |
|
|
|
/* nhstepm age range expressed in number of stepm */ |
|
nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */ |
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
|
/* if (stepm >= YEARM) hstepm=1;*/ |
|
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
|
|
for (age=bage; age<=fage; age ++){ |
|
nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */ |
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
|
/* if (stepm >= YEARM) hstepm=1;*/ |
|
nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
|
|
|
/* If stepm=6 months */ |
|
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
|
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
|
|
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
|
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
|
|
printf("%d|",(int)age);fflush(stdout); |
|
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
|
|
|
/* Computing expectancies */ |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
|
eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf; |
|
|
|
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
|
|
|
} |
|
|
|
fprintf(ficreseij,"%3.0f",age ); |
|
for(i=1; i<=nlstate;i++){ |
|
eip=0; |
|
for(j=1; j<=nlstate;j++){ |
|
eip +=eij[i][j][(int)age]; |
|
fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] ); |
|
} |
|
fprintf(ficreseij,"%9.4f", eip ); |
|
} |
|
fprintf(ficreseij,"\n"); |
|
|
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
|
|
} |
|
|
|
void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] ) |
|
|
|
{ |
|
/* Covariances of health expectancies eij and of total life expectancies according |
|
to initial status i, ei. . |
|
*/ |
|
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
|
int nhstepma, nstepma; /* Decreasing with age */ |
|
double age, agelim, hf; |
|
double ***p3matp, ***p3matm, ***varhe; |
|
double **dnewm,**doldm; |
|
double *xp, *xm; |
|
double **gp, **gm; |
|
double ***gradg, ***trgradg; |
|
int theta; |
|
|
|
double eip, vip; |
|
|
|
varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage); |
|
xp=vector(1,npar); |
|
xm=vector(1,npar); |
|
dnewm=matrix(1,nlstate*nlstate,1,npar); |
|
doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate); |
|
|
|
pstamp(ficresstdeij); |
|
fprintf(ficresstdeij,"# Health expectancies with standard errors\n"); |
|
fprintf(ficresstdeij,"# Age"); |
|
for(i=1; i<=nlstate;i++){ |
|
for(j=1; j<=nlstate;j++) |
|
fprintf(ficresstdeij," e%1d%1d (SE)",i,j); |
|
fprintf(ficresstdeij," e%1d. ",i); |
|
} |
|
fprintf(ficresstdeij,"\n"); |
|
|
|
pstamp(ficrescveij); |
|
fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n"); |
|
fprintf(ficrescveij,"# Age"); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++){ |
|
cptj= (j-1)*nlstate+i; |
|
for(i2=1; i2<=nlstate;i2++) |
|
for(j2=1; j2<=nlstate;j2++){ |
|
cptj2= (j2-1)*nlstate+i2; |
|
if(cptj2 <= cptj) |
|
fprintf(ficrescveij," %1d%1d,%1d%1d",i,j,i2,j2); |
|
} |
|
} |
|
fprintf(ficrescveij,"\n"); |
|
|
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
/* We compute the life expectancy from trapezoids spaced every estepm months |
|
* This is mainly to measure the difference between two models: for example |
|
* if stepm=24 months pijx are given only every 2 years and by summing them |
|
* we are calculating an estimate of the Life Expectancy assuming a linear |
|
* progression in between and thus overestimating or underestimating according |
|
* to the curvature of the survival function. If, for the same date, we |
|
* estimate the model with stepm=1 month, we can keep estepm to 24 months |
|
* to compare the new estimate of Life expectancy with the same linear |
|
* hypothesis. A more precise result, taking into account a more precise |
|
* curvature will be obtained if estepm is as small as stepm. */ |
|
|
|
/* For example we decided to compute the life expectancy with the smallest unit */ |
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
|
nhstepm is the number of hstepm from age to agelim |
|
nstepm is the number of stepm from age to agelin. |
|
Look at hpijx to understand the reason of that which relies in memory size |
|
and note for a fixed period like estepm months */ |
|
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
|
means that if the survival funtion is printed only each two years of age and if |
|
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
|
results. So we changed our mind and took the option of the best precision. |
|
*/ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
|
|
|
/* If stepm=6 months */ |
|
/* nhstepm age range expressed in number of stepm */ |
|
agelim=AGESUP; |
|
nstepm=(int) rint((agelim-bage)*YEARM/stepm); |
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
|
/* if (stepm >= YEARM) hstepm=1;*/ |
|
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
|
|
p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate); |
|
trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar); |
|
gp=matrix(0,nhstepm,1,nlstate*nlstate); |
|
gm=matrix(0,nhstepm,1,nlstate*nlstate); |
|
|
|
for (age=bage; age<=fage; age ++){ |
|
nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */ |
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
|
/* if (stepm >= YEARM) hstepm=1;*/ |
|
nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
|
|
|
/* If stepm=6 months */ |
|
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
|
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
|
|
/* Computing Variances of health expectancies */ |
|
/* Gradient is computed with plus gp and minus gm. Code is duplicated in order to |
|
decrease memory allocation */ |
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
xm[i] = x[i] - (i==theta ?delti[theta]:0); |
|
} |
|
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij); |
|
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij); |
|
|
|
for(j=1; j<= nlstate; j++){ |
|
for(i=1; i<=nlstate; i++){ |
|
for(h=0; h<=nhstepm-1; h++){ |
|
gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.; |
|
gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.; |
|
} |
|
} |
|
} |
|
|
|
for(ij=1; ij<= nlstate*nlstate; ij++) |
|
for(h=0; h<=nhstepm-1; h++){ |
|
gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta]; |
|
} |
|
}/* End theta */ |
|
|
|
|
|
for(h=0; h<=nhstepm-1; h++) |
|
for(j=1; j<=nlstate*nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
|
|
|
for(ij=1;ij<=nlstate*nlstate;ij++) |
|
for(ji=1;ji<=nlstate*nlstate;ji++) |
|
varhe[ij][ji][(int)age] =0.; |
|
|
|
printf("%d|",(int)age);fflush(stdout); |
|
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
|
for(h=0;h<=nhstepm-1;h++){ |
|
for(k=0;k<=nhstepm-1;k++){ |
|
matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); |
|
for(ij=1;ij<=nlstate*nlstate;ij++) |
|
for(ji=1;ji<=nlstate*nlstate;ji++) |
|
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
|
} |
|
} |
|
|
|
/* Computing expectancies */ |
|
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
|
eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf; |
|
|
|
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
|
|
|
} |
|
|
|
fprintf(ficresstdeij,"%3.0f",age ); |
|
for(i=1; i<=nlstate;i++){ |
|
eip=0.; |
|
vip=0.; |
|
for(j=1; j<=nlstate;j++){ |
|
eip += eij[i][j][(int)age]; |
|
for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */ |
|
vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age]; |
|
fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) ); |
|
} |
|
fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip)); |
|
} |
|
fprintf(ficresstdeij,"\n"); |
|
|
|
fprintf(ficrescveij,"%3.0f",age ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++){ |
|
cptj= (j-1)*nlstate+i; |
|
for(i2=1; i2<=nlstate;i2++) |
|
for(j2=1; j2<=nlstate;j2++){ |
|
cptj2= (j2-1)*nlstate+i2; |
|
if(cptj2 <= cptj) |
|
fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]); |
|
} |
|
} |
|
fprintf(ficrescveij,"\n"); |
|
|
|
} |
|
free_matrix(gm,0,nhstepm,1,nlstate*nlstate); |
|
free_matrix(gp,0,nhstepm,1,nlstate*nlstate); |
|
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate); |
|
free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar); |
|
free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
|
|
free_vector(xm,1,npar); |
|
free_vector(xp,1,npar); |
|
free_matrix(dnewm,1,nlstate*nlstate,1,npar); |
|
free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); |
|
free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); |
|
} |
|
|
|
/************ Variance ******************/ |
|
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[]) |
|
{ |
|
/* Variance of health expectancies */ |
|
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
|
/* double **newm;*/ |
|
/* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/ |
|
|
|
int movingaverage(); |
|
double **dnewm,**doldm; |
|
double **dnewmp,**doldmp; |
|
int i, j, nhstepm, hstepm, h, nstepm ; |
|
int k; |
|
double *xp; |
|
double **gp, **gm; /* for var eij */ |
|
double ***gradg, ***trgradg; /*for var eij */ |
|
double **gradgp, **trgradgp; /* for var p point j */ |
|
double *gpp, *gmp; /* for var p point j */ |
|
double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
|
double ***p3mat; |
|
double age,agelim, hf; |
|
double ***mobaverage; |
|
int theta; |
|
char digit[4]; |
|
char digitp[25]; |
|
|
|
char fileresprobmorprev[FILENAMELENGTH]; |
|
|
|
if(popbased==1){ |
|
if(mobilav!=0) |
|
strcpy(digitp,"-POPULBASED-MOBILAV_"); |
|
else strcpy(digitp,"-POPULBASED-NOMOBIL_"); |
|
} |
|
else |
|
strcpy(digitp,"-STABLBASED_"); |
|
|
|
if (mobilav!=0) { |
|
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
|
|
strcpy(fileresprobmorprev,"PRMORPREV-"); |
|
sprintf(digit,"%-d",ij); |
|
/*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ |
|
strcat(fileresprobmorprev,digit); /* Tvar to be done */ |
|
strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ |
|
strcat(fileresprobmorprev,fileresu); |
|
if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobmorprev); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); |
|
} |
|
printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
|
|
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
pstamp(ficresprobmorprev); |
|
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," p.%-d SE",j); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
fprintf(ficgp,"\n# Routine varevsij"); |
|
fprintf(ficgp,"\nunset title \n"); |
|
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
|
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
|
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
|
/* } */ |
|
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
pstamp(ficresvij); |
|
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
|
if(popbased==1) |
|
fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav); |
|
else |
|
fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n"); |
|
fprintf(ficresvij,"# Age"); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j); |
|
fprintf(ficresvij,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewm=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); |
|
doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
|
|
gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); |
|
gpp=vector(nlstate+1,nlstate+ndeath); |
|
gmp=vector(nlstate+1,nlstate+ndeath); |
|
trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
|
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
/* For example we decided to compute the life expectancy with the smallest unit */ |
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
|
nhstepm is the number of hstepm from age to agelim |
|
nstepm is the number of stepm from age to agelin. |
|
Look at function hpijx to understand why (it is linked to memory size questions) */ |
|
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
|
means that if the survival funtion is printed every two years of age and if |
|
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
|
results. So we changed our mind and took the option of the best precision. |
|
*/ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
|
agelim = AGESUP; |
|
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
|
nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
gradg=ma3x(0,nhstepm,1,npar,1,nlstate); |
|
gp=matrix(0,nhstepm,1,nlstate); |
|
gm=matrix(0,nhstepm,1,nlstate); |
|
|
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
for(j=1; j<= nlstate; j++){ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
|
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
|
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear, ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gm[h][j]=0.;i<=nlstate;i++) |
|
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
for(j=1; j<= nlstate; j++) /* vareij */ |
|
for(h=0; h<=nhstepm; h++){ |
|
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
|
} |
|
|
|
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
|
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
|
} |
|
|
|
} /* End theta */ |
|
|
|
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
|
|
|
for(h=0; h<=nhstepm; h++) /* veij */ |
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
|
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
|
for(theta=1; theta <=npar; theta++) |
|
trgradgp[j][theta]=gradgp[theta][j]; |
|
|
|
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
for(i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate;j++) |
|
vareij[i][j][(int)age] =0.; |
|
|
|
for(h=0;h<=nhstepm;h++){ |
|
for(k=0;k<=nhstepm;k++){ |
|
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
|
for(i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate;j++) |
|
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
|
} |
|
} |
|
|
|
/* pptj */ |
|
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
|
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
|
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
|
varppt[j][i]=doldmp[j][i]; |
|
/* end ppptj */ |
|
/* x centered again */ |
|
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
|
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyear,ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); |
|
for(i=1; i<=nlstate;i++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); |
|
} |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
|
fprintf(ficresvij,"%.0f ",age ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++){ |
|
fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); |
|
} |
|
fprintf(ficresvij,"\n"); |
|
free_matrix(gp,0,nhstepm,1,nlstate); |
|
free_matrix(gm,0,nhstepm,1,nlstate); |
|
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); |
|
free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* End age */ |
|
free_vector(gpp,nlstate+1,nlstate+ndeath); |
|
free_vector(gmp,nlstate+1,nlstate+ndeath); |
|
free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); |
|
free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
/* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */ |
|
fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480"); |
|
/* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
|
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
|
fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit); |
|
*/ |
|
/* fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */ |
|
fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
|
|
free_vector(xp,1,npar); |
|
free_matrix(doldm,1,nlstate,1,nlstate); |
|
free_matrix(dnewm,1,nlstate,1,npar); |
|
free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); |
|
free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
fclose(ficresprobmorprev); |
|
fflush(ficgp); |
|
fflush(fichtm); |
|
} /* end varevsij */ |
|
|
|
/************ Variance of prevlim ******************/ |
|
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, char strstart[]) |
|
{ |
|
/* Variance of prevalence limit */ |
|
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
|
double **dnewm,**doldm; |
|
int i, j, nhstepm, hstepm; |
|
double *xp; |
|
double *gp, *gm; |
|
double **gradg, **trgradg; |
|
double age,agelim; |
|
int theta; |
|
|
|
pstamp(ficresvpl); |
|
fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); |
|
fprintf(ficresvpl,"# Age"); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvpl," %1d-%1d",i,i); |
|
fprintf(ficresvpl,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewm=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
|
|
hstepm=1*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ |
|
agelim = AGESUP; |
|
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
|
nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
if (stepm >= YEARM) hstepm=1; |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
gradg=matrix(1,npar,1,nlstate); |
|
gp=vector(1,nlstate); |
|
gm=vector(1,nlstate); |
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij); |
|
for(i=1;i<=nlstate;i++) |
|
gp[i] = prlim[i][i]; |
|
|
|
for(i=1; i<=npar; i++) /* Computes gradient */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij); |
|
for(i=1;i<=nlstate;i++) |
|
gm[i] = prlim[i][i]; |
|
|
|
for(i=1;i<=nlstate;i++) |
|
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; |
|
} /* End theta */ |
|
|
|
trgradg =matrix(1,nlstate,1,npar); |
|
|
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
|
|
|
for(i=1;i<=nlstate;i++) |
|
varpl[i][(int)age] =0.; |
|
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
|
for(i=1;i<=nlstate;i++) |
|
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
|
fprintf(ficresvpl,"%.0f ",age ); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
|
fprintf(ficresvpl,"\n"); |
|
free_vector(gp,1,nlstate); |
|
free_vector(gm,1,nlstate); |
|
free_matrix(gradg,1,npar,1,nlstate); |
|
free_matrix(trgradg,1,nlstate,1,npar); |
|
} /* End age */ |
|
|
|
free_vector(xp,1,npar); |
|
free_matrix(doldm,1,nlstate,1,npar); |
|
free_matrix(dnewm,1,nlstate,1,nlstate); |
|
|
|
} |
|
|
|
/************ Variance of one-step probabilities ******************/ |
|
void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[]) |
|
{ |
|
int i, j=0, k1, l1, tj; |
|
int k2, l2, j1, z1; |
|
int k=0, l; |
|
int first=1, first1, first2; |
|
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
|
double **dnewm,**doldm; |
|
double *xp; |
|
double *gp, *gm; |
|
double **gradg, **trgradg; |
|
double **mu; |
|
double age, cov[NCOVMAX+1]; |
|
double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ |
|
int theta; |
|
char fileresprob[FILENAMELENGTH]; |
|
char fileresprobcov[FILENAMELENGTH]; |
|
char fileresprobcor[FILENAMELENGTH]; |
|
double ***varpij; |
|
|
|
strcpy(fileresprob,"PROB_"); |
|
strcat(fileresprob,fileres); |
|
if((ficresprob=fopen(fileresprob,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprob); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); |
|
} |
|
strcpy(fileresprobcov,"PROBCOV_"); |
|
strcat(fileresprobcov,fileresu); |
|
if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobcov); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); |
|
} |
|
strcpy(fileresprobcor,"PROBCOR_"); |
|
strcat(fileresprobcor,fileresu); |
|
if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobcor); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); |
|
} |
|
printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
|
fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
|
printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
|
fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
|
printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
|
fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
|
pstamp(ficresprob); |
|
fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); |
|
fprintf(ficresprob,"# Age"); |
|
pstamp(ficresprobcov); |
|
fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); |
|
fprintf(ficresprobcov,"# Age"); |
|
pstamp(ficresprobcor); |
|
fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); |
|
fprintf(ficresprobcor,"# Age"); |
|
|
|
|
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprob," p%1d-%1d (SE)",i,j); |
|
fprintf(ficresprobcov," p%1d-%1d ",i,j); |
|
fprintf(ficresprobcor," p%1d-%1d ",i,j); |
|
} |
|
/* fprintf(ficresprob,"\n"); |
|
fprintf(ficresprobcov,"\n"); |
|
fprintf(ficresprobcor,"\n"); |
|
*/ |
|
xp=vector(1,npar); |
|
dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
|
doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
|
mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
|
varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); |
|
first=1; |
|
fprintf(ficgp,"\n# Routine varprob"); |
|
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
|
fprintf(fichtm,"\n"); |
|
|
|
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov); |
|
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
|
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
|
and drawn. It helps understanding how is the covariance between two incidences.\ |
|
They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); |
|
fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \ |
|
It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \ |
|
would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \ |
|
standard deviations wide on each axis. <br>\ |
|
Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\ |
|
and made the appropriate rotation to look at the uncorrelated principal directions.<br>\ |
|
To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n"); |
|
|
|
cov[1]=1; |
|
/* tj=cptcoveff; */ |
|
tj = (int) pow(2,cptcoveff); |
|
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
|
j1=0; |
|
for(j1=1; j1<=tj;j1++){ |
|
/*for(i1=1; i1<=ncodemax[t];i1++){ */ |
|
/*j1++;*/ |
|
if (cptcovn>0) { |
|
fprintf(ficresprob, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprob, "**********\n#\n"); |
|
fprintf(ficresprobcov, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprobcov, "**********\n#\n"); |
|
|
|
fprintf(ficgp, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficgp, "**********\n#\n"); |
|
|
|
|
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
|
|
fprintf(ficresprobcor, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprobcor, "**********\n#"); |
|
} |
|
|
|
gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); |
|
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
|
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
|
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
|
for (age=bage; age<=fage; age ++){ |
|
cov[2]=age; |
|
if(nagesqr==1) |
|
cov[3]= age*age; |
|
for (k=1; k<=cptcovn;k++) { |
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; |
|
/*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4 |
|
* 1 1 1 1 1 |
|
* 2 2 1 1 1 |
|
* 3 1 2 1 1 |
|
*/ |
|
/* nbcode[1][1]=0 nbcode[1][2]=1;*/ |
|
} |
|
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
|
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
for (k=1; k<=cptcovprod;k++) |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
|
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++) |
|
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
|
|
|
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
|
|
|
k=0; |
|
for(i=1; i<= (nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
k=k+1; |
|
gp[k]=pmmij[i][j]; |
|
} |
|
} |
|
|
|
for(i=1; i<=npar; i++) |
|
xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); |
|
|
|
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
|
k=0; |
|
for(i=1; i<=(nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
k=k+1; |
|
gm[k]=pmmij[i][j]; |
|
} |
|
} |
|
|
|
for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) |
|
gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; |
|
} |
|
|
|
for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
|
|
|
matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); |
|
|
|
pmij(pmmij,cov,ncovmodel,x,nlstate); |
|
|
|
k=0; |
|
for(i=1; i<=(nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
k=k+1; |
|
mu[k][(int) age]=pmmij[i][j]; |
|
} |
|
} |
|
for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) |
|
for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) |
|
varpij[i][j][(int)age] = doldm[i][j]; |
|
|
|
/*printf("\n%d ",(int)age); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
}*/ |
|
|
|
fprintf(ficresprob,"\n%d ",(int)age); |
|
fprintf(ficresprobcov,"\n%d ",(int)age); |
|
fprintf(ficresprobcor,"\n%d ",(int)age); |
|
|
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) |
|
fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); |
|
fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); |
|
} |
|
i=0; |
|
for (k=1; k<=(nlstate);k++){ |
|
for (l=1; l<=(nlstate+ndeath);l++){ |
|
i++; |
|
fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); |
|
fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); |
|
for (j=1; j<=i;j++){ |
|
/* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */ |
|
fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); |
|
fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); |
|
} |
|
} |
|
}/* end of loop for state */ |
|
} /* end of loop for age */ |
|
free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
|
|
/* Confidence intervalle of pij */ |
|
/* |
|
fprintf(ficgp,"\nunset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); |
|
fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); |
|
fprintf(fichtm,"\n<br>Probability with confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); |
|
fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); |
|
fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); |
|
fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); |
|
*/ |
|
|
|
/* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ |
|
first1=1;first2=2; |
|
for (k2=1; k2<=(nlstate);k2++){ |
|
for (l2=1; l2<=(nlstate+ndeath);l2++){ |
|
if(l2==k2) continue; |
|
j=(k2-1)*(nlstate+ndeath)+l2; |
|
for (k1=1; k1<=(nlstate);k1++){ |
|
for (l1=1; l1<=(nlstate+ndeath);l1++){ |
|
if(l1==k1) continue; |
|
i=(k1-1)*(nlstate+ndeath)+l1; |
|
if(i<=j) continue; |
|
for (age=bage; age<=fage; age ++){ |
|
if ((int)age %5==0){ |
|
v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; |
|
v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
mu1=mu[i][(int) age]/stepm*YEARM ; |
|
mu2=mu[j][(int) age]/stepm*YEARM; |
|
c12=cv12/sqrt(v1*v2); |
|
/* Computing eigen value of matrix of covariance */ |
|
lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
if ((lc2 <0) || (lc1 <0) ){ |
|
if(first2==1){ |
|
first1=0; |
|
printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor); |
|
} |
|
fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog); |
|
/* lc1=fabs(lc1); */ /* If we want to have them positive */ |
|
/* lc2=fabs(lc2); */ |
|
} |
|
|
|
/* Eigen vectors */ |
|
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
|
/*v21=sqrt(1.-v11*v11); *//* error */ |
|
v21=(lc1-v1)/cv12*v11; |
|
v12=-v21; |
|
v22=v11; |
|
tnalp=v21/v11; |
|
if(first1==1){ |
|
first1=0; |
|
printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
|
} |
|
fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
|
/*printf(fignu*/ |
|
/* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ |
|
/* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ |
|
if(first==1){ |
|
first=0; |
|
fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n"); |
|
fprintf(ficgp,"\nset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset ter svg size 640, 480"); |
|
fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
|
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\ |
|
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
|
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\ |
|
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
|
fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
|
fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); |
|
fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
|
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
|
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ |
|
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ |
|
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
|
}else{ |
|
first=0; |
|
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
|
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
|
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ |
|
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ |
|
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
|
}/* if first */ |
|
} /* age mod 5 */ |
|
} /* end loop age */ |
|
fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
|
first=1; |
|
} /*l12 */ |
|
} /* k12 */ |
|
} /*l1 */ |
|
}/* k1 */ |
|
/* } */ /* loop covariates */ |
|
} |
|
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
|
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
|
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
|
free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar); |
|
free_vector(xp,1,npar); |
|
fclose(ficresprob); |
|
fclose(ficresprobcov); |
|
fclose(ficresprobcor); |
|
fflush(ficgp); |
|
fflush(fichtmcov); |
|
} |
|
|
|
|
|
/******************* Printing html file ***********/ |
|
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
|
int lastpass, int stepm, int weightopt, char model[],\ |
|
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
|
int popforecast, int estepm ,\ |
|
double jprev1, double mprev1,double anprev1, \ |
|
double jprev2, double mprev2,double anprev2){ |
|
int jj1, k1, i1, cpt; |
|
|
|
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
|
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
|
</ul>"); |
|
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \ |
|
- Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ", |
|
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
|
fprintf(fichtm,"\ |
|
- Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
|
stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_")); |
|
fprintf(fichtm,"\ |
|
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
|
fprintf(fichtm,"\ |
|
- (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
|
<a href=\"%s\">%s</a> <br>\n", |
|
estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_")); |
|
fprintf(fichtm,"\ |
|
- Population projections by age and states: \ |
|
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
|
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
|
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
jj1=0; |
|
for(k1=1; k1<=m;k1++){ |
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
|
printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); |
|
} |
|
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
} |
|
/* aij, bij */ |
|
fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ |
|
<img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
|
/* Pij */ |
|
fprintf(fichtm,"<br>\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ |
|
<img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
|
/* Quasi-incidences */ |
|
fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
|
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\ |
|
incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \ |
|
divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ |
|
<img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
|
/* Survival functions (period) in state j */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1); |
|
} |
|
/* State specific survival functions (period) */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Survival functions from state %d in any different live states and total.\ |
|
Or probability to survive in various states (1 to %d) being in state %d at different ages.\ |
|
<a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1); |
|
} |
|
/* Period (stable) prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); |
|
} |
|
for(cpt=1; cpt<=nlstate;cpt++) { |
|
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \ |
|
<img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); |
|
} |
|
/* } /\* end i1 *\/ */ |
|
}/* End k1 */ |
|
fprintf(fichtm,"</ul>"); |
|
|
|
fprintf(fichtm,"\ |
|
\n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\ |
|
- Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \ |
|
- 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \ |
|
But because parameters are usually highly correlated (a higher incidence of disability \ |
|
and a higher incidence of recovery can give very close observed transition) it might \ |
|
be very useful to look not only at linear confidence intervals estimated from the \ |
|
variances but at the covariance matrix. And instead of looking at the estimated coefficients \ |
|
(parameters) of the logistic regression, it might be more meaningful to visualize the \ |
|
covariance matrix of the one-step probabilities. \ |
|
See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres); |
|
|
|
fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_")); |
|
fprintf(fichtm,"\ |
|
- Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_")); |
|
|
|
fprintf(fichtm,"\ |
|
- Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_")); |
|
fprintf(fichtm,"\ |
|
- Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \ |
|
<a href=\"%s\">%s</a> <br>\n</li>", |
|
estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_")); |
|
fprintf(fichtm,"\ |
|
- (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \ |
|
<a href=\"%s\">%s</a> <br>\n</li>", |
|
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
|
fprintf(fichtm,"\ |
|
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
|
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
|
fprintf(fichtm,"\ |
|
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
|
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
|
fprintf(fichtm,"\ |
|
- Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
|
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
|
|
/* if(popforecast==1) fprintf(fichtm,"\n */ |
|
/* - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ |
|
/* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ |
|
/* <br>",fileres,fileres,fileres,fileres); */ |
|
/* else */ |
|
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
|
fflush(fichtm); |
|
fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
|
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
jj1=0; |
|
for(k1=1; k1<=m;k1++){ |
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++) |
|
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
|
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
} |
|
for(cpt=1; cpt<=nlstate;cpt++) { |
|
fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \ |
|
prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\ |
|
<img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1); |
|
} |
|
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
|
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
|
true period expectancies (those weighted with period prevalences are also\ |
|
drawn in addition to the population based expectancies computed using\ |
|
observed and cahotic prevalences: %s_%d.svg<br>\ |
|
<img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1); |
|
/* } /\* end i1 *\/ */ |
|
}/* End k1 */ |
|
fprintf(fichtm,"</ul>"); |
|
fflush(fichtm); |
|
} |
|
|
|
/******************* Gnuplot file **************/ |
|
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ |
|
|
|
char dirfileres[132],optfileres[132]; |
|
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; |
|
int ng=0; |
|
int vpopbased; |
|
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
|
/* printf("Problem with file %s",optionfilegnuplot); */ |
|
/* fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */ |
|
/* } */ |
|
|
|
/*#ifdef windows */ |
|
fprintf(ficgp,"cd \"%s\" \n",pathc); |
|
/*#endif */ |
|
m=pow(2,cptcoveff); |
|
|
|
/* Contribution to likelihood */ |
|
/* Plot the probability implied in the likelihood */ |
|
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
|
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";"); |
|
/* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */ |
|
fprintf(ficgp,"\nset ter png size 640, 480"); |
|
/* nice for mle=4 plot by number of matrix products. |
|
replot "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */ |
|
/* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)" */ |
|
/* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */ |
|
fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_")); |
|
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):5 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk)); |
|
fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_")); |
|
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):4 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk)); |
|
for (i=1; i<= nlstate ; i ++) { |
|
fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i); |
|
fprintf(ficgp,"unset log;\n plot \"%s\"",subdirf(fileresilk)); |
|
fprintf(ficgp," u 2:($4 == %d && $5==%d ? $9 : 1/0):5 t \"p%d%d\" with points lc variable \\\n",i,1,i,1); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,", \"\" u 2:($4 == %d && $5==%d ? $9 : 1/0):5 t \"p%d%d\" with points lc variable ",i,j,i,j); |
|
} |
|
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
|
} |
|
/* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */ |
|
/* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */ |
|
/* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */ |
|
fprintf(ficgp,"\nset out;unset log\n"); |
|
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
|
strcpy(dirfileres,optionfilefiname); |
|
strcpy(optfileres,"vpl"); |
|
/* 1eme*/ |
|
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n"); |
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); |
|
fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \n\ |
|
set ylabel \"Probability\" \n\ |
|
set ter svg size 640, 480\n\ |
|
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
|
|
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); |
|
fprintf(ficgp,"\nset out \n"); |
|
} /* k1 */ |
|
} /* cpt */ |
|
/*2 eme*/ |
|
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n"); |
|
for (k1=1; k1<= m ; k1 ++) { |
|
fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); |
|
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
|
if(vpopbased==0) |
|
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
|
else |
|
fprintf(ficgp,"\nreplot "); |
|
for (i=1; i<= nlstate+1 ; i ++) { |
|
k=2*i; |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
|
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0"); |
|
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
|
} /* state */ |
|
} /* vpopbased */ |
|
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
|
} /* k1 */ |
|
/*3eme*/ |
|
|
|
for (k1=1; k1<= m ; k1 ++) { |
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
/* k=2+nlstate*(2*cpt-2); */ |
|
k=2+(nlstate+1)*(cpt-1); |
|
fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); |
|
fprintf(ficgp,"set ter svg size 640, 480\n\ |
|
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt); |
|
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
|
|
*/ |
|
for (i=1; i< nlstate ; i ++) { |
|
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1); |
|
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
|
|
|
} |
|
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt); |
|
} |
|
} |
|
|
|
/* Survival functions (period) from state i in state j by initial state i */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
k=3; |
|
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
|
set ter svg size 640, 480\n\ |
|
unset log y\n\ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
for (i=1; i<= nlstate ; i ++){ |
|
if(i==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
|
for (j=2; j<= nlstate+ndeath ; j ++) |
|
fprintf(ficgp,"+$%d",k+l+j-1); |
|
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
|
|
/* Survival functions (period) from state i in state j by final state j */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
|
k=3; |
|
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
|
set ter svg size 640, 480\n\ |
|
unset log y\n\ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
if(j==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l); |
|
/* for (i=2; i<= nlstate+ndeath ; i ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+i-1); */ |
|
fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j); |
|
} /* nlstate */ |
|
fprintf(ficgp,", '' "); |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1); |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
if(j < nlstate) |
|
fprintf(ficgp,"$%d +",k+l); |
|
else |
|
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
|
} |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
|
|
/* CV preval stable (period) for each covariate */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
k=3; |
|
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
|
set ter svg size 640, 480\n\ |
|
unset log y\n\ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
for (i=1; i<= nlstate ; i ++){ |
|
if(i==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
|
for (j=2; j<= nlstate ; j ++) |
|
fprintf(ficgp,"+$%d",k+l+j-1); |
|
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
|
|
/* proba elementaires */ |
|
fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n"); |
|
for(i=1,jk=1; i <=nlstate; i++){ |
|
fprintf(ficgp,"# initial state %d\n",i); |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
fprintf(ficgp,"# current state %d\n",k); |
|
for(j=1; j <=ncovmodel; j++){ |
|
fprintf(ficgp,"p%d=%f; ",jk,p[jk]); |
|
jk++; |
|
} |
|
fprintf(ficgp,"\n"); |
|
} |
|
} |
|
} |
|
fprintf(ficgp,"##############\n#\n"); |
|
|
|
/*goto avoid;*/ |
|
fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n"); |
|
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
|
fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n"); |
|
fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n"); |
|
fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n"); |
|
fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n"); |
|
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n"); |
|
fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n"); |
|
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n"); |
|
fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n"); |
|
fprintf(ficgp,"# (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n"); |
|
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n"); |
|
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
|
fprintf(ficgp,"#\n"); |
|
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
|
fprintf(ficgp,"# ng=%d\n",ng); |
|
fprintf(ficgp,"# jk=1 to 2^%d=%d\n",cptcoveff,m); |
|
for(jk=1; jk <=m; jk++) { |
|
fprintf(ficgp,"# jk=%d\n",jk); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng); |
|
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
|
if (ng==1){ |
|
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
|
fprintf(ficgp,"\nunset log y"); |
|
}else if (ng==2){ |
|
fprintf(ficgp,"\nset ylabel \"Probability\"\n"); |
|
fprintf(ficgp,"\nset log y"); |
|
}else if (ng==3){ |
|
fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); |
|
fprintf(ficgp,"\nset log y"); |
|
}else |
|
fprintf(ficgp,"\nunset title "); |
|
fprintf(ficgp,"\nplot [%.f:%.f] ",ageminpar,agemaxpar); |
|
i=1; |
|
for(k2=1; k2<=nlstate; k2++) { |
|
k3=i; |
|
for(k=1; k<=(nlstate+ndeath); k++) { |
|
if (k != k2){ |
|
switch( ng) { |
|
case 1: |
|
if(nagesqr==0) |
|
fprintf(ficgp," p%d+p%d*x",i,i+1); |
|
else /* nagesqr =1 */ |
|
fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
|
break; |
|
case 2: /* ng=2 */ |
|
if(nagesqr==0) |
|
fprintf(ficgp," exp(p%d+p%d*x",i,i+1); |
|
else /* nagesqr =1 */ |
|
fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
|
break; |
|
case 3: |
|
if(nagesqr==0) |
|
fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); |
|
else /* nagesqr =1 */ |
|
fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr); |
|
break; |
|
} |
|
ij=1;/* To be checked else nbcode[0][0] wrong */ |
|
for(j=3; j <=ncovmodel-nagesqr; j++) { |
|
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
|
if(ij <=cptcovage) { /* Bug valgrind */ |
|
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
|
fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
|
ij++; |
|
} |
|
} |
|
else |
|
fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
|
} |
|
if(ng != 1){ |
|
fprintf(ficgp,")/(1"); |
|
|
|
for(k1=1; k1 <=nlstate; k1++){ |
|
if(nagesqr==0) |
|
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |
|
else /* nagesqr =1 */ |
|
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr); |
|
|
|
ij=1; |
|
for(j=3; j <=ncovmodel-nagesqr; j++){ |
|
if(ij <=cptcovage) { /* Bug valgrind */ |
|
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
|
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
|
ij++; |
|
} |
|
} |
|
else |
|
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
|
} |
|
fprintf(ficgp,")"); |
|
} |
|
fprintf(ficgp,")"); |
|
if(ng ==2) |
|
fprintf(ficgp," t \"p%d%d\" ", k2,k); |
|
else /* ng= 3 */ |
|
fprintf(ficgp," t \"i%d%d\" ", k2,k); |
|
}else{ /* end ng <> 1 */ |
|
fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k); |
|
} |
|
if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); |
|
i=i+ncovmodel; |
|
} |
|
} /* end k */ |
|
} /* end k2 */ |
|
fprintf(ficgp,"\n set out\n"); |
|
} /* end jk */ |
|
} /* end ng */ |
|
/* avoid: */ |
|
fflush(ficgp); |
|
} /* end gnuplot */ |
|
|
|
|
|
/*************** Moving average **************/ |
|
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){ |
|
|
|
int i, cpt, cptcod; |
|
int modcovmax =1; |
|
int mobilavrange, mob; |
|
double age; |
|
|
|
modcovmax=2*cptcoveff;/* Max number of modalities. We suppose |
|
a covariate has 2 modalities */ |
|
if (cptcovn<1) modcovmax=1; /* At least 1 pass */ |
|
|
|
if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
|
if(mobilav==1) mobilavrange=5; /* default */ |
|
else mobilavrange=mobilav; |
|
for (age=bage; age<=fage; age++) |
|
for (i=1; i<=nlstate;i++) |
|
for (cptcod=1;cptcod<=modcovmax;cptcod++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
/* We keep the original values on the extreme ages bage, fage and for |
|
fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 |
|
we use a 5 terms etc. until the borders are no more concerned. |
|
*/ |
|
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
|
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
|
for (i=1; i<=nlstate;i++){ |
|
for (cptcod=1;cptcod<=modcovmax;cptcod++){ |
|
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
|
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
|
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
|
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
|
} |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
|
} |
|
} |
|
}/* end age */ |
|
}/* end mob */ |
|
}else return -1; |
|
return 0; |
|
}/* End movingaverage */ |
|
|
|
|
|
/************** Forecasting ******************/ |
|
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
|
/* proj1, year, month, day of starting projection |
|
agemin, agemax range of age |
|
dateprev1 dateprev2 range of dates during which prevalence is computed |
|
anproj2 year of en of projection (same day and month as proj1). |
|
*/ |
|
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; |
|
double agec; /* generic age */ |
|
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
|
double *popeffectif,*popcount; |
|
double ***p3mat; |
|
double ***mobaverage; |
|
char fileresf[FILENAMELENGTH]; |
|
|
|
agelim=AGESUP; |
|
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
|
|
strcpy(fileresf,"F_"); |
|
strcat(fileresf,fileresu); |
|
if((ficresf=fopen(fileresf,"w"))==NULL) { |
|
printf("Problem with forecast resultfile: %s\n", fileresf); |
|
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
|
} |
|
printf("Computing forecasting: result on file '%s' \n", fileresf); |
|
fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf); |
|
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
|
if (mobilav!=0) { |
|
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
if (stepm<=12) stepsize=1; |
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
|
|
hstepm=hstepm/stepm; |
|
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
|
fractional in yp1 */ |
|
anprojmean=yp; |
|
yp2=modf((yp1*12),&yp); |
|
mprojmean=yp; |
|
yp1=modf((yp2*30.5),&yp); |
|
jprojmean=yp; |
|
if(jprojmean==0) jprojmean=1; |
|
if(mprojmean==0) jprojmean=1; |
|
|
|
i1=cptcoveff; |
|
if (cptcovn < 1){i1=1;} |
|
|
|
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
|
|
|
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
|
|
|
/* if (h==(int)(YEARM*yearp)){ */ |
|
for(cptcov=1, k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
|
k=k+1; |
|
fprintf(ficresf,"\n#******"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficresf,"******\n"); |
|
fprintf(ficresf,"# Covariate valuofcovar yearproj age"); |
|
for(j=1; j<=nlstate+ndeath;j++){ |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresf," p%d%d",i,j); |
|
fprintf(ficresf," p.%d",j); |
|
} |
|
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
|
fprintf(ficresf,"\n"); |
|
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
|
|
|
for (agec=fage; agec>=(ageminpar-1); agec--){ |
|
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
|
nhstepm = nhstepm/hstepm; |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
|
|
for (h=0; h<=nhstepm; h++){ |
|
if (h*hstepm/YEARM*stepm ==yearp) { |
|
fprintf(ficresf,"\n"); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
|
} |
|
for(j=1; j<=nlstate+ndeath;j++) { |
|
ppij=0.; |
|
for(i=1; i<=nlstate;i++) { |
|
if (mobilav==1) |
|
ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; |
|
else { |
|
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; |
|
} |
|
if (h*hstepm/YEARM*stepm== yearp) { |
|
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
|
} |
|
} /* end i */ |
|
if (h*hstepm/YEARM*stepm==yearp) { |
|
fprintf(ficresf," %.3f", ppij); |
|
} |
|
}/* end j */ |
|
} /* end h */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
} /* end yearp */ |
|
} /* end cptcod */ |
|
} /* end cptcov */ |
|
|
|
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
|
|
fclose(ficresf); |
|
} |
|
|
|
/************** Forecasting *****not tested NB*************/ |
|
void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ |
|
|
|
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
|
int *popage; |
|
double calagedatem, agelim, kk1, kk2; |
|
double *popeffectif,*popcount; |
|
double ***p3mat,***tabpop,***tabpopprev; |
|
double ***mobaverage; |
|
char filerespop[FILENAMELENGTH]; |
|
|
|
tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
agelim=AGESUP; |
|
calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; |
|
|
|
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
|
|
|
|
strcpy(filerespop,"POP_"); |
|
strcat(filerespop,fileresu); |
|
if((ficrespop=fopen(filerespop,"w"))==NULL) { |
|
printf("Problem with forecast resultfile: %s\n", filerespop); |
|
fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); |
|
} |
|
printf("Computing forecasting: result on file '%s' \n", filerespop); |
|
fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); |
|
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
|
if (mobilav!=0) { |
|
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
if (stepm<=12) stepsize=1; |
|
|
|
agelim=AGESUP; |
|
|
|
hstepm=1; |
|
hstepm=hstepm/stepm; |
|
|
|
if (popforecast==1) { |
|
if((ficpop=fopen(popfile,"r"))==NULL) { |
|
printf("Problem with population file : %s\n",popfile);exit(0); |
|
fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); |
|
} |
|
popage=ivector(0,AGESUP); |
|
popeffectif=vector(0,AGESUP); |
|
popcount=vector(0,AGESUP); |
|
|
|
i=1; |
|
while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; |
|
|
|
imx=i; |
|
for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; |
|
} |
|
|
|
for(cptcov=1,k=0;cptcov<=i2;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
|
k=k+1; |
|
fprintf(ficrespop,"\n#******"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficrespop,"******\n"); |
|
fprintf(ficrespop,"# Age"); |
|
for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); |
|
if (popforecast==1) fprintf(ficrespop," [Population]"); |
|
|
|
for (cpt=0; cpt<=0;cpt++) { |
|
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
|
|
|
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
|
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
|
nhstepm = nhstepm/hstepm; |
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
|
|
for (h=0; h<=nhstepm; h++){ |
|
if (h==(int) (calagedatem+YEARM*cpt)) { |
|
fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
|
} |
|
for(j=1; j<=nlstate+ndeath;j++) { |
|
kk1=0.;kk2=0; |
|
for(i=1; i<=nlstate;i++) { |
|
if (mobilav==1) |
|
kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; |
|
else { |
|
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
|
} |
|
} |
|
if (h==(int)(calagedatem+12*cpt)){ |
|
tabpop[(int)(agedeb)][j][cptcod]=kk1; |
|
/*fprintf(ficrespop," %.3f", kk1); |
|
if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ |
|
} |
|
} |
|
for(i=1; i<=nlstate;i++){ |
|
kk1=0.; |
|
for(j=1; j<=nlstate;j++){ |
|
kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; |
|
} |
|
tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; |
|
} |
|
|
|
if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) |
|
fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} |
|
} |
|
|
|
/******/ |
|
|
|
for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { |
|
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
|
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
|
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
|
nhstepm = nhstepm/hstepm; |
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
for (h=0; h<=nhstepm; h++){ |
|
if (h==(int) (calagedatem+YEARM*cpt)) { |
|
fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
|
} |
|
for(j=1; j<=nlstate+ndeath;j++) { |
|
kk1=0.;kk2=0; |
|
for(i=1; i<=nlstate;i++) { |
|
kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; |
|
} |
|
if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); |
|
} |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
|
|
if (popforecast==1) { |
|
free_ivector(popage,0,AGESUP); |
|
free_vector(popeffectif,0,AGESUP); |
|
free_vector(popcount,0,AGESUP); |
|
} |
|
free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
fclose(ficrespop); |
|
} /* End of popforecast */ |
|
|
|
int fileappend(FILE *fichier, char *optionfich) |
|
{ |
|
if((fichier=fopen(optionfich,"a"))==NULL) { |
|
printf("Problem with file: %s\n", optionfich); |
|
fprintf(ficlog,"Problem with file: %s\n", optionfich); |
|
return (0); |
|
} |
|
fflush(fichier); |
|
return (1); |
|
} |
|
|
|
|
|
/**************** function prwizard **********************/ |
|
void prwizard(int ncovmodel, int nlstate, int ndeath, char model[], FILE *ficparo) |
|
{ |
|
|
|
/* Wizard to print covariance matrix template */ |
|
|
|
char ca[32], cb[32]; |
|
int i,j, k, li, lj, lk, ll, jj, npar, itimes; |
|
int numlinepar; |
|
|
|
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
for(i=1; i <=nlstate; i++){ |
|
jj=0; |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j==i) continue; |
|
jj++; |
|
/*ca[0]= k+'a'-1;ca[1]='\0';*/ |
|
printf("%1d%1d",i,j); |
|
fprintf(ficparo,"%1d%1d",i,j); |
|
for(k=1; k<=ncovmodel;k++){ |
|
/* printf(" %lf",param[i][j][k]); */ |
|
/* fprintf(ficparo," %lf",param[i][j][k]); */ |
|
printf(" 0."); |
|
fprintf(ficparo," 0."); |
|
} |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
} |
|
printf("# Scales (for hessian or gradient estimation)\n"); |
|
fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n"); |
|
npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ |
|
for(i=1; i <=nlstate; i++){ |
|
jj=0; |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j==i) continue; |
|
jj++; |
|
fprintf(ficparo,"%1d%1d",i,j); |
|
printf("%1d%1d",i,j); |
|
fflush(stdout); |
|
for(k=1; k<=ncovmodel;k++){ |
|
/* printf(" %le",delti3[i][j][k]); */ |
|
/* fprintf(ficparo," %le",delti3[i][j][k]); */ |
|
printf(" 0."); |
|
fprintf(ficparo," 0."); |
|
} |
|
numlinepar++; |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
} |
|
printf("# Covariance matrix\n"); |
|
/* # 121 Var(a12)\n\ */ |
|
/* # 122 Cov(b12,a12) Var(b12)\n\ */ |
|
/* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */ |
|
/* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */ |
|
/* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */ |
|
/* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */ |
|
/* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */ |
|
/* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ |
|
fflush(stdout); |
|
fprintf(ficparo,"# Covariance matrix\n"); |
|
/* # 121 Var(a12)\n\ */ |
|
/* # 122 Cov(b12,a12) Var(b12)\n\ */ |
|
/* # ...\n\ */ |
|
/* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ |
|
|
|
for(itimes=1;itimes<=2;itimes++){ |
|
jj=0; |
|
for(i=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j==i) continue; |
|
for(k=1; k<=ncovmodel;k++){ |
|
jj++; |
|
ca[0]= k+'a'-1;ca[1]='\0'; |
|
if(itimes==1){ |
|
printf("#%1d%1d%d",i,j,k); |
|
fprintf(ficparo,"#%1d%1d%d",i,j,k); |
|
}else{ |
|
printf("%1d%1d%d",i,j,k); |
|
fprintf(ficparo,"%1d%1d%d",i,j,k); |
|
/* printf(" %.5le",matcov[i][j]); */ |
|
} |
|
ll=0; |
|
for(li=1;li <=nlstate; li++){ |
|
for(lj=1;lj <=nlstate+ndeath; lj++){ |
|
if(lj==li) continue; |
|
for(lk=1;lk<=ncovmodel;lk++){ |
|
ll++; |
|
if(ll<=jj){ |
|
cb[0]= lk +'a'-1;cb[1]='\0'; |
|
if(ll<jj){ |
|
if(itimes==1){ |
|
printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
}else{ |
|
printf(" 0."); |
|
fprintf(ficparo," 0."); |
|
} |
|
}else{ |
|
if(itimes==1){ |
|
printf(" Var(%s%1d%1d)",ca,i,j); |
|
fprintf(ficparo," Var(%s%1d%1d)",ca,i,j); |
|
}else{ |
|
printf(" 0."); |
|
fprintf(ficparo," 0."); |
|
} |
|
} |
|
} |
|
} /* end lk */ |
|
} /* end lj */ |
|
} /* end li */ |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
numlinepar++; |
|
} /* end k*/ |
|
} /*end j */ |
|
} /* end i */ |
|
} /* end itimes */ |
|
|
|
} /* end of prwizard */ |
|
/******************* Gompertz Likelihood ******************************/ |
|
double gompertz(double x[]) |
|
{ |
|
double A,B,L=0.0,sump=0.,num=0.; |
|
int i,n=0; /* n is the size of the sample */ |
|
|
|
for (i=0;i<=imx-1 ; i++) { |
|
sump=sump+weight[i]; |
|
/* sump=sump+1;*/ |
|
num=num+1; |
|
} |
|
|
|
|
|
/* for (i=0; i<=imx; i++) |
|
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
|
|
|
for (i=1;i<=imx ; i++) |
|
{ |
|
if (cens[i] == 1 && wav[i]>1) |
|
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
|
|
|
if (cens[i] == 0 && wav[i]>1) |
|
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
|
+log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM); |
|
|
|
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
|
if (wav[i] > 1 ) { /* ??? */ |
|
L=L+A*weight[i]; |
|
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
|
} |
|
} |
|
|
|
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
|
|
|
return -2*L*num/sump; |
|
} |
|
|
|
#ifdef GSL |
|
/******************* Gompertz_f Likelihood ******************************/ |
|
double gompertz_f(const gsl_vector *v, void *params) |
|
{ |
|
double A,B,LL=0.0,sump=0.,num=0.; |
|
double *x= (double *) v->data; |
|
int i,n=0; /* n is the size of the sample */ |
|
|
|
for (i=0;i<=imx-1 ; i++) { |
|
sump=sump+weight[i]; |
|
/* sump=sump+1;*/ |
|
num=num+1; |
|
} |
|
|
|
|
|
/* for (i=0; i<=imx; i++) |
|
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
|
printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]); |
|
for (i=1;i<=imx ; i++) |
|
{ |
|
if (cens[i] == 1 && wav[i]>1) |
|
A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp))); |
|
|
|
if (cens[i] == 0 && wav[i]>1) |
|
A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp))) |
|
+log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM); |
|
|
|
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
|
if (wav[i] > 1 ) { /* ??? */ |
|
LL=LL+A*weight[i]; |
|
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
|
} |
|
} |
|
|
|
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
|
printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump); |
|
|
|
return -2*LL*num/sump; |
|
} |
|
#endif |
|
|
|
/******************* Printing html file ***********/ |
|
void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \ |
|
int lastpass, int stepm, int weightopt, char model[],\ |
|
int imx, double p[],double **matcov,double agemortsup){ |
|
int i,k; |
|
|
|
fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>"); |
|
fprintf(fichtm," mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp); |
|
for (i=1;i<=2;i++) |
|
fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
|
fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">"); |
|
fprintf(fichtm,"</ul>"); |
|
|
|
fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>"); |
|
|
|
fprintf(fichtm,"\nAge l<inf>x</inf> q<inf>x</inf> d(x,x+1) L<inf>x</inf> T<inf>x</inf> e<infx</inf><br>"); |
|
|
|
for (k=agegomp;k<(agemortsup-2);k++) |
|
fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]); |
|
|
|
|
|
fflush(fichtm); |
|
} |
|
|
|
/******************* Gnuplot file **************/ |
|
void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ |
|
|
|
char dirfileres[132],optfileres[132]; |
|
|
|
int ng; |
|
|
|
|
|
/*#ifdef windows */ |
|
fprintf(ficgp,"cd \"%s\" \n",pathc); |
|
/*#endif */ |
|
|
|
|
|
strcpy(dirfileres,optionfilefiname); |
|
strcpy(optfileres,"vpl"); |
|
fprintf(ficgp,"set out \"graphmort.svg\"\n "); |
|
fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); |
|
fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); |
|
/* fprintf(ficgp, "set size 0.65,0.65\n"); */ |
|
fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp); |
|
|
|
} |
|
|
|
int readdata(char datafile[], int firstobs, int lastobs, int *imax) |
|
{ |
|
|
|
/*-------- data file ----------*/ |
|
FILE *fic; |
|
char dummy[]=" "; |
|
int i=0, j=0, n=0; |
|
int linei, month, year,iout; |
|
char line[MAXLINE], linetmp[MAXLINE]; |
|
char stra[MAXLINE], strb[MAXLINE]; |
|
char *stratrunc; |
|
int lstra; |
|
|
|
|
|
if((fic=fopen(datafile,"r"))==NULL) { |
|
printf("Problem while opening datafile: %s\n", datafile);fflush(stdout); |
|
fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1; |
|
} |
|
|
|
i=1; |
|
linei=0; |
|
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
|
linei=linei+1; |
|
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
|
if(line[j] == '\t') |
|
line[j] = ' '; |
|
} |
|
for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){ |
|
; |
|
}; |
|
line[j+1]=0; /* Trims blanks at end of line */ |
|
if(line[0]=='#'){ |
|
fprintf(ficlog,"Comment line\n%s\n",line); |
|
printf("Comment line\n%s\n",line); |
|
continue; |
|
} |
|
trimbb(linetmp,line); /* Trims multiple blanks in line */ |
|
strcpy(line, linetmp); |
|
|
|
|
|
for (j=maxwav;j>=1;j--){ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing status */ |
|
lval=-1; |
|
}else{ |
|
errno=0; |
|
lval=strtol(strb,&endptr,10); |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
} |
|
s[j][i]=lval; |
|
|
|
strcpy(line,stra); |
|
cutv(stra, strb,line,' '); |
|
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
|
} |
|
else if( (iout=sscanf(strb,"%s.",dummy)) != 0){ |
|
month=99; |
|
year=9999; |
|
}else{ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);fflush(ficlog); |
|
return 1; |
|
} |
|
anint[j][i]= (double) year; |
|
mint[j][i]= (double)month; |
|
strcpy(line,stra); |
|
} /* ENd Waves */ |
|
|
|
cutv(stra, strb,line,' '); |
|
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
|
} |
|
else if( (iout=sscanf(strb,"%s.",dummy)) != 0){ |
|
month=99; |
|
year=9999; |
|
}else{ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
|
return 1; |
|
} |
|
andc[i]=(double) year; |
|
moisdc[i]=(double) month; |
|
strcpy(line,stra); |
|
|
|
cutv(stra, strb,line,' '); |
|
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
|
} |
|
else if( (iout=sscanf(strb,"%s.", dummy)) != 0){ |
|
month=99; |
|
year=9999; |
|
}else{ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
|
return 1; |
|
} |
|
if (year==9999) { |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
|
return 1; |
|
|
|
} |
|
annais[i]=(double)(year); |
|
moisnais[i]=(double)(month); |
|
strcpy(line,stra); |
|
|
|
cutv(stra, strb,line,' '); |
|
errno=0; |
|
dval=strtod(strb,&endptr); |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei); |
|
fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei); |
|
fflush(ficlog); |
|
return 1; |
|
} |
|
weight[i]=dval; |
|
strcpy(line,stra); |
|
|
|
for (j=ncovcol;j>=1;j--){ |
|
cutv(stra, strb,line,' '); |
|
if(strb[0]=='.') { /* Missing status */ |
|
lval=-1; |
|
}else{ |
|
errno=0; |
|
lval=strtol(strb,&endptr,10); |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line); |
|
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);fflush(ficlog); |
|
return 1; |
|
} |
|
} |
|
if(lval <-1 || lval >1){ |
|
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,j); |
|
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
|
return 1; |
|
} |
|
covar[j][i]=(double)(lval); |
|
strcpy(line,stra); |
|
} |
|
lstra=strlen(stra); |
|
|
|
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
|
stratrunc = &(stra[lstra-9]); |
|
num[i]=atol(stratrunc); |
|
} |
|
else |
|
num[i]=atol(stra); |
|
/*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ |
|
printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ |
|
|
|
i=i+1; |
|
} /* End loop reading data */ |
|
|
|
*imax=i-1; /* Number of individuals */ |
|
fclose(fic); |
|
|
|
return (0); |
|
/* endread: */ |
|
printf("Exiting readdata: "); |
|
fclose(fic); |
|
return (1); |
|
|
|
|
|
|
|
} |
|
void removespace(char *str) { |
|
char *p1 = str, *p2 = str; |
|
do |
|
while (*p2 == ' ') |
|
p2++; |
|
while (*p1++ == *p2++); |
|
} |
|
|
|
int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns: |
|
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
|
* - nagesqr = 1 if age*age in the model, otherwise 0. |
|
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
|
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
|
* - cptcovage number of covariates with age*products =2 |
|
* - cptcovs number of simple covariates |
|
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
|
* which is a new column after the 9 (ncovcol) variables. |
|
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
|
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
|
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
|
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
|
*/ |
|
{ |
|
int i, j, k, ks; |
|
int j1, k1, k2; |
|
char modelsav[80]; |
|
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
|
char *strpt; |
|
|
|
/*removespace(model);*/ |
|
if (strlen(model) >1){ /* If there is at least 1 covariate */ |
|
j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0; |
|
if (strstr(model,"AGE") !=0){ |
|
printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model); |
|
fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog); |
|
return 1; |
|
} |
|
if (strstr(model,"v") !=0){ |
|
printf("Error. 'v' must be in upper case 'V' model=%s ",model); |
|
fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog); |
|
return 1; |
|
} |
|
strcpy(modelsav,model); |
|
if ((strpt=strstr(model,"age*age")) !=0){ |
|
printf(" strpt=%s, model=%s\n",strpt, model); |
|
if(strpt != model){ |
|
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
|
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
|
corresponding column of parameters.\n",model); |
|
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
|
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
|
corresponding column of parameters.\n",model); fflush(ficlog); |
|
return 1; |
|
} |
|
|
|
nagesqr=1; |
|
if (strstr(model,"+age*age") !=0) |
|
substrchaine(modelsav, model, "+age*age"); |
|
else if (strstr(model,"age*age+") !=0) |
|
substrchaine(modelsav, model, "age*age+"); |
|
else |
|
substrchaine(modelsav, model, "age*age"); |
|
}else |
|
nagesqr=0; |
|
if (strlen(modelsav) >1){ |
|
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
|
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
|
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2 */ |
|
cptcovt= j+1; /* Number of total covariates in the model, not including |
|
* cst, age and age*age |
|
* V1+V1*age+ V3 + V3*V4+age*age=> 4*/ |
|
/* including age products which are counted in cptcovage. |
|
* but the covariates which are products must be treated |
|
* separately: ncovn=4- 2=2 (V1+V3). */ |
|
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
|
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
|
|
|
|
|
/* Design |
|
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
|
* < ncovcol=8 > |
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 |
|
* k= 1 2 3 4 5 6 7 8 |
|
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
|
* covar[k,i], value of kth covariate if not including age for individual i: |
|
* covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8) |
|
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[4]=3 Tvar[8]=8 |
|
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
|
* Tage[++cptcovage]=k |
|
* if products, new covar are created after ncovcol with k1 |
|
* Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11 |
|
* Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product |
|
* Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8 |
|
* Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2]; |
|
* Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted |
|
* V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 |
|
* < ncovcol=8 > |
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
|
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
|
* Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
|
* p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
|
* p Tprod[1]@2={ 6, 5} |
|
*p Tvard[1][1]@4= {7, 8, 5, 6} |
|
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
|
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
*How to reorganize? |
|
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
|
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
|
* {2, 1, 4, 8, 5, 6, 3, 7} |
|
* Struct [] |
|
*/ |
|
|
|
/* This loop fills the array Tvar from the string 'model'.*/ |
|
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
|
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
|
/* k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */ |
|
/* k=3 V4 Tvar[k=3]= 4 (from V4) */ |
|
/* k=2 V1 Tvar[k=2]= 1 (from V1) */ |
|
/* k=1 Tvar[1]=2 (from V2) */ |
|
/* k=5 Tvar[5] */ |
|
/* for (k=1; k<=cptcovn;k++) { */ |
|
/* cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
|
/* |
|
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
|
for(k=cptcovt; k>=1;k--) /**< Number of covariates */ |
|
Tvar[k]=0; |
|
cptcovage=0; |
|
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
|
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
|
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
|
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
|
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
|
/*scanf("%d",i);*/ |
|
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
|
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
|
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
|
/* covar is not filled and then is empty */ |
|
cptcovprod--; |
|
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
|
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
|
cptcovage++; /* Sums the number of covariates which include age as a product */ |
|
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
|
/*printf("stre=%s ", stre);*/ |
|
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
|
cptcovprod--; |
|
cutl(stre,strb,strc,'V'); |
|
Tvar[k]=atoi(stre); |
|
cptcovage++; |
|
Tage[cptcovage]=k; |
|
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
|
/* loops on k1=1 (V3*V2) and k1=2 V4*V3 */ |
|
cptcovn++; |
|
cptcovprodnoage++;k1++; |
|
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
|
Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but |
|
because this model-covariate is a construction we invent a new column |
|
ncovcol + k1 |
|
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
|
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
|
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
|
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
|
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
|
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
|
k2=k2+2; |
|
Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */ |
|
Tvar[cptcovt+k2+1]=Tvard[k1][2]; /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */ |
|
for (i=1; i<=lastobs;i++){ |
|
/* Computes the new covariate which is a product of |
|
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
|
covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
|
} |
|
} /* End age is not in the model */ |
|
} /* End if model includes a product */ |
|
else { /* no more sum */ |
|
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
|
/* scanf("%d",i);*/ |
|
cutl(strd,strc,strb,'V'); |
|
ks++; /**< Number of simple covariates */ |
|
cptcovn++; |
|
Tvar[k]=atoi(strd); |
|
} |
|
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
|
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
|
scanf("%d",i);*/ |
|
} /* end of loop + on total covariates */ |
|
} /* end if strlen(modelsave == 0) age*age might exist */ |
|
} /* end if strlen(model == 0) */ |
|
|
|
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
|
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
|
|
|
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
|
printf("cptcovprod=%d ", cptcovprod); |
|
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
|
|
|
scanf("%d ",i);*/ |
|
|
|
|
|
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
|
/*endread:*/ |
|
printf("Exiting decodemodel: "); |
|
return (1); |
|
} |
|
|
|
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
|
{ |
|
int i, m; |
|
|
|
for (i=1; i<=imx; i++) { |
|
for(m=2; (m<= maxwav); m++) { |
|
if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ |
|
anint[m][i]=9999; |
|
s[m][i]=-1; |
|
} |
|
if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ |
|
*nberr = *nberr + 1; |
|
printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr); |
|
fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr); |
|
s[m][i]=-1; |
|
} |
|
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
|
(*nberr)++; |
|
printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); |
|
fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); |
|
s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
|
} |
|
} |
|
} |
|
|
|
for (i=1; i<=imx; i++) { |
|
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); |
|
for(m=firstpass; (m<= lastpass); m++){ |
|
if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ |
|
if (s[m][i] >= nlstate+1) { |
|
if(agedc[i]>0){ |
|
if((int)moisdc[i]!=99 && (int)andc[i]!=9999){ |
|
agev[m][i]=agedc[i]; |
|
/*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ |
|
}else { |
|
if ((int)andc[i]!=9999){ |
|
nbwarn++; |
|
printf("Warning negative age at death: %ld line:%d\n",num[i],i); |
|
fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i); |
|
agev[m][i]=-1; |
|
} |
|
} |
|
} /* agedc > 0 */ |
|
} |
|
else if(s[m][i] !=9){ /* Standard case, age in fractional |
|
years but with the precision of a month */ |
|
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); |
|
if((int)mint[m][i]==99 || (int)anint[m][i]==9999) |
|
agev[m][i]=1; |
|
else if(agev[m][i] < *agemin){ |
|
*agemin=agev[m][i]; |
|
printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin); |
|
} |
|
else if(agev[m][i] >*agemax){ |
|
*agemax=agev[m][i]; |
|
/* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/ |
|
} |
|
/*agev[m][i]=anint[m][i]-annais[i];*/ |
|
/* agev[m][i] = age[i]+2*m;*/ |
|
} |
|
else { /* =9 */ |
|
agev[m][i]=1; |
|
s[m][i]=-1; |
|
} |
|
} |
|
else /*= 0 Unknown */ |
|
agev[m][i]=1; |
|
} |
|
|
|
} |
|
for (i=1; i<=imx; i++) { |
|
for(m=firstpass; (m<=lastpass); m++){ |
|
if (s[m][i] > (nlstate+ndeath)) { |
|
(*nberr)++; |
|
printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
|
fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
|
return 1; |
|
} |
|
} |
|
} |
|
|
|
/*for (i=1; i<=imx; i++){ |
|
for (m=firstpass; (m<lastpass); m++){ |
|
printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]); |
|
} |
|
|
|
}*/ |
|
|
|
|
|
printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); |
|
fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); |
|
|
|
return (0); |
|
/* endread:*/ |
|
printf("Exiting calandcheckages: "); |
|
return (1); |
|
} |
|
|
|
#if defined(_MSC_VER) |
|
/*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/ |
|
/*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/ |
|
//#include "stdafx.h" |
|
//#include <stdio.h> |
|
//#include <tchar.h> |
|
//#include <windows.h> |
|
//#include <iostream> |
|
typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL); |
|
|
|
LPFN_ISWOW64PROCESS fnIsWow64Process; |
|
|
|
BOOL IsWow64() |
|
{ |
|
BOOL bIsWow64 = FALSE; |
|
|
|
//typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS) |
|
// (HANDLE, PBOOL); |
|
|
|
//LPFN_ISWOW64PROCESS fnIsWow64Process; |
|
|
|
HMODULE module = GetModuleHandle(_T("kernel32")); |
|
const char funcName[] = "IsWow64Process"; |
|
fnIsWow64Process = (LPFN_ISWOW64PROCESS) |
|
GetProcAddress(module, funcName); |
|
|
|
if (NULL != fnIsWow64Process) |
|
{ |
|
if (!fnIsWow64Process(GetCurrentProcess(), |
|
&bIsWow64)) |
|
//throw std::exception("Unknown error"); |
|
printf("Unknown error\n"); |
|
} |
|
return bIsWow64 != FALSE; |
|
} |
|
#endif |
|
|
|
void syscompilerinfo(int logged) |
|
{ |
|
/* #include "syscompilerinfo.h"*/ |
|
/* command line Intel compiler 32bit windows, XP compatible:*/ |
|
/* /GS /W3 /Gy |
|
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
|
"_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D |
|
"UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo |
|
/Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch" |
|
*/ |
|
/* 64 bits */ |
|
/* |
|
/GS /W3 /Gy |
|
/Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG" |
|
/D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope |
|
/Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir |
|
"x64\Release\" /Fp"x64\Release\IMaCh.pch" */ |
|
/* Optimization are useless and O3 is slower than O2 */ |
|
/* |
|
/GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" |
|
/D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo |
|
/Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel |
|
/Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" |
|
*/ |
|
/* Link is */ /* /OUT:"visual studio |
|
2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT |
|
/PDB:"visual studio |
|
2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE |
|
"kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib" |
|
"comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib" |
|
"oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib" |
|
/MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO |
|
/SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker' |
|
uiAccess='false'" |
|
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
|
/NOLOGO /TLBID:1 |
|
*/ |
|
#if defined __INTEL_COMPILER |
|
#if defined(__GNUC__) |
|
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
|
#endif |
|
#elif defined(__GNUC__) |
|
#ifndef __APPLE__ |
|
#include <gnu/libc-version.h> /* Only on gnu */ |
|
#endif |
|
struct utsname sysInfo; |
|
int cross = CROSS; |
|
if (cross){ |
|
printf("Cross-"); |
|
if(logged) fprintf(ficlog, "Cross-"); |
|
} |
|
#endif |
|
|
|
#include <stdint.h> |
|
|
|
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
|
#if defined(__clang__) |
|
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
|
#endif |
|
#if defined(__ICC) || defined(__INTEL_COMPILER) |
|
printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */ |
|
#endif |
|
#if defined(__GNUC__) || defined(__GNUG__) |
|
printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */ |
|
#endif |
|
#if defined(__HP_cc) || defined(__HP_aCC) |
|
printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */ |
|
#endif |
|
#if defined(__IBMC__) || defined(__IBMCPP__) |
|
printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */ |
|
#endif |
|
#if defined(_MSC_VER) |
|
printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */ |
|
#endif |
|
#if defined(__PGI) |
|
printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */ |
|
#endif |
|
#if defined(__SUNPRO_C) || defined(__SUNPRO_CC) |
|
printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */ |
|
#endif |
|
printf(" for "); if (logged) fprintf(ficlog, " for "); |
|
|
|
// http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros |
|
#ifdef _WIN32 // note the underscore: without it, it's not msdn official! |
|
// Windows (x64 and x86) |
|
printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) "); |
|
#elif __unix__ // all unices, not all compilers |
|
// Unix |
|
printf("Unix ");if(logged) fprintf(ficlog,"Unix "); |
|
#elif __linux__ |
|
// linux |
|
printf("linux ");if(logged) fprintf(ficlog,"linux "); |
|
#elif __APPLE__ |
|
// Mac OS, not sure if this is covered by __posix__ and/or __unix__ though.. |
|
printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS "); |
|
#endif |
|
|
|
/* __MINGW32__ */ |
|
/* __CYGWIN__ */ |
|
/* __MINGW64__ */ |
|
// http://msdn.microsoft.com/en-us/library/b0084kay.aspx |
|
/* _MSC_VER //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /? */ |
|
/* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */ |
|
/* _WIN64 // Defined for applications for Win64. */ |
|
/* _M_X64 // Defined for compilations that target x64 processors. */ |
|
/* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */ |
|
|
|
#if UINTPTR_MAX == 0xffffffff |
|
printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */ |
|
#elif UINTPTR_MAX == 0xffffffffffffffff |
|
printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */ |
|
#else |
|
printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */ |
|
#endif |
|
|
|
#if defined(__GNUC__) |
|
# if defined(__GNUC_PATCHLEVEL__) |
|
# define __GNUC_VERSION__ (__GNUC__ * 10000 \ |
|
+ __GNUC_MINOR__ * 100 \ |
|
+ __GNUC_PATCHLEVEL__) |
|
# else |
|
# define __GNUC_VERSION__ (__GNUC__ * 10000 \ |
|
+ __GNUC_MINOR__ * 100) |
|
# endif |
|
printf(" using GNU C version %d.\n", __GNUC_VERSION__); |
|
if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__); |
|
|
|
if (uname(&sysInfo) != -1) { |
|
printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine); |
|
if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine); |
|
} |
|
else |
|
perror("uname() error"); |
|
//#ifndef __INTEL_COMPILER |
|
#if !defined (__INTEL_COMPILER) && !defined(__APPLE__) |
|
printf("GNU libc version: %s\n", gnu_get_libc_version()); |
|
if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version()); |
|
#endif |
|
#endif |
|
|
|
// void main() |
|
// { |
|
#if defined(_MSC_VER) |
|
if (IsWow64()){ |
|
printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n"); |
|
if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n"); |
|
} |
|
else{ |
|
printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n"); |
|
if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n"); |
|
} |
|
// printf("\nPress Enter to continue..."); |
|
// getchar(); |
|
// } |
|
|
|
#endif |
|
|
|
|
|
} |
|
|
|
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyear){ |
|
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
|
int i, j, k, i1 ; |
|
/* double ftolpl = 1.e-10; */ |
|
double age, agebase, agelim; |
|
double tot; |
|
|
|
strcpy(filerespl,"PL_"); |
|
strcat(filerespl,fileresu); |
|
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
|
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
|
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
|
} |
|
printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
|
fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
|
pstamp(ficrespl); |
|
fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
|
fprintf(ficrespl,"#Age "); |
|
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
|
fprintf(ficrespl,"\n"); |
|
|
|
/* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */ |
|
|
|
agebase=ageminpar; |
|
agelim=agemaxpar; |
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
|
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
|
k=k+1; |
|
/* to clean */ |
|
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
|
fprintf(ficrespl,"#******"); |
|
printf("#******"); |
|
fprintf(ficlog,"#******"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficrespl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
fprintf(ficrespl,"#Age "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
|
fprintf(ficrespl,"Total Years_to_converge\n"); |
|
|
|
for (age=agebase; age<=agelim; age++){ |
|
/* for (age=agebase; age<=agebase; age++){ */ |
|
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k); |
|
fprintf(ficrespl,"%.0f ",age ); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
tot=0.; |
|
for(i=1; i<=nlstate;i++){ |
|
tot += prlim[i][i]; |
|
fprintf(ficrespl," %.5f", prlim[i][i]); |
|
} |
|
fprintf(ficrespl," %.3f %d\n", tot, *ncvyear); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
} /* cptcov */ |
|
return 0; |
|
} |
|
|
|
int hPijx(double *p, int bage, int fage){ |
|
/*------------- h Pij x at various ages ------------*/ |
|
|
|
int stepsize; |
|
int agelim; |
|
int hstepm; |
|
int nhstepm; |
|
int h, i, i1, j, k; |
|
|
|
double agedeb; |
|
double ***p3mat; |
|
|
|
strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); |
|
if((ficrespij=fopen(filerespij,"w"))==NULL) { |
|
printf("Problem with Pij resultfile: %s\n", filerespij); return 1; |
|
fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; |
|
} |
|
printf("Computing pij: result on file '%s' \n", filerespij); |
|
fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
/*if (stepm<=24) stepsize=2;*/ |
|
|
|
agelim=AGESUP; |
|
hstepm=stepsize*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
|
/* hstepm=1; aff par mois*/ |
|
pstamp(ficrespij); |
|
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
|
i1= pow(2,cptcoveff); |
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
|
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
|
/* k=k+1; */ |
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficrespij,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficrespij,"******\n"); |
|
|
|
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
|
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
|
|
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespij," %1d-%1d",i,j); |
|
fprintf(ficrespij,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespij,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespij,"\n"); |
|
} |
|
/*}*/ |
|
} |
|
return 0; |
|
} |
|
|
|
|
|
/***********************************************/ |
|
/**************** Main Program *****************/ |
|
/***********************************************/ |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
#ifdef GSL |
|
const gsl_multimin_fminimizer_type *T; |
|
size_t iteri = 0, it; |
|
int rval = GSL_CONTINUE; |
|
int status = GSL_SUCCESS; |
|
double ssval; |
|
#endif |
|
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
|
int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; |
|
int ncvyearnp=0; |
|
int *ncvyear=&ncvyearnp; /* Number of years needed for the period prevalence to converge */ |
|
int jj, ll, li, lj, lk; |
|
int numlinepar=0; /* Current linenumber of parameter file */ |
|
int num_filled; |
|
int itimes; |
|
int NDIM=2; |
|
int vpopbased=0; |
|
|
|
char ca[32], cb[32]; |
|
/* FILE *fichtm; *//* Html File */ |
|
/* FILE *ficgp;*/ /*Gnuplot File */ |
|
struct stat info; |
|
double agedeb=0.; |
|
|
|
double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW; |
|
|
|
double fret; |
|
double dum=0.; /* Dummy variable */ |
|
double ***p3mat; |
|
double ***mobaverage; |
|
|
|
char line[MAXLINE]; |
|
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
|
|
|
char model[MAXLINE], modeltemp[MAXLINE]; |
|
char pathr[MAXLINE], pathimach[MAXLINE]; |
|
char *tok, *val; /* pathtot */ |
|
int firstobs=1, lastobs=10; |
|
int c, h , cpt, c2; |
|
int jl=0; |
|
int i1, j1, jk, stepsize=0; |
|
int count=0; |
|
|
|
int *tab; |
|
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
|
int mobilav=0,popforecast=0; |
|
int hstepm=0, nhstepm=0; |
|
int agemortsup; |
|
float sumlpop=0.; |
|
double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000; |
|
double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000; |
|
|
|
double bage=0, fage=110., age, agelim=0., agebase=0.; |
|
double ftolpl=FTOL; |
|
double **prlim; |
|
double ***param; /* Matrix of parameters */ |
|
double *p; |
|
double **matcov; /* Matrix of covariance */ |
|
double **hess; /* Hessian matrix */ |
|
double ***delti3; /* Scale */ |
|
double *delti; /* Scale */ |
|
double ***eij, ***vareij; |
|
double **varpl; /* Variances of prevalence limits by age */ |
|
double *epj, vepp; |
|
|
|
double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
|
double **ximort; |
|
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
|
int *dcwave; |
|
|
|
char z[1]="c"; |
|
|
|
/*char *strt;*/ |
|
char strtend[80]; |
|
|
|
|
|
/* setlocale (LC_ALL, ""); */ |
|
/* bindtextdomain (PACKAGE, LOCALEDIR); */ |
|
/* textdomain (PACKAGE); */ |
|
/* setlocale (LC_CTYPE, ""); */ |
|
/* setlocale (LC_MESSAGES, ""); */ |
|
|
|
/* gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ |
|
rstart_time = time(NULL); |
|
/* (void) gettimeofday(&start_time,&tzp);*/ |
|
start_time = *localtime(&rstart_time); |
|
curr_time=start_time; |
|
/*tml = *localtime(&start_time.tm_sec);*/ |
|
/* strcpy(strstart,asctime(&tml)); */ |
|
strcpy(strstart,asctime(&start_time)); |
|
|
|
/* printf("Localtime (at start)=%s",strstart); */ |
|
/* tp.tm_sec = tp.tm_sec +86400; */ |
|
/* tm = *localtime(&start_time.tm_sec); */ |
|
/* tmg.tm_year=tmg.tm_year +dsign*dyear; */ |
|
/* tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */ |
|
/* tmg.tm_hour=tmg.tm_hour + 1; */ |
|
/* tp.tm_sec = mktime(&tmg); */ |
|
/* strt=asctime(&tmg); */ |
|
/* printf("Time(after) =%s",strstart); */ |
|
/* (void) time (&time_value); |
|
* printf("time=%d,t-=%d\n",time_value,time_value-86400); |
|
* tm = *localtime(&time_value); |
|
* strstart=asctime(&tm); |
|
* printf("tim_value=%d,asctime=%s\n",time_value,strstart); |
|
*/ |
|
|
|
nberr=0; /* Number of errors and warnings */ |
|
nbwarn=0; |
|
#ifdef WIN32 |
|
_getcwd(pathcd, size); |
|
#else |
|
getcwd(pathcd, size); |
|
#endif |
|
syscompilerinfo(0); |
|
printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion); |
|
if(argc <=1){ |
|
printf("\nEnter the parameter file name: "); |
|
fgets(pathr,FILENAMELENGTH,stdin); |
|
i=strlen(pathr); |
|
if(pathr[i-1]=='\n') |
|
pathr[i-1]='\0'; |
|
i=strlen(pathr); |
|
if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */ |
|
pathr[i-1]='\0'; |
|
for (tok = pathr; tok != NULL; ){ |
|
printf("Pathr |%s|\n",pathr); |
|
while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0'); |
|
printf("val= |%s| pathr=%s\n",val,pathr); |
|
strcpy (pathtot, val); |
|
if(pathr[0] == '\0') break; /* Dirty */ |
|
} |
|
} |
|
else{ |
|
strcpy(pathtot,argv[1]); |
|
} |
|
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
|
/*cygwin_split_path(pathtot,path,optionfile); |
|
printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ |
|
/* cutv(path,optionfile,pathtot,'\\');*/ |
|
|
|
/* Split argv[0], imach program to get pathimach */ |
|
printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]); |
|
split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname); |
|
printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname); |
|
/* strcpy(pathimach,argv[0]); */ |
|
/* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */ |
|
split(pathtot,path,optionfile,optionfilext,optionfilefiname); |
|
printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); |
|
#ifdef WIN32 |
|
_chdir(path); /* Can be a relative path */ |
|
if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */ |
|
#else |
|
chdir(path); /* Can be a relative path */ |
|
if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */ |
|
#endif |
|
printf("Current directory %s!\n",pathcd); |
|
strcpy(command,"mkdir "); |
|
strcat(command,optionfilefiname); |
|
if((outcmd=system(command)) != 0){ |
|
printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd); |
|
/* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */ |
|
/* fclose(ficlog); */ |
|
/* exit(1); */ |
|
} |
|
/* if((imk=mkdir(optionfilefiname))<0){ */ |
|
/* perror("mkdir"); */ |
|
/* } */ |
|
|
|
/*-------- arguments in the command line --------*/ |
|
|
|
/* Main Log file */ |
|
strcat(filelog, optionfilefiname); |
|
strcat(filelog,".log"); /* */ |
|
if((ficlog=fopen(filelog,"w"))==NULL) { |
|
printf("Problem with logfile %s\n",filelog); |
|
goto end; |
|
} |
|
fprintf(ficlog,"Log filename:%s\n",filelog); |
|
fprintf(ficlog,"Version %s %s",version,fullversion); |
|
fprintf(ficlog,"\nEnter the parameter file name: \n"); |
|
fprintf(ficlog,"pathimach=%s\npathtot=%s\n\ |
|
path=%s \n\ |
|
optionfile=%s\n\ |
|
optionfilext=%s\n\ |
|
optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname); |
|
|
|
syscompilerinfo(1); |
|
|
|
printf("Local time (at start):%s",strstart); |
|
fprintf(ficlog,"Local time (at start): %s",strstart); |
|
fflush(ficlog); |
|
/* (void) gettimeofday(&curr_time,&tzp); */ |
|
/* printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */ |
|
|
|
/* */ |
|
strcpy(fileres,"r"); |
|
strcat(fileres, optionfilefiname); |
|
strcat(fileresu, optionfilefiname); /* Without r in front */ |
|
strcat(fileres,".txt"); /* Other files have txt extension */ |
|
strcat(fileresu,".txt"); /* Other files have txt extension */ |
|
|
|
/* Main ---------arguments file --------*/ |
|
|
|
if((ficpar=fopen(optionfile,"r"))==NULL) { |
|
printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno)); |
|
fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno)); |
|
fflush(ficlog); |
|
/* goto end; */ |
|
exit(70); |
|
} |
|
|
|
|
|
|
|
strcpy(filereso,"o"); |
|
strcat(filereso,fileresu); |
|
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
|
printf("Problem with Output resultfile: %s\n", filereso); |
|
fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso); |
|
fflush(ficlog); |
|
goto end; |
|
} |
|
|
|
/* Reads comments: lines beginning with '#' */ |
|
numlinepar=0; |
|
|
|
/* First parameter line */ |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \ |
|
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
|
if (num_filled != 5) { |
|
printf("Should be 5 parameters\n"); |
|
} |
|
numlinepar++; |
|
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
} |
|
/* Second parameter line */ |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \ |
|
&ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){ |
|
if (num_filled != 8) { |
|
printf("Not 8\n"); |
|
} |
|
printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt); |
|
} |
|
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
|
ftolpl=6.e-3; /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
|
/* Third parameter line */ |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
|
if (num_filled == 0) |
|
model[0]='\0'; |
|
else if (num_filled != 1){ |
|
printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
|
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
|
model[0]='\0'; |
|
goto end; |
|
} |
|
else{ |
|
if (model[0]=='+'){ |
|
for(i=1; i<=strlen(model);i++) |
|
modeltemp[i-1]=model[i]; |
|
strcpy(model,modeltemp); |
|
} |
|
} |
|
/* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ |
|
printf("model=1+age+%s\n",model);fflush(stdout); |
|
} |
|
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
|
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
|
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
|
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); |
|
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); |
|
fflush(ficlog); |
|
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
|
if(model[0]=='#'){ |
|
printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \ |
|
'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \ |
|
'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n"); \ |
|
if(mle != -1){ |
|
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n"); |
|
exit(1); |
|
} |
|
} |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */ |
|
z[0]=line[1]; |
|
} |
|
/* printf("****line [1] = %c \n",line[1]); */ |
|
fputs(line, stdout); |
|
//puts(line); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
|
|
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
|
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
|
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
|
v1+v2*age+v2*v3 makes cptcovn = 3 |
|
*/ |
|
if (strlen(model)>1) |
|
ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/ |
|
else |
|
ncovmodel=2; /* Constant and age */ |
|
nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */ |
|
npar= nforce*ncovmodel; /* Number of parameters like aij*/ |
|
if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){ |
|
printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX); |
|
fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX); |
|
fflush(stdout); |
|
fclose (ficlog); |
|
goto end; |
|
} |
|
delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
delti=delti3[1][1]; |
|
/*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ |
|
if(mle==-1){ /* Print a wizard for help writing covariance matrix */ |
|
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
|
printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
|
fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
|
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
fclose (ficparo); |
|
fclose (ficlog); |
|
goto end; |
|
exit(0); |
|
} |
|
else if(mle==-3) { /* Main Wizard */ |
|
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
|
printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
|
fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
|
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
matcov=matrix(1,npar,1,npar); |
|
hess=matrix(1,npar,1,npar); |
|
} |
|
else{ |
|
/* Read guessed parameters */ |
|
/* Reads comments: lines beginning with '#' */ |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
for(i=1; i <=nlstate; i++){ |
|
j=0; |
|
for(jj=1; jj <=nlstate+ndeath; jj++){ |
|
if(jj==i) continue; |
|
j++; |
|
fscanf(ficpar,"%1d%1d",&i1,&j1); |
|
if ((i1 != i) || (j1 != jj)){ |
|
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
|
It might be a problem of design; if ncovcol and the model are correct\n \ |
|
run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1); |
|
exit(1); |
|
} |
|
fprintf(ficparo,"%1d%1d",i1,j1); |
|
if(mle==1) |
|
printf("%1d%1d",i,jj); |
|
fprintf(ficlog,"%1d%1d",i,jj); |
|
for(k=1; k<=ncovmodel;k++){ |
|
fscanf(ficpar," %lf",¶m[i][j][k]); |
|
if(mle==1){ |
|
printf(" %lf",param[i][j][k]); |
|
fprintf(ficlog," %lf",param[i][j][k]); |
|
} |
|
else |
|
fprintf(ficlog," %lf",param[i][j][k]); |
|
fprintf(ficparo," %lf",param[i][j][k]); |
|
} |
|
fscanf(ficpar,"\n"); |
|
numlinepar++; |
|
if(mle==1) |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
} |
|
fflush(ficlog); |
|
|
|
/* Reads scales values */ |
|
p=param[1][1]; |
|
|
|
/* Reads comments: lines beginning with '#' */ |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
for(i=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath-1; j++){ |
|
fscanf(ficpar,"%1d%1d",&i1,&j1); |
|
if ( (i1-i) * (j1-j) != 0){ |
|
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); |
|
exit(1); |
|
} |
|
printf("%1d%1d",i,j); |
|
fprintf(ficparo,"%1d%1d",i1,j1); |
|
fprintf(ficlog,"%1d%1d",i1,j1); |
|
for(k=1; k<=ncovmodel;k++){ |
|
fscanf(ficpar,"%le",&delti3[i][j][k]); |
|
printf(" %le",delti3[i][j][k]); |
|
fprintf(ficparo," %le",delti3[i][j][k]); |
|
fprintf(ficlog," %le",delti3[i][j][k]); |
|
} |
|
fscanf(ficpar,"\n"); |
|
numlinepar++; |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
fflush(ficlog); |
|
|
|
/* Reads covariance matrix */ |
|
delti=delti3[1][1]; |
|
|
|
|
|
/* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ |
|
|
|
/* Reads comments: lines beginning with '#' */ |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
matcov=matrix(1,npar,1,npar); |
|
hess=matrix(1,npar,1,npar); |
|
for(i=1; i <=npar; i++) |
|
for(j=1; j <=npar; j++) matcov[i][j]=0.; |
|
|
|
/* Scans npar lines */ |
|
for(i=1; i <=npar; i++){ |
|
count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk); |
|
if(count != 3){ |
|
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
|
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
|
fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
|
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
|
exit(1); |
|
}else |
|
if(mle==1) |
|
printf("%1d%1d%1d",i1,j1,jk); |
|
fprintf(ficlog,"%1d%1d%1d",i1,j1,jk); |
|
fprintf(ficparo,"%1d%1d%1d",i1,j1,jk); |
|
for(j=1; j <=i; j++){ |
|
fscanf(ficpar," %le",&matcov[i][j]); |
|
if(mle==1){ |
|
printf(" %.5le",matcov[i][j]); |
|
} |
|
fprintf(ficlog," %.5le",matcov[i][j]); |
|
fprintf(ficparo," %.5le",matcov[i][j]); |
|
} |
|
fscanf(ficpar,"\n"); |
|
numlinepar++; |
|
if(mle==1) |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
/* End of read covariance matrix npar lines */ |
|
for(i=1; i <=npar; i++) |
|
for(j=i+1;j<=npar;j++) |
|
matcov[i][j]=matcov[j][i]; |
|
|
|
if(mle==1) |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
|
|
fflush(ficlog); |
|
|
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name*/ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
} |
|
fprintf(ficres,"#%s\n",version); |
|
} /* End of mle != -3 */ |
|
|
|
/* Main data |
|
*/ |
|
n= lastobs; |
|
num=lvector(1,n); |
|
moisnais=vector(1,n); |
|
annais=vector(1,n); |
|
moisdc=vector(1,n); |
|
andc=vector(1,n); |
|
agedc=vector(1,n); |
|
cod=ivector(1,n); |
|
weight=vector(1,n); |
|
for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ |
|
mint=matrix(1,maxwav,1,n); |
|
anint=matrix(1,maxwav,1,n); |
|
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
|
tab=ivector(1,NCOVMAX); |
|
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
|
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
|
|
|
/* Reads data from file datafile */ |
|
if (readdata(datafile, firstobs, lastobs, &imx)==1) |
|
goto end; |
|
|
|
/* Calculation of the number of parameters from char model */ |
|
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 |
|
k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4 |
|
k=3 V4 Tvar[k=3]= 4 (from V4) |
|
k=2 V1 Tvar[k=2]= 1 (from V1) |
|
k=1 Tvar[1]=2 (from V2) |
|
*/ |
|
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
|
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
|
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
|
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
|
*/ |
|
/* For model-covariate k tells which data-covariate to use but |
|
because this model-covariate is a construction we invent a new column |
|
ncovcol + k1 |
|
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
|
Tvar[3=V1*V4]=4+1 etc */ |
|
Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */ |
|
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
|
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
|
*/ |
|
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
|
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
|
* For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. |
|
* Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */ |
|
Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age |
|
4 covariates (3 plus signs) |
|
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
|
*/ |
|
|
|
/* Main decodemodel */ |
|
|
|
|
|
if(decodemodel(model, lastobs) == 1) |
|
goto end; |
|
|
|
if((double)(lastobs-imx)/(double)imx > 1.10){ |
|
nbwarn++; |
|
printf("Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx); |
|
fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx); |
|
} |
|
/* if(mle==1){*/ |
|
if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/ |
|
for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */ |
|
} |
|
|
|
/*-calculation of age at interview from date of interview and age at death -*/ |
|
agev=matrix(1,maxwav,1,imx); |
|
|
|
if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1) |
|
goto end; |
|
|
|
|
|
agegomp=(int)agemin; |
|
free_vector(moisnais,1,n); |
|
free_vector(annais,1,n); |
|
/* free_matrix(mint,1,maxwav,1,n); |
|
free_matrix(anint,1,maxwav,1,n);*/ |
|
free_vector(moisdc,1,n); |
|
free_vector(andc,1,n); |
|
/* */ |
|
|
|
wav=ivector(1,imx); |
|
dh=imatrix(1,lastpass-firstpass+1,1,imx); |
|
bh=imatrix(1,lastpass-firstpass+1,1,imx); |
|
mw=imatrix(1,lastpass-firstpass+1,1,imx); |
|
|
|
/* Concatenates waves */ |
|
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
|
/* */ |
|
|
|
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
|
|
|
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
|
ncodemax[1]=1; |
|
Ndum =ivector(-1,NCOVMAX); |
|
if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */ |
|
tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
|
/* Nbcode gives the value of the lth modality of jth covariate, in |
|
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
|
/* 1 to ncodemax[j] is the maximum value of this jth covariate */ |
|
|
|
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
|
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
|
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
|
h=0; |
|
|
|
|
|
/*if (cptcovn > 0) */ |
|
|
|
|
|
m=pow(2,cptcoveff); |
|
|
|
/**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1 |
|
* For k=4 covariates, h goes from 1 to 2**k |
|
* codtabm(h,k)= 1 & (h-1) >> (k-1) ; |
|
* h\k 1 2 3 4 |
|
*______________________________ |
|
* 1 i=1 1 i=1 1 i=1 1 i=1 1 |
|
* 2 2 1 1 1 |
|
* 3 i=2 1 2 1 1 |
|
* 4 2 2 1 1 |
|
* 5 i=3 1 i=2 1 2 1 |
|
* 6 2 1 2 1 |
|
* 7 i=4 1 2 2 1 |
|
* 8 2 2 2 1 |
|
* 9 i=5 1 i=3 1 i=2 1 2 |
|
* 10 2 1 1 2 |
|
* 11 i=6 1 2 1 2 |
|
* 12 2 2 1 2 |
|
* 13 i=7 1 i=4 1 2 2 |
|
* 14 2 1 2 2 |
|
* 15 i=8 1 2 2 2 |
|
* 16 2 2 2 2 |
|
*/ |
|
/* /\* for(h=1; h <=100 ;h++){ *\/ */ |
|
/* /\* printf("h=%2d ", h); *\/ */ |
|
/* /\* for(k=1; k <=10; k++){ *\/ */ |
|
/* /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */ |
|
/* /\* codtab[h][k]=codtabm(h,k); *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* printf("\n"); *\/ */ |
|
/* } */ |
|
/* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */ |
|
/* for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/ */ |
|
/* for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */ |
|
/* for(cpt=1; cpt <=pow(2,k-1); cpt++){ /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/ */ |
|
/* h++; */ |
|
/* if (h>m) */ |
|
/* h=1; */ |
|
/* codtab[h][k]=j; */ |
|
/* /\* codtab[12][3]=1; *\/ */ |
|
/* /\*codtab[h][Tvar[k]]=j;*\/ */ |
|
/* /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); |
|
codtab[1][2]=1;codtab[2][2]=2; */ |
|
/* for(i=1; i <=m ;i++){ */ |
|
/* for(k=1; k <=cptcovn; k++){ */ |
|
/* printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* scanf("%d",i);*/ |
|
|
|
free_ivector(Ndum,-1,NCOVMAX); |
|
|
|
|
|
|
|
/* Initialisation of ----------- gnuplot -------------*/ |
|
strcpy(optionfilegnuplot,optionfilefiname); |
|
if(mle==-3) |
|
strcat(optionfilegnuplot,"-MORT_"); |
|
strcat(optionfilegnuplot,".gp"); |
|
|
|
if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) { |
|
printf("Problem with file %s",optionfilegnuplot); |
|
} |
|
else{ |
|
fprintf(ficgp,"\n# IMaCh-%s\n", version); |
|
fprintf(ficgp,"# %s\n", optionfilegnuplot); |
|
//fprintf(ficgp,"set missing 'NaNq'\n"); |
|
fprintf(ficgp,"set datafile missing 'NaNq'\n"); |
|
} |
|
/* fclose(ficgp);*/ |
|
|
|
|
|
/* Initialisation of --------- index.htm --------*/ |
|
|
|
strcpy(optionfilehtm,optionfilefiname); /* Main html file */ |
|
if(mle==-3) |
|
strcat(optionfilehtm,"-MORT_"); |
|
strcat(optionfilehtm,".htm"); |
|
if((fichtm=fopen(optionfilehtm,"w"))==NULL) { |
|
printf("Problem with %s \n",optionfilehtm); |
|
exit(0); |
|
} |
|
|
|
strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */ |
|
strcat(optionfilehtmcov,"-cov.htm"); |
|
if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL) { |
|
printf("Problem with %s \n",optionfilehtmcov), exit(0); |
|
} |
|
else{ |
|
fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
|
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
|
} |
|
|
|
fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C) 2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-Japan Society for the Promotion of Sciences 日本å¦è¡“振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015</a></font><br> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
<font size=\"2\">IMaCh-%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\ |
|
\n\ |
|
<hr size=\"2\" color=\"#EC5E5E\">\ |
|
<ul><li><h4>Parameter files</h4>\n\ |
|
- Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\ |
|
- Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\ |
|
- Log file of the run: <a href=\"%s\">%s</a><br>\n\ |
|
- Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ |
|
- Date and time at start: %s</ul>\n",\ |
|
optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\ |
|
optionfilefiname,optionfilext,optionfilefiname,optionfilext,\ |
|
fileres,fileres,\ |
|
filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); |
|
fflush(fichtm); |
|
|
|
strcpy(pathr,path); |
|
strcat(pathr,optionfilefiname); |
|
#ifdef WIN32 |
|
_chdir(optionfilefiname); /* Move to directory named optionfile */ |
|
#else |
|
chdir(optionfilefiname); /* Move to directory named optionfile */ |
|
#endif |
|
|
|
|
|
/* Calculates basic frequencies. Computes observed prevalence at single age |
|
and prints on file fileres'p'. */ |
|
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart); |
|
|
|
fprintf(fichtm,"\n"); |
|
fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ |
|
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
|
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
|
imx,agemin,agemax,jmin,jmax,jmean); |
|
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
|
|
|
|
|
/* For Powell, parameters are in a vector p[] starting at p[1] |
|
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
|
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
|
|
|
globpr=0; /* To get the number ipmx of contributions and the sum of weights*/ |
|
/* For mortality only */ |
|
if (mle==-3){ |
|
ximort=matrix(1,NDIM,1,NDIM); |
|
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
|
cens=ivector(1,n); |
|
ageexmed=vector(1,n); |
|
agecens=vector(1,n); |
|
dcwave=ivector(1,n); |
|
|
|
for (i=1; i<=imx; i++){ |
|
dcwave[i]=-1; |
|
for (m=firstpass; m<=lastpass; m++) |
|
if (s[m][i]>nlstate) { |
|
dcwave[i]=m; |
|
/* printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/ |
|
break; |
|
} |
|
} |
|
|
|
for (i=1; i<=imx; i++) { |
|
if (wav[i]>0){ |
|
ageexmed[i]=agev[mw[1][i]][i]; |
|
j=wav[i]; |
|
agecens[i]=1.; |
|
|
|
if (ageexmed[i]> 1 && wav[i] > 0){ |
|
agecens[i]=agev[mw[j][i]][i]; |
|
cens[i]= 1; |
|
}else if (ageexmed[i]< 1) |
|
cens[i]= -1; |
|
if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass) |
|
cens[i]=0 ; |
|
} |
|
else cens[i]=-1; |
|
} |
|
|
|
for (i=1;i<=NDIM;i++) { |
|
for (j=1;j<=NDIM;j++) |
|
ximort[i][j]=(i == j ? 1.0 : 0.0); |
|
} |
|
|
|
/*p[1]=0.0268; p[NDIM]=0.083;*/ |
|
/*printf("%lf %lf", p[1], p[2]);*/ |
|
|
|
|
|
#ifdef GSL |
|
printf("GSL optimization\n"); fprintf(ficlog,"Powell\n"); |
|
#else |
|
printf("Powell\n"); fprintf(ficlog,"Powell\n"); |
|
#endif |
|
strcpy(filerespow,"POW-MORT_"); |
|
strcat(filerespow,fileresu); |
|
if((ficrespow=fopen(filerespow,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", filerespow); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", filerespow); |
|
} |
|
#ifdef GSL |
|
fprintf(ficrespow,"# GSL optimization\n# iter -2*LL"); |
|
#else |
|
fprintf(ficrespow,"# Powell\n# iter -2*LL"); |
|
#endif |
|
/* for (i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate+ndeath;j++) |
|
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
|
*/ |
|
fprintf(ficrespow,"\n"); |
|
#ifdef GSL |
|
/* gsl starts here */ |
|
T = gsl_multimin_fminimizer_nmsimplex; |
|
gsl_multimin_fminimizer *sfm = NULL; |
|
gsl_vector *ss, *x; |
|
gsl_multimin_function minex_func; |
|
|
|
/* Initial vertex size vector */ |
|
ss = gsl_vector_alloc (NDIM); |
|
|
|
if (ss == NULL){ |
|
GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0); |
|
} |
|
/* Set all step sizes to 1 */ |
|
gsl_vector_set_all (ss, 0.001); |
|
|
|
/* Starting point */ |
|
|
|
x = gsl_vector_alloc (NDIM); |
|
|
|
if (x == NULL){ |
|
gsl_vector_free(ss); |
|
GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); |
|
} |
|
|
|
/* Initialize method and iterate */ |
|
/* p[1]=0.0268; p[NDIM]=0.083; */ |
|
/* gsl_vector_set(x, 0, 0.0268); */ |
|
/* gsl_vector_set(x, 1, 0.083); */ |
|
gsl_vector_set(x, 0, p[1]); |
|
gsl_vector_set(x, 1, p[2]); |
|
|
|
minex_func.f = &gompertz_f; |
|
minex_func.n = NDIM; |
|
minex_func.params = (void *)&p; /* ??? */ |
|
|
|
sfm = gsl_multimin_fminimizer_alloc (T, NDIM); |
|
gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss); |
|
|
|
printf("Iterations beginning .....\n\n"); |
|
printf("Iter. # Intercept Slope -Log Likelihood Simplex size\n"); |
|
|
|
iteri=0; |
|
while (rval == GSL_CONTINUE){ |
|
iteri++; |
|
status = gsl_multimin_fminimizer_iterate(sfm); |
|
|
|
if (status) printf("error: %s\n", gsl_strerror (status)); |
|
fflush(0); |
|
|
|
if (status) |
|
break; |
|
|
|
rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6); |
|
ssval = gsl_multimin_fminimizer_size (sfm); |
|
|
|
if (rval == GSL_SUCCESS) |
|
printf ("converged to a local maximum at\n"); |
|
|
|
printf("%5d ", iteri); |
|
for (it = 0; it < NDIM; it++){ |
|
printf ("%10.5f ", gsl_vector_get (sfm->x, it)); |
|
} |
|
printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval); |
|
} |
|
|
|
printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n"); |
|
|
|
gsl_vector_free(x); /* initial values */ |
|
gsl_vector_free(ss); /* inital step size */ |
|
for (it=0; it<NDIM; it++){ |
|
p[it+1]=gsl_vector_get(sfm->x,it); |
|
fprintf(ficrespow," %.12lf", p[it]); |
|
} |
|
gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1) */ |
|
#endif |
|
#ifdef POWELL |
|
powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz); |
|
#endif |
|
fclose(ficrespow); |
|
|
|
hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); |
|
|
|
for(i=1; i <=NDIM; i++) |
|
for(j=i+1;j<=NDIM;j++) |
|
matcov[i][j]=matcov[j][i]; |
|
|
|
printf("\nCovariance matrix\n "); |
|
fprintf(ficlog,"\nCovariance matrix\n "); |
|
for(i=1; i <=NDIM; i++) { |
|
for(j=1;j<=NDIM;j++){ |
|
printf("%f ",matcov[i][j]); |
|
fprintf(ficlog,"%f ",matcov[i][j]); |
|
} |
|
printf("\n "); fprintf(ficlog,"\n "); |
|
} |
|
|
|
printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp); |
|
for (i=1;i<=NDIM;i++) { |
|
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
|
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
|
} |
|
lsurv=vector(1,AGESUP); |
|
lpop=vector(1,AGESUP); |
|
tpop=vector(1,AGESUP); |
|
lsurv[agegomp]=100000; |
|
|
|
for (k=agegomp;k<=AGESUP;k++) { |
|
agemortsup=k; |
|
if (p[1]*exp(p[2]*(k-agegomp))>1) break; |
|
} |
|
|
|
for (k=agegomp;k<agemortsup;k++) |
|
lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp))); |
|
|
|
for (k=agegomp;k<agemortsup;k++){ |
|
lpop[k]=(lsurv[k]+lsurv[k+1])/2.; |
|
sumlpop=sumlpop+lpop[k]; |
|
} |
|
|
|
tpop[agegomp]=sumlpop; |
|
for (k=agegomp;k<(agemortsup-3);k++){ |
|
/* tpop[k+1]=2;*/ |
|
tpop[k+1]=tpop[k]-lpop[k]; |
|
} |
|
|
|
|
|
printf("\nAge lx qx dx Lx Tx e(x)\n"); |
|
for (k=agegomp;k<(agemortsup-2);k++) |
|
printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]); |
|
|
|
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
|
if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){ |
|
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
|
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
|
}else |
|
printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); |
|
printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \ |
|
stepm, weightopt,\ |
|
model,imx,p,matcov,agemortsup); |
|
|
|
free_vector(lsurv,1,AGESUP); |
|
free_vector(lpop,1,AGESUP); |
|
free_vector(tpop,1,AGESUP); |
|
#ifdef GSL |
|
free_ivector(cens,1,n); |
|
free_vector(agecens,1,n); |
|
free_ivector(dcwave,1,n); |
|
free_matrix(ximort,1,NDIM,1,NDIM); |
|
#endif |
|
} /* Endof if mle==-3 mortality only */ |
|
/* Standard maximisation */ |
|
else{ /* For mle !=- 3 */ |
|
globpr=0;/* debug */ |
|
/* Computes likelihood for initial parameters */ |
|
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
|
printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
|
for (k=1; k<=npar;k++) |
|
printf(" %d %8.5f",k,p[k]); |
|
printf("\n"); |
|
globpr=1; /* again, to print the contributions */ |
|
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
|
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
|
for (k=1; k<=npar;k++) |
|
printf(" %d %8.5f",k,p[k]); |
|
printf("\n"); |
|
if(mle>=1){ /* Could be 1 or 2, Real Maximisation */ |
|
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
|
} |
|
|
|
/*--------- results files --------------*/ |
|
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); |
|
|
|
|
|
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
for(i=1,jk=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
fprintf(ficres,"%1d%1d ",i,k); |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f ",p[jk]); |
|
fprintf(ficlog,"%12.7f ",p[jk]); |
|
fprintf(ficres,"%12.7f ",p[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficres,"\n"); |
|
} |
|
} |
|
} |
|
if(mle != 0){ |
|
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
|
ftolhess=ftol; /* Usually correct */ |
|
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
|
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
|
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
|
for(i=1,jk=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
} |
|
} /* end of hesscov and Wald tests */ |
|
|
|
/* */ |
|
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
|
printf("# Scales (for hessian or gradient estimation)\n"); |
|
fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); |
|
for(i=1,jk=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if (j!=i) { |
|
fprintf(ficres,"%1d%1d",i,j); |
|
printf("%1d%1d",i,j); |
|
fprintf(ficlog,"%1d%1d",i,j); |
|
for(k=1; k<=ncovmodel;k++){ |
|
printf(" %.5e",delti[jk]); |
|
fprintf(ficlog," %.5e",delti[jk]); |
|
fprintf(ficres," %.5e",delti[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficres,"\n"); |
|
} |
|
} |
|
} |
|
|
|
fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
|
if(mle >= 1) /* To big for the screen */ |
|
printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
|
fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
|
/* # 121 Var(a12)\n\ */ |
|
/* # 122 Cov(b12,a12) Var(b12)\n\ */ |
|
/* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */ |
|
/* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */ |
|
/* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */ |
|
/* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */ |
|
/* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */ |
|
/* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ |
|
|
|
|
|
/* Just to have a covariance matrix which will be more understandable |
|
even is we still don't want to manage dictionary of variables |
|
*/ |
|
for(itimes=1;itimes<=2;itimes++){ |
|
jj=0; |
|
for(i=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j==i) continue; |
|
for(k=1; k<=ncovmodel;k++){ |
|
jj++; |
|
ca[0]= k+'a'-1;ca[1]='\0'; |
|
if(itimes==1){ |
|
if(mle>=1) |
|
printf("#%1d%1d%d",i,j,k); |
|
fprintf(ficlog,"#%1d%1d%d",i,j,k); |
|
fprintf(ficres,"#%1d%1d%d",i,j,k); |
|
}else{ |
|
if(mle>=1) |
|
printf("%1d%1d%d",i,j,k); |
|
fprintf(ficlog,"%1d%1d%d",i,j,k); |
|
fprintf(ficres,"%1d%1d%d",i,j,k); |
|
} |
|
ll=0; |
|
for(li=1;li <=nlstate; li++){ |
|
for(lj=1;lj <=nlstate+ndeath; lj++){ |
|
if(lj==li) continue; |
|
for(lk=1;lk<=ncovmodel;lk++){ |
|
ll++; |
|
if(ll<=jj){ |
|
cb[0]= lk +'a'-1;cb[1]='\0'; |
|
if(ll<jj){ |
|
if(itimes==1){ |
|
if(mle>=1) |
|
printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
}else{ |
|
if(mle>=1) |
|
printf(" %.5e",matcov[jj][ll]); |
|
fprintf(ficlog," %.5e",matcov[jj][ll]); |
|
fprintf(ficres," %.5e",matcov[jj][ll]); |
|
} |
|
}else{ |
|
if(itimes==1){ |
|
if(mle>=1) |
|
printf(" Var(%s%1d%1d)",ca,i,j); |
|
fprintf(ficlog," Var(%s%1d%1d)",ca,i,j); |
|
fprintf(ficres," Var(%s%1d%1d)",ca,i,j); |
|
}else{ |
|
if(mle>=1) |
|
printf(" %.7e",matcov[jj][ll]); |
|
fprintf(ficlog," %.7e",matcov[jj][ll]); |
|
fprintf(ficres," %.7e",matcov[jj][ll]); |
|
} |
|
} |
|
} |
|
} /* end lk */ |
|
} /* end lj */ |
|
} /* end li */ |
|
if(mle>=1) |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficres,"\n"); |
|
numlinepar++; |
|
} /* end k*/ |
|
} /*end j */ |
|
} /* end i */ |
|
} /* end itimes */ |
|
|
|
fflush(ficlog); |
|
fflush(ficres); |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
estepm=0; |
|
fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); |
|
if (estepm==0 || estepm < stepm) estepm=stepm; |
|
if (fage <= 2) { |
|
bage = ageminpar; |
|
fage = agemaxpar; |
|
} |
|
|
|
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); |
|
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); |
|
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); |
|
|
|
/* Other stuffs, more or less useful */ |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); |
|
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
|
|
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
|
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
|
|
|
fscanf(ficpar,"pop_based=%d\n",&popbased); |
|
fprintf(ficlog,"pop_based=%d\n",popbased); |
|
fprintf(ficparo,"pop_based=%d\n",popbased); |
|
fprintf(ficres,"pop_based=%d\n",popbased); |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
|
|
|
|
|
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
|
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
|
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
|
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
|
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
|
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
|
}else |
|
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); |
|
|
|
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\ |
|
model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\ |
|
jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); |
|
|
|
/*------------ free_vector -------------*/ |
|
/* chdir(path); */ |
|
|
|
free_ivector(wav,1,imx); |
|
free_imatrix(dh,1,lastpass-firstpass+1,1,imx); |
|
free_imatrix(bh,1,lastpass-firstpass+1,1,imx); |
|
free_imatrix(mw,1,lastpass-firstpass+1,1,imx); |
|
free_lvector(num,1,n); |
|
free_vector(agedc,1,n); |
|
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
|
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
|
fclose(ficparo); |
|
fclose(ficres); |
|
|
|
|
|
/* Other results (useful)*/ |
|
|
|
|
|
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
|
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
|
prlim=matrix(1,nlstate,1,nlstate); |
|
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, ncvyear); |
|
fclose(ficrespl); |
|
|
|
#ifdef FREEEXIT2 |
|
#include "freeexit2.h" |
|
#endif |
|
|
|
/*------------- h Pij x at various ages ------------*/ |
|
/*#include "hpijx.h"*/ |
|
hPijx(p, bage, fage); |
|
fclose(ficrespij); |
|
|
|
/*-------------- Variance of one-step probabilities---*/ |
|
k=1; |
|
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
|
|
|
|
|
probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
for(i=1;i<=AGESUP;i++) |
|
for(j=1;j<=NCOVMAX;j++) |
|
for(k=1;k<=NCOVMAX;k++) |
|
probs[i][j][k]=0.; |
|
|
|
/*---------- Forecasting ------------------*/ |
|
/*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
|
if(prevfcast==1){ |
|
/* if(stepm ==1){*/ |
|
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
|
/* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/ |
|
/* } */ |
|
/* else{ */ |
|
/* erreur=108; */ |
|
/* printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ |
|
/* fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ |
|
/* } */ |
|
} |
|
|
|
/* ------ Other prevalence ratios------------ */ |
|
|
|
/* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */ |
|
|
|
prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
/* printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d, mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\ |
|
ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass); |
|
*/ |
|
|
|
if (mobilav!=0) { |
|
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
|
|
|
|
/*---------- Health expectancies, no variances ------------*/ |
|
|
|
strcpy(filerese,"E_"); |
|
strcat(filerese,fileresu); |
|
if((ficreseij=fopen(filerese,"w"))==NULL) { |
|
printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); |
|
fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0); |
|
} |
|
printf("Computing Health Expectancies: result on file '%s' \n", filerese); |
|
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese); |
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficreseij,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficreseij,"******\n"); |
|
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart); |
|
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
fclose(ficreseij); |
|
|
|
|
|
/*---------- Health expectancies and variances ------------*/ |
|
|
|
|
|
strcpy(filerest,"T_"); |
|
strcat(filerest,fileresu); |
|
if((ficrest=fopen(filerest,"w"))==NULL) { |
|
printf("Problem with total LE resultfile: %s\n", filerest);goto end; |
|
fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end; |
|
} |
|
printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); |
|
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); |
|
|
|
|
|
strcpy(fileresstde,"STDE_"); |
|
strcat(fileresstde,fileresu); |
|
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
|
printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
|
fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
|
} |
|
printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
|
fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
|
|
|
strcpy(filerescve,"CVE_"); |
|
strcat(filerescve,fileresu); |
|
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
|
printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
|
fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
|
} |
|
printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
|
fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
|
|
|
strcpy(fileresv,"V_"); |
|
strcat(fileresv,fileresu); |
|
if((ficresvij=fopen(fileresv,"w"))==NULL) { |
|
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
|
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
|
} |
|
printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
|
fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficrest,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficrest,"******\n"); |
|
|
|
fprintf(ficresstdeij,"\n#****** "); |
|
fprintf(ficrescveij,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficresstdeij,"******\n"); |
|
fprintf(ficrescveij,"******\n"); |
|
|
|
fprintf(ficresvij,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresvij,"******\n"); |
|
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart); |
|
/* |
|
*/ |
|
/* goto endfree; */ |
|
|
|
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
|
pstamp(ficrest); |
|
|
|
|
|
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
|
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
|
cptcod= 0; /* To be deleted */ |
|
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */ |
|
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); |
|
if(vpopbased==1) |
|
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
|
else |
|
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
|
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
|
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
|
fprintf(ficrest,"\n"); |
|
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
|
epj=vector(1,nlstate+1); |
|
for(age=bage; age <=fage ;age++){ |
|
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k); /*ZZ Is it the correct prevalim */ |
|
if (vpopbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][k]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][k]; |
|
} |
|
} |
|
|
|
fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav); |
|
/* printf(" age %4.0f ",age); */ |
|
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ |
|
for(i=1, epj[j]=0.;i <=nlstate;i++) { |
|
epj[j] += prlim[i][i]*eij[i][j][(int)age]; |
|
/*ZZZ printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ |
|
/* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */ |
|
} |
|
epj[nlstate+1] +=epj[j]; |
|
} |
|
/* printf(" age %4.0f \n",age); */ |
|
|
|
for(i=1, vepp=0.;i <=nlstate;i++) |
|
for(j=1;j <=nlstate;j++) |
|
vepp += vareij[i][j][(int)age]; |
|
fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); |
|
for(j=1;j <=nlstate;j++){ |
|
fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); |
|
} |
|
fprintf(ficrest,"\n"); |
|
} |
|
} |
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
|
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
|
free_vector(epj,1,nlstate+1); |
|
/*}*/ |
|
} |
|
free_vector(weight,1,n); |
|
free_imatrix(Tvard,1,NCOVMAX,1,2); |
|
free_imatrix(s,1,maxwav+1,1,n); |
|
free_matrix(anint,1,maxwav,1,n); |
|
free_matrix(mint,1,maxwav,1,n); |
|
free_ivector(cod,1,n); |
|
free_ivector(tab,1,NCOVMAX); |
|
fclose(ficresstdeij); |
|
fclose(ficrescveij); |
|
fclose(ficresvij); |
|
fclose(ficrest); |
|
fclose(ficpar); |
|
|
|
/*------- Variance of period (stable) prevalence------*/ |
|
|
|
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficresvpl,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresvpl,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, strstart); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvpl); |
|
|
|
/*---------- End : free ----------------*/ |
|
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
} /* mle==-3 arrives here for freeing */ |
|
/* endfree:*/ |
|
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
|
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
|
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
|
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
|
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
|
free_matrix(covar,0,NCOVMAX,1,n); |
|
free_matrix(matcov,1,npar,1,npar); |
|
free_matrix(hess,1,npar,1,npar); |
|
/*free_vector(delti,1,npar);*/ |
|
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
free_matrix(agev,1,maxwav,1,imx); |
|
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
|
|
free_ivector(ncodemax,1,NCOVMAX); |
|
free_ivector(ncodemaxwundef,1,NCOVMAX); |
|
free_ivector(Tvar,1,NCOVMAX); |
|
free_ivector(Tprod,1,NCOVMAX); |
|
free_ivector(Tvaraff,1,NCOVMAX); |
|
free_ivector(Tage,1,NCOVMAX); |
|
|
|
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
|
/* free_imatrix(codtab,1,100,1,10); */ |
|
fflush(fichtm); |
|
fflush(ficgp); |
|
|
|
|
|
if((nberr >0) || (nbwarn>0)){ |
|
printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn); |
|
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn); |
|
}else{ |
|
printf("End of Imach\n"); |
|
fprintf(ficlog,"End of Imach\n"); |
|
} |
|
printf("See log file on %s\n",filelog); |
|
/* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */ |
|
/*(void) gettimeofday(&end_time,&tzp);*/ |
|
rend_time = time(NULL); |
|
end_time = *localtime(&rend_time); |
|
/* tml = *localtime(&end_time.tm_sec); */ |
|
strcpy(strtend,asctime(&end_time)); |
|
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
|
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
|
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
|
|
|
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
|
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
|
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
|
/* printf("Total time was %d uSec.\n", total_usecs);*/ |
|
/* if(fileappend(fichtm,optionfilehtm)){ */ |
|
fprintf(fichtm,"<br>Local time at start %s<br>Local time at end %s<br>\n</body></html>",strstart, strtend); |
|
fclose(fichtm); |
|
fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end %s<br>\n</body></html>",strstart, strtend); |
|
fclose(fichtmcov); |
|
fclose(ficgp); |
|
fclose(ficlog); |
|
/*------ End -----------*/ |
|
|
|
|
|
printf("Before Current directory %s!\n",pathcd); |
|
#ifdef WIN32 |
|
if (_chdir(pathcd) != 0) |
|
printf("Can't move to directory %s!\n",path); |
|
if(_getcwd(pathcd,MAXLINE) > 0) |
|
#else |
|
if(chdir(pathcd) != 0) |
|
printf("Can't move to directory %s!\n", path); |
|
if (getcwd(pathcd, MAXLINE) > 0) |
|
#endif |
|
printf("Current directory %s!\n",pathcd); |
|
/*strcat(plotcmd,CHARSEPARATOR);*/ |
|
sprintf(plotcmd,"gnuplot"); |
|
#ifdef _WIN32 |
|
sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach); |
|
#endif |
|
if(!stat(plotcmd,&info)){ |
|
printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout); |
|
if(!stat(getenv("GNUPLOTBIN"),&info)){ |
|
printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout); |
|
}else |
|
strcpy(pplotcmd,plotcmd); |
|
#ifdef __unix |
|
strcpy(plotcmd,GNUPLOTPROGRAM); |
|
if(!stat(plotcmd,&info)){ |
|
printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout); |
|
}else |
|
strcpy(pplotcmd,plotcmd); |
|
#endif |
|
}else |
|
strcpy(pplotcmd,plotcmd); |
|
|
|
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
|
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
|
|
|
if((outcmd=system(plotcmd)) != 0){ |
|
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
|
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
|
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
|
if((outcmd=system(plotcmd)) != 0) |
|
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
|
} |
|
printf(" Successful, please wait..."); |
|
while (z[0] != 'q') { |
|
/* chdir(path); */ |
|
printf("\nType e to edit results with your browser, g to graph again and q for exit: "); |
|
scanf("%s",z); |
|
/* if (z[0] == 'c') system("./imach"); */ |
|
if (z[0] == 'e') { |
|
#ifdef __APPLE__ |
|
sprintf(pplotcmd, "open %s", optionfilehtm); |
|
#elif __linux |
|
sprintf(pplotcmd, "xdg-open %s", optionfilehtm); |
|
#else |
|
sprintf(pplotcmd, "%s", optionfilehtm); |
|
#endif |
|
printf("Starting browser with: %s",pplotcmd);fflush(stdout); |
|
system(pplotcmd); |
|
} |
|
else if (z[0] == 'g') system(plotcmd); |
|
else if (z[0] == 'q') exit(0); |
|
} |
|
end: |
|
while (z[0] != 'q') { |
|
printf("\nType q for exiting: "); fflush(stdout); |
|
scanf("%s",z); |
|
} |
|
} |