version 1.210, 2015/11/18 17:41:20
|
version 1.212, 2015/11/21 12:47:24
|
Line 1
|
Line 1
|
/* $Id$ |
/* $Id$ |
$State$ |
$State$ |
$Log$ |
$Log$ |
|
Revision 1.212 2015/11/21 12:47:24 brouard |
|
Summary: minor typo |
|
|
|
Revision 1.211 2015/11/21 12:41:11 brouard |
|
Summary: 0.98r3 with some graph of projected cross-sectional |
|
|
|
Author: Nicolas Brouard |
|
|
Revision 1.210 2015/11/18 17:41:20 brouard |
Revision 1.210 2015/11/18 17:41:20 brouard |
Summary: Start working on projected prevalences |
Summary: Start working on projected prevalences |
|
|
Line 757 typedef struct {
|
Line 765 typedef struct {
|
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
|
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
|
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define MAXN 20000 |
#define MAXN 20000 |
#define YEARM 12. /**< Number of months per year */ |
#define YEARM 12. /**< Number of months per year */ |
#define AGESUP 130 |
#define AGESUP 130 |
Line 2722 void likelione(FILE *ficres,double p[],
|
Line 2732 void likelione(FILE *ficres,double p[],
|
|
|
|
|
for (k=1; k<= nlstate ; k++) { |
for (k=1; k<= nlstate ; k++) { |
fprintf(fichtm,"<br>- Probability p%dj by origin %d and destination j <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
<img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
<img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
} |
} |
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
Line 4804 To be simple, these graphs help to under
|
Line 4814 To be simple, these graphs help to under
|
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
int lastpass, int stepm, int weightopt, char model[],\ |
int lastpass, int stepm, int weightopt, char model[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int popforecast, int estepm ,\ |
int popforecast, int prevfcast, int estepm , \ |
double jprev1, double mprev1,double anprev1, \ |
double jprev1, double mprev1,double anprev1, \ |
double jprev2, double mprev2,double anprev2){ |
double jprev2, double mprev2,double anprev2){ |
int jj1, k1, i1, cpt; |
int jj1, k1, i1, cpt; |
Line 4822 void printinghtml(char fileresu[], char
|
Line 4832 void printinghtml(char fileresu[], char
|
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
<a href=\"%s\">%s</a> <br>\n", |
<a href=\"%s\">%s</a> <br>\n", |
estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_")); |
estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_")); |
fprintf(fichtm,"\ |
if(prevfcast==1){ |
- Population projections by age and states: \ |
fprintf(fichtm,"\ |
|
- Prevalence projections by age and states: \ |
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
|
} |
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
|
|
Line 4847 fprintf(fichtm," \n<ul><li><b>Graphs</b>
|
Line 4859 fprintf(fichtm," \n<ul><li><b>Graphs</b>
|
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
} |
} |
/* aij, bij */ |
/* aij, bij */ |
fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ |
fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ |
<img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
/* Pij */ |
/* Pij */ |
fprintf(fichtm,"<br>\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ |
<img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
/* Quasi-incidences */ |
/* Quasi-incidences */ |
fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ |
divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ |
<img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
/* Survival functions (period) in state j */ |
/* Survival functions (period) in state j */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
Line 4874 divided by h: hPij/h : <a href=\"%s_%d-3
|
Line 4886 divided by h: hPij/h : <a href=\"%s_%d-3
|
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); |
} |
} |
|
if(prevfcast==1){ |
|
/* Projection of prevalence up to period (stable) prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Projection of prevalece up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1); |
|
} |
|
} |
|
|
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \ |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \ |
<img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); |
<img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); |
Line 4961 true period expectancies (those weighted
|
Line 4981 true period expectancies (those weighted
|
} |
} |
|
|
/******************* Gnuplot file **************/ |
/******************* Gnuplot file **************/ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, char pathc[], double p[]){ |
|
|
char dirfileres[132],optfileres[132]; |
char dirfileres[132],optfileres[132]; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; |
|
int lv=0, vlv=0, kl=0; |
int ng=0; |
int ng=0; |
int vpopbased; |
int vpopbased; |
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
Line 4977 void printinggnuplot(char fileresu[], ch
|
Line 4998 void printinggnuplot(char fileresu[], ch
|
/*#endif */ |
/*#endif */ |
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
|
|
/* Projected Prevalences */ |
|
/* plot "NAGI0w_V1V2_monthlyb2b-proj/F_NAGI0w_V1V2_monthlyb2b-proj.txt" u 6:((($1 == 1) && ($2==0) && ($3==2) &&($4==0))? $7/(1-$13):1/0) t 'p11' w line */ |
|
/* replot "" u 6:((($1 == 1) && ($2==0) && ($3==2) &&($4==0))? $8/(1-$14):1/0) t 'p21' w line */ |
|
/* replot "" u 6:((($1 == 1) && ($2==0) && ($3==2) &&($4==0)&&($9!=0))? $9/(1-$15):1/0) t 'p.1' w line */ |
|
|
|
/* Contribution to likelihood */ |
/* Contribution to likelihood */ |
/* Plot the probability implied in the likelihood */ |
/* Plot the probability implied in the likelihood */ |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
Line 5014 void printinggnuplot(char fileresu[], ch
|
Line 5030 void printinggnuplot(char fileresu[], ch
|
strcpy(dirfileres,optionfilefiname); |
strcpy(dirfileres,optionfilefiname); |
strcpy(optfileres,"vpl"); |
strcpy(optfileres,"vpl"); |
/* 1eme*/ |
/* 1eme*/ |
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n"); |
for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */ |
for (cpt=1; cpt<= nlstate ; cpt ++) { |
for (k1=1; k1<= m ; k1 ++) { /* For each combination of covariate */ |
for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
|
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files "); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[lv]][lv]; |
|
fprintf(ficgp," V%d=%d ",k,vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); |
fprintf(ficgp,"set xlabel \"Age\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \n\ |
Line 5043 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 5070 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
} /* k1 */ |
} /* k1 */ |
} /* cpt */ |
} /* cpt */ |
/*2 eme*/ |
/*2 eme*/ |
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n"); |
|
for (k1=1; k1<= m ; k1 ++) { |
for (k1=1; k1<= m ; k1 ++) { |
|
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[lv]][lv]; |
|
fprintf(ficgp," V%d=%d ",k,vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
|
fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); |
fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
if(vpopbased==0) |
if(vpopbased==0) |
Line 5077 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 5114 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
} /* vpopbased */ |
} /* vpopbased */ |
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
} /* k1 */ |
} /* k1 */ |
|
|
|
|
/*3eme*/ |
/*3eme*/ |
|
|
for (k1=1; k1<= m ; k1 ++) { |
for (k1=1; k1<= m ; k1 ++) { |
for (cpt=1; cpt<= nlstate ; cpt ++) { |
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files: cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[lv]][lv]; |
|
fprintf(ficgp," V%d=%d ",k,vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
|
/* k=2+nlstate*(2*cpt-2); */ |
/* k=2+nlstate*(2*cpt-2); */ |
k=2+(nlstate+1)*(cpt-1); |
k=2+(nlstate+1)*(cpt-1); |
fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); |
Line 5106 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 5155 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
/* Survival functions (period) from state i in state j by initial state i */ |
/* Survival functions (period) from state i in state j by initial state i */ |
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
k=3; |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[lv]][lv]; |
|
fprintf(ficgp," V%d=%d ",k,vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
set ter svg size 640, 480\n\ |
set ter svg size 640, 480\n\ |
unset log y\n\ |
unset log y\n\ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; |
for (i=1; i<= nlstate ; i ++){ |
for (i=1; i<= nlstate ; i ++){ |
if(i==1) |
if(i==1) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
Line 5131 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 5190 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
/* Survival functions (period) from state i in state j by final state j */ |
/* Survival functions (period) from state i in state j by final state j */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
k=3; |
|
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[lv]][lv]; |
|
fprintf(ficgp," V%d=%d ",k,vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
set ter svg size 640, 480\n\ |
set ter svg size 640, 480\n\ |
unset log y\n\ |
unset log y\n\ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
if(j==1) |
if(j==1) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
Line 5163 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 5232 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
} /* end covariate */ |
} /* end covariate */ |
|
|
/* CV preval stable (period) for each covariate */ |
/* CV preval stable (period) for each covariate */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
k=3; |
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[lv]][lv]; |
|
fprintf(ficgp," V%d=%d ",k,vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
set ter svg size 640, 480\n\ |
set ter svg size 640, 480\n\ |
unset log y\n\ |
unset log y\n\ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; /* Offset */ |
for (i=1; i<= nlstate ; i ++){ |
for (i=1; i<= nlstate ; i ++){ |
if(i==1) |
if(i==1) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
Line 5187 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 5266 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
|
|
|
if(prevfcast==1){ |
|
/* Projection from cross-sectional to stable (period) for each covariate */ |
|
|
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[lv]][lv]; |
|
fprintf(ficgp," V%d=%d ",k,vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
|
|
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
|
set ter svg size 640, 480\n\ |
|
unset log y\n\ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
if(i==1){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
|
}else{ |
|
fprintf(ficgp,",\\\n '' "); |
|
} |
|
if(cptcoveff ==0){ /* No covariate */ |
|
fprintf(ficgp," u 2:("); /* Age is in 2 */ |
|
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
if(i==nlstate+1) |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'p.%d' with line ", \ |
|
2+(cpt-1)*(nlstate+1)+1+(i-1), 2+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
else |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
|
2+(cpt-1)*(nlstate+1)+1+(i-1), 2+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
}else{ |
|
fprintf(ficgp,"u 6:(("); /* Age is in 6 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
kl=0; |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[lv]][lv]; |
|
kl++; |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(k==cptcoveff) |
|
if(i==nlstate+1) |
|
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \ |
|
6+(cpt-1)*(nlstate+1)+1+(i-1), 6+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
else |
|
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \ |
|
6+(cpt-1)*(nlstate+1)+1+(i-1), 6+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
else{ |
|
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv]); |
|
kl++; |
|
} |
|
} /* end covariate */ |
|
} /* end if covariate */ |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if prevfcast */ |
|
|
|
|
/* proba elementaires */ |
/* proba elementaires */ |
fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n"); |
fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
Line 5378 void prevforecast(char fileres[], double
|
Line 5535 void prevforecast(char fileres[], double
|
char fileresf[FILENAMELENGTH]; |
char fileresf[FILENAMELENGTH]; |
|
|
agelim=AGESUP; |
agelim=AGESUP; |
|
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
|
We still use firstpass and lastpass as another selection. |
|
*/ |
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
|
strcpy(fileresf,"F_"); |
strcpy(fileresf,"F_"); |
Line 5428 void prevforecast(char fileres[], double
|
Line 5589 void prevforecast(char fileres[], double
|
for(cptcov=1, k=0;cptcov<=i1;cptcov++){ |
for(cptcov=1, k=0;cptcov<=i1;cptcov++){ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
k=k+1; |
k=k+1; |
fprintf(ficresf,"\n#******"); |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} |
} |
fprintf(ficresf,"******\n"); |
fprintf(ficresf," yearproj age"); |
fprintf(ficresf,"# Covariate valuofcovar yearproj age"); |
|
for(j=1; j<=nlstate+ndeath;j++){ |
for(j=1; j<=nlstate+ndeath;j++){ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
fprintf(ficresf," p%d%d",i,j); |
fprintf(ficresf," p%d%d",i,j); |
Line 7382 Please run with mle=-1 to get a correct
|
Line 7542 Please run with mle=-1 to get a correct
|
Ndum =ivector(-1,NCOVMAX); |
Ndum =ivector(-1,NCOVMAX); |
if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */ |
if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */ |
tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
/* Nbcode gives the value of the lth modality of jth covariate, in |
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
/* 1 to ncodemax[j] is the maximum value of this jth covariate */ |
/* 1 to ncodemax[j] which is the maximum value of this jth covariate */ |
|
|
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
|
/* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, |
|
* codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded |
|
* (currently 0 or 1) in the data. |
|
* In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of |
|
* corresponding modality (h,j). |
|
*/ |
|
|
h=0; |
h=0; |
|
|
|
|
Line 7398 Please run with mle=-1 to get a correct
|
Line 7565 Please run with mle=-1 to get a correct
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
|
|
/**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1 |
/**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1 |
* For k=4 covariates, h goes from 1 to 2**k |
* For k=4 covariates, h goes from 1 to m=2**k |
* codtabm(h,k)= 1 & (h-1) >> (k-1) ; |
* codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1; |
|
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
* h\k 1 2 3 4 |
* h\k 1 2 3 4 |
*______________________________ |
*______________________________ |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 |
Line 7419 Please run with mle=-1 to get a correct
|
Line 7587 Please run with mle=-1 to get a correct
|
* 15 i=8 1 2 2 2 |
* 15 i=8 1 2 2 2 |
* 16 2 2 2 2 |
* 16 2 2 2 2 |
*/ |
*/ |
|
/* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */ |
|
/* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4 |
|
* and the value of each covariate? |
|
* V1=1, V2=1, V3=2, V4=1 ? |
|
* h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok. |
|
* h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st. |
|
* In order to get the real value in the data, we use nbcode |
|
* nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0 |
|
* We are keeping this crazy system in order to be able (in the future?) |
|
* to have more than 2 values (0 or 1) for a covariate. |
|
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
|
* h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1 |
|
* bbbbbbbb |
|
* 76543210 |
|
* h-1 00000101 (6-1=5) |
|
*(h-1)>>(k-1)= 00000001 >> (2-1) = 1 right shift |
|
* & |
|
* 1 00000001 (1) |
|
* 00000001 = 1 & ((h-1) >> (k-1)) |
|
* +1= 00000010 =2 |
|
* |
|
* h=14, k=3 => h'=h-1=13, k'=k-1=2 |
|
* h' 1101 =2^3+2^2+0x2^1+2^0 |
|
* >>k' 11 |
|
* & 00000001 |
|
* = 00000001 |
|
* +1 = 00000010=2 = codtabm(14,3) |
|
* Reverse h=6 and m=16? |
|
* cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1. |
|
* for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff) |
|
* decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 |
|
* decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1) |
|
* V3=decodtabm(14,3,2**4)=2 |
|
* h'=13 1101 =2^3+2^2+0x2^1+2^0 |
|
*(h-1) >> (j-1) 0011 =13 >> 2 |
|
* &1 000000001 |
|
* = 000000001 |
|
* +1= 000000010 =2 |
|
* 2211 |
|
* V1=1+1, V2=0+1, V3=1+1, V4=1+1 |
|
* V3=2 |
|
*/ |
|
|
/* /\* for(h=1; h <=100 ;h++){ *\/ */ |
/* /\* for(h=1; h <=100 ;h++){ *\/ */ |
/* /\* printf("h=%2d ", h); *\/ */ |
/* /\* printf("h=%2d ", h); *\/ */ |
/* /\* for(k=1; k <=10; k++){ *\/ */ |
/* /\* for(k=1; k <=10; k++){ *\/ */ |
Line 7990 Please run with mle=-1 to get a correct
|
Line 8201 Please run with mle=-1 to get a correct
|
} |
} |
|
|
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); |
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); |
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); |
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
|
|
/* Other stuffs, more or less useful */ |
/* Other stuffs, more or less useful */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
Line 8054 Please run with mle=-1 to get a correct
|
Line 8265 Please run with mle=-1 to get a correct
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
}else |
}else |
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); |
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, pathc,p); |
|
|
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\ |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,estepm, \ |
jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); |
jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); |
|
|
/*------------ free_vector -------------*/ |
/*------------ free_vector -------------*/ |