version 1.201, 2015/09/15 17:34:58
|
version 1.232, 2016/08/22 14:20:21
|
Line 1
|
Line 1
|
/* $Id$ |
/* $Id$ |
$State$ |
$State$ |
$Log$ |
$Log$ |
|
Revision 1.232 2016/08/22 14:20:21 brouard |
|
Summary: not working |
|
|
|
Revision 1.231 2016/08/22 07:17:15 brouard |
|
Summary: not working |
|
|
|
Revision 1.230 2016/08/22 06:55:53 brouard |
|
Summary: Not working |
|
|
|
Revision 1.229 2016/07/23 09:45:53 brouard |
|
Summary: Completing for func too |
|
|
|
Revision 1.228 2016/07/22 17:45:30 brouard |
|
Summary: Fixing some arrays, still debugging |
|
|
|
Revision 1.226 2016/07/12 18:42:34 brouard |
|
Summary: temp |
|
|
|
Revision 1.225 2016/07/12 08:40:03 brouard |
|
Summary: saving but not running |
|
|
|
Revision 1.224 2016/07/01 13:16:01 brouard |
|
Summary: Fixes |
|
|
|
Revision 1.223 2016/02/19 09:23:35 brouard |
|
Summary: temporary |
|
|
|
Revision 1.222 2016/02/17 08:14:50 brouard |
|
Summary: Probably last 0.98 stable version 0.98r6 |
|
|
|
Revision 1.221 2016/02/15 23:35:36 brouard |
|
Summary: minor bug |
|
|
|
Revision 1.219 2016/02/15 00:48:12 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.218 2016/02/12 11:29:23 brouard |
|
Summary: 0.99 Back projections |
|
|
|
Revision 1.217 2015/12/23 17:18:31 brouard |
|
Summary: Experimental backcast |
|
|
|
Revision 1.216 2015/12/18 17:32:11 brouard |
|
Summary: 0.98r4 Warning and status=-2 |
|
|
|
Version 0.98r4 is now: |
|
- displaying an error when status is -1, date of interview unknown and date of death known; |
|
- permitting a status -2 when the vital status is unknown at a known date of right truncation. |
|
Older changes concerning s=-2, dating from 2005 have been supersed. |
|
|
|
Revision 1.215 2015/12/16 08:52:24 brouard |
|
Summary: 0.98r4 working |
|
|
|
Revision 1.214 2015/12/16 06:57:54 brouard |
|
Summary: temporary not working |
|
|
|
Revision 1.213 2015/12/11 18:22:17 brouard |
|
Summary: 0.98r4 |
|
|
|
Revision 1.212 2015/11/21 12:47:24 brouard |
|
Summary: minor typo |
|
|
|
Revision 1.211 2015/11/21 12:41:11 brouard |
|
Summary: 0.98r3 with some graph of projected cross-sectional |
|
|
|
Author: Nicolas Brouard |
|
|
|
Revision 1.210 2015/11/18 17:41:20 brouard |
|
Summary: Start working on projected prevalences |
|
|
|
Revision 1.209 2015/11/17 22:12:03 brouard |
|
Summary: Adding ftolpl parameter |
|
Author: N Brouard |
|
|
|
We had difficulties to get smoothed confidence intervals. It was due |
|
to the period prevalence which wasn't computed accurately. The inner |
|
parameter ftolpl is now an outer parameter of the .imach parameter |
|
file after estepm. If ftolpl is small 1.e-4 and estepm too, |
|
computation are long. |
|
|
|
Revision 1.208 2015/11/17 14:31:57 brouard |
|
Summary: temporary |
|
|
|
Revision 1.207 2015/10/27 17:36:57 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.206 2015/10/24 07:14:11 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.205 2015/10/23 15:50:53 brouard |
|
Summary: 0.98r3 some clarification for graphs on likelihood contributions |
|
|
|
Revision 1.204 2015/10/01 16:20:26 brouard |
|
Summary: Some new graphs of contribution to likelihood |
|
|
|
Revision 1.203 2015/09/30 17:45:14 brouard |
|
Summary: looking at better estimation of the hessian |
|
|
|
Also a better criteria for convergence to the period prevalence And |
|
therefore adding the number of years needed to converge. (The |
|
prevalence in any alive state shold sum to one |
|
|
|
Revision 1.202 2015/09/22 19:45:16 brouard |
|
Summary: Adding some overall graph on contribution to likelihood. Might change |
|
|
Revision 1.201 2015/09/15 17:34:58 brouard |
Revision 1.201 2015/09/15 17:34:58 brouard |
Summary: 0.98r0 |
Summary: 0.98r0 |
|
|
Line 549
|
Line 654
|
|
|
Short summary of the programme: |
Short summary of the programme: |
|
|
This program computes Healthy Life Expectancies from |
This program computes Healthy Life Expectancies or State-specific |
cross-longitudinal data. Cross-longitudinal data consist in: -1- a |
(if states aren't health statuses) Expectancies from |
first survey ("cross") where individuals from different ages are |
cross-longitudinal data. Cross-longitudinal data consist in: |
interviewed on their health status or degree of disability (in the |
|
case of a health survey which is our main interest) -2- at least a |
-1- a first survey ("cross") where individuals from different ages |
second wave of interviews ("longitudinal") which measure each change |
are interviewed on their health status or degree of disability (in |
(if any) in individual health status. Health expectancies are |
the case of a health survey which is our main interest) |
computed from the time spent in each health state according to a |
|
model. More health states you consider, more time is necessary to reach the |
-2- at least a second wave of interviews ("longitudinal") which |
Maximum Likelihood of the parameters involved in the model. The |
measure each change (if any) in individual health status. Health |
simplest model is the multinomial logistic model where pij is the |
expectancies are computed from the time spent in each health state |
probability to be observed in state j at the second wave |
according to a model. More health states you consider, more time is |
conditional to be observed in state i at the first wave. Therefore |
necessary to reach the Maximum Likelihood of the parameters involved |
the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where |
in the model. The simplest model is the multinomial logistic model |
'age' is age and 'sex' is a covariate. If you want to have a more |
where pij is the probability to be observed in state j at the second |
complex model than "constant and age", you should modify the program |
wave conditional to be observed in state i at the first |
where the markup *Covariates have to be included here again* invites |
wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex + |
you to do it. More covariates you add, slower the |
etc , where 'age' is age and 'sex' is a covariate. If you want to |
|
have a more complex model than "constant and age", you should modify |
|
the program where the markup *Covariates have to be included here |
|
again* invites you to do it. More covariates you add, slower the |
convergence. |
convergence. |
|
|
The advantage of this computer programme, compared to a simple |
The advantage of this computer programme, compared to a simple |
Line 585
|
Line 693
|
hPijx. |
hPijx. |
|
|
Also this programme outputs the covariance matrix of the parameters but also |
Also this programme outputs the covariance matrix of the parameters but also |
of the life expectancies. It also computes the period (stable) prevalence. |
of the life expectancies. It also computes the period (stable) prevalence. |
|
|
|
Back prevalence and projections: |
|
|
|
- back_prevalence_limit(double *p, double **bprlim, double ageminpar, |
|
double agemaxpar, double ftolpl, int *ncvyearp, double |
|
dateprev1,double dateprev2, int firstpass, int lastpass, int |
|
mobilavproj) |
|
|
|
Computes the back prevalence limit for any combination of |
|
covariate values k at any age between ageminpar and agemaxpar and |
|
returns it in **bprlim. In the loops, |
|
|
|
- **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm, |
|
**savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k); |
|
|
|
- hBijx Back Probability to be in state i at age x-h being in j at x |
|
Computes for any combination of covariates k and any age between bage and fage |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
|
|
- hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
Computes the transition matrix starting at age 'age' over |
|
'nhstepm*hstepm*stepm' months (i.e. until |
|
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
|
nhstepm*hstepm matrices. |
|
|
|
Returns p3mat[i][j][h] after calling |
|
p3mat[i][j][h]=matprod2(newm, |
|
bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, |
|
dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
|
oldm); |
|
|
|
Important routines |
|
|
|
- func (or funcone), computes logit (pij) distinguishing |
|
o fixed variables (single or product dummies or quantitative); |
|
o varying variables by: |
|
(1) wave (single, product dummies, quantitative), |
|
(2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be: |
|
% fixed dummy (treated) or quantitative (not done because time-consuming); |
|
% varying dummy (not done) or quantitative (not done); |
|
- Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities) |
|
and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually. |
|
- printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables |
|
o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if |
|
race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless. |
|
|
|
|
|
|
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Institut national d'études démographiques, Paris. |
Institut national d'études démographiques, Paris. |
Line 644
|
Line 800
|
|
|
/* #define DEBUG */ |
/* #define DEBUG */ |
/* #define DEBUGBRENT */ |
/* #define DEBUGBRENT */ |
|
/* #define DEBUGLINMIN */ |
|
/* #define DEBUGHESS */ |
|
#define DEBUGHESSIJ |
|
/* #define LINMINORIGINAL /\* Don't use loop on scale in linmin (accepting nan) *\/ */ |
#define POWELL /* Instead of NLOPT */ |
#define POWELL /* Instead of NLOPT */ |
#define POWELLF1F3 /* Skip test */ |
#define POWELLNOF3INFF1TEST /* Skip test */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
|
|
Line 653
|
Line 813
|
#include <stdio.h> |
#include <stdio.h> |
#include <stdlib.h> |
#include <stdlib.h> |
#include <string.h> |
#include <string.h> |
|
#include <ctype.h> |
|
|
#ifdef _WIN32 |
#ifdef _WIN32 |
#include <io.h> |
#include <io.h> |
Line 715 typedef struct {
|
Line 876 typedef struct {
|
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
|
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
|
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define MAXN 20000 |
#define MAXN 20000 |
#define YEARM 12. /**< Number of months per year */ |
#define YEARM 12. /**< Number of months per year */ |
#define AGESUP 130 |
/* #define AGESUP 130 */ |
|
#define AGESUP 150 |
|
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEBASE 40 |
#define AGEBASE 40 |
#define AGEOVERFLOW 1.e20 |
#define AGEOVERFLOW 1.e20 |
#define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */ |
#define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */ |
Line 735 typedef struct {
|
Line 900 typedef struct {
|
/* $State$ */ |
/* $State$ */ |
#include "version.h" |
#include "version.h" |
char version[]=__IMACH_VERSION__; |
char version[]=__IMACH_VERSION__; |
char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015"; |
char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018"; |
char fullversion[]="$Revision$ $Date$"; |
char fullversion[]="$Revision$ $Date$"; |
char strstart[80]; |
char strstart[80]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
Line 744 int nagesqr=0, nforce=0; /* nagesqr=1 if
|
Line 909 int nagesqr=0, nforce=0; /* nagesqr=1 if
|
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */ |
int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */ |
|
int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
|
int ncovf=0; /* Total number of effective fixed covariates (dummy of quantitative) in the model */ |
|
int ncovv=0; /* Total number of effective (wave) varying covariates (dummy of quantitative) in the model */ |
|
int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */ |
|
|
|
int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */ |
|
int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */ |
|
int ntveff=0; /**< ntveff number of effective time varying variables */ |
|
int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */ |
int cptcov=0; /* Working variable */ |
int cptcov=0; /* Working variable */ |
|
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
int npar=NPARMAX; |
int npar=NPARMAX; |
int nlstate=2; /* Number of live states */ |
int nlstate=2; /* Number of live states */ |
int ndeath=1; /* Number of dead states */ |
int ndeath=1; /* Number of dead states */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
|
int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ |
int popbased=0; |
int popbased=0; |
|
|
int *wav; /* Number of waves for this individuual 0 is possible */ |
int *wav; /* Number of waves for this individuual 0 is possible */ |
Line 767 int **dh; /* dh[mi][i] is number of step
|
Line 943 int **dh; /* dh[mi][i] is number of step
|
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
int countcallfunc=0; /* Count the number of calls to func */ |
int countcallfunc=0; /* Count the number of calls to func */ |
|
int selected(int kvar); /* Is covariate kvar selected for printing results */ |
|
|
double jmean=1; /* Mean space between 2 waves */ |
double jmean=1; /* Mean space between 2 waves */ |
double **matprod2(); /* test */ |
double **matprod2(); /* test */ |
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ |
double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ |
|
double **ddnewms, **ddoldms, **ddsavms; /* for freeing later */ |
|
|
/*FILE *fic ; */ /* Used in readdata only */ |
/*FILE *fic ; */ /* Used in readdata only */ |
FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; |
FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop; |
FILE *ficlog, *ficrespow; |
FILE *ficlog, *ficrespow; |
int globpr=0; /* Global variable for printing or not */ |
int globpr=0; /* Global variable for printing or not */ |
double fretone; /* Only one call to likelihood */ |
double fretone; /* Only one call to likelihood */ |
Line 795 char fileresv[FILENAMELENGTH];
|
Line 975 char fileresv[FILENAMELENGTH];
|
FILE *ficresvpl; |
FILE *ficresvpl; |
char fileresvpl[FILENAMELENGTH]; |
char fileresvpl[FILENAMELENGTH]; |
char title[MAXLINE]; |
char title[MAXLINE]; |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH]; |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], fileresplb[FILENAMELENGTH]; |
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
char command[FILENAMELENGTH]; |
char command[FILENAMELENGTH]; |
int outcmd=0; |
int outcmd=0; |
|
|
char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; |
char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; |
char fileresu[FILENAMELENGTH]; /* Without r in front */ |
char fileresu[FILENAMELENGTH]; /* fileres without r in front */ |
char filelog[FILENAMELENGTH]; /* Log file */ |
char filelog[FILENAMELENGTH]; /* Log file */ |
char filerest[FILENAMELENGTH]; |
char filerest[FILENAMELENGTH]; |
char fileregp[FILENAMELENGTH]; |
char fileregp[FILENAMELENGTH]; |
Line 878 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
Line 1058 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
covariate for which somebody answered including |
covariate for which somebody answered including |
undefined. Usually 3: -1, 0 and 1. */ |
undefined. Usually 3: -1, 0 and 1. */ |
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **pmmij, ***probs; |
double **pmmij, ***probs; /* Global pointer */ |
|
double ***mobaverage, ***mobaverages; /* New global variable */ |
double *ageexmed,*agecens; |
double *ageexmed,*agecens; |
double dateintmean=0; |
double dateintmean=0; |
|
|
Line 888 double *agedc;
|
Line 1069 double *agedc;
|
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
* covar=matrix(0,NCOVMAX,1,n); |
* covar=matrix(0,NCOVMAX,1,n); |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
|
double **coqvar; /* Fixed quantitative covariate iqv */ |
|
double ***cotvar; /* Time varying covariate itv */ |
|
double ***cotqvar; /* Time varying quantitative covariate itqv */ |
double idx; |
double idx; |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
|
int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
|
|
int *Tvarsel; /**< Selected covariates for output */ |
|
double *Tvalsel; /**< Selected modality value of covariate for output */ |
|
int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
|
int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
int *Tage; |
int *Tage; |
|
int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ |
|
int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *Ndum; /** Freq of modality (tricode */ |
int *Ndum; /** Freq of modality (tricode */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
int **Tvard, *Tprod, cptcovprod, *Tvaraff; |
int **Tvard; |
|
int *Tprod;/**< Gives the k position of the k1 product */ |
|
int *Tposprod; /**< Gives the k1 product from the k position */ |
|
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
|
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
|
Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 |
|
*/ |
|
int cptcovprod, *Tvaraff, *invalidvarcomb; |
double *lsurv, *lpop, *tpop; |
double *lsurv, *lpop, *tpop; |
|
|
|
#define FD 1; /* Fixed dummy covariate */ |
|
#define FQ 2; /* Fixed quantitative covariate */ |
|
#define FP 3; /* Fixed product covariate */ |
|
#define FPDD 7; /* Fixed product dummy*dummy covariate */ |
|
#define FPDQ 8; /* Fixed product dummy*quantitative covariate */ |
|
#define FPQQ 9; /* Fixed product quantitative*quantitative covariate */ |
|
#define VD 10; /* Varying dummy covariate */ |
|
#define VQ 11; /* Varying quantitative covariate */ |
|
#define VP 12; /* Varying product covariate */ |
|
#define VPDD 13; /* Varying product dummy*dummy covariate */ |
|
#define VPDQ 14; /* Varying product dummy*quantitative covariate */ |
|
#define VPQQ 15; /* Varying product quantitative*quantitative covariate */ |
|
#define APFD 16; /* Age product * fixed dummy covariate */ |
|
#define APFQ 17; /* Age product * fixed quantitative covariate */ |
|
#define APVD 18; /* Age product * varying dummy covariate */ |
|
#define APVQ 19; /* Age product * varying quantitative covariate */ |
|
|
|
#define FTYPE 1; /* Fixed covariate */ |
|
#define VTYPE 2; /* Varying covariate (loop in wave) */ |
|
#define ATYPE 2; /* Age product covariate (loop in dh within wave)*/ |
|
|
|
struct kmodel{ |
|
int maintype; /* main type */ |
|
int subtype; /* subtype */ |
|
}; |
|
struct kmodel modell[NCOVMAX]; |
|
|
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
double ftolhess; /**< Tolerance for computing hessian */ |
double ftolhess; /**< Tolerance for computing hessian */ |
|
|
Line 926 static int split( char *path, char *dirc
|
Line 1168 static int split( char *path, char *dirc
|
} |
} |
/* got dirc from getcwd*/ |
/* got dirc from getcwd*/ |
printf(" DIRC = %s \n",dirc); |
printf(" DIRC = %s \n",dirc); |
} else { /* strip direcotry from path */ |
} else { /* strip directory from path */ |
ss++; /* after this, the filename */ |
ss++; /* after this, the filename */ |
l2 = strlen( ss ); /* length of filename */ |
l2 = strlen( ss ); /* length of filename */ |
if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); |
if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); |
Line 1334 char *subdirf3(char fileres[], char *pre
|
Line 1576 char *subdirf3(char fileres[], char *pre
|
strcat(tmpout,fileres); |
strcat(tmpout,fileres); |
return tmpout; |
return tmpout; |
} |
} |
|
|
|
/*************** function subdirfext ***********/ |
|
char *subdirfext(char fileres[], char *preop, char *postop) |
|
{ |
|
|
|
strcpy(tmpout,preop); |
|
strcat(tmpout,fileres); |
|
strcat(tmpout,postop); |
|
return tmpout; |
|
} |
|
|
|
/*************** function subdirfext3 ***********/ |
|
char *subdirfext3(char fileres[], char *preop, char *postop) |
|
{ |
|
|
|
/* Caution optionfilefiname is hidden */ |
|
strcpy(tmpout,optionfilefiname); |
|
strcat(tmpout,"/"); |
|
strcat(tmpout,preop); |
|
strcat(tmpout,fileres); |
|
strcat(tmpout,postop); |
|
return tmpout; |
|
} |
|
|
char *asc_diff_time(long time_sec, char ascdiff[]) |
char *asc_diff_time(long time_sec, char ascdiff[]) |
{ |
{ |
long sec_left, days, hours, minutes; |
long sec_left, days, hours, minutes; |
Line 1412 double brent(double ax, double bx, doubl
|
Line 1677 double brent(double ax, double bx, doubl
|
etemp=e; |
etemp=e; |
e=d; |
e=d; |
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
else { |
else { |
d=p/q; |
d=p/q; |
u=x+d; |
u=x+d; |
if (u-a < tol2 || b-u < tol2) |
if (u-a < tol2 || b-u < tol2) |
d=SIGN(tol1,xm-x); |
d=SIGN(tol1,xm-x); |
} |
} |
} else { |
} else { |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
Line 1431 double brent(double ax, double bx, doubl
|
Line 1696 double brent(double ax, double bx, doubl
|
} else { |
} else { |
if (u < x) a=u; else b=u; |
if (u < x) a=u; else b=u; |
if (fu <= fw || w == x) { |
if (fu <= fw || w == x) { |
v=w; |
v=w; |
w=u; |
w=u; |
fv=fw; |
fv=fw; |
fw=fu; |
fw=fu; |
} else if (fu <= fv || v == x || v == w) { |
} else if (fu <= fv || v == x || v == w) { |
v=u; |
v=u; |
fv=fu; |
fv=fu; |
} |
} |
} |
} |
} |
} |
Line 1478 values at the three points, fa, fb , and
|
Line 1743 values at the three points, fa, fb , and
|
*cx=(*bx)+GOLD*(*bx-*ax); |
*cx=(*bx)+GOLD*(*bx-*ax); |
*fc=(*func)(*cx); |
*fc=(*func)(*cx); |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
#endif |
#endif |
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */ |
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/ |
r=(*bx-*ax)*(*fb-*fc); |
r=(*bx-*ax)*(*fb-*fc); |
q=(*bx-*cx)*(*fb-*fa); |
q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */ |
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
Line 1494 values at the three points, fa, fb , and
|
Line 1759 values at the three points, fa, fb , and
|
double A, fparabu; |
double A, fparabu; |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
fparabu= *fa - A*(*ax-u)*(*ax-u); |
fparabu= *fa - A*(*ax-u)*(*ax-u); |
printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
Line 1528 values at the three points, fa, fb , and
|
Line 1793 values at the three points, fa, fb , and
|
/* fu = *fc; */ |
/* fu = *fc; */ |
/* *fc =dum; */ |
/* *fc =dum; */ |
/* } */ |
/* } */ |
#ifdef DEBUG |
#ifdef DEBUGMNBRAK |
printf("mnbrak34 fu < or >= fc \n"); |
double A, fparabu; |
fprintf(ficlog, "mnbrak34 fu < fc\n"); |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
|
fparabu= *fa - A*(*ax-u)*(*ax-u); |
|
printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
|
fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
#endif |
#endif |
dum=u; /* Shifting c and u */ |
dum=u; /* Shifting c and u */ |
u = *cx; |
u = *cx; |
Line 1541 values at the three points, fa, fb , and
|
Line 1809 values at the three points, fa, fb , and
|
#endif |
#endif |
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u after c but before ulim\n"); |
printf("\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
fprintf(ficlog, "mnbrak2 u after c but before ulim\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
#endif |
#endif |
fu=(*func)(u); |
fu=(*func)(u); |
if (fu < *fc) { |
if (fu < *fc) { |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u after c but before ulim AND fu < fc\n"); |
printf("\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
|
#endif |
|
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
|
SHFT(*fb,*fc,fu,(*func)(u)) |
|
#ifdef DEBUG |
|
printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx)); |
#endif |
#endif |
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
|
SHFT(*fb,*fc,fu,(*func)(u)) |
|
} |
} |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
printf("\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
#endif |
#endif |
u=ulim; |
u=ulim; |
fu=(*func)(u); |
fu=(*func)(u); |
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
printf("\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
fprintf(ficlog, "mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
#endif |
#endif |
u=(*cx)+GOLD*(*cx-*bx); |
u=(*cx)+GOLD*(*cx-*bx); |
fu=(*func)(u); |
fu=(*func)(u); |
|
#ifdef DEBUG |
|
printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
|
fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
|
#endif |
} /* end tests */ |
} /* end tests */ |
SHFT(*ax,*bx,*cx,u) |
SHFT(*ax,*bx,*cx,u) |
SHFT(*fa,*fb,*fc,fu) |
SHFT(*fa,*fb,*fc,fu) |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
#endif |
#endif |
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
} |
} |
Line 1587 int ncom;
|
Line 1862 int ncom;
|
double *pcom,*xicom; |
double *pcom,*xicom; |
double (*nrfunc)(double []); |
double (*nrfunc)(double []); |
|
|
|
#ifdef LINMINORIGINAL |
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
|
#else |
|
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) |
|
#endif |
{ |
{ |
double brent(double ax, double bx, double cx, |
double brent(double ax, double bx, double cx, |
double (*f)(double), double tol, double *xmin); |
double (*f)(double), double tol, double *xmin); |
Line 1598 void linmin(double p[], double xi[], int
|
Line 1877 void linmin(double p[], double xi[], int
|
double xx,xmin,bx,ax; |
double xx,xmin,bx,ax; |
double fx,fb,fa; |
double fx,fb,fa; |
|
|
double scale=10., axs, xxs, xxss; /* Scale added for infinity */ |
#ifdef LINMINORIGINAL |
|
#else |
|
double scale=10., axs, xxs; /* Scale added for infinity */ |
|
#endif |
|
|
ncom=n; |
ncom=n; |
pcom=vector(1,n); |
pcom=vector(1,n); |
xicom=vector(1,n); |
xicom=vector(1,n); |
nrfunc=func; |
nrfunc=func; |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
pcom[j]=p[j]; |
pcom[j]=p[j]; |
xicom[j]=xi[j]; |
xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */ |
} |
} |
|
|
/* axs=0.0; */ |
#ifdef LINMINORIGINAL |
/* xxss=1; /\* 1 and using scale *\/ */ |
xx=1.; |
xxs=1; |
#else |
/* do{ */ |
axs=0.0; |
ax=0.; |
xxs=1.; |
|
do{ |
xx= xxs; |
xx= xxs; |
|
#endif |
|
ax=0.; |
mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */ |
mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */ |
/* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */ |
/* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */ |
/* xt[x,j]=pcom[j]+x*xicom[j] f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j)) */ |
/* xt[x,j]=pcom[j]+x*xicom[j] f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j)) */ |
Line 1622 void linmin(double p[], double xi[], int
|
Line 1907 void linmin(double p[], double xi[], int
|
/* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */ |
/* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */ |
/* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */ |
/* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */ |
/* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus [0:xi[j]]*/ |
/* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus [0:xi[j]]*/ |
/* if (fx != fx){ */ |
#ifdef LINMINORIGINAL |
/* xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */ |
#else |
/* printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); */ |
if (fx != fx){ |
/* } */ |
xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */ |
/* }while(fx != fx); */ |
printf("|"); |
|
fprintf(ficlog,"|"); |
|
#ifdef DEBUGLINMIN |
|
printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); |
|
#endif |
|
} |
|
}while(fx != fx && xxs > 1.e-5); |
|
#endif |
|
|
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
|
fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
|
#endif |
|
#ifdef LINMINORIGINAL |
|
#else |
|
if(fb == fx){ /* Flat function in the direction */ |
|
xmin=xx; |
|
*flat=1; |
|
}else{ |
|
*flat=0; |
#endif |
#endif |
|
/*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */ |
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
/* fmin = f(p[j] + xmin * xi[j]) */ |
/* fmin = f(p[j] + xmin * xi[j]) */ |
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
|
#endif |
|
#ifdef LINMINORIGINAL |
|
#else |
|
} |
#endif |
#endif |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("linmin end "); |
printf("linmin end "); |
|
fprintf(ficlog,"linmin end "); |
#endif |
#endif |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
/* printf(" before xi[%d]=%12.8f", j,xi[j]); */ |
#ifdef LINMINORIGINAL |
xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */ |
xi[j] *= xmin; |
/* if(xxs <1.0) */ |
#else |
/* printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */ |
#ifdef DEBUGLINMIN |
|
if(xxs <1.0) |
|
printf(" before xi[%d]=%12.8f", j,xi[j]); |
|
#endif |
|
xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */ |
|
#ifdef DEBUGLINMIN |
|
if(xxs <1.0) |
|
printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); |
|
#endif |
|
#endif |
p[j] += xi[j]; /* Parameters values are updated accordingly */ |
p[j] += xi[j]; /* Parameters values are updated accordingly */ |
} |
} |
/* printf("\n"); */ |
|
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
|
printf("\n"); |
printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p)); |
printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p)); |
|
fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p)); |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]); |
printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]); |
if(j % ncovmodel == 0) |
fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]); |
|
if(j % ncovmodel == 0){ |
printf("\n"); |
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
} |
} |
|
#else |
#endif |
#endif |
free_vector(xicom,1,n); |
free_vector(xicom,1,n); |
free_vector(pcom,1,n); |
free_vector(pcom,1,n); |
Line 1673 such that failure to decrease by more th
|
Line 1994 such that failure to decrease by more th
|
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
*/ |
*/ |
|
#ifdef LINMINORIGINAL |
|
#else |
|
int *flatdir; /* Function is vanishing in that direction */ |
|
int flat=0, flatd=0; /* Function is vanishing in that direction */ |
|
#endif |
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
double (*func)(double [])) |
double (*func)(double [])) |
{ |
{ |
void linmin(double p[], double xi[], int n, double *fret, |
#ifdef LINMINORIGINAL |
|
void linmin(double p[], double xi[], int n, double *fret, |
double (*func)(double [])); |
double (*func)(double [])); |
|
#else |
|
void linmin(double p[], double xi[], int n, double *fret, |
|
double (*func)(double []),int *flat); |
|
#endif |
int i,ibig,j; |
int i,ibig,j; |
double del,t,*pt,*ptt,*xit; |
double del,t,*pt,*ptt,*xit; |
double directest; |
double directest; |
double fp,fptt; |
double fp,fptt; |
double *xits; |
double *xits; |
int niterf, itmp; |
int niterf, itmp; |
|
#ifdef LINMINORIGINAL |
|
#else |
|
|
|
flatdir=ivector(1,n); |
|
for (j=1;j<=n;j++) flatdir[j]=0; |
|
#endif |
|
|
pt=vector(1,n); |
pt=vector(1,n); |
ptt=vector(1,n); |
ptt=vector(1,n); |
Line 1691 void powell(double p[], double **xi, int
|
Line 2028 void powell(double p[], double **xi, int
|
xits=vector(1,n); |
xits=vector(1,n); |
*fret=(*func)(p); |
*fret=(*func)(p); |
for (j=1;j<=n;j++) pt[j]=p[j]; |
for (j=1;j<=n;j++) pt[j]=p[j]; |
rcurr_time = time(NULL); |
rcurr_time = time(NULL); |
for (*iter=1;;++(*iter)) { |
for (*iter=1;;++(*iter)) { |
fp=(*fret); /* From former iteration or initial value */ |
fp=(*fret); /* From former iteration or initial value */ |
ibig=0; |
ibig=0; |
Line 1717 void powell(double p[], double **xi, int
|
Line 2054 void powell(double p[], double **xi, int
|
rforecast_time=rcurr_time; |
rforecast_time=rcurr_time; |
itmp = strlen(strcurr); |
itmp = strlen(strcurr); |
if(strcurr[itmp-1]=='\n') /* Windows outputs with a new line */ |
if(strcurr[itmp-1]=='\n') /* Windows outputs with a new line */ |
strcurr[itmp-1]='\0'; |
strcurr[itmp-1]='\0'; |
printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
for(niterf=10;niterf<=30;niterf+=10){ |
for(niterf=10;niterf<=30;niterf+=10){ |
rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
forecast_time = *localtime(&rforecast_time); |
forecast_time = *localtime(&rforecast_time); |
strcpy(strfor,asctime(&forecast_time)); |
strcpy(strfor,asctime(&forecast_time)); |
itmp = strlen(strfor); |
itmp = strlen(strfor); |
if(strfor[itmp-1]=='\n') |
if(strfor[itmp-1]=='\n') |
strfor[itmp-1]='\0'; |
strfor[itmp-1]='\0'; |
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
} |
} |
} |
} |
for (i=1;i<=n;i++) { /* For each direction i */ |
for (i=1;i<=n;i++) { /* For each direction i */ |
for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */ |
for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */ |
fptt=(*fret); |
fptt=(*fret); |
#ifdef DEBUG |
#ifdef DEBUG |
printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
#endif |
#endif |
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
fprintf(ficlog,"%d",i);fflush(ficlog); |
fprintf(ficlog,"%d",i);fflush(ficlog); |
|
#ifdef LINMINORIGINAL |
linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
#else |
|
linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
|
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
|
#endif |
|
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
/* because that direction will be replaced unless the gain del is small */ |
/* because that direction will be replaced unless the gain del is small */ |
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
/* Unless the n directions are conjugate some gain in the determinant may be obtained */ |
/* Unless the n directions are conjugate some gain in the determinant may be obtained */ |
/* with the new direction. */ |
/* with the new direction. */ |
del=fabs(fptt-(*fret)); |
del=fabs(fptt-(*fret)); |
ibig=i; |
ibig=i; |
} |
} |
#ifdef DEBUG |
#ifdef DEBUG |
printf("%d %.12e",i,(*fret)); |
printf("%d %.12e",i,(*fret)); |
fprintf(ficlog,"%d %.12e",i,(*fret)); |
fprintf(ficlog,"%d %.12e",i,(*fret)); |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); |
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); |
printf(" x(%d)=%.12e",j,xit[j]); |
printf(" x(%d)=%.12e",j,xit[j]); |
fprintf(ficlog," x(%d)=%.12e",j,xit[j]); |
fprintf(ficlog," x(%d)=%.12e",j,xit[j]); |
} |
} |
for(j=1;j<=n;j++) { |
for(j=1;j<=n;j++) { |
printf(" p(%d)=%.12e",j,p[j]); |
printf(" p(%d)=%.12e",j,p[j]); |
fprintf(ficlog," p(%d)=%.12e",j,p[j]); |
fprintf(ficlog," p(%d)=%.12e",j,p[j]); |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
Line 1769 void powell(double p[], double **xi, int
|
Line 2111 void powell(double p[], double **xi, int
|
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* New value of last point Pn is not computed, P(n-1) */ |
/* New value of last point Pn is not computed, P(n-1) */ |
|
for(j=1;j<=n;j++) { |
|
if(flatdir[j] >0){ |
|
printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
|
fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
|
} |
|
/* printf("\n"); */ |
|
/* fprintf(ficlog,"\n"); */ |
|
} |
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */ |
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
Line 1777 void powell(double p[], double **xi, int
|
Line 2127 void powell(double p[], double **xi, int
|
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
/* By adding 10 parameters more the gain should be 18.31 */ |
/* By adding 10 parameters more the gain should be 18.31 */ |
|
|
/* Starting the program with initial values given by a former maximization will simply change */ |
/* Starting the program with initial values given by a former maximization will simply change */ |
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
Line 1805 void powell(double p[], double **xi, int
|
Line 2155 void powell(double p[], double **xi, int
|
} |
} |
#endif |
#endif |
|
|
|
#ifdef LINMINORIGINAL |
|
#else |
|
free_ivector(flatdir,1,n); |
|
#endif |
free_vector(xit,1,n); |
free_vector(xit,1,n); |
free_vector(xits,1,n); |
free_vector(xits,1,n); |
free_vector(ptt,1,n); |
free_vector(ptt,1,n); |
Line 1819 void powell(double p[], double **xi, int
|
Line 2172 void powell(double p[], double **xi, int
|
pt[j]=p[j]; |
pt[j]=p[j]; |
} |
} |
fptt=(*func)(ptt); /* f_3 */ |
fptt=(*func)(ptt); /* f_3 */ |
#ifdef POWELLF1F3 |
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
|
if (*iter <=4) { |
|
#else |
|
#endif |
|
#ifdef POWELLNOF3INFF1TEST /* skips test F3 <F1 */ |
#else |
#else |
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
#endif |
#endif |
Line 1828 void powell(double p[], double **xi, int
|
Line 2185 void powell(double p[], double **xi, int
|
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */ |
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */ |
|
/* also lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */ |
|
/* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */ |
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
|
/* Even if f3 <f1, directest can be negative and t >0 */ |
|
/* mu² and del² are equal when f3=f1 */ |
|
/* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */ |
|
/* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */ |
|
/* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0 */ |
|
/* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0 */ |
#ifdef NRCORIGINAL |
#ifdef NRCORIGINAL |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
#else |
#else |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */ |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */ |
t= t- del*SQR(fp-fptt); |
t= t- del*SQR(fp-fptt); |
#endif |
#endif |
directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */ |
directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); |
printf("t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); |
fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); |
fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); |
Line 1851 void powell(double p[], double **xi, int
|
Line 2216 void powell(double p[], double **xi, int
|
if (t < 0.0) { /* Then we use it for new direction */ |
if (t < 0.0) { /* Then we use it for new direction */ |
#else |
#else |
if (directest*t < 0.0) { /* Contradiction between both tests */ |
if (directest*t < 0.0) { /* Contradiction between both tests */ |
printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
} |
} |
if (directest < 0.0) { /* Then we use it for new direction */ |
if (directest < 0.0) { /* Then we use it for new direction */ |
#endif |
#endif |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("Before linmin in direction P%d-P0\n",n); |
printf("Before linmin in direction P%d-P0\n",n); |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
if(j % ncovmodel == 0) |
fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
printf("\n"); |
if(j % ncovmodel == 0){ |
} |
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
#endif |
#endif |
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
#ifdef LINMINORIGINAL |
#ifdef DEBUGLINMIN |
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
for (j=1;j<=n;j++) { |
#else |
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
if(j % ncovmodel == 0) |
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
printf("\n"); |
|
} |
|
#endif |
#endif |
for (j=1;j<=n;j++) { |
|
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
|
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
|
} |
|
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
|
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
|
|
|
|
#ifdef DEBUGLINMIN |
|
for (j=1;j<=n;j++) { |
|
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
|
fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
|
if(j % ncovmodel == 0){ |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
#endif |
|
for (j=1;j<=n;j++) { |
|
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
|
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
|
} |
|
#ifdef LINMINORIGINAL |
|
#else |
|
for (j=1, flatd=0;j<=n;j++) { |
|
if(flatdir[j]>0) |
|
flatd++; |
|
} |
|
if(flatd >0){ |
|
printf("%d flat directions\n",flatd); |
|
fprintf(ficlog,"%d flat directions\n",flatd); |
|
for (j=1;j<=n;j++) { |
|
if(flatdir[j]>0){ |
|
printf("%d ",j); |
|
fprintf(ficlog,"%d ",j); |
|
} |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
#endif |
|
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
|
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
|
|
#ifdef DEBUG |
#ifdef DEBUG |
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
for(j=1;j<=n;j++){ |
for(j=1;j<=n;j++){ |
printf(" %.12e",xit[j]); |
printf(" %lf",xit[j]); |
fprintf(ficlog," %.12e",xit[j]); |
fprintf(ficlog," %lf",xit[j]); |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
#endif |
#endif |
} /* end of t or directest negative */ |
} /* end of t or directest negative */ |
#ifdef POWELLF1F3 |
#ifdef POWELLNOF3INFF1TEST |
#else |
#else |
} /* end if (fptt < fp) */ |
} /* end if (fptt < fp) */ |
#endif |
#endif |
|
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
|
} /*NODIRECTIONCHANGEDUNTILNITER No change in drections until some iterations are done */ |
|
#else |
|
#endif |
} /* loop iteration */ |
} /* loop iteration */ |
} |
} |
|
|
/**** Prevalence limit (stable or period prevalence) ****************/ |
/**** Prevalence limit (stable or period prevalence) ****************/ |
|
|
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij) |
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij) |
{ |
{ |
/* Computes the prevalence limit in each live state at age x by left multiplying the unit |
/* Computes the prevalence limit in each live state at age x and for covariate ij by left multiplying the unit |
matrix by transitions matrix until convergence is reached */ |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
|
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
|
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
|
/* or prevalence in state 1, prevalence in state 2, 0 */ |
|
/* newm is the matrix after multiplications, its rows are identical at a factor */ |
|
/* Initial matrix pimij */ |
|
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
|
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
|
/* 0, 0 , 1} */ |
|
/* |
|
* and after some iteration: */ |
|
/* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */ |
|
/* 0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */ |
|
/* 0, 0 , 1} */ |
|
/* And prevalence by suppressing the deaths are close to identical rows in prlim: */ |
|
/* {0.51571254859325999, 0.4842874514067399, */ |
|
/* 0.51326036147820708, 0.48673963852179264} */ |
|
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j,k; |
double min, max, maxmin, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
double **out, cov[NCOVMAX+1], **pmij(); |
double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */ |
double **newm; |
double **newm; |
double agefin, delaymax=50 ; /* Max number of years to converge */ |
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
|
int ncvloop=0; |
|
|
|
min=vector(1,nlstate); |
|
max=vector(1,nlstate); |
|
meandiff=vector(1,nlstate); |
|
|
|
/* Starting with matrix unity */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 1921 double **prevalim(double **prlim, int nl
|
Line 2344 double **prevalim(double **prlim, int nl
|
cov[1]=1.; |
cov[1]=1.; |
|
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
|
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ |
for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ |
|
ncvloop++; |
newm=savm; |
newm=savm; |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[2]=agefin; |
cov[2]=agefin; |
Line 1929 double **prevalim(double **prlim, int nl
|
Line 2354 double **prevalim(double **prlim, int nl
|
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin;; |
for (k=1; k<=cptcovn;k++) { |
for (k=1; k<=cptcovn;k++) { |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
|
/* Here comes the value of the covariate 'ij' */ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
} |
} |
Line 1944 double **prevalim(double **prlim, int nl
|
Line 2370 double **prevalim(double **prlim, int nl
|
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
|
/* age and covariate values of ij are in 'cov' */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
|
|
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
maxmax=0.; |
|
for(j=1;j<=nlstate;j++){ |
for(j=1; j<=nlstate; j++){ |
min=1.; |
max[j]=0.; |
max=0.; |
min[j]=1.; |
for(i=1; i<=nlstate; i++) { |
} |
sumnew=0; |
for(i=1;i<=nlstate;i++){ |
for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; |
sumnew=0; |
|
for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; |
|
for(j=1; j<=nlstate; j++){ |
prlim[i][j]= newm[i][j]/(1-sumnew); |
prlim[i][j]= newm[i][j]/(1-sumnew); |
/*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/ |
max[j]=FMAX(max[j],prlim[i][j]); |
max=FMAX(max,prlim[i][j]); |
min[j]=FMIN(min[j],prlim[i][j]); |
min=FMIN(min,prlim[i][j]); |
|
} |
} |
maxmin=max-min; |
} |
maxmax=FMAX(maxmax,maxmin); |
|
|
maxmax=0.; |
|
for(j=1; j<=nlstate; j++){ |
|
meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */ |
|
maxmax=FMAX(maxmax,meandiff[j]); |
|
/* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */ |
} /* j loop */ |
} /* j loop */ |
|
*ncvyear= (int)age- (int)agefin; |
|
/* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
if(maxmax < ftolpl){ |
if(maxmax < ftolpl){ |
|
/* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
|
free_vector(min,1,nlstate); |
|
free_vector(max,1,nlstate); |
|
free_vector(meandiff,1,nlstate); |
return prlim; |
return prlim; |
} |
} |
} /* age loop */ |
} /* age loop */ |
|
/* After some age loop it doesn't converge */ |
|
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
|
Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
|
free_vector(min,1,nlstate); |
|
free_vector(max,1,nlstate); |
|
free_vector(meandiff,1,nlstate); |
|
|
return prlim; /* should not reach here */ |
return prlim; /* should not reach here */ |
} |
} |
|
|
|
|
|
/**** Back Prevalence limit (stable or period prevalence) ****************/ |
|
|
|
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
|
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
|
double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij) |
|
{ |
|
/* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit |
|
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
|
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
|
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
|
/* or prevalence in state 1, prevalence in state 2, 0 */ |
|
/* newm is the matrix after multiplications, its rows are identical at a factor */ |
|
/* Initial matrix pimij */ |
|
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
|
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
|
/* 0, 0 , 1} */ |
|
/* |
|
* and after some iteration: */ |
|
/* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */ |
|
/* 0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */ |
|
/* 0, 0 , 1} */ |
|
/* And prevalence by suppressing the deaths are close to identical rows in prlim: */ |
|
/* {0.51571254859325999, 0.4842874514067399, */ |
|
/* 0.51326036147820708, 0.48673963852179264} */ |
|
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
|
int i, ii,j,k; |
|
double *min, *max, *meandiff, maxmax,sumnew=0.; |
|
/* double **matprod2(); */ /* test */ |
|
double **out, cov[NCOVMAX+1], **bmij(); |
|
double **newm; |
|
double **dnewm, **doldm, **dsavm; /* for use */ |
|
double **oldm, **savm; /* for use */ |
|
|
|
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
|
int ncvloop=0; |
|
|
|
min=vector(1,nlstate); |
|
max=vector(1,nlstate); |
|
meandiff=vector(1,nlstate); |
|
|
|
dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms; |
|
oldm=oldms; savm=savms; |
|
|
|
/* Starting with matrix unity */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
|
|
cov[1]=1.; |
|
|
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
|
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
|
/* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
|
for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */ |
|
ncvloop++; |
|
newm=savm; /* oldm should be kept from previous iteration or unity at start */ |
|
/* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */ |
|
/* Covariates have to be included here again */ |
|
cov[2]=agefin; |
|
if(nagesqr==1) |
|
cov[3]= agefin*agefin;; |
|
for (k=1; k<=cptcovn;k++) { |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
|
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
|
} |
|
/*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
|
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */ |
|
for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; |
|
for (k=1; k<=cptcovprod;k++) /* Useless */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
|
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
|
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
|
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
|
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
|
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
|
/* ij should be linked to the correct index of cov */ |
|
/* age and covariate values ij are in 'cov', but we need to pass |
|
* ij for the observed prevalence at age and status and covariate |
|
* number: prevacurrent[(int)agefin][ii][ij] |
|
*/ |
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */ |
|
savm=oldm; |
|
oldm=newm; |
|
for(j=1; j<=nlstate; j++){ |
|
max[j]=0.; |
|
min[j]=1.; |
|
} |
|
for(j=1; j<=nlstate; j++){ |
|
for(i=1;i<=nlstate;i++){ |
|
/* bprlim[i][j]= newm[i][j]/(1-sumnew); */ |
|
bprlim[i][j]= newm[i][j]; |
|
max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */ |
|
min[i]=FMIN(min[i],bprlim[i][j]); |
|
} |
|
} |
|
|
|
maxmax=0.; |
|
for(i=1; i<=nlstate; i++){ |
|
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */ |
|
maxmax=FMAX(maxmax,meandiff[i]); |
|
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
|
} /* j loop */ |
|
*ncvyear= -( (int)age- (int)agefin); |
|
/* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/ |
|
if(maxmax < ftolpl){ |
|
/* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
|
free_vector(min,1,nlstate); |
|
free_vector(max,1,nlstate); |
|
free_vector(meandiff,1,nlstate); |
|
return bprlim; |
|
} |
|
} /* age loop */ |
|
/* After some age loop it doesn't converge */ |
|
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
|
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
|
free_vector(min,1,nlstate); |
|
free_vector(max,1,nlstate); |
|
free_vector(meandiff,1,nlstate); |
|
|
|
return bprlim; /* should not reach here */ |
|
} |
|
|
/*************** transition probabilities ***************/ |
/*************** transition probabilities ***************/ |
|
|
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
Line 1991 double **pmij(double **ps, double *cov,
|
Line 2569 double **pmij(double **ps, double *cov,
|
/*double t34;*/ |
/*double t34;*/ |
int i,j, nc, ii, jj; |
int i,j, nc, ii, jj; |
|
|
for(i=1; i<= nlstate; i++){ |
for(i=1; i<= nlstate; i++){ |
for(j=1; j<i;j++){ |
for(j=1; j<i;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
|
} |
|
for(j=i+1; j<=nlstate+ndeath;j++){ |
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
|
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
|
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
|
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
} |
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
} |
|
for(j=i+1; j<=nlstate+ndeath;j++){ |
for(i=1; i<= nlstate; i++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
s1=0; |
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
for(j=1; j<i; j++){ |
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
for(j=i+1; j<=nlstate+ndeath; j++){ |
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
|
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
|
ps[i][i]=1./(s1+1.); |
|
/* Computing other pijs */ |
|
for(j=1; j<i; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
for(j=i+1; j<=nlstate+ndeath; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
|
} /* end i */ |
|
|
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
ps[ii][jj]=0; |
|
ps[ii][ii]=1; |
|
} |
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
} |
} |
|
} |
|
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
for(i=1; i<= nlstate; i++){ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
s1=0; |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
for(j=1; j<i; j++){ |
/* } */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/* printf("\n "); */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
/* } */ |
} |
/* printf("\n ");printf("%lf ",cov[2]);*/ |
for(j=i+1; j<=nlstate+ndeath; j++){ |
/* |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
goto end;*/ |
} |
return ps; |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
|
ps[i][i]=1./(s1+1.); |
|
/* Computing other pijs */ |
|
for(j=1; j<i; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
for(j=i+1; j<=nlstate+ndeath; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
|
} /* end i */ |
|
|
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
ps[ii][jj]=0; |
|
ps[ii][ii]=1; |
|
} |
|
} |
|
|
|
|
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
|
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
|
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
|
/* } */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* printf("\n ");printf("%lf ",cov[2]);*/ |
|
/* |
|
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
|
goto end;*/ |
|
return ps; |
} |
} |
|
|
/**************** Product of 2 matrices ******************/ |
/*************** backward transition probabilities ***************/ |
|
|
double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b) |
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
|
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
|
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
{ |
{ |
/* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times |
/* Computes the backward probability at age agefin and covariate ij |
b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ |
* and returns in **ps as well as **bmij. |
/* in, b, out are matrice of pointers which should have been initialized |
*/ |
before: only the contents of out is modified. The function returns |
int i, ii, j,k; |
a pointer to pointers identical to out */ |
|
int i, j, k; |
double **out, **pmij(); |
for(i=nrl; i<= nrh; i++) |
double sumnew=0.; |
for(k=ncolol; k<=ncoloh; k++){ |
double agefin; |
out[i][k]=0.; |
|
for(j=ncl; j<=nch; j++) |
double **dnewm, **dsavm, **doldm; |
out[i][k] +=in[i][j]*b[j][k]; |
double **bbmij; |
} |
|
return out; |
doldm=ddoldms; /* global pointers */ |
|
dnewm=ddnewms; |
|
dsavm=ddsavms; |
|
|
|
agefin=cov[2]; |
|
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
|
the observed prevalence (with this covariate ij) */ |
|
dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); |
|
/* We do have the matrix Px in savm and we need pij */ |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
sumnew=0.; /* w1 p11 + w2 p21 only on live states */ |
|
for (ii=1;ii<=nlstate;ii++){ |
|
sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; |
|
} /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
if(sumnew >= 1.e-10){ |
|
/* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */ |
|
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
|
/* }else if(agefin >= agemaxpar+stepm/YEARM){ */ |
|
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
|
/* }else */ |
|
doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
|
}else{ |
|
printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin); |
|
} |
|
} /*End ii */ |
|
} /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */ |
|
/* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */ |
|
bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */ |
|
/* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */ |
|
/* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
|
/* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
|
/* left Product of this matrix by diag matrix of prevalences (savm) */ |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0); |
|
} |
|
} /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */ |
|
ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */ |
|
/* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
|
/* end bmij */ |
|
return ps; |
} |
} |
|
/*************** transition probabilities ***************/ |
|
|
|
double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
/************* Higher Matrix Product ***************/ |
|
|
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
|
{ |
{ |
/* Computes the transition matrix starting at age 'age' over |
/* According to parameters values stored in x and the covariate's values stored in cov, |
'nhstepm*hstepm*stepm' months (i.e. until |
computes the probability to be observed in state j being in state i by appying the |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
model to the ncovmodel covariates (including constant and age). |
nhstepm*hstepm matrices. |
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
(typically every 2 years instead of every month which is too big |
ncth covariate in the global vector x is given by the formula: |
for the memory). |
j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel |
Model is determined by parameters x and covariates have to be |
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
included manually here. |
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
|
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
*/ |
Outputs ps[i][j] the probability to be observed in j being in j according to |
|
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
int i, j, d, h, k; |
*/ |
double **out, cov[NCOVMAX+1]; |
double s1, lnpijopii; |
double **newm; |
/*double t34;*/ |
double agexact; |
int i,j, nc, ii, jj; |
|
|
/* Hstepm could be zero and should return the unit matrix */ |
for(i=1; i<= nlstate; i++){ |
for (i=1;i<=nlstate+ndeath;i++) |
for(j=1; j<i;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
|
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
|
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
|
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
|
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
|
} |
|
for(j=i+1; j<=nlstate+ndeath;j++){ |
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
|
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
|
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
|
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
} |
|
} |
|
|
|
for(i=1; i<= nlstate; i++){ |
|
s1=0; |
|
for(j=1; j<i; j++){ |
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
|
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
for(j=i+1; j<=nlstate+ndeath; j++){ |
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
|
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
|
ps[i][i]=1./(s1+1.); |
|
/* Computing other pijs */ |
|
for(j=1; j<i; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
for(j=i+1; j<=nlstate+ndeath; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
|
} /* end i */ |
|
|
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
ps[ii][jj]=0; |
|
ps[ii][ii]=1; |
|
} |
|
} |
|
/* Added for backcast */ /* Transposed matrix too */ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
s1=0.; |
|
for(ii=1; ii<= nlstate+ndeath; ii++){ |
|
s1+=ps[ii][jj]; |
|
} |
|
for(ii=1; ii<= nlstate; ii++){ |
|
ps[ii][jj]=ps[ii][jj]/s1; |
|
} |
|
} |
|
/* Transposition */ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
for(ii=jj; ii<= nlstate+ndeath; ii++){ |
|
s1=ps[ii][jj]; |
|
ps[ii][jj]=ps[jj][ii]; |
|
ps[jj][ii]=s1; |
|
} |
|
} |
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
|
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
|
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
|
/* } */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* printf("\n ");printf("%lf ",cov[2]);*/ |
|
/* |
|
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
|
goto end;*/ |
|
return ps; |
|
} |
|
|
|
|
|
/**************** Product of 2 matrices ******************/ |
|
|
|
double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b) |
|
{ |
|
/* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times |
|
b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ |
|
/* in, b, out are matrice of pointers which should have been initialized |
|
before: only the contents of out is modified. The function returns |
|
a pointer to pointers identical to out */ |
|
int i, j, k; |
|
for(i=nrl; i<= nrh; i++) |
|
for(k=ncolol; k<=ncoloh; k++){ |
|
out[i][k]=0.; |
|
for(j=ncl; j<=nch; j++) |
|
out[i][k] +=in[i][j]*b[j][k]; |
|
} |
|
return out; |
|
} |
|
|
|
|
|
/************* Higher Matrix Product ***************/ |
|
|
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
|
{ |
|
/* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over |
|
'nhstepm*hstepm*stepm' months (i.e. until |
|
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
|
nhstepm*hstepm matrices. |
|
Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
|
(typically every 2 years instead of every month which is too big |
|
for the memory). |
|
Model is determined by parameters x and covariates have to be |
|
included manually here. |
|
|
|
*/ |
|
|
|
int i, j, d, h, k; |
|
double **out, cov[NCOVMAX+1]; |
|
double **newm; |
|
double agexact; |
|
double agebegin, ageend; |
|
|
|
/* Hstepm could be zero and should return the unit matrix */ |
|
for (i=1;i<=nlstate+ndeath;i++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[i][j]=(i==j ? 1.0 : 0.0); |
oldm[i][j]=(i==j ? 1.0 : 0.0); |
po[i][j][0]=(i==j ? 1.0 : 0.0); |
po[i][j][0]=(i==j ? 1.0 : 0.0); |
} |
} |
Line 2105 double ***hpxij(double ***po, int nhstep
|
Line 2844 double ***hpxij(double ***po, int nhstep
|
newm=savm; |
newm=savm; |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[1]=1.; |
cov[1]=1.; |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=cptcovn;k++) |
for (k=1; k<=cptcovn;k++) |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
|
/* right multiplication of oldm by the current matrix */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
/* if((int)age == 70){ */ |
|
/* printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
|
/* printf("%d pmmij ",i); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",pmmij[i][j]); */ |
|
/* } */ |
|
/* printf(" oldm "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",oldm[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* } */ |
|
savm=oldm; |
|
oldm=newm; |
|
} |
|
for(i=1; i<=nlstate+ndeath; i++) |
|
for(j=1;j<=nlstate+ndeath;j++) { |
|
po[i][j][h]=newm[i][j]; |
|
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
|
} |
|
/*printf("h=%d ",h);*/ |
|
} /* end h */ |
|
/* printf("\n H=%d \n",h); */ |
|
return po; |
|
} |
|
|
|
/************* Higher Back Matrix Product ***************/ |
|
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
|
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij ) |
|
{ |
|
/* Computes the transition matrix starting at age 'age' over |
|
'nhstepm*hstepm*stepm' months (i.e. until |
|
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
|
nhstepm*hstepm matrices. |
|
Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
|
(typically every 2 years instead of every month which is too big |
|
for the memory). |
|
Model is determined by parameters x and covariates have to be |
|
included manually here. |
|
|
|
*/ |
|
|
|
int i, j, d, h, k; |
|
double **out, cov[NCOVMAX+1]; |
|
double **newm; |
|
double agexact; |
|
double agebegin, ageend; |
|
double **oldm, **savm; |
|
|
|
oldm=oldms;savm=savms; |
|
/* Hstepm could be zero and should return the unit matrix */ |
|
for (i=1;i<=nlstate+ndeath;i++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[i][j]=(i==j ? 1.0 : 0.0); |
|
po[i][j][0]=(i==j ? 1.0 : 0.0); |
|
} |
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
|
for(h=1; h <=nhstepm; h++){ |
|
for(d=1; d <=hstepm; d++){ |
|
newm=savm; |
|
/* Covariates have to be included here again */ |
|
cov[1]=1.; |
|
agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
|
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
|
cov[2]=agexact; |
|
if(nagesqr==1) |
|
cov[3]= agexact*agexact; |
|
for (k=1; k<=cptcovn;k++) |
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
|
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
|
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
|
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
|
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
|
/* Careful transposed matrix */ |
|
/* age is in cov[2] */ |
|
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
|
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
|
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
|
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); |
|
/* if((int)age == 70){ */ |
|
/* printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
|
/* printf("%d pmmij ",i); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",pmmij[i][j]); */ |
|
/* } */ |
|
/* printf(" oldm "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",oldm[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* } */ |
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
} |
} |
Line 2135 double ***hpxij(double ***po, int nhstep
|
Line 2978 double ***hpxij(double ***po, int nhstep
|
} |
} |
/*printf("h=%d ",h);*/ |
/*printf("h=%d ",h);*/ |
} /* end h */ |
} /* end h */ |
/* printf("\n H=%d \n",h); */ |
/* printf("\n H=%d \n",h); */ |
return po; |
return po; |
} |
} |
|
|
|
|
#ifdef NLOPT |
#ifdef NLOPT |
double myfunc(unsigned n, const double *p1, double *grad, void *pd){ |
double myfunc(unsigned n, const double *p1, double *grad, void *pd){ |
double fret; |
double fret; |
Line 2163 double ***hpxij(double ***po, int nhstep
|
Line 3007 double ***hpxij(double ***po, int nhstep
|
double func( double *x) |
double func( double *x) |
{ |
{ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk; |
|
int ioffset=0; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double sw; /* Sum of weights */ |
|
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
int s1, s2; |
int s1, s2; |
|
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
double bbh, survp; |
double bbh, survp; |
long ipmx; |
long ipmx; |
double agexact; |
double agexact; |
Line 2183 double func( double *x)
|
Line 3028 double func( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
|
ioffset=0; |
if(mle==1){ |
if(mle==1){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
/* Computes the values of the ncovmodel covariates of the model |
/* Computes the values of the ncovmodel covariates of the model |
depending if the covariates are fixed or variying (age dependent) and stores them in cov[] |
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
to be observed in j being in i according to the model. |
to be observed in j being in i according to the model. |
*/ |
*/ |
for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */ |
ioffset=2+nagesqr+cptcovage; |
cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
/* for (k=1; k<=cptcovn;k++){ /\* Simple and product covariates without age* products *\/ */ |
|
for (k=1; k<=ncoveff;k++){ /* Simple and product covariates without age* products */ |
|
cov[++ioffset]=covar[Tvar[k]][i]; |
} |
} |
|
for(iqv=1; iqv <= nqfveff; iqv++){ /* Quantitatives and Fixed covariates */ |
|
cov[++ioffset]=coqvar[Tvar[iqv]][i]; |
|
} |
|
|
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
has been calculated etc */ |
has been calculated etc */ |
|
/* For an individual i, wav[i] gives the number of effective waves */ |
|
/* We compute the contribution to Likelihood of each effective transition |
|
mw[mi][i] is real wave of the mi th effectve wave */ |
|
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] |
|
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
|
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
|
*/ |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for(itv=1; itv <= ntveff; itv++){ /* Varying dummy covariates */ |
for (j=1;j<=nlstate+ndeath;j++){ |
/* cov[ioffset+itv]=cotvar[mw[mi][i]][Tvar[itv]][i]; /\* Not sure, Tvar V4+V3+V5 Tvaraff ? *\/ */ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
} |
} |
for(iqtv=1; iqtv <= nqtveff; iqtv++){ /* Varying quantitatives covariates */ |
for(d=0; d<dh[mi][i]; d++){ |
if(cotqvar[mw[mi][i]][iqtv][i] == -1){ |
newm=savm; |
printf("i=%d, mi=%d, iqtv=%d, cotqvar[mw[mi][i]][iqtv][i]=%f",i,mi,iqtv,cotqvar[mw[mi][i]][iqtv][i]); |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
} |
cov[2]=agexact; |
cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; |
if(nagesqr==1) |
/* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][iqtv][i]; */ |
cov[3]= agexact*agexact; |
} |
for (kk=1; kk<=cptcovage;kk++) { |
/* ioffset=2+nagesqr+cptcovn+nqv+ntv+nqtv; */ |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
} |
for (j=1;j<=nlstate+ndeath;j++){ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
savm=oldm; |
} |
oldm=newm; |
for(d=0; d<dh[mi][i]; d++){ |
} /* end mult */ |
newm=savm; |
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
cov[2]=agexact; |
/* But now since version 0.9 we anticipate for bias at large stepm. |
if(nagesqr==1) |
* If stepm is larger than one month (smallest stepm) and if the exact delay |
cov[3]= agexact*agexact; /* Should be changed here */ |
* (in months) between two waves is not a multiple of stepm, we rounded to |
for (kk=1; kk<=cptcovage;kk++) { |
* the nearest (and in case of equal distance, to the lowest) interval but now |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
} |
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
* probability in order to take into account the bias as a fraction of the way |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
savm=oldm; |
* -stepm/2 to stepm/2 . |
oldm=newm; |
* For stepm=1 the results are the same as for previous versions of Imach. |
} /* end mult */ |
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
s1=s[mw[mi][i]][i]; |
/* But now since version 0.9 we anticipate for bias at large stepm. |
s2=s[mw[mi+1][i]][i]; |
* If stepm is larger than one month (smallest stepm) and if the exact delay |
bbh=(double)bh[mi][i]/(double)stepm; |
* (in months) between two waves is not a multiple of stepm, we rounded to |
/* bias bh is positive if real duration |
* the nearest (and in case of equal distance, to the lowest) interval but now |
* is higher than the multiple of stepm and negative otherwise. |
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
*/ |
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
* probability in order to take into account the bias as a fraction of the way |
if( s2 > nlstate){ |
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
/* i.e. if s2 is a death state and if the date of death is known |
* -stepm/2 to stepm/2 . |
then the contribution to the likelihood is the probability to |
* For stepm=1 the results are the same as for previous versions of Imach. |
die between last step unit time and current step unit time, |
* For stepm > 1 the results are less biased than in previous versions. |
which is also equal to probability to die before dh |
*/ |
minus probability to die before dh-stepm . |
s1=s[mw[mi][i]][i]; |
In version up to 0.92 likelihood was computed |
s2=s[mw[mi+1][i]][i]; |
as if date of death was unknown. Death was treated as any other |
bbh=(double)bh[mi][i]/(double)stepm; |
health state: the date of the interview describes the actual state |
/* bias bh is positive if real duration |
and not the date of a change in health state. The former idea was |
* is higher than the multiple of stepm and negative otherwise. |
to consider that at each interview the state was recorded |
*/ |
(healthy, disable or death) and IMaCh was corrected; but when we |
/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
introduced the exact date of death then we should have modified |
if( s2 > nlstate){ |
the contribution of an exact death to the likelihood. This new |
/* i.e. if s2 is a death state and if the date of death is known |
contribution is smaller and very dependent of the step unit |
then the contribution to the likelihood is the probability to |
stepm. It is no more the probability to die between last interview |
die between last step unit time and current step unit time, |
and month of death but the probability to survive from last |
which is also equal to probability to die before dh |
interview up to one month before death multiplied by the |
minus probability to die before dh-stepm . |
probability to die within a month. Thanks to Chris |
In version up to 0.92 likelihood was computed |
Jackson for correcting this bug. Former versions increased |
as if date of death was unknown. Death was treated as any other |
mortality artificially. The bad side is that we add another loop |
health state: the date of the interview describes the actual state |
which slows down the processing. The difference can be up to 10% |
and not the date of a change in health state. The former idea was |
lower mortality. |
to consider that at each interview the state was recorded |
*/ |
(healthy, disable or death) and IMaCh was corrected; but when we |
/* If, at the beginning of the maximization mostly, the |
introduced the exact date of death then we should have modified |
cumulative probability or probability to be dead is |
the contribution of an exact death to the likelihood. This new |
constant (ie = 1) over time d, the difference is equal to |
contribution is smaller and very dependent of the step unit |
0. out[s1][3] = savm[s1][3]: probability, being at state |
stepm. It is no more the probability to die between last interview |
s1 at precedent wave, to be dead a month before current |
and month of death but the probability to survive from last |
wave is equal to probability, being at state s1 at |
interview up to one month before death multiplied by the |
precedent wave, to be dead at mont of the current |
probability to die within a month. Thanks to Chris |
wave. Then the observed probability (that this person died) |
Jackson for correcting this bug. Former versions increased |
is null according to current estimated parameter. In fact, |
mortality artificially. The bad side is that we add another loop |
it should be very low but not zero otherwise the log go to |
which slows down the processing. The difference can be up to 10% |
infinity. |
lower mortality. |
*/ |
*/ |
|
/* If, at the beginning of the maximization mostly, the |
|
cumulative probability or probability to be dead is |
|
constant (ie = 1) over time d, the difference is equal to |
|
0. out[s1][3] = savm[s1][3]: probability, being at state |
|
s1 at precedent wave, to be dead a month before current |
|
wave is equal to probability, being at state s1 at |
|
precedent wave, to be dead at mont of the current |
|
wave. Then the observed probability (that this person died) |
|
is null according to current estimated parameter. In fact, |
|
it should be very low but not zero otherwise the log go to |
|
infinity. |
|
*/ |
/* #ifdef INFINITYORIGINAL */ |
/* #ifdef INFINITYORIGINAL */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* #else */ |
/* #else */ |
Line 2282 double func( double *x)
|
Line 3154 double func( double *x)
|
/* else */ |
/* else */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* #endif */ |
/* #endif */ |
lli=log(out[s1][s2] - savm[s1][s2]); |
lli=log(out[s1][s2] - savm[s1][s2]); |
|
|
} else if (s2==-2) { |
} else if ( s2==-1 ) { /* alive */ |
for (j=1,survp=0. ; j<=nlstate; j++) |
for (j=1,survp=0. ; j<=nlstate; j++) |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
/*survp += out[s1][j]; */ |
/*survp += out[s1][j]; */ |
lli= log(survp); |
lli= log(survp); |
} |
} |
|
else if (s2==-4) { |
else if (s2==-4) { |
|
for (j=3,survp=0. ; j<=nlstate; j++) |
for (j=3,survp=0. ; j<=nlstate; j++) |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
lli= log(survp); |
lli= log(survp); |
} |
} |
|
else if (s2==-5) { |
else if (s2==-5) { |
for (j=1,survp=0. ; j<=2; j++) |
for (j=1,survp=0. ; j<=2; j++) |
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
lli= log(survp); |
lli= log(survp); |
} |
} |
|
|
else{ |
else{ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
Line 2310 double func( double *x)
|
Line 3179 double func( double *x)
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*if(lli ==000.0)*/ |
/*if(lli ==000.0)*/ |
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/* if (lli < log(mytinydouble)){ */ |
/* if (lli < log(mytinydouble)){ */ |
Line 2414 double func( double *x)
|
Line 3283 double func( double *x)
|
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
if( s2 > nlstate){ |
if( s2 > nlstate){ |
lli=log(out[s1][s2] - savm[s1][s2]); |
lli=log(out[s1][s2] - savm[s1][s2]); |
|
} else if ( s2==-1 ) { /* alive */ |
|
for (j=1,survp=0. ; j<=nlstate; j++) |
|
survp += out[s1][j]; |
|
lli= log(survp); |
}else{ |
}else{ |
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
} |
} |
Line 2467 double func( double *x)
|
Line 3340 double func( double *x)
|
/*************** log-likelihood *************/ |
/*************** log-likelihood *************/ |
double funcone( double *x) |
double funcone( double *x) |
{ |
{ |
/* Same as likeli but slower because of a lot of printf and if */ |
/* Same as func but slower because of a lot of printf and if */ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk; |
|
int ioffset=0; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
double llt; |
double llt; |
int s1, s2; |
int s1, s2; |
|
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
|
|
double bbh, survp; |
double bbh, survp; |
double agexact; |
double agexact; |
|
double agebegin, ageend; |
/*extern weight */ |
/*extern weight */ |
/* We are differentiating ll according to initial status */ |
/* We are differentiating ll according to initial status */ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
Line 2485 double funcone( double *x)
|
Line 3362 double funcone( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
|
ioffset=0; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
ioffset=2+nagesqr+cptcovage; |
for(mi=1; mi<= wav[i]-1; mi++){ |
/* Fixed */ |
|
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
|
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
|
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
|
/* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ |
|
/* cov[2+6]=covar[Tvar[6]][i]; */ |
|
/* cov[2+6]=covar[2][i]; V2 */ |
|
/* cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i]; */ |
|
/* cov[2+7]=covar[Tvar[7]][i]; */ |
|
/* cov[2+7]=covar[7][i]; V7=V1*V2 */ |
|
/* cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i]; */ |
|
/* cov[2+9]=covar[Tvar[9]][i]; */ |
|
/* cov[2+9]=covar[1][i]; V1 */ |
|
} |
|
/* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ |
|
/* cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */ |
|
/* } */ |
|
/* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */ |
|
/* cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */ |
|
/* } */ |
|
|
|
/* Wave varying (but not age varying) */ |
|
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
|
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarFind[k]]][i]; |
|
} |
|
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ |
|
/* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ |
|
/* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ |
|
/* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ |
|
/* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ |
|
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
|
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
|
/* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */ |
|
/* } */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
} |
} |
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
cov[2]=agexact; |
for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ |
if(nagesqr==1) |
/*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
cov[3]= agexact*agexact; |
and mw[mi+1][i]. dh depends on stepm.*/ |
for (kk=1; kk<=cptcovage;kk++) { |
newm=savm; |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
} |
cov[2]=agexact; |
|
if(nagesqr==1) |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
cov[3]= agexact*agexact; |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
for (kk=1; kk<=cptcovage;kk++) { |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */ |
} |
/* 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */ |
/* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
savm=oldm; |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
oldm=newm; |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */ |
|
/* 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */ |
|
savm=oldm; |
|
oldm=newm; |
} /* end mult */ |
} /* end mult */ |
|
|
s1=s[mw[mi][i]][i]; |
s1=s[mw[mi][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
|
/* if(s2==-1){ */ |
|
/* printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */ |
|
/* /\* exit(1); *\/ */ |
|
/* } */ |
bbh=(double)bh[mi][i]/(double)stepm; |
bbh=(double)bh[mi][i]/(double)stepm; |
/* bias is positive if real duration |
/* bias is positive if real duration |
* is higher than the multiple of stepm and negative otherwise. |
* is higher than the multiple of stepm and negative otherwise. |
*/ |
*/ |
if( s2 > nlstate && (mle <5) ){ /* Jackson */ |
if( s2 > nlstate && (mle <5) ){ /* Jackson */ |
lli=log(out[s1][s2] - savm[s1][s2]); |
lli=log(out[s1][s2] - savm[s1][s2]); |
} else if (s2==-2) { |
} else if ( s2==-1 ) { /* alive */ |
for (j=1,survp=0. ; j<=nlstate; j++) |
for (j=1,survp=0. ; j<=nlstate; j++) |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
lli= log(survp); |
lli= log(survp); |
}else if (mle==1){ |
}else if (mle==1){ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
} else if(mle==2){ |
} else if(mle==2){ |
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
} else if(mle==3){ /* exponential inter-extrapolation */ |
} else if(mle==3){ /* exponential inter-extrapolation */ |
lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
} else if (mle==4){ /* mle=4 no inter-extrapolation */ |
} else if (mle==4){ /* mle=4 no inter-extrapolation */ |
lli=log(out[s1][s2]); /* Original formula */ |
lli=log(out[s1][s2]); /* Original formula */ |
} else{ /* mle=0 back to 1 */ |
} else{ /* mle=0 back to 1 */ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
/*lli=log(out[s1][s2]); */ /* Original formula */ |
/*lli=log(out[s1][s2]); */ /* Original formula */ |
} /* End of if */ |
} /* End of if */ |
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
if(globpr){ |
if(globpr){ |
fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\ |
fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
%11.6f %11.6f %11.6f ", \ |
%11.6f %11.6f %11.6f ", \ |
num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i], |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
llt +=ll[k]*gipmx/gsw; |
llt +=ll[k]*gipmx/gsw; |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
} |
} |
fprintf(ficresilk," %10.6f\n", -llt); |
fprintf(ficresilk," %10.6f\n", -llt); |
} |
} |
} /* end of wave */ |
} /* end of wave */ |
} /* end of individual */ |
} /* end of individual */ |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
gipmx=ipmx; |
gipmx=ipmx; |
gsw=sw; |
gsw=sw; |
} |
} |
return -l; |
return -l; |
} |
} |
|
|
|
|
Line 2577 void likelione(FILE *ficres,double p[],
|
Line 3500 void likelione(FILE *ficres,double p[],
|
|
|
if(*globpri !=0){ /* Just counts and sums, no printings */ |
if(*globpri !=0){ /* Just counts and sums, no printings */ |
strcpy(fileresilk,"ILK_"); |
strcpy(fileresilk,"ILK_"); |
strcat(fileresilk,fileres); |
strcat(fileresilk,fileresu); |
if((ficresilk=fopen(fileresilk,"w"))==NULL) { |
if((ficresilk=fopen(fileresilk,"w"))==NULL) { |
printf("Problem with resultfile: %s\n", fileresilk); |
printf("Problem with resultfile: %s\n", fileresilk); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
} |
} |
fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav "); |
fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav "); |
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
for(k=1; k<=nlstate; k++) |
for(k=1; k<=nlstate; k++) |
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
Line 2593 void likelione(FILE *ficres,double p[],
|
Line 3516 void likelione(FILE *ficres,double p[],
|
*fretone=(*funcone)(p); |
*fretone=(*funcone)(p); |
if(*globpri !=0){ |
if(*globpri !=0){ |
fclose(ficresilk); |
fclose(ficresilk); |
fprintf(fichtm,"\n<br>File of contributions to the likelihood (if mle=1): <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
if (mle ==0) |
fflush(fichtm); |
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle); |
} |
else if(mle >=1) |
|
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
|
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
|
|
|
|
|
for (k=1; k<= nlstate ; k++) { |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
|
<img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
|
} |
|
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
|
<img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
|
fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \ |
|
<img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
|
fflush(fichtm); |
|
} |
return; |
return; |
} |
} |
|
|
Line 2669 void mlikeli(FILE *ficres,double p[], in
|
Line 3606 void mlikeli(FILE *ficres,double p[], in
|
#endif |
#endif |
free_matrix(xi,1,npar,1,npar); |
free_matrix(xi,1,npar,1,npar); |
fclose(ficrespow); |
fclose(ficrespow); |
printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
|
|
} |
} |
|
|
/**** Computes Hessian and covariance matrix ***/ |
/**** Computes Hessian and covariance matrix ***/ |
void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) |
void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) |
{ |
{ |
double **a,**y,*x,pd; |
double **a,**y,*x,pd; |
double **hess; |
/* double **hess; */ |
int i, j; |
int i, j; |
int *indx; |
int *indx; |
|
|
double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar); |
double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar); |
double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar); |
double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar); |
void lubksb(double **a, int npar, int *indx, double b[]) ; |
void lubksb(double **a, int npar, int *indx, double b[]) ; |
void ludcmp(double **a, int npar, int *indx, double *d) ; |
void ludcmp(double **a, int npar, int *indx, double *d) ; |
double gompertz(double p[]); |
double gompertz(double p[]); |
hess=matrix(1,npar,1,npar); |
/* hess=matrix(1,npar,1,npar); */ |
|
|
printf("\nCalculation of the hessian matrix. Wait...\n"); |
printf("\nCalculation of the hessian matrix. Wait...\n"); |
fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n"); |
fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n"); |
for (i=1;i<=npar;i++){ |
for (i=1;i<=npar;i++){ |
printf("%d",i);fflush(stdout); |
printf("%d-",i);fflush(stdout); |
fprintf(ficlog,"%d",i);fflush(ficlog); |
fprintf(ficlog,"%d-",i);fflush(ficlog); |
|
|
hess[i][i]=hessii(p,ftolhess,i,delti,func,npar); |
hess[i][i]=hessii(p,ftolhess,i,delti,func,npar); |
|
|
Line 2705 void hesscov(double **matcov, double p[]
|
Line 3642 void hesscov(double **matcov, double p[]
|
for (i=1;i<=npar;i++) { |
for (i=1;i<=npar;i++) { |
for (j=1;j<=npar;j++) { |
for (j=1;j<=npar;j++) { |
if (j>i) { |
if (j>i) { |
printf(".%d%d",i,j);fflush(stdout); |
printf(".%d-%d",i,j);fflush(stdout); |
fprintf(ficlog,".%d%d",i,j);fflush(ficlog); |
fprintf(ficlog,".%d-%d",i,j);fflush(ficlog); |
hess[i][j]=hessij(p,delti,i,j,func,npar); |
hess[i][j]=hessij(p,hess, delti,i,j,func,npar); |
|
|
hess[j][i]=hess[i][j]; |
hess[j][i]=hess[i][j]; |
/*printf(" %lf ",hess[i][j]);*/ |
/*printf(" %lf ",hess[i][j]);*/ |
Line 2741 void hesscov(double **matcov, double p[]
|
Line 3678 void hesscov(double **matcov, double p[]
|
fprintf(ficlog,"\n#Hessian matrix#\n"); |
fprintf(ficlog,"\n#Hessian matrix#\n"); |
for (i=1;i<=npar;i++) { |
for (i=1;i<=npar;i++) { |
for (j=1;j<=npar;j++) { |
for (j=1;j<=npar;j++) { |
printf("%.3e ",hess[i][j]); |
printf("%.6e ",hess[i][j]); |
fprintf(ficlog,"%.3e ",hess[i][j]); |
fprintf(ficlog,"%.6e ",hess[i][j]); |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
} |
} |
|
|
|
/* printf("\n#Covariance matrix#\n"); */ |
|
/* fprintf(ficlog,"\n#Covariance matrix#\n"); */ |
|
/* for (i=1;i<=npar;i++) { */ |
|
/* for (j=1;j<=npar;j++) { */ |
|
/* printf("%.6e ",matcov[i][j]); */ |
|
/* fprintf(ficlog,"%.6e ",matcov[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* fprintf(ficlog,"\n"); */ |
|
/* } */ |
|
|
/* Recompute Inverse */ |
/* Recompute Inverse */ |
for (i=1;i<=npar;i++) |
/* for (i=1;i<=npar;i++) */ |
for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; |
/* for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */ |
ludcmp(a,npar,indx,&pd); |
/* ludcmp(a,npar,indx,&pd); */ |
|
|
|
/* printf("\n#Hessian matrix recomputed#\n"); */ |
|
|
|
/* for (j=1;j<=npar;j++) { */ |
|
/* for (i=1;i<=npar;i++) x[i]=0; */ |
|
/* x[j]=1; */ |
|
/* lubksb(a,npar,indx,x); */ |
|
/* for (i=1;i<=npar;i++){ */ |
|
/* y[i][j]=x[i]; */ |
|
/* printf("%.3e ",y[i][j]); */ |
|
/* fprintf(ficlog,"%.3e ",y[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* fprintf(ficlog,"\n"); */ |
|
/* } */ |
|
|
/* printf("\n#Hessian matrix recomputed#\n"); |
/* Verifying the inverse matrix */ |
|
#ifdef DEBUGHESS |
|
y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov); |
|
|
|
printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n"); |
|
fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n"); |
|
|
for (j=1;j<=npar;j++) { |
for (j=1;j<=npar;j++) { |
for (i=1;i<=npar;i++) x[i]=0; |
|
x[j]=1; |
|
lubksb(a,npar,indx,x); |
|
for (i=1;i<=npar;i++){ |
for (i=1;i<=npar;i++){ |
y[i][j]=x[i]; |
printf("%.2f ",y[i][j]); |
printf("%.3e ",y[i][j]); |
fprintf(ficlog,"%.2f ",y[i][j]); |
fprintf(ficlog,"%.3e ",y[i][j]); |
|
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
} |
} |
*/ |
#endif |
|
|
free_matrix(a,1,npar,1,npar); |
free_matrix(a,1,npar,1,npar); |
free_matrix(y,1,npar,1,npar); |
free_matrix(y,1,npar,1,npar); |
free_vector(x,1,npar); |
free_vector(x,1,npar); |
free_ivector(indx,1,npar); |
free_ivector(indx,1,npar); |
free_matrix(hess,1,npar,1,npar); |
/* free_matrix(hess,1,npar,1,npar); */ |
|
|
|
|
} |
} |
|
|
/*************** hessian matrix ****************/ |
/*************** hessian matrix ****************/ |
double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar) |
double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar) |
{ |
{ /* Around values of x, computes the function func and returns the scales delti and hessian */ |
int i; |
int i; |
int l=1, lmax=20; |
int l=1, lmax=20; |
double k1,k2; |
double k1,k2, res, fx; |
double p2[MAXPARM+1]; /* identical to x */ |
double p2[MAXPARM+1]; /* identical to x */ |
double res; |
|
double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; |
double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; |
double fx; |
|
int k=0,kmax=10; |
int k=0,kmax=10; |
double l1; |
double l1; |
|
|
Line 2803 double hessii(double x[], double delta,
|
Line 3765 double hessii(double x[], double delta,
|
p2[theta]=x[theta]-delt; |
p2[theta]=x[theta]-delt; |
k2=func(p2)-fx; |
k2=func(p2)-fx; |
/*res= (k1-2.0*fx+k2)/delt/delt; */ |
/*res= (k1-2.0*fx+k2)/delt/delt; */ |
res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */ |
res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */ |
|
|
#ifdef DEBUGHESS |
#ifdef DEBUGHESSII |
printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
#endif |
#endif |
Line 2819 double hessii(double x[], double delta,
|
Line 3781 double hessii(double x[], double delta,
|
else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ |
else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ |
delts=delt; |
delts=delt; |
} |
} |
} |
} /* End loop k */ |
} |
} |
delti[theta]=delts; |
delti[theta]=delts; |
return res; |
return res; |
|
|
} |
} |
|
|
double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) |
double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar) |
{ |
{ |
int i; |
int i; |
int l=1, lmax=20; |
int l=1, lmax=20; |
double k1,k2,k3,k4,res,fx; |
double k1,k2,k3,k4,res,fx; |
double p2[MAXPARM+1]; |
double p2[MAXPARM+1]; |
int k; |
int k, kmax=1; |
|
double v1, v2, cv12, lc1, lc2; |
|
|
|
int firstime=0; |
|
|
fx=func(x); |
fx=func(x); |
for (k=1; k<=2; k++) { |
for (k=1; k<=kmax; k=k+10) { |
for (i=1;i<=npar;i++) p2[i]=x[i]; |
for (i=1;i<=npar;i++) p2[i]=x[i]; |
p2[thetai]=x[thetai]+delti[thetai]/k; |
p2[thetai]=x[thetai]+delti[thetai]*k; |
p2[thetaj]=x[thetaj]+delti[thetaj]/k; |
p2[thetaj]=x[thetaj]+delti[thetaj]*k; |
k1=func(p2)-fx; |
k1=func(p2)-fx; |
|
|
p2[thetai]=x[thetai]+delti[thetai]/k; |
p2[thetai]=x[thetai]+delti[thetai]*k; |
p2[thetaj]=x[thetaj]-delti[thetaj]/k; |
p2[thetaj]=x[thetaj]-delti[thetaj]*k; |
k2=func(p2)-fx; |
k2=func(p2)-fx; |
|
|
p2[thetai]=x[thetai]-delti[thetai]/k; |
p2[thetai]=x[thetai]-delti[thetai]*k; |
p2[thetaj]=x[thetaj]+delti[thetaj]/k; |
p2[thetaj]=x[thetaj]+delti[thetaj]*k; |
k3=func(p2)-fx; |
k3=func(p2)-fx; |
|
|
p2[thetai]=x[thetai]-delti[thetai]/k; |
p2[thetai]=x[thetai]-delti[thetai]*k; |
p2[thetaj]=x[thetaj]-delti[thetaj]/k; |
p2[thetaj]=x[thetaj]-delti[thetaj]*k; |
k4=func(p2)-fx; |
k4=func(p2)-fx; |
res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */ |
res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */ |
#ifdef DEBUG |
if(k1*k2*k3*k4 <0.){ |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
firstime=1; |
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
kmax=kmax+10; |
|
} |
|
if(kmax >=10 || firstime ==1){ |
|
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); |
|
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); |
|
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
|
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
|
} |
|
#ifdef DEBUGHESSIJ |
|
v1=hess[thetai][thetai]; |
|
v2=hess[thetaj][thetaj]; |
|
cv12=res; |
|
/* Computing eigen value of Hessian matrix */ |
|
lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
if ((lc2 <0) || (lc1 <0) ){ |
|
printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj); |
|
fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj); |
|
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
|
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
|
} |
#endif |
#endif |
} |
} |
return res; |
return res; |
} |
} |
|
|
|
/* Not done yet: Was supposed to fix if not exactly at the maximum */ |
|
/* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */ |
|
/* { */ |
|
/* int i; */ |
|
/* int l=1, lmax=20; */ |
|
/* double k1,k2,k3,k4,res,fx; */ |
|
/* double p2[MAXPARM+1]; */ |
|
/* double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */ |
|
/* int k=0,kmax=10; */ |
|
/* double l1; */ |
|
|
|
/* fx=func(x); */ |
|
/* for(l=0 ; l <=lmax; l++){ /\* Enlarging the zone around the Maximum *\/ */ |
|
/* l1=pow(10,l); */ |
|
/* delts=delt; */ |
|
/* for(k=1 ; k <kmax; k=k+1){ */ |
|
/* delt = delti*(l1*k); */ |
|
/* for (i=1;i<=npar;i++) p2[i]=x[i]; */ |
|
/* p2[thetai]=x[thetai]+delti[thetai]/k; */ |
|
/* p2[thetaj]=x[thetaj]+delti[thetaj]/k; */ |
|
/* k1=func(p2)-fx; */ |
|
|
|
/* p2[thetai]=x[thetai]+delti[thetai]/k; */ |
|
/* p2[thetaj]=x[thetaj]-delti[thetaj]/k; */ |
|
/* k2=func(p2)-fx; */ |
|
|
|
/* p2[thetai]=x[thetai]-delti[thetai]/k; */ |
|
/* p2[thetaj]=x[thetaj]+delti[thetaj]/k; */ |
|
/* k3=func(p2)-fx; */ |
|
|
|
/* p2[thetai]=x[thetai]-delti[thetai]/k; */ |
|
/* p2[thetaj]=x[thetaj]-delti[thetaj]/k; */ |
|
/* k4=func(p2)-fx; */ |
|
/* res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */ |
|
/* #ifdef DEBUGHESSIJ */ |
|
/* printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */ |
|
/* fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */ |
|
/* #endif */ |
|
/* if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */ |
|
/* k=kmax; */ |
|
/* } */ |
|
/* else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */ |
|
/* k=kmax; l=lmax*10; */ |
|
/* } */ |
|
/* else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ */ |
|
/* delts=delt; */ |
|
/* } */ |
|
/* } /\* End loop k *\/ */ |
|
/* } */ |
|
/* delti[theta]=delts; */ |
|
/* return res; */ |
|
/* } */ |
|
|
|
|
/************** Inverse of matrix **************/ |
/************** Inverse of matrix **************/ |
void ludcmp(double **a, int n, int *indx, double *d) |
void ludcmp(double **a, int n, int *indx, double *d) |
{ |
{ |
Line 2941 void pstamp(FILE *fichier)
|
Line 3980 void pstamp(FILE *fichier)
|
} |
} |
|
|
/************ Frequencies ********************/ |
/************ Frequencies ********************/ |
void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[]) |
void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
|
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
|
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
{ /* Some frequencies */ |
{ /* Some frequencies */ |
|
|
int i, m, jk, j1, bool, z1,j; |
int i, m, jk, j1, bool, z1,j, k, iv; |
|
int iind=0, iage=0; |
|
int mi; /* Effective wave */ |
int first; |
int first; |
double ***freq; /* Frequencies */ |
double ***freq; /* Frequencies */ |
double *pp, **prop; |
double *meanq; |
double pos,posprop, k2, dateintsum=0,k2cpt=0; |
double **meanqt; |
char fileresp[FILENAMELENGTH]; |
double *pp, **prop, *posprop, *pospropt; |
|
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
|
char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH]; |
|
double agebegin, ageend; |
|
|
pp=vector(1,nlstate); |
pp=vector(1,nlstate); |
prop=matrix(1,nlstate,iagemin,iagemax+3); |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ |
|
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
|
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
|
meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
|
meanqt=matrix(1,lastpass,1,nqtveff); |
strcpy(fileresp,"P_"); |
strcpy(fileresp,"P_"); |
strcat(fileresp,fileresu); |
strcat(fileresp,fileresu); |
|
/*strcat(fileresphtm,fileresu);*/ |
if((ficresp=fopen(fileresp,"w"))==NULL) { |
if((ficresp=fopen(fileresp,"w"))==NULL) { |
printf("Problem with prevalence resultfile: %s\n", fileresp); |
printf("Problem with prevalence resultfile: %s\n", fileresp); |
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
exit(0); |
exit(0); |
} |
} |
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3); |
|
|
strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm")); |
|
if((ficresphtm=fopen(fileresphtm,"w"))==NULL) { |
|
printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
|
fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
|
fflush(ficlog); |
|
exit(70); |
|
} |
|
else{ |
|
fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
|
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
|
} |
|
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm); |
|
|
|
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
|
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
|
printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
|
fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
|
fflush(ficlog); |
|
exit(70); |
|
} |
|
else{ |
|
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
|
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
|
} |
|
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr); |
|
|
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
j1=0; |
j1=0; |
|
|
j=cptcoveff; |
/* j=ncoveff; /\* Only fixed dummy covariates *\/ */ |
|
j=cptcoveff; /* Only dummy covariates of the model */ |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
first=1; |
first=1; |
|
|
/* for(k1=1; k1<=j ; k1++){ */ /* Loop on covariates */ |
/* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels: |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */ |
reference=low_education V1=0,V2=0 |
/* j1++; */ |
med_educ V1=1 V2=0, |
for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ |
high_educ V1=0 V2=1 |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff |
scanf("%d", i);*/ |
*/ |
for (i=-5; i<=nlstate+ndeath; i++) |
|
for (jk=-5; jk<=nlstate+ndeath; jk++) |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
freq[i][jk][m]=0; |
|
|
|
for (i=1; i<=nlstate; i++) |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
prop[i][m]=0; |
|
|
|
dateintsum=0; |
|
k2cpt=0; |
|
for (i=1; i<=imx; i++) { |
|
bool=1; |
|
if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
|
for (z1=1; z1<=cptcoveff; z1++) |
|
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ |
|
/* Tests if the value of each of the covariates of i is equal to filter j1 */ |
|
bool=0; |
|
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
|
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
|
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
|
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
|
} |
|
} |
|
|
|
if (bool==1){ |
|
for(m=firstpass; m<=lastpass; m++){ |
|
k2=anint[m][i]+(mint[m][i]/12.); |
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
|
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
|
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
|
if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
|
if (m<lastpass) { |
|
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; |
|
freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; |
|
} |
|
|
|
if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) { |
|
dateintsum=dateintsum+k2; |
|
k2cpt++; |
|
} |
|
/*}*/ |
|
} |
|
} |
|
} /* end i */ |
|
|
|
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
|
pstamp(ficresp); |
|
if (cptcovn>0) { |
|
fprintf(ficresp, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresp, "**********\n#"); |
|
fprintf(ficlog, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "**********\n#"); |
|
} |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
|
fprintf(ficresp, "\n"); |
|
|
|
for(i=iagemin; i <= iagemax+3; i++){ |
|
if(i==iagemax+3){ |
|
fprintf(ficlog,"Total"); |
|
}else{ |
|
if(first==1){ |
|
first=0; |
|
printf("See log file for details...\n"); |
|
} |
|
fprintf(ficlog,"Age %d", i); |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
|
pp[jk] += freq[jk][m][i]; |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pos=0; m <=0 ; m++) |
|
pos += freq[jk][m][i]; |
|
if(pp[jk]>=1.e-10){ |
|
if(first==1){ |
|
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
|
} |
|
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
|
}else{ |
|
if(first==1) |
|
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
|
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
|
} |
|
} |
|
|
|
for(jk=1; jk <=nlstate ; jk++){ |
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */ |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) |
posproptt=0.; |
pp[jk] += freq[jk][m][i]; |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
} |
scanf("%d", i);*/ |
for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){ |
for (i=-5; i<=nlstate+ndeath; i++) |
pos += pp[jk]; |
for (jk=-5; jk<=nlstate+ndeath; jk++) |
posprop += prop[jk][i]; |
for(m=iagemin; m <= iagemax+3; m++) |
} |
freq[i][jk][m]=0; |
for(jk=1; jk <=nlstate ; jk++){ |
|
if(pos>=1.e-5){ |
for (i=1; i<=nlstate; i++) { |
if(first==1) |
for(m=iagemin; m <= iagemax+3; m++) |
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
prop[i][m]=0; |
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
posprop[i]=0; |
}else{ |
pospropt[i]=0; |
if(first==1) |
} |
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
/* for (z1=1; z1<= nqfveff; z1++) { */ |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
/* meanq[z1]+=0.; */ |
} |
/* for(m=1;m<=lastpass;m++){ */ |
if( i <= iagemax){ |
/* meanqt[m][z1]=0.; */ |
if(pos>=1.e-5){ |
/* } */ |
fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop); |
/* } */ |
/*probs[i][jk][j1]= pp[jk]/pos;*/ |
|
/*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ |
dateintsum=0; |
} |
k2cpt=0; |
else |
/* For that combination of covariate j1, we count and print the frequencies in one pass */ |
fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop); |
for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
} |
bool=1; |
} |
if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
|
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
for(jk=-1; jk <=nlstate+ndeath; jk++) |
/* for (z1=1; z1<= nqfveff; z1++) { */ |
for(m=-1; m <=nlstate+ndeath; m++) |
/* meanq[z1]+=coqvar[Tvar[z1]][iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
if(freq[jk][m][i] !=0 ) { |
/* } */ |
if(first==1) |
for (z1=1; z1<=cptcoveff; z1++) { |
printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); |
/* if(Tvaraff[z1] ==-20){ */ |
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]); |
/* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
} |
/* }else if(Tvaraff[z1] ==-10){ */ |
if(i <= iagemax) |
/* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
fprintf(ficresp,"\n"); |
/* }else */ |
if(first==1) |
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ |
printf("Others in log...\n"); |
/* Tests if this individual iind responded to j1 (V4=1 V3=0) */ |
fprintf(ficlog,"\n"); |
bool=0; |
|
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
|
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
|
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
|
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
|
} /* Onlyf fixed */ |
|
} /* end z1 */ |
|
} /* cptcovn > 0 */ |
|
} /* end any */ |
|
if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */ |
|
/* for(m=firstpass; m<=lastpass; m++){ */ |
|
for(mi=1; mi<wav[iind];mi++){ /* For that wave */ |
|
m=mw[mi][iind]; |
|
if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
|
for (z1=1; z1<=cptcoveff; z1++) { |
|
if( Fixed[Tmodelind[z1]]==1){ |
|
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
|
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ |
|
bool=0; |
|
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
|
bool=0; |
|
} |
|
} |
|
} |
|
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
|
/* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
|
if(bool==1){ |
|
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
|
and mw[mi+1][iind]. dh depends on stepm. */ |
|
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
|
ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */ |
|
if(m >=firstpass && m <=lastpass){ |
|
k2=anint[m][iind]+(mint[m][iind]/12.); |
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
|
if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
|
if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
|
if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */ |
|
prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
if (m<lastpass) { |
|
/* if(s[m][iind]==4 && s[m+1][iind]==4) */ |
|
/* printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */ |
|
if(s[m][iind]==-1) |
|
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
|
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
|
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
|
} |
|
} /* end if between passes */ |
|
if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) { |
|
dateintsum=dateintsum+k2; |
|
k2cpt++; |
|
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
|
} |
|
} /* end bool 2 */ |
|
} /* end m */ |
|
} /* end bool */ |
|
} /* end iind = 1 to imx */ |
|
/* prop[s][age] is feeded for any initial and valid live state as well as |
|
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
|
|
|
|
|
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
|
pstamp(ficresp); |
|
/* if (ncoveff>0) { */ |
|
if (cptcoveff>0) { |
|
fprintf(ficresp, "\n#********** Variable "); |
|
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
|
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++){ |
|
fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
} |
|
fprintf(ficresp, "**********\n#"); |
|
fprintf(ficresphtm, "**********</h3>\n"); |
|
fprintf(ficresphtmfr, "**********</h3>\n"); |
|
fprintf(ficlog, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "**********\n"); |
|
} |
|
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
|
for(i=1; i<=nlstate;i++) { |
|
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
|
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
|
} |
|
fprintf(ficresp, "\n"); |
|
fprintf(ficresphtm, "\n"); |
|
|
|
/* Header of frequency table by age */ |
|
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
|
fprintf(ficresphtmfr,"<th>Age</th> "); |
|
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
|
for(m=-1; m <=nlstate+ndeath; m++){ |
|
if(jk!=0 && m!=0) |
|
fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m); |
|
} |
|
} |
|
fprintf(ficresphtmfr, "\n"); |
|
|
|
/* For each age */ |
|
for(iage=iagemin; iage <= iagemax+3; iage++){ |
|
fprintf(ficresphtm,"<tr>"); |
|
if(iage==iagemax+1){ |
|
fprintf(ficlog,"1"); |
|
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
|
}else if(iage==iagemax+2){ |
|
fprintf(ficlog,"0"); |
|
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
|
}else if(iage==iagemax+3){ |
|
fprintf(ficlog,"Total"); |
|
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
|
}else{ |
|
if(first==1){ |
|
first=0; |
|
printf("See log file for details...\n"); |
|
} |
|
fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage); |
|
fprintf(ficlog,"Age %d", iage); |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
|
pp[jk] += freq[jk][m][iage]; |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pos=0; m <=0 ; m++) |
|
pos += freq[jk][m][iage]; |
|
if(pp[jk]>=1.e-10){ |
|
if(first==1){ |
|
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
|
} |
|
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
|
}else{ |
|
if(first==1) |
|
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
|
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
|
} |
|
} |
|
|
|
for(jk=1; jk <=nlstate ; jk++){ |
|
/* posprop[jk]=0; */ |
|
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */ |
|
pp[jk] += freq[jk][m][iage]; |
|
} /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */ |
|
|
|
for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){ |
|
pos += pp[jk]; /* pos is the total number of transitions until this age */ |
|
posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state |
|
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
|
pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state |
|
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
if(pos>=1.e-5){ |
|
if(first==1) |
|
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
|
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
|
}else{ |
|
if(first==1) |
|
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
|
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
|
} |
|
if( iage <= iagemax){ |
|
if(pos>=1.e-5){ |
|
fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
|
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
|
/*probs[iage][jk][j1]= pp[jk]/pos;*/ |
|
/*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/ |
|
} |
|
else{ |
|
fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta); |
|
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta); |
|
} |
|
} |
|
pospropt[jk] +=posprop[jk]; |
|
} /* end loop jk */ |
|
/* pospropt=0.; */ |
|
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
|
for(m=-1; m <=nlstate+ndeath; m++){ |
|
if(freq[jk][m][iage] !=0 ) { /* minimizing output */ |
|
if(first==1){ |
|
printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]); |
|
} |
|
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]); |
|
} |
|
if(jk!=0 && m!=0) |
|
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]); |
|
} |
|
} /* end loop jk */ |
|
posproptt=0.; |
|
for(jk=1; jk <=nlstate; jk++){ |
|
posproptt += pospropt[jk]; |
|
} |
|
fprintf(ficresphtmfr,"</tr>\n "); |
|
if(iage <= iagemax){ |
|
fprintf(ficresp,"\n"); |
|
fprintf(ficresphtm,"</tr>\n"); |
} |
} |
/*}*/ |
if(first==1) |
} |
printf("Others in log...\n"); |
|
fprintf(ficlog,"\n"); |
|
} /* end loop age iage */ |
|
fprintf(ficresphtm,"<tr><th>Tot</th>"); |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
if(posproptt < 1.e-5){ |
|
fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt); |
|
}else{ |
|
fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt); |
|
} |
|
} |
|
fprintf(ficresphtm,"</tr>\n"); |
|
fprintf(ficresphtm,"</table>\n"); |
|
fprintf(ficresphtmfr,"</table>\n"); |
|
if(posproptt < 1.e-5){ |
|
fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
|
fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
|
fprintf(ficres,"\n This combination (%d) is not valid and no result will be produced\n\n",j1); |
|
invalidvarcomb[j1]=1; |
|
}else{ |
|
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1); |
|
invalidvarcomb[j1]=0; |
|
} |
|
fprintf(ficresphtmfr,"</table>\n"); |
|
} /* end selected combination of covariate j1 */ |
dateintmean=dateintsum/k2cpt; |
dateintmean=dateintsum/k2cpt; |
|
|
fclose(ficresp); |
fclose(ficresp); |
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3); |
fclose(ficresphtm); |
|
fclose(ficresphtmfr); |
|
free_vector(meanq,1,nqfveff); |
|
free_matrix(meanqt,1,lastpass,1,nqtveff); |
|
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
|
free_vector(pospropt,1,nlstate); |
|
free_vector(posprop,1,nlstate); |
|
free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
free_vector(pp,1,nlstate); |
free_vector(pp,1,nlstate); |
free_matrix(prop,1,nlstate,iagemin, iagemax+3); |
/* End of freqsummary */ |
/* End of Freq */ |
|
} |
} |
|
|
/************ Prevalence ********************/ |
/************ Prevalence ********************/ |
Line 3124 void prevalence(double ***probs, double
|
Line 4346 void prevalence(double ***probs, double
|
We still use firstpass and lastpass as another selection. |
We still use firstpass and lastpass as another selection. |
*/ |
*/ |
|
|
int i, m, jk, j1, bool, z1,j; |
int i, m, jk, j1, bool, z1,j, iv; |
|
int mi; /* Effective wave */ |
|
int iage; |
|
double agebegin, ageend; |
|
|
double **prop; |
double **prop; |
double posprop; |
double posprop; |
Line 3135 void prevalence(double ***probs, double
|
Line 4360 void prevalence(double ***probs, double
|
iagemin= (int) agemin; |
iagemin= (int) agemin; |
iagemax= (int) agemax; |
iagemax= (int) agemax; |
/*pp=vector(1,nlstate);*/ |
/*pp=vector(1,nlstate);*/ |
prop=matrix(1,nlstate,iagemin,iagemax+3); |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
j1=0; |
j1=0; |
|
|
Line 3143 void prevalence(double ***probs, double
|
Line 4368 void prevalence(double ***probs, double
|
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
first=1; |
first=1; |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */ |
/*for(i1=1; i1<=ncodemax[k1];i1++){ |
for (i=1; i<=nlstate; i++) |
j1++;*/ |
for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++) |
|
prop[i][iage]=0.0; |
for (i=1; i<=nlstate; i++) |
printf("Prevalence combination of varying and fixed dummies %d\n",j1); |
for(m=iagemin; m <= iagemax+3; m++) |
/* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */ |
prop[i][m]=0.0; |
fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1); |
|
|
for (i=1; i<=imx; i++) { /* Each individual */ |
for (i=1; i<=imx; i++) { /* Each individual */ |
bool=1; |
bool=1; |
if (cptcovn>0) { |
/* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */ |
for (z1=1; z1<=cptcoveff; z1++) |
for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */ |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) |
m=mw[mi][i]; |
|
/* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */ |
|
/* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ |
|
for (z1=1; z1<=cptcoveff; z1++){ |
|
if( Fixed[Tmodelind[z1]]==1){ |
|
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
|
if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ |
bool=0; |
bool=0; |
} |
}else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ |
if (bool==1) { |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/ |
bool=0; |
|
} |
|
} |
|
if(bool==1){ /* Otherwise we skip that wave/person */ |
|
agebegin=agev[m][i]; /* Age at beginning of wave before transition*/ |
|
/* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */ |
|
if(m >=firstpass && m <=lastpass){ |
y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); |
if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){ |
if (s[m][i]>0 && s[m][i]<=nlstate) { |
printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); |
|
exit(1); |
|
} |
|
if (s[m][i]>0 && s[m][i]<=nlstate) { |
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */ |
prop[s[m][i]][iagemax+3] += weight[i]; |
prop[s[m][i]][iagemax+3] += weight[i]; |
} |
} /* end valid statuses */ |
} |
} /* end selection of dates */ |
} /* end selection of waves */ |
} /* end selection of waves */ |
} |
} /* end bool */ |
} |
} /* end wave */ |
for(i=iagemin; i <= iagemax+3; i++){ |
} /* end individual */ |
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
for(i=iagemin; i <= iagemax+3; i++){ |
posprop += prop[jk][i]; |
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
} |
posprop += prop[jk][i]; |
|
} |
for(jk=1; jk <=nlstate ; jk++){ |
|
if( i <= iagemax){ |
for(jk=1; jk <=nlstate ; jk++){ |
if(posprop>=1.e-5){ |
if( i <= iagemax){ |
probs[i][jk][j1]= prop[jk][i]/posprop; |
if(posprop>=1.e-5){ |
} else{ |
probs[i][jk][j1]= prop[jk][i]/posprop; |
if(first==1){ |
} else{ |
first=0; |
if(first==1){ |
printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]); |
first=0; |
} |
printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]); |
} |
} |
} |
} |
}/* end jk */ |
} |
}/* end i */ |
}/* end jk */ |
/*} *//* end i1 */ |
}/* end i */ |
|
/*} *//* end i1 */ |
} /* end j1 */ |
} /* end j1 */ |
|
|
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/*free_vector(pp,1,nlstate);*/ |
/*free_vector(pp,1,nlstate);*/ |
free_matrix(prop,1,nlstate, iagemin,iagemax+3); |
free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
} /* End of prevalence */ |
} /* End of prevalence */ |
|
|
/************* Waves Concatenation ***************/ |
/************* Waves Concatenation ***************/ |
Line 3209 void concatwav(int wav[], int **dh, int
|
Line 4450 void concatwav(int wav[], int **dh, int
|
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
and mw[mi+1][i]. dh depends on stepm. |
and mw[mi+1][i]. dh depends on stepm. |
*/ |
*/ |
|
|
int i, mi, m; |
int i=0, mi=0, m=0, mli=0; |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
double sum=0., jmean=0.;*/ |
double sum=0., jmean=0.;*/ |
int first; |
int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0; |
int j, k=0,jk, ju, jl; |
int j, k=0,jk, ju, jl; |
double sum=0.; |
double sum=0.; |
first=0; |
first=0; |
|
firstwo=0; |
|
firsthree=0; |
|
firstfour=0; |
jmin=100000; |
jmin=100000; |
jmax=-1; |
jmax=-1; |
jmean=0.; |
jmean=0.; |
for(i=1; i<=imx; i++){ |
|
mi=0; |
/* Treating live states */ |
|
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
|
mi=0; /* First valid wave */ |
|
mli=0; /* Last valid wave */ |
m=firstpass; |
m=firstpass; |
while(s[m][i] <= nlstate){ |
while(s[m][i] <= nlstate){ /* a live state */ |
if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5) |
if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */ |
|
mli=m-1;/* mw[++mi][i]=m-1; */ |
|
}else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
mw[++mi][i]=m; |
mw[++mi][i]=m; |
if(m >=lastpass) |
mli=m; |
|
} /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */ |
|
if(m < lastpass){ /* m < lastpass, standard case */ |
|
m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */ |
|
} |
|
else{ /* m >= lastpass, eventual special issue with warning */ |
|
#ifdef UNKNOWNSTATUSNOTCONTRIBUTING |
break; |
break; |
else |
#else |
m++; |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ |
|
if(firsthree == 0){ |
|
printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
|
firsthree=1; |
|
} |
|
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
|
mw[++mi][i]=m; |
|
mli=m; |
|
} |
|
if(s[m][i]==-2){ /* Vital status is really unknown */ |
|
nbwarn++; |
|
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified? */ |
|
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
} |
|
break; |
|
} |
|
break; |
|
#endif |
|
}/* End m >= lastpass */ |
}/* end while */ |
}/* end while */ |
if (s[m][i] > nlstate){ |
|
|
/* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */ |
|
/* After last pass */ |
|
/* Treating death states */ |
|
if (s[m][i] > nlstate){ /* In a death state */ |
|
/* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */ |
|
/* } */ |
mi++; /* Death is another wave */ |
mi++; /* Death is another wave */ |
/* if(mi==0) never been interviewed correctly before death */ |
/* if(mi==0) never been interviewed correctly before death */ |
/* Only death is a correct wave */ |
/* Only death is a correct wave */ |
mw[mi][i]=m; |
mw[mi][i]=m; |
} |
} |
|
#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE |
wav[i]=mi; |
else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */ |
|
/* m++; */ |
|
/* mi++; */ |
|
/* s[m][i]=nlstate+1; /\* We are setting the status to the last of non live state *\/ */ |
|
/* mw[mi][i]=m; */ |
|
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
|
if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */ |
|
nbwarn++; |
|
if(firstfiv==0){ |
|
printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
firstfiv=1; |
|
}else{ |
|
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
} |
|
}else{ /* Death occured afer last wave potential bias */ |
|
nberr++; |
|
if(firstwo==0){ |
|
printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
firstwo=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
} |
|
}else{ /* end date of interview is known */ |
|
/* death is known but not confirmed by death status at any wave */ |
|
if(firstfour==0){ |
|
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
firstfour=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
} |
|
} /* end if date of death is known */ |
|
#endif |
|
wav[i]=mi; /* mi should be the last effective wave (or mli) */ |
|
/* wav[i]=mw[mi][i]; */ |
if(mi==0){ |
if(mi==0){ |
nbwarn++; |
nbwarn++; |
if(first==0){ |
if(first==0){ |
Line 3251 void concatwav(int wav[], int **dh, int
|
Line 4564 void concatwav(int wav[], int **dh, int
|
} |
} |
} /* end mi==0 */ |
} /* end mi==0 */ |
} /* End individuals */ |
} /* End individuals */ |
|
/* wav and mw are no more changed */ |
|
|
|
|
for(i=1; i<=imx; i++){ |
for(i=1; i<=imx; i++){ |
for(mi=1; mi<wav[i];mi++){ |
for(mi=1; mi<wav[i];mi++){ |
if (stepm <=0) |
if (stepm <=0) |
Line 3286 void concatwav(int wav[], int **dh, int
|
Line 4601 void concatwav(int wav[], int **dh, int
|
else{ |
else{ |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
|
|
k=k+1; |
k=k+1; |
if (j >= jmax) { |
if (j >= jmax) { |
jmax=j; |
jmax=j; |
Line 3340 void concatwav(int wav[], int **dh, int
|
Line 4655 void concatwav(int wav[], int **dh, int
|
jmean=sum/k; |
jmean=sum/k; |
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
} |
} |
|
|
/*********** Tricode ****************************/ |
/*********** Tricode ****************************/ |
void tricode(int *Tvar, int **nbcode, int imx, int *Ndum) |
void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum) |
{ |
{ |
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
* Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2) |
* Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable |
* nbcode[Tvar[j]][1]= |
* nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually); |
*/ |
*/ |
|
|
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
Line 3358 void tricode(int *Tvar, int **nbcode, in
|
Line 4673 void tricode(int *Tvar, int **nbcode, in
|
int modmincovj=0; /* Modality min of covariates j */ |
int modmincovj=0; /* Modality min of covariates j */ |
|
|
|
|
cptcoveff=0; |
/* cptcoveff=0; */ |
|
/* *cptcov=0; */ |
|
|
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
|
|
/* Loop on covariates without age and products */ |
/* Loop on covariates without age and products and no quantitative variable */ |
for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */ |
/* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */ |
for (k=-1; k < maxncov; k++) Ndum[k]=0; |
for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */ |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the |
for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
modality of this covariate Vj*/ |
if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ |
ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
switch(Fixed[k]) { |
* If product of Vn*Vm, still boolean *: |
case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
ij=(int)(covar[Tvar[k]][i]); |
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
/* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
modality of the nth covariate of individual i. */ |
* If product of Vn*Vm, still boolean *: |
if (ij > modmaxcovj) |
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
modmaxcovj=ij; |
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
else if (ij < modmincovj) |
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
modmincovj=ij; |
modality of the nth covariate of individual i. */ |
if ((ij < -1) && (ij > NCOVMAX)){ |
if (ij > modmaxcovj) |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
modmaxcovj=ij; |
exit(1); |
else if (ij < modmincovj) |
}else |
modmincovj=ij; |
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
if ((ij < -1) && (ij > NCOVMAX)){ |
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
exit(1); |
/* getting the maximum value of the modality of the covariate |
}else |
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
female is 1, then modmaxcovj=1.*/ |
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
} /* end for loop on individuals i */ |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
/* getting the maximum value of the modality of the covariate |
fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
cptcode=modmaxcovj; |
female ies 1, then modmaxcovj=1. |
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
*/ |
/*for (i=0; i<=cptcode; i++) {*/ |
} /* end for loop on individuals i */ |
for (k=modmincovj; k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */ |
printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
cptcode=modmaxcovj; |
if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */ |
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
if( k != -1){ |
/*for (i=0; i<=cptcode; i++) {*/ |
ncodemax[j]++; /* ncodemax[j]= Number of modalities of the j th |
for (j=modmincovj; j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */ |
covariate for which somebody answered excluding |
printf("Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
undefined. Usually 2: 0 and 1. */ |
fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
} |
if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */ |
ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th |
if( j != -1){ |
covariate for which somebody answered including |
ncodemax[k]++; /* ncodemax[k]= Number of modalities of the k th |
undefined. Usually 3: -1, 0 and 1. */ |
covariate for which somebody answered excluding |
} |
undefined. Usually 2: 0 and 1. */ |
/* In fact ncodemax[j]=2 (dichotom. variables only) but it could be more for |
} |
historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th |
} /* Ndum[-1] number of undefined modalities */ |
covariate for which somebody answered including |
|
undefined. Usually 3: -1, 0 and 1. */ |
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
} /* In fact ncodemax[k]=2 (dichotom. variables only) but it could be more for |
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. |
* historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; |
} /* Ndum[-1] number of undefined modalities */ |
modmincovj=3; modmaxcovj = 7; |
|
There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; |
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; |
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */ |
defining two dummy variables: variables V1_1 and V1_2. |
/* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */ |
nbcode[Tvar[j]][ij]=k; |
/* modmincovj=3; modmaxcovj = 7; */ |
nbcode[Tvar[j]][1]=0; |
/* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */ |
nbcode[Tvar[j]][2]=1; |
/* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */ |
nbcode[Tvar[j]][3]=2; |
/* defining two dummy variables: variables V1_1 and V1_2.*/ |
To be continued (not working yet). |
/* nbcode[Tvar[j]][ij]=k; */ |
*/ |
/* nbcode[Tvar[j]][1]=0; */ |
ij=0; /* ij is similar to i but can jump over null modalities */ |
/* nbcode[Tvar[j]][2]=1; */ |
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
/* nbcode[Tvar[j]][3]=2; */ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
/* To be continued (not working yet). */ |
break; |
ij=0; /* ij is similar to i but can jump over null modalities */ |
} |
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
ij++; |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
nbcode[Tvar[j]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/ |
break; |
cptcode = ij; /* New max modality for covar j */ |
} |
} /* end of loop on modality i=-1 to 1 or more */ |
ij++; |
|
nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/ |
|
cptcode = ij; /* New max modality for covar j */ |
|
} /* end of loop on modality i=-1 to 1 or more */ |
|
break; |
|
case 1: /* Testing on varying covariate, could be simple and |
|
* should look at waves or product of fixed * |
|
* varying. No time to test -1, assuming 0 and 1 only */ |
|
ij=0; |
|
for(i=0; i<=1;i++){ |
|
nbcode[Tvar[k]][++ij]=i; |
|
} |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
|
} /* end dummy test */ |
|
|
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
/* /\*recode from 0 *\/ */ |
/* /\*recode from 0 *\/ */ |
/* k is a modality. If we have model=V1+V1*sex */ |
/* k is a modality. If we have model=V1+V1*sex */ |
Line 3448 void tricode(int *Tvar, int **nbcode, in
|
Line 4780 void tricode(int *Tvar, int **nbcode, in
|
/* } /\* end of loop on modality k *\/ */ |
/* } /\* end of loop on modality k *\/ */ |
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
|
|
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
|
/* Look at fixed dummy (single or product) covariates to check empty modalities */ |
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ |
ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ |
Ndum[ij]++; /* Might be supersed V1 + V1*age */ |
Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */ |
} |
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, {2, 1, 1, 1, 2, 1, 1, 0, 0} */ |
|
} /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */ |
ij=0; |
|
for (i=0; i<= maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
ij=0; |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
if((Ndum[i]!=0) && (i<=ncovcol)){ |
for (k=1; k<= cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
ij++; |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
Tvaraff[ij]=i; /*For printing (unclear) */ |
if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy and non empty in the model */ |
}else{ |
/* If product not in single variable we don't print results */ |
/* Tvaraff[ij]=0; */ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
} |
++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */ |
} |
Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
/* ij--; */ |
Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
cptcoveff=ij; /*Number of total covariates*/ |
TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
|
if(Fixed[k]!=0) |
|
anyvaryingduminmodel=1; |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */ |
|
/* Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */ |
|
/* Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */ |
|
/* Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
} |
|
} /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
|
/* ij--; */ |
|
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
|
*cptcov=ij; /*Number of total real effective covariates: effective |
|
* because they can be excluded from the model and real |
|
* if in the model but excluded because missing values, but how to get k from ij?*/ |
|
for(j=ij+1; j<= cptcovt; j++){ |
|
Tvaraff[j]=0; |
|
Tmodelind[j]=0; |
|
} |
|
for(j=ntveff+1; j<= cptcovt; j++){ |
|
TmodelInvind[j]=0; |
|
} |
|
/* To be sorted */ |
|
; |
} |
} |
|
|
|
|
Line 3587 void cvevsij(double ***eij, double x[],
|
Line 4942 void cvevsij(double ***eij, double x[],
|
|
|
{ |
{ |
/* Covariances of health expectancies eij and of total life expectancies according |
/* Covariances of health expectancies eij and of total life expectancies according |
to initial status i, ei. . |
to initial status i, ei. . |
*/ |
*/ |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int nhstepma, nstepma; /* Decreasing with age */ |
int nhstepma, nstepma; /* Decreasing with age */ |
Line 3681 void cvevsij(double ***eij, double x[],
|
Line 5036 void cvevsij(double ***eij, double x[],
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
/* if (stepm >= YEARM) hstepm=1;*/ |
/* if (stepm >= YEARM) hstepm=1;*/ |
nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
|
|
/* If stepm=6 months */ |
/* If stepm=6 months */ |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
|
/* Computing Variances of health expectancies */ |
/* Computing Variances of health expectancies */ |
/* Gradient is computed with plus gp and minus gm. Code is duplicated in order to |
/* Gradient is computed with plus gp and minus gm. Code is duplicated in order to |
decrease memory allocation */ |
decrease memory allocation */ |
Line 3698 void cvevsij(double ***eij, double x[],
|
Line 5053 void cvevsij(double ***eij, double x[],
|
} |
} |
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij); |
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij); |
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij); |
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij); |
|
|
for(j=1; j<= nlstate; j++){ |
for(j=1; j<= nlstate; j++){ |
for(i=1; i<=nlstate; i++){ |
for(i=1; i<=nlstate; i++){ |
for(h=0; h<=nhstepm-1; h++){ |
for(h=0; h<=nhstepm-1; h++){ |
Line 3707 void cvevsij(double ***eij, double x[],
|
Line 5062 void cvevsij(double ***eij, double x[],
|
} |
} |
} |
} |
} |
} |
|
|
for(ij=1; ij<= nlstate*nlstate; ij++) |
for(ij=1; ij<= nlstate*nlstate; ij++) |
for(h=0; h<=nhstepm-1; h++){ |
for(h=0; h<=nhstepm-1; h++){ |
gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta]; |
gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta]; |
Line 3720 void cvevsij(double ***eij, double x[],
|
Line 5075 void cvevsij(double ***eij, double x[],
|
for(theta=1; theta <=npar; theta++) |
for(theta=1; theta <=npar; theta++) |
trgradg[h][j][theta]=gradg[h][theta][j]; |
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
|
|
for(ij=1;ij<=nlstate*nlstate;ij++) |
for(ij=1;ij<=nlstate*nlstate;ij++) |
for(ji=1;ji<=nlstate*nlstate;ji++) |
for(ji=1;ji<=nlstate*nlstate;ji++) |
varhe[ij][ji][(int)age] =0.; |
varhe[ij][ji][(int)age] =0.; |
|
|
printf("%d|",(int)age);fflush(stdout); |
printf("%d|",(int)age);fflush(stdout); |
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
for(h=0;h<=nhstepm-1;h++){ |
for(h=0;h<=nhstepm-1;h++){ |
for(k=0;k<=nhstepm-1;k++){ |
for(k=0;k<=nhstepm-1;k++){ |
matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); |
matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); |
matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); |
Line 3736 void cvevsij(double ***eij, double x[],
|
Line 5091 void cvevsij(double ***eij, double x[],
|
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
} |
} |
} |
} |
|
|
/* Computing expectancies */ |
/* Computing expectancies */ |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate;j++) |
for(j=1; j<=nlstate;j++) |
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf; |
eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf; |
|
|
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
|
|
} |
} |
|
|
fprintf(ficresstdeij,"%3.0f",age ); |
fprintf(ficresstdeij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
eip=0.; |
eip=0.; |
Line 3761 void cvevsij(double ***eij, double x[],
|
Line 5116 void cvevsij(double ***eij, double x[],
|
fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip)); |
fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip)); |
} |
} |
fprintf(ficresstdeij,"\n"); |
fprintf(ficresstdeij,"\n"); |
|
|
fprintf(ficrescveij,"%3.0f",age ); |
fprintf(ficrescveij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate;j++){ |
for(j=1; j<=nlstate;j++){ |
Line 3774 void cvevsij(double ***eij, double x[],
|
Line 5129 void cvevsij(double ***eij, double x[],
|
} |
} |
} |
} |
fprintf(ficrescveij,"\n"); |
fprintf(ficrescveij,"\n"); |
|
|
} |
} |
free_matrix(gm,0,nhstepm,1,nlstate*nlstate); |
free_matrix(gm,0,nhstepm,1,nlstate*nlstate); |
free_matrix(gp,0,nhstepm,1,nlstate*nlstate); |
free_matrix(gp,0,nhstepm,1,nlstate*nlstate); |
Line 3784 void cvevsij(double ***eij, double x[],
|
Line 5139 void cvevsij(double ***eij, double x[],
|
free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
|
|
free_vector(xm,1,npar); |
free_vector(xm,1,npar); |
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
free_matrix(dnewm,1,nlstate*nlstate,1,npar); |
free_matrix(dnewm,1,nlstate*nlstate,1,npar); |
free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); |
free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); |
free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); |
free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); |
} |
} |
|
|
/************ Variance ******************/ |
|
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[]) |
|
{ |
|
/* Variance of health expectancies */ |
|
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
|
/* double **newm;*/ |
|
/* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/ |
|
|
|
int movingaverage(); |
|
double **dnewm,**doldm; |
|
double **dnewmp,**doldmp; |
|
int i, j, nhstepm, hstepm, h, nstepm ; |
|
int k; |
|
double *xp; |
|
double **gp, **gm; /* for var eij */ |
|
double ***gradg, ***trgradg; /*for var eij */ |
|
double **gradgp, **trgradgp; /* for var p point j */ |
|
double *gpp, *gmp; /* for var p point j */ |
|
double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
|
double ***p3mat; |
|
double age,agelim, hf; |
|
double ***mobaverage; |
|
int theta; |
|
char digit[4]; |
|
char digitp[25]; |
|
|
|
char fileresprobmorprev[FILENAMELENGTH]; |
|
|
|
if(popbased==1){ |
|
if(mobilav!=0) |
|
strcpy(digitp,"-POPULBASED-MOBILAV_"); |
|
else strcpy(digitp,"-POPULBASED-NOMOBIL_"); |
|
} |
|
else |
|
strcpy(digitp,"-STABLBASED_"); |
|
|
|
if (mobilav!=0) { |
|
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
|
|
strcpy(fileresprobmorprev,"PRMORPREV-"); |
|
sprintf(digit,"%-d",ij); |
|
/*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ |
|
strcat(fileresprobmorprev,digit); /* Tvar to be done */ |
|
strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ |
|
strcat(fileresprobmorprev,fileres); |
|
if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobmorprev); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); |
|
} |
|
printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
|
|
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
pstamp(ficresprobmorprev); |
|
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," p.%-d SE",j); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
fprintf(ficgp,"\n# Routine varevsij"); |
|
fprintf(ficgp,"\nunset title \n"); |
|
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
|
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
|
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
|
/* } */ |
|
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
pstamp(ficresvij); |
|
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
|
if(popbased==1) |
|
fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav); |
|
else |
|
fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n"); |
|
fprintf(ficresvij,"# Age"); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j); |
|
fprintf(ficresvij,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewm=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); |
|
doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
|
|
gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); |
|
gpp=vector(nlstate+1,nlstate+ndeath); |
|
gmp=vector(nlstate+1,nlstate+ndeath); |
|
trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
|
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
/* For example we decided to compute the life expectancy with the smallest unit */ |
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
|
nhstepm is the number of hstepm from age to agelim |
|
nstepm is the number of stepm from age to agelin. |
|
Look at function hpijx to understand why (it is linked to memory size questions) */ |
|
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
|
means that if the survival funtion is printed every two years of age and if |
|
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
|
results. So we changed our mind and took the option of the best precision. |
|
*/ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
|
agelim = AGESUP; |
|
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
|
nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
gradg=ma3x(0,nhstepm,1,npar,1,nlstate); |
|
gp=matrix(0,nhstepm,1,nlstate); |
|
gm=matrix(0,nhstepm,1,nlstate); |
|
|
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
for(j=1; j<= nlstate; j++){ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
|
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
|
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
|
|
|
if (popbased==1) { |
/************ Variance ******************/ |
if(mobilav ==0){ |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[]) |
for(i=1; i<=nlstate;i++) |
{ |
prlim[i][i]=probs[(int)age][i][ij]; |
/* Variance of health expectancies */ |
}else{ /* mobilav */ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
for(i=1; i<=nlstate;i++) |
/* double **newm;*/ |
prlim[i][i]=mobaverage[(int)age][i][ij]; |
/* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/ |
} |
|
} |
/* int movingaverage(); */ |
|
double **dnewm,**doldm; |
for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ |
double **dnewmp,**doldmp; |
for(h=0; h<=nhstepm; h++){ |
int i, j, nhstepm, hstepm, h, nstepm ; |
for(i=1, gm[h][j]=0.;i<=nlstate;i++) |
int k; |
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
double *xp; |
} |
double **gp, **gm; /* for var eij */ |
} |
double ***gradg, ***trgradg; /*for var eij */ |
/* This for computing probability of death (h=1 means |
double **gradgp, **trgradgp; /* for var p point j */ |
computed over hstepm matrices product = hstepm*stepm months) |
double *gpp, *gmp; /* for var p point j */ |
as a weighted average of prlim. |
double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
*/ |
double ***p3mat; |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
double age,agelim, hf; |
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
/* double ***mobaverage; */ |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
int theta; |
} |
char digit[4]; |
/* end probability of death */ |
char digitp[25]; |
|
|
for(j=1; j<= nlstate; j++) /* vareij */ |
char fileresprobmorprev[FILENAMELENGTH]; |
for(h=0; h<=nhstepm; h++){ |
|
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
if(popbased==1){ |
} |
if(mobilav!=0) |
|
strcpy(digitp,"-POPULBASED-MOBILAV_"); |
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
else strcpy(digitp,"-POPULBASED-NOMOBIL_"); |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
} |
} |
else |
|
strcpy(digitp,"-STABLBASED_"); |
} /* End theta */ |
|
|
|
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
|
|
|
for(h=0; h<=nhstepm; h++) /* veij */ |
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
|
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
|
for(theta=1; theta <=npar; theta++) |
|
trgradgp[j][theta]=gradgp[theta][j]; |
|
|
|
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
for(i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate;j++) |
|
vareij[i][j][(int)age] =0.; |
|
|
|
for(h=0;h<=nhstepm;h++){ |
/* if (mobilav!=0) { */ |
for(k=0;k<=nhstepm;k++){ |
/* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
/* if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */ |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
/* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */ |
for(i=1;i<=nlstate;i++) |
/* printf(" Error in movingaverage mobilav=%d\n",mobilav); */ |
for(j=1;j<=nlstate;j++) |
/* } */ |
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
/* } */ |
} |
|
} |
strcpy(fileresprobmorprev,"PRMORPREV-"); |
|
sprintf(digit,"%-d",ij); |
|
/*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ |
|
strcat(fileresprobmorprev,digit); /* Tvar to be done */ |
|
strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ |
|
strcat(fileresprobmorprev,fileresu); |
|
if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobmorprev); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); |
|
} |
|
printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
pstamp(ficresprobmorprev); |
|
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," p.%-d SE",j); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
|
fprintf(ficgp,"\n# Routine varevsij"); |
|
fprintf(ficgp,"\nunset title \n"); |
|
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
|
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
|
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
|
/* } */ |
|
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
pstamp(ficresvij); |
|
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
|
if(popbased==1) |
|
fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav); |
|
else |
|
fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n"); |
|
fprintf(ficresvij,"# Age"); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j); |
|
fprintf(ficresvij,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewm=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); |
|
doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
|
|
gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); |
|
gpp=vector(nlstate+1,nlstate+ndeath); |
|
gmp=vector(nlstate+1,nlstate+ndeath); |
|
trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
|
/* pptj */ |
if(estepm < stepm){ |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
printf ("Problem %d lower than %d\n",estepm, stepm); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
} |
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
else hstepm=estepm; |
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
/* For example we decided to compute the life expectancy with the smallest unit */ |
varppt[j][i]=doldmp[j][i]; |
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
/* end ppptj */ |
nhstepm is the number of hstepm from age to agelim |
/* x centered again */ |
nstepm is the number of stepm from age to agelim. |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
Look at function hpijx to understand why because of memory size limitations, |
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij); |
we decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
if (popbased==1) { |
means that if the survival funtion is printed every two years of age and if |
if(mobilav ==0){ |
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
for(i=1; i<=nlstate;i++) |
results. So we changed our mind and took the option of the best precision. |
prlim[i][i]=probs[(int)age][i][ij]; |
*/ |
}else{ /* mobilav */ |
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
for(i=1; i<=nlstate;i++) |
agelim = AGESUP; |
prlim[i][i]=mobaverage[(int)age][i][ij]; |
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
} |
nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
} |
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* This for computing probability of death (h=1 means |
gradg=ma3x(0,nhstepm,1,npar,1,nlstate); |
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
gp=matrix(0,nhstepm,1,nlstate); |
as a weighted average of prlim. |
gm=matrix(0,nhstepm,1,nlstate); |
|
|
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); /* Returns p3mat[i][j][h] for h=1 to nhstepm */ |
|
for(j=1; j<= nlstate; j++){ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
|
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* Next for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
|
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
|
|
|
for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gm[h][j]=0.;i<=nlstate;i++) |
|
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
for(j=1; j<= nlstate; j++) /* vareij */ |
|
for(h=0; h<=nhstepm; h++){ |
|
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
|
} |
|
|
|
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
|
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
|
} |
|
|
|
} /* End theta */ |
|
|
|
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
|
|
|
for(h=0; h<=nhstepm; h++) /* veij */ |
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
|
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
|
for(theta=1; theta <=npar; theta++) |
|
trgradgp[j][theta]=gradgp[theta][j]; |
|
|
|
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
for(i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate;j++) |
|
vareij[i][j][(int)age] =0.; |
|
|
|
for(h=0;h<=nhstepm;h++){ |
|
for(k=0;k<=nhstepm;k++){ |
|
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
|
for(i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate;j++) |
|
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
|
} |
|
} |
|
|
|
/* pptj */ |
|
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
|
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
|
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
|
varppt[j][i]=doldmp[j][i]; |
|
/* end ppptj */ |
|
/* x centered again */ |
|
|
|
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); |
|
for(i=1; i<=nlstate;i++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); |
|
} |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
|
fprintf(ficresvij,"%.0f ",age ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++){ |
|
fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); |
|
} |
|
fprintf(ficresvij,"\n"); |
|
free_matrix(gp,0,nhstepm,1,nlstate); |
|
free_matrix(gm,0,nhstepm,1,nlstate); |
|
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); |
|
free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* End age */ |
|
free_vector(gpp,nlstate+1,nlstate+ndeath); |
|
free_vector(gmp,nlstate+1,nlstate+ndeath); |
|
free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); |
|
free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
/* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */ |
|
fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480"); |
|
/* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
|
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
|
fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit); |
*/ |
*/ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
/* fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */ |
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); |
|
for(i=1; i<=nlstate;i++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); |
|
} |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
|
fprintf(ficresvij,"%.0f ",age ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++){ |
|
fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); |
|
} |
|
fprintf(ficresvij,"\n"); |
|
free_matrix(gp,0,nhstepm,1,nlstate); |
|
free_matrix(gm,0,nhstepm,1,nlstate); |
|
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); |
|
free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* End age */ |
|
free_vector(gpp,nlstate+1,nlstate+ndeath); |
|
free_vector(gmp,nlstate+1,nlstate+ndeath); |
|
free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); |
|
free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
/* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */ |
|
fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480"); |
|
/* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
|
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
|
fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit); |
|
*/ |
|
/* fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */ |
|
fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
|
|
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
free_matrix(doldm,1,nlstate,1,nlstate); |
free_matrix(doldm,1,nlstate,1,nlstate); |
free_matrix(dnewm,1,nlstate,1,npar); |
free_matrix(dnewm,1,nlstate,1,npar); |
free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); |
free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); |
free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
/* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
fclose(ficresprobmorprev); |
fclose(ficresprobmorprev); |
fflush(ficgp); |
fflush(ficgp); |
fflush(fichtm); |
fflush(fichtm); |
} /* end varevsij */ |
} /* end varevsij */ |
|
|
/************ Variance of prevlim ******************/ |
/************ Variance of prevlim ******************/ |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[]) |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[]) |
{ |
{ |
/* Variance of prevalence limit */ |
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
double **dnewm,**doldm; |
double **dnewm,**doldm; |
Line 4113 void varprevlim(char fileres[], double *
|
Line 5472 void varprevlim(char fileres[], double *
|
double *xp; |
double *xp; |
double *gp, *gm; |
double *gp, *gm; |
double **gradg, **trgradg; |
double **gradg, **trgradg; |
|
double **mgm, **mgp; |
double age,agelim; |
double age,agelim; |
int theta; |
int theta; |
|
|
Line 4135 void varprevlim(char fileres[], double *
|
Line 5495 void varprevlim(char fileres[], double *
|
if (stepm >= YEARM) hstepm=1; |
if (stepm >= YEARM) hstepm=1; |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
gradg=matrix(1,npar,1,nlstate); |
gradg=matrix(1,npar,1,nlstate); |
|
mgp=matrix(1,npar,1,nlstate); |
|
mgm=matrix(1,npar,1,nlstate); |
gp=vector(1,nlstate); |
gp=vector(1,nlstate); |
gm=vector(1,nlstate); |
gm=vector(1,nlstate); |
|
|
Line 4142 void varprevlim(char fileres[], double *
|
Line 5504 void varprevlim(char fileres[], double *
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
for(i=1; i<=npar; i++){ /* Computes gradient */ |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
for(i=1;i<=nlstate;i++) |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
else |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
for(i=1;i<=nlstate;i++){ |
gp[i] = prlim[i][i]; |
gp[i] = prlim[i][i]; |
|
mgp[theta][i] = prlim[i][i]; |
|
} |
for(i=1; i<=npar; i++) /* Computes gradient */ |
for(i=1; i<=npar; i++) /* Computes gradient */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
for(i=1;i<=nlstate;i++) |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
else |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
for(i=1;i<=nlstate;i++){ |
gm[i] = prlim[i][i]; |
gm[i] = prlim[i][i]; |
|
mgm[theta][i] = prlim[i][i]; |
|
} |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; |
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; |
|
/* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */ |
} /* End theta */ |
} /* End theta */ |
|
|
trgradg =matrix(1,nlstate,1,npar); |
trgradg =matrix(1,nlstate,1,npar); |
Line 4161 void varprevlim(char fileres[], double *
|
Line 5532 void varprevlim(char fileres[], double *
|
for(j=1; j<=nlstate;j++) |
for(j=1; j<=nlstate;j++) |
for(theta=1; theta <=npar; theta++) |
for(theta=1; theta <=npar; theta++) |
trgradg[j][theta]=gradg[theta][j]; |
trgradg[j][theta]=gradg[theta][j]; |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\nmgm mgp %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf(" %d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\n gradg %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf("%d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf("%d %lf ",theta,gradg[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
|
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] =0.; |
varpl[i][(int)age] =0.; |
|
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
|
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
|
}else{ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
|
} |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
Line 4175 void varprevlim(char fileres[], double *
|
Line 5569 void varprevlim(char fileres[], double *
|
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
free_vector(gp,1,nlstate); |
free_vector(gp,1,nlstate); |
free_vector(gm,1,nlstate); |
free_vector(gm,1,nlstate); |
|
free_matrix(mgm,1,npar,1,nlstate); |
|
free_matrix(mgp,1,npar,1,nlstate); |
free_matrix(gradg,1,npar,1,nlstate); |
free_matrix(gradg,1,npar,1,nlstate); |
free_matrix(trgradg,1,nlstate,1,npar); |
free_matrix(trgradg,1,nlstate,1,npar); |
} /* End age */ |
} /* End age */ |
Line 4187 void varprevlim(char fileres[], double *
|
Line 5583 void varprevlim(char fileres[], double *
|
|
|
/************ Variance of one-step probabilities ******************/ |
/************ Variance of one-step probabilities ******************/ |
void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[]) |
void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[]) |
{ |
{ |
int i, j=0, k1, l1, tj; |
int i, j=0, k1, l1, tj; |
int k2, l2, j1, z1; |
int k2, l2, j1, z1; |
int k=0, l; |
int k=0, l; |
int first=1, first1, first2; |
int first=1, first1, first2; |
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
double **dnewm,**doldm; |
double **dnewm,**doldm; |
double *xp; |
double *xp; |
double *gp, *gm; |
double *gp, *gm; |
double **gradg, **trgradg; |
double **gradg, **trgradg; |
double **mu; |
double **mu; |
double age, cov[NCOVMAX+1]; |
double age, cov[NCOVMAX+1]; |
double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ |
double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ |
int theta; |
int theta; |
char fileresprob[FILENAMELENGTH]; |
char fileresprob[FILENAMELENGTH]; |
char fileresprobcov[FILENAMELENGTH]; |
char fileresprobcov[FILENAMELENGTH]; |
char fileresprobcor[FILENAMELENGTH]; |
char fileresprobcor[FILENAMELENGTH]; |
double ***varpij; |
double ***varpij; |
|
|
strcpy(fileresprob,"PROB_"); |
strcpy(fileresprob,"PROB_"); |
strcat(fileresprob,fileres); |
strcat(fileresprob,fileres); |
if((ficresprob=fopen(fileresprob,"w"))==NULL) { |
if((ficresprob=fopen(fileresprob,"w"))==NULL) { |
printf("Problem with resultfile: %s\n", fileresprob); |
printf("Problem with resultfile: %s\n", fileresprob); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); |
} |
} |
strcpy(fileresprobcov,"PROBCOV_"); |
strcpy(fileresprobcov,"PROBCOV_"); |
strcat(fileresprobcov,fileres); |
strcat(fileresprobcov,fileresu); |
if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { |
if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { |
printf("Problem with resultfile: %s\n", fileresprobcov); |
printf("Problem with resultfile: %s\n", fileresprobcov); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); |
} |
} |
strcpy(fileresprobcor,"PROBCOR_"); |
strcpy(fileresprobcor,"PROBCOR_"); |
strcat(fileresprobcor,fileres); |
strcat(fileresprobcor,fileresu); |
if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { |
if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { |
printf("Problem with resultfile: %s\n", fileresprobcor); |
printf("Problem with resultfile: %s\n", fileresprobcor); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); |
} |
} |
printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
pstamp(ficresprob); |
pstamp(ficresprob); |
fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); |
fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); |
fprintf(ficresprob,"# Age"); |
fprintf(ficresprob,"# Age"); |
pstamp(ficresprobcov); |
pstamp(ficresprobcov); |
fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); |
fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); |
fprintf(ficresprobcov,"# Age"); |
fprintf(ficresprobcov,"# Age"); |
pstamp(ficresprobcor); |
pstamp(ficresprobcor); |
fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); |
fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); |
fprintf(ficresprobcor,"# Age"); |
fprintf(ficresprobcor,"# Age"); |
|
|
|
|
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=(nlstate+ndeath);j++){ |
for(j=1; j<=(nlstate+ndeath);j++){ |
fprintf(ficresprob," p%1d-%1d (SE)",i,j); |
fprintf(ficresprob," p%1d-%1d (SE)",i,j); |
fprintf(ficresprobcov," p%1d-%1d ",i,j); |
fprintf(ficresprobcov," p%1d-%1d ",i,j); |
fprintf(ficresprobcor," p%1d-%1d ",i,j); |
fprintf(ficresprobcor," p%1d-%1d ",i,j); |
} |
} |
/* fprintf(ficresprob,"\n"); |
/* fprintf(ficresprob,"\n"); |
fprintf(ficresprobcov,"\n"); |
fprintf(ficresprobcov,"\n"); |
fprintf(ficresprobcor,"\n"); |
fprintf(ficresprobcor,"\n"); |
*/ |
*/ |
xp=vector(1,npar); |
xp=vector(1,npar); |
dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); |
varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); |
first=1; |
first=1; |
fprintf(ficgp,"\n# Routine varprob"); |
fprintf(ficgp,"\n# Routine varprob"); |
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
|
|
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov); |
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); |
They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); |
fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \ |
fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \ |
It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \ |
It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \ |
would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \ |
would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \ |
standard deviations wide on each axis. <br>\ |
standard deviations wide on each axis. <br>\ |
Line 4274 standard deviations wide on each axis. <
|
Line 5670 standard deviations wide on each axis. <
|
and made the appropriate rotation to look at the uncorrelated principal directions.<br>\ |
and made the appropriate rotation to look at the uncorrelated principal directions.<br>\ |
To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n"); |
To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n"); |
|
|
cov[1]=1; |
cov[1]=1; |
/* tj=cptcoveff; */ |
/* tj=cptcoveff; */ |
tj = (int) pow(2,cptcoveff); |
tj = (int) pow(2,cptcoveff); |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
j1=0; |
j1=0; |
for(j1=1; j1<=tj;j1++){ |
for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates or only once*/ |
/*for(i1=1; i1<=ncodemax[t];i1++){ */ |
if (cptcovn>0) { |
/*j1++;*/ |
fprintf(ficresprob, "\n#********** Variable "); |
if (cptcovn>0) { |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresprob, "\n#********** Variable "); |
fprintf(ficresprob, "**********\n#\n"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresprobcov, "\n#********** Variable "); |
fprintf(ficresprob, "**********\n#\n"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresprobcov, "\n#********** Variable "); |
fprintf(ficresprobcov, "**********\n#\n"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprobcov, "**********\n#\n"); |
fprintf(ficgp, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficgp, "\n#********** Variable "); |
fprintf(ficgp, "**********\n#\n"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficgp, "**********\n#\n"); |
|
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(ficresprobcor, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresprobcor, "\n#********** Variable "); |
fprintf(ficresprobcor, "**********\n#"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
if(invalidvarcomb[j1]){ |
fprintf(ficresprobcor, "**********\n#"); |
fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); |
} |
fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); |
|
continue; |
gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); |
} |
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
} |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
for (age=bage; age<=fage; age ++){ |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
cov[2]=age; |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
if(nagesqr==1) |
for (age=bage; age<=fage; age ++){ |
cov[3]= age*age; |
cov[2]=age; |
for (k=1; k<=cptcovn;k++) { |
if(nagesqr==1) |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; |
cov[3]= age*age; |
/*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4 |
for (k=1; k<=cptcovn;k++) { |
* 1 1 1 1 1 |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; |
* 2 2 1 1 1 |
/*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4 |
* 3 1 2 1 1 |
* 1 1 1 1 1 |
*/ |
* 2 2 1 1 1 |
/* nbcode[1][1]=0 nbcode[1][2]=1;*/ |
* 3 1 2 1 1 |
} |
*/ |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* nbcode[1][1]=0 nbcode[1][2]=1;*/ |
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
} |
for (k=1; k<=cptcovprod;k++) |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
for (k=1; k<=cptcovprod;k++) |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++) |
|
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++) |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
|
|
k=0; |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
for(i=1; i<= (nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
k=0; |
k=k+1; |
for(i=1; i<= (nlstate); i++){ |
gp[k]=pmmij[i][j]; |
for(j=1; j<=(nlstate+ndeath);j++){ |
} |
k=k+1; |
} |
gp[k]=pmmij[i][j]; |
|
} |
for(i=1; i<=npar; i++) |
} |
xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); |
|
|
for(i=1; i<=npar; i++) |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); |
k=0; |
|
for(i=1; i<=(nlstate); i++){ |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
for(j=1; j<=(nlstate+ndeath);j++){ |
k=0; |
k=k+1; |
for(i=1; i<=(nlstate); i++){ |
gm[k]=pmmij[i][j]; |
for(j=1; j<=(nlstate+ndeath);j++){ |
} |
k=k+1; |
} |
gm[k]=pmmij[i][j]; |
|
} |
for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) |
} |
gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; |
|
} |
for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) |
|
gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; |
for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) |
} |
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
|
|
|
matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); |
|
|
|
pmij(pmmij,cov,ncovmodel,x,nlstate); |
|
|
|
k=0; |
|
for(i=1; i<=(nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
k=k+1; |
|
mu[k][(int) age]=pmmij[i][j]; |
|
} |
|
} |
|
for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) |
|
for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) |
|
varpij[i][j][(int)age] = doldm[i][j]; |
|
|
|
/*printf("\n%d ",(int)age); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
}*/ |
|
|
|
fprintf(ficresprob,"\n%d ",(int)age); |
|
fprintf(ficresprobcov,"\n%d ",(int)age); |
|
fprintf(ficresprobcor,"\n%d ",(int)age); |
|
|
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) |
|
fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); |
|
fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); |
|
} |
|
i=0; |
|
for (k=1; k<=(nlstate);k++){ |
|
for (l=1; l<=(nlstate+ndeath);l++){ |
|
i++; |
|
fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); |
|
fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); |
|
for (j=1; j<=i;j++){ |
|
/* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */ |
|
fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); |
|
fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); |
|
} |
|
} |
|
}/* end of loop for state */ |
|
} /* end of loop for age */ |
|
free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
|
|
/* Confidence intervalle of pij */ |
|
/* |
|
fprintf(ficgp,"\nunset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); |
|
fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); |
|
fprintf(fichtm,"\n<br>Probability with confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); |
|
fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); |
|
fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); |
|
fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); |
|
*/ |
|
|
|
/* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ |
|
first1=1;first2=2; |
|
for (k2=1; k2<=(nlstate);k2++){ |
|
for (l2=1; l2<=(nlstate+ndeath);l2++){ |
|
if(l2==k2) continue; |
|
j=(k2-1)*(nlstate+ndeath)+l2; |
|
for (k1=1; k1<=(nlstate);k1++){ |
|
for (l1=1; l1<=(nlstate+ndeath);l1++){ |
|
if(l1==k1) continue; |
|
i=(k1-1)*(nlstate+ndeath)+l1; |
|
if(i<=j) continue; |
|
for (age=bage; age<=fage; age ++){ |
|
if ((int)age %5==0){ |
|
v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; |
|
v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
mu1=mu[i][(int) age]/stepm*YEARM ; |
|
mu2=mu[j][(int) age]/stepm*YEARM; |
|
c12=cv12/sqrt(v1*v2); |
|
/* Computing eigen value of matrix of covariance */ |
|
lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
if ((lc2 <0) || (lc1 <0) ){ |
|
if(first2==1){ |
|
first1=0; |
|
printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor); |
|
} |
|
fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog); |
|
/* lc1=fabs(lc1); */ /* If we want to have them positive */ |
|
/* lc2=fabs(lc2); */ |
|
} |
|
|
|
/* Eigen vectors */ |
for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) |
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
for(theta=1; theta <=npar; theta++) |
/*v21=sqrt(1.-v11*v11); *//* error */ |
trgradg[j][theta]=gradg[theta][j]; |
v21=(lc1-v1)/cv12*v11; |
|
v12=-v21; |
matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); |
v22=v11; |
matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); |
tnalp=v21/v11; |
|
if(first1==1){ |
pmij(pmmij,cov,ncovmodel,x,nlstate); |
first1=0; |
|
printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
k=0; |
} |
for(i=1; i<=(nlstate); i++){ |
fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
for(j=1; j<=(nlstate+ndeath);j++){ |
/*printf(fignu*/ |
k=k+1; |
/* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ |
mu[k][(int) age]=pmmij[i][j]; |
/* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ |
} |
if(first==1){ |
} |
first=0; |
for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) |
fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n"); |
for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) |
fprintf(ficgp,"\nset parametric;unset label"); |
varpij[i][j][(int)age] = doldm[i][j]; |
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset ter svg size 640, 480"); |
/*printf("\n%d ",(int)age); |
fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\ |
printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
}*/ |
|
|
|
fprintf(ficresprob,"\n%d ",(int)age); |
|
fprintf(ficresprobcov,"\n%d ",(int)age); |
|
fprintf(ficresprobcor,"\n%d ",(int)age); |
|
|
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) |
|
fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); |
|
fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); |
|
} |
|
i=0; |
|
for (k=1; k<=(nlstate);k++){ |
|
for (l=1; l<=(nlstate+ndeath);l++){ |
|
i++; |
|
fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); |
|
fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); |
|
for (j=1; j<=i;j++){ |
|
/* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */ |
|
fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); |
|
fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); |
|
} |
|
} |
|
}/* end of loop for state */ |
|
} /* end of loop for age */ |
|
free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
|
|
/* Confidence intervalle of pij */ |
|
/* |
|
fprintf(ficgp,"\nunset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); |
|
fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); |
|
fprintf(fichtm,"\n<br>Probability with confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); |
|
fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); |
|
fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); |
|
fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); |
|
*/ |
|
|
|
/* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ |
|
first1=1;first2=2; |
|
for (k2=1; k2<=(nlstate);k2++){ |
|
for (l2=1; l2<=(nlstate+ndeath);l2++){ |
|
if(l2==k2) continue; |
|
j=(k2-1)*(nlstate+ndeath)+l2; |
|
for (k1=1; k1<=(nlstate);k1++){ |
|
for (l1=1; l1<=(nlstate+ndeath);l1++){ |
|
if(l1==k1) continue; |
|
i=(k1-1)*(nlstate+ndeath)+l1; |
|
if(i<=j) continue; |
|
for (age=bage; age<=fage; age ++){ |
|
if ((int)age %5==0){ |
|
v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; |
|
v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
mu1=mu[i][(int) age]/stepm*YEARM ; |
|
mu2=mu[j][(int) age]/stepm*YEARM; |
|
c12=cv12/sqrt(v1*v2); |
|
/* Computing eigen value of matrix of covariance */ |
|
lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
if ((lc2 <0) || (lc1 <0) ){ |
|
if(first2==1){ |
|
first1=0; |
|
printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor); |
|
} |
|
fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog); |
|
/* lc1=fabs(lc1); */ /* If we want to have them positive */ |
|
/* lc2=fabs(lc2); */ |
|
} |
|
|
|
/* Eigen vectors */ |
|
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
|
/*v21=sqrt(1.-v11*v11); *//* error */ |
|
v21=(lc1-v1)/cv12*v11; |
|
v12=-v21; |
|
v22=v11; |
|
tnalp=v21/v11; |
|
if(first1==1){ |
|
first1=0; |
|
printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
|
} |
|
fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
|
/*printf(fignu*/ |
|
/* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ |
|
/* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ |
|
if(first==1){ |
|
first=0; |
|
fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n"); |
|
fprintf(ficgp,"\nset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset ter svg size 640, 480"); |
|
fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
|
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\"> \ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); |
fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); |
fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
}else{ |
}else{ |
first=0; |
first=0; |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
}/* if first */ |
}/* if first */ |
} /* age mod 5 */ |
} /* age mod 5 */ |
} /* end loop age */ |
} /* end loop age */ |
fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
first=1; |
first=1; |
} /*l12 */ |
} /*l12 */ |
} /* k12 */ |
} /* k12 */ |
} /*l1 */ |
} /*l1 */ |
}/* k1 */ |
}/* k1 */ |
/* } */ /* loop covariates */ |
} /* loop on combination of covariates j1 */ |
} |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar); |
free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar); |
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
fclose(ficresprob); |
fclose(ficresprob); |
fclose(ficresprobcov); |
fclose(ficresprobcov); |
fclose(ficresprobcor); |
fclose(ficresprobcor); |
fflush(ficgp); |
fflush(ficgp); |
fflush(fichtmcov); |
fflush(fichtmcov); |
} |
} |
|
|
|
|
|
/******************* Printing html file ***********/ |
/******************* Printing html file ***********/ |
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
int lastpass, int stepm, int weightopt, char model[],\ |
int lastpass, int stepm, int weightopt, char model[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int popforecast, int estepm ,\ |
int popforecast, int prevfcast, int backcast, int estepm , \ |
double jprev1, double mprev1,double anprev1, \ |
double jprev1, double mprev1,double anprev1, double dateprev1, \ |
double jprev2, double mprev2,double anprev2){ |
double jprev2, double mprev2,double anprev2, double dateprev2){ |
int jj1, k1, i1, cpt; |
int jj1, k1, i1, cpt; |
|
|
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
</ul>"); |
</ul>"); |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \ |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
- Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ", |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
|
fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ", |
|
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm")); |
|
fprintf(fichtm,", <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
- Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_")); |
stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
|
- Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
|
stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_")); |
|
fprintf(fichtm,"\ |
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
- Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_")); |
|
fprintf(fichtm,"\ |
|
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
<a href=\"%s\">%s</a> <br>\n", |
<a href=\"%s\">%s</a> <br>\n", |
estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_")); |
estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_")); |
fprintf(fichtm,"\ |
if(prevfcast==1){ |
- Population projections by age and states: \ |
fprintf(fichtm,"\ |
|
- Prevalence projections by age and states: \ |
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
|
} |
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
jj1=0; |
jj1=0; |
for(k1=1; k1<=m;k1++){ |
for(k1=1; k1<=m;k1++){ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
|
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
Line 4565 fprintf(fichtm," \n<ul><li><b>Graphs</b>
|
Line 5974 fprintf(fichtm," \n<ul><li><b>Graphs</b>
|
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); |
printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); |
} |
} |
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
|
printf("\nCombination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
} |
} |
/* aij, bij */ |
/* aij, bij */ |
fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ |
fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ |
<img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
/* Pij */ |
/* Pij */ |
fprintf(fichtm,"<br>\n- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ |
<img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
/* Quasi-incidences */ |
/* Quasi-incidences */ |
fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ |
divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ |
<img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
/* Survival functions (period) in state j */ |
/* Survival functions (period) in state j */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
Line 4586 divided by h: hPij/h : <a href=\"%s_%d-3
|
Line 6001 divided by h: hPij/h : <a href=\"%s_%d-3
|
} |
} |
/* State specific survival functions (period) */ |
/* State specific survival functions (period) */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions from state %d in any different live states and total.\ |
fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ |
Or probability to survive in various states (1 to %d) being in state %d at different ages.\ |
Or probability to survive in various states (1 to %d) being in state %d at different ages. \ |
<a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1); |
<a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1); |
} |
} |
/* Period (stable) prevalence in each health state */ |
/* Period (stable) prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); |
} |
} |
|
if(backcast==1){ |
|
/* Period (stable) back prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1); |
|
} |
|
} |
|
if(prevfcast==1){ |
|
/* Projection of prevalence up to period (stable) prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1); |
|
} |
|
} |
|
|
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \ |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \ |
<img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); |
<img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); |
} |
} |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
}/* End k1 */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
|
|
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
\n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\ |
\n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\ |
- Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \ |
- Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \ |
- 95%% confidence intervals and Wald tests of the estimated parameters are in the log file.<br> \ |
- 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \ |
But because parameters are usually highly correlated (a higher incidence of disability \ |
But because parameters are usually highly correlated (a higher incidence of disability \ |
and a higher incidence of recovery can give very close observed transition) it might \ |
and a higher incidence of recovery can give very close observed transition) it might \ |
be very useful to look not only at linear confidence intervals estimated from the \ |
be very useful to look not only at linear confidence intervals estimated from the \ |
Line 4615 variances but at the covariance matrix.
|
Line 6045 variances but at the covariance matrix.
|
covariance matrix of the one-step probabilities. \ |
covariance matrix of the one-step probabilities. \ |
See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres); |
See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres); |
|
|
fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_")); |
subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
- Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_")); |
subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_")); |
|
|
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
- Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_")); |
subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \ |
- Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \ |
<a href=\"%s\">%s</a> <br>\n</li>", |
<a href=\"%s\">%s</a> <br>\n</li>", |
estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_")); |
estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \ |
- (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \ |
<a href=\"%s\">%s</a> <br>\n</li>", |
<a href=\"%s\">%s</a> <br>\n</li>", |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
- Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
|
/* if(popforecast==1) fprintf(fichtm,"\n */ |
/* if(popforecast==1) fprintf(fichtm,"\n */ |
/* - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ |
/* - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ |
Line 4648 See page 'Matrix of variance-covariance
|
Line 6078 See page 'Matrix of variance-covariance
|
/* <br>",fileres,fileres,fileres,fileres); */ |
/* <br>",fileres,fileres,fileres,fileres); */ |
/* else */ |
/* else */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
fflush(fichtm); |
fflush(fichtm); |
fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); |
fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); |
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
jj1=0; |
jj1=0; |
for(k1=1; k1<=m;k1++){ |
for(k1=1; k1<=m;k1++){ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++) |
for (cpt=1; cpt<=cptcoveff;cpt++) /**< cptcoveff number of variables */ |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
|
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); |
|
continue; |
|
} |
} |
} |
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \ |
fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \ |
prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\ |
<img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1); |
<img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1); |
} |
} |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
true period expectancies (those weighted with period prevalences are also\ |
true period expectancies (those weighted with period prevalences are also\ |
drawn in addition to the population based expectancies computed using\ |
drawn in addition to the population based expectancies computed using\ |
observed and cahotic prevalences: %s_%d.svg<br>\ |
observed and cahotic prevalences: <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\ |
<img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1); |
<img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1); |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
}/* End k1 */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
fflush(fichtm); |
fflush(fichtm); |
} |
} |
|
|
/******************* Gnuplot file **************/ |
/******************* Gnuplot file **************/ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){ |
|
|
char dirfileres[132],optfileres[132]; |
char dirfileres[132],optfileres[132]; |
|
char gplotcondition[132]; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; |
|
int lv=0, vlv=0, kl=0; |
int ng=0; |
int ng=0; |
int vpopbased; |
int vpopbased; |
|
int ioffset; /* variable offset for columns */ |
|
|
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
/* fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */ |
/* fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */ |
Line 4695 void printinggnuplot(char fileresu[], ch
|
Line 6134 void printinggnuplot(char fileresu[], ch
|
|
|
/*#ifdef windows */ |
/*#ifdef windows */ |
fprintf(ficgp,"cd \"%s\" \n",pathc); |
fprintf(ficgp,"cd \"%s\" \n",pathc); |
/*#endif */ |
/*#endif */ |
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
|
|
|
/* Contribution to likelihood */ |
|
/* Plot the probability implied in the likelihood */ |
|
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
|
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";"); |
|
/* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */ |
|
fprintf(ficgp,"\nset ter pngcairo size 640, 480"); |
|
/* nice for mle=4 plot by number of matrix products. |
|
replot "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */ |
|
/* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)" */ |
|
/* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */ |
|
fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_")); |
|
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk)); |
|
fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_")); |
|
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk)); |
|
for (i=1; i<= nlstate ; i ++) { |
|
fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i); |
|
fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot \"%s\"",subdirf(fileresilk)); |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j); |
|
} |
|
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
|
} |
|
/* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */ |
|
/* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */ |
|
/* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */ |
|
fprintf(ficgp,"\nset out;unset log\n"); |
|
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
strcpy(dirfileres,optionfilefiname); |
strcpy(dirfileres,optionfilefiname); |
strcpy(optfileres,"vpl"); |
strcpy(optfileres,"vpl"); |
/* 1eme*/ |
/* 1eme*/ |
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n"); |
for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */ |
for (cpt=1; cpt<= nlstate ; cpt ++) { |
for (k1=1; k1<= m && selected(k1) ; k1 ++) { /* For each valid combination of covariate */ |
for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); |
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files "); |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
fprintf(ficgp,"set xlabel \"Age\" \n\ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ |
set ylabel \"Probability\" \n\ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
set ter svg size 640, 480\n\ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ |
|
/* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); |
|
fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \n\ |
|
set ylabel \"Probability\" \n \ |
|
set ter svg size 640, 480\n \ |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
|
|
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); |
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); |
fprintf(ficgp,"\nset out \n"); |
if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
|
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
|
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */ |
|
if(cptcoveff ==0){ |
|
fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ", 2+(cpt-1), cpt ); |
|
}else{ |
|
kl=0; |
|
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
kl++; |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(k==cptcoveff){ |
|
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
|
4+(cpt-1), cpt ); /* 4 or 6 ?*/ |
|
}else{ |
|
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
|
kl++; |
|
} |
|
} /* end covariate */ |
|
} /* end if no covariate */ |
|
} /* end if backcast */ |
|
fprintf(ficgp,"\nset out \n"); |
} /* k1 */ |
} /* k1 */ |
} /* cpt */ |
} /* cpt */ |
/*2 eme*/ |
/*2 eme*/ |
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n"); |
|
for (k1=1; k1<= m ; k1 ++) { |
for (k1=1; k1<= m ; k1 ++) { |
|
|
|
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); |
fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
if(vpopbased==0) |
if(vpopbased==0) |
Line 4764 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 6291 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
} /* vpopbased */ |
} /* vpopbased */ |
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
} /* k1 */ |
} /* k1 */ |
|
|
|
|
/*3eme*/ |
/*3eme*/ |
|
|
for (k1=1; k1<= m ; k1 ++) { |
for (k1=1; k1<= m ; k1 ++) { |
|
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files: cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
/* k=2+nlstate*(2*cpt-2); */ |
/* k=2+nlstate*(2*cpt-2); */ |
k=2+(nlstate+1)*(cpt-1); |
k=2+(nlstate+1)*(cpt-1); |
fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); |
Line 4779 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 6323 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
|
*/ |
*/ |
for (i=1; i< nlstate ; i ++) { |
for (i=1; i< nlstate ; i ++) { |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1); |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1); |
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
|
|
} |
} |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt); |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt); |
} |
} |
} |
} |
|
|
|
/* 4eme */ |
/* Survival functions (period) from state i in state j by initial state i */ |
/* Survival functions (period) from state i in state j by initial state i */ |
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
|
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
k=3; |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
set ter svg size 640, 480\n\ |
set ter svg size 640, 480\n \ |
unset log y\n\ |
unset log y\n \ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; |
for (i=1; i<= nlstate ; i ++){ |
for (i=1; i<= nlstate ; i ++){ |
if(i==1) |
if(i==1){ |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
else |
}else{ |
fprintf(ficgp,", '' "); |
fprintf(ficgp,", '' "); |
|
} |
l=(nlstate+ndeath)*(i-1)+1; |
l=(nlstate+ndeath)*(i-1)+1; |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
for (j=2; j<= nlstate+ndeath ; j ++) |
for (j=2; j<= nlstate+ndeath ; j ++) |
Line 4814 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 6375 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
|
|
|
/* 5eme */ |
/* Survival functions (period) from state i in state j by final state j */ |
/* Survival functions (period) from state i in state j by final state j */ |
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
k=3; |
|
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
set ter svg size 640, 480\n\ |
set ter svg size 640, 480\n \ |
unset log y\n\ |
unset log y\n \ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
if(j==1) |
if(j==1) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
Line 4848 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 6425 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
|
|
/* CV preval stable (period) */ |
/* 6eme */ |
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
/* CV preval stable (period) for each covariate */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
k=3; |
|
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
set ter svg size 640, 480\n\ |
set ter svg size 640, 480\n \ |
unset log y\n\ |
unset log y\n \ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; /* Offset */ |
for (i=1; i<= nlstate ; i ++){ |
for (i=1; i<= nlstate ; i ++){ |
if(i==1) |
if(i==1) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
Line 4873 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 6466 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
|
|
|
|
|
/* 7eme */ |
|
if(backcast == 1){ |
|
/* CV back preval stable (period) for each covariate */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
|
set ter svg size 640, 480\n \ |
|
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; /* Offset */ |
|
for (i=1; i<= nlstate ; i ++){ |
|
if(i==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
/* l=(nlstate+ndeath)*(i-1)+1; */ |
|
l=(nlstate+ndeath)*(cpt-1)+1; |
|
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
|
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */ |
|
/* for (j=2; j<= nlstate ; j ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
|
/* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */ |
|
fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if backcast */ |
|
|
|
/* 8eme */ |
|
if(prevfcast==1){ |
|
/* Projection from cross-sectional to stable (period) for each covariate */ |
|
|
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
|
set ter svg size 640, 480\n \ |
|
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
if(i==1){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
|
}else{ |
|
fprintf(ficgp,",\\\n '' "); |
|
} |
|
if(cptcoveff ==0){ /* No covariate */ |
|
ioffset=2; /* Age is in 2 */ |
|
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
fprintf(ficgp," u %d:(", ioffset); |
|
if(i==nlstate+1) |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
else |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
}else{ /* more than 2 covariates */ |
|
if(cptcoveff ==1){ |
|
ioffset=4; /* Age is in 4 */ |
|
}else{ |
|
ioffset=6; /* Age is in 6 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
} |
|
fprintf(ficgp," u %d:(",ioffset); |
|
kl=0; |
|
strcpy(gplotcondition,"("); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
|
kl++; |
|
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
|
kl++; |
|
if(k <cptcoveff && cptcoveff>1) |
|
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
|
} |
|
strcpy(gplotcondition+strlen(gplotcondition),")"); |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(i==nlstate+1){ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
}else{ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
} |
|
} /* end if covariate */ |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if prevfcast */ |
|
|
|
|
/* proba elementaires */ |
/* proba elementaires */ |
fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n"); |
fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
Line 4888 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 6621 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
fprintf(ficgp,"\n"); |
fprintf(ficgp,"\n"); |
} |
} |
} |
} |
} |
} |
fprintf(ficgp,"##############\n#\n"); |
fprintf(ficgp,"##############\n#\n"); |
|
|
/*goto avoid;*/ |
/*goto avoid;*/ |
fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n"); |
fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n"); |
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
Line 4906 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 6639 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n"); |
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n"); |
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
fprintf(ficgp,"#\n"); |
fprintf(ficgp,"#\n"); |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
fprintf(ficgp,"# ng=%d\n",ng); |
fprintf(ficgp,"# ng=%d\n",ng); |
fprintf(ficgp,"# jk=1 to 2^%d=%d\n",cptcoveff,m); |
fprintf(ficgp,"# jk=1 to 2^%d=%d\n",cptcoveff,m); |
for(jk=1; jk <=m; jk++) { |
for(jk=1; jk <=m; jk++) { |
fprintf(ficgp,"# jk=%d\n",jk); |
fprintf(ficgp,"# jk=%d\n",jk); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
if (ng==1){ |
if (ng==1){ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
fprintf(ficgp,"\nunset log y"); |
fprintf(ficgp,"\nunset log y"); |
}else if (ng==2){ |
}else if (ng==2){ |
fprintf(ficgp,"\nset ylabel \"Probability\"\n"); |
fprintf(ficgp,"\nset ylabel \"Probability\"\n"); |
fprintf(ficgp,"\nset log y"); |
fprintf(ficgp,"\nset log y"); |
}else if (ng==3){ |
}else if (ng==3){ |
fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); |
fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); |
fprintf(ficgp,"\nset log y"); |
fprintf(ficgp,"\nset log y"); |
}else |
}else |
fprintf(ficgp,"\nunset title "); |
fprintf(ficgp,"\nunset title "); |
fprintf(ficgp,"\nplot [%.f:%.f] ",ageminpar,agemaxpar); |
fprintf(ficgp,"\nplot [%.f:%.f] ",ageminpar,agemaxpar); |
i=1; |
i=1; |
for(k2=1; k2<=nlstate; k2++) { |
for(k2=1; k2<=nlstate; k2++) { |
k3=i; |
k3=i; |
for(k=1; k<=(nlstate+ndeath); k++) { |
for(k=1; k<=(nlstate+ndeath); k++) { |
if (k != k2){ |
if (k != k2){ |
switch( ng) { |
switch( ng) { |
case 1: |
case 1: |
if(nagesqr==0) |
if(nagesqr==0) |
fprintf(ficgp," p%d+p%d*x",i,i+1); |
fprintf(ficgp," p%d+p%d*x",i,i+1); |
else /* nagesqr =1 */ |
else /* nagesqr =1 */ |
fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
break; |
break; |
case 2: /* ng=2 */ |
case 2: /* ng=2 */ |
if(nagesqr==0) |
if(nagesqr==0) |
fprintf(ficgp," exp(p%d+p%d*x",i,i+1); |
fprintf(ficgp," exp(p%d+p%d*x",i,i+1); |
else /* nagesqr =1 */ |
else /* nagesqr =1 */ |
fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
break; |
break; |
case 3: |
case 3: |
if(nagesqr==0) |
if(nagesqr==0) |
fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); |
fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); |
else /* nagesqr =1 */ |
else /* nagesqr =1 */ |
fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr); |
fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr); |
break; |
break; |
} |
} |
ij=1;/* To be checked else nbcode[0][0] wrong */ |
ij=1;/* To be checked else nbcode[0][0] wrong */ |
for(j=3; j <=ncovmodel-nagesqr; j++) { |
for(j=3; j <=ncovmodel-nagesqr; j++) { |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
if(ij <=cptcovage) { /* Bug valgrind */ |
if(ij <=cptcovage) { /* Bug valgrind */ |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
ij++; |
ij++; |
} |
} |
} |
} |
else |
else |
fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); /* Valgrind bug nbcode */ |
} |
} |
if(ng != 1){ |
}else{ |
fprintf(ficgp,")/(1"); |
i=i-ncovmodel; |
|
if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */ |
for(k1=1; k1 <=nlstate; k1++){ |
fprintf(ficgp," (1."); |
if(nagesqr==0) |
} |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |
|
else /* nagesqr =1 */ |
if(ng != 1){ |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr); |
fprintf(ficgp,")/(1"); |
|
|
ij=1; |
for(k1=1; k1 <=nlstate; k1++){ |
for(j=3; j <=ncovmodel-nagesqr; j++){ |
if(nagesqr==0) |
if(ij <=cptcovage) { /* Bug valgrind */ |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
else /* nagesqr =1 */ |
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr); |
/* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
|
ij++; |
ij=1; |
} |
for(j=3; j <=ncovmodel-nagesqr; j++){ |
} |
if(ij <=cptcovage) { /* Bug valgrind */ |
else |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
} |
/* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
fprintf(ficgp,")"); |
ij++; |
} |
} |
fprintf(ficgp,")"); |
} |
if(ng ==2) |
else |
fprintf(ficgp," t \"p%d%d\" ", k2,k); |
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);/* Valgrind bug nbcode */ |
else /* ng= 3 */ |
} |
fprintf(ficgp," t \"i%d%d\" ", k2,k); |
fprintf(ficgp,")"); |
}else{ /* end ng <> 1 */ |
} |
fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k); |
fprintf(ficgp,")"); |
} |
if(ng ==2) |
if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); |
fprintf(ficgp," t \"p%d%d\" ", k2,k); |
i=i+ncovmodel; |
else /* ng= 3 */ |
} |
fprintf(ficgp," t \"i%d%d\" ", k2,k); |
} /* end k */ |
}else{ /* end ng <> 1 */ |
} /* end k2 */ |
if( k !=k2) /* logit p11 is hard to draw */ |
fprintf(ficgp,"\n set out\n"); |
fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k); |
} /* end jk */ |
} |
} /* end ng */ |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
/* avoid: */ |
fprintf(ficgp,","); |
fflush(ficgp); |
if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath)) |
|
fprintf(ficgp,","); |
|
i=i+ncovmodel; |
|
} /* end k */ |
|
} /* end k2 */ |
|
fprintf(ficgp,"\n set out\n"); |
|
} /* end jk */ |
|
} /* end ng */ |
|
/* avoid: */ |
|
fflush(ficgp); |
} /* end gnuplot */ |
} /* end gnuplot */ |
|
|
|
|
/*************** Moving average **************/ |
/*************** Moving average **************/ |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){ |
/* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */ |
|
int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){ |
int i, cpt, cptcod; |
|
int modcovmax =1; |
int i, cpt, cptcod; |
int mobilavrange, mob; |
int modcovmax =1; |
double age; |
int mobilavrange, mob; |
|
int iage=0; |
modcovmax=2*cptcoveff;/* Max number of modalities. We suppose |
|
a covariate has 2 modalities */ |
double sum=0.; |
if (cptcovn<1) modcovmax=1; /* At least 1 pass */ |
double age; |
|
double *sumnewp, *sumnewm; |
if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
double *agemingood, *agemaxgood; /* Currently identical for all covariates */ |
if(mobilav==1) mobilavrange=5; /* default */ |
|
else mobilavrange=mobilav; |
|
for (age=bage; age<=fage; age++) |
/* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose */ |
for (i=1; i<=nlstate;i++) |
/* a covariate has 2 modalities, should be equal to ncovcombmax *\/ */ |
for (cptcod=1;cptcod<=modcovmax;cptcod++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
sumnewp = vector(1,ncovcombmax); |
/* We keep the original values on the extreme ages bage, fage and for |
sumnewm = vector(1,ncovcombmax); |
fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 |
agemingood = vector(1,ncovcombmax); |
we use a 5 terms etc. until the borders are no more concerned. |
agemaxgood = vector(1,ncovcombmax); |
*/ |
|
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
sumnewm[cptcod]=0.; |
for (i=1; i<=nlstate;i++){ |
sumnewp[cptcod]=0.; |
for (cptcod=1;cptcod<=modcovmax;cptcod++){ |
agemingood[cptcod]=0; |
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
agemaxgood[cptcod]=0; |
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
} |
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */ |
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
|
} |
if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
if(mobilav==1) mobilavrange=5; /* default */ |
} |
else mobilavrange=mobilav; |
} |
for (age=bage; age<=fage; age++) |
}/* end age */ |
for (i=1; i<=nlstate;i++) |
}/* end mob */ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++) |
}else return -1; |
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
return 0; |
/* We keep the original values on the extreme ages bage, fage and for |
}/* End movingaverage */ |
fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 |
|
we use a 5 terms etc. until the borders are no more concerned. |
|
*/ |
|
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
|
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
|
for (i=1; i<=nlstate;i++){ |
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
|
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
|
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
|
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
|
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
|
} |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
|
} |
|
} |
|
}/* end age */ |
|
}/* end mob */ |
|
}else |
|
return -1; |
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
|
/* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */ |
|
if(invalidvarcomb[cptcod]){ |
|
printf("\nCombination (%d) ignored because no cases \n",cptcod); |
|
continue; |
|
} |
|
|
|
agemingood[cptcod]=fage-(mob-1)/2; |
|
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */ |
|
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingood[cptcod]=age; |
|
}else{ /* bad */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* age */ |
|
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod); |
|
/* for (i=1; i<=nlstate;i++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
|
/* } /\* i *\/ */ |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
/* From youngest, finding the oldest wrong */ |
|
agemaxgood[cptcod]=bage+(mob-1)/2; |
|
for (age=bage+(mob-1)/2; age<=fage; age++){ |
|
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemaxgood[cptcod]=age; |
|
}else{ /* bad */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* age */ |
|
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod); |
|
/* for (i=1; i<=nlstate;i++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
|
/* } /\* i *\/ */ |
|
} /* end bad */ |
|
|
|
for (age=bage; age<=fage; age++){ |
|
printf("%d %d ", cptcod, (int)age); |
|
sumnewp[cptcod]=0.; |
|
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewp[cptcod]+=probs[(int)age][i][cptcod]; |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
/* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */ |
|
} |
|
/* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */ |
|
} |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* brutal averaging */ |
|
for (i=1; i<=nlstate;i++){ |
|
for (age=1; age<=bage; age++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
|
} |
|
for (age=fage; age<=AGESUP; age++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
|
} |
|
} /* end i status */ |
|
for (i=nlstate+1; i<=nlstate+ndeath;i++){ |
|
for (age=1; age<=AGESUP; age++){ |
|
/*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/ |
|
mobaverage[(int)age][i][cptcod]=0.; |
|
} |
|
} |
|
}/* end cptcod */ |
|
free_vector(sumnewm,1, ncovcombmax); |
|
free_vector(sumnewp,1, ncovcombmax); |
|
free_vector(agemaxgood,1, ncovcombmax); |
|
free_vector(agemingood,1, ncovcombmax); |
|
return 0; |
|
}/* End movingaverage */ |
|
|
|
|
/************** Forecasting ******************/ |
/************** Forecasting ******************/ |
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
Line 5061 void prevforecast(char fileres[], double
|
Line 6916 void prevforecast(char fileres[], double
|
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double *popeffectif,*popcount; |
double *popeffectif,*popcount; |
double ***p3mat; |
double ***p3mat; |
double ***mobaverage; |
/* double ***mobaverage; */ |
char fileresf[FILENAMELENGTH]; |
char fileresf[FILENAMELENGTH]; |
|
|
agelim=AGESUP; |
agelim=AGESUP; |
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
|
We still use firstpass and lastpass as another selection. |
|
*/ |
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */ |
|
/* firstpass, lastpass, stepm, weightopt, model); */ |
|
|
strcpy(fileresf,"F_"); |
strcpy(fileresf,"F_"); |
strcat(fileresf,fileresu); |
strcat(fileresf,fileresu); |
Line 5073 void prevforecast(char fileres[], double
|
Line 6933 void prevforecast(char fileres[], double
|
printf("Problem with forecast resultfile: %s\n", fileresf); |
printf("Problem with forecast resultfile: %s\n", fileresf); |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
} |
} |
printf("Computing forecasting: result on file '%s' \n", fileresf); |
printf("Computing forecasting: result on file '%s', please wait... \n", fileresf); |
fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf); |
fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf); |
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
if (mobilav!=0) { |
|
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
stepsize=(int) (stepm+YEARM-1)/YEARM; |
if (stepm<=12) stepsize=1; |
if (stepm<=12) stepsize=1; |
Line 5104 void prevforecast(char fileres[], double
|
Line 6957 void prevforecast(char fileres[], double
|
if(jprojmean==0) jprojmean=1; |
if(jprojmean==0) jprojmean=1; |
if(mprojmean==0) jprojmean=1; |
if(mprojmean==0) jprojmean=1; |
|
|
i1=cptcoveff; |
i1=pow(2,cptcoveff); |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
|
|
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
|
|
/* if (h==(int)(YEARM*yearp)){ */ |
/* if (h==(int)(YEARM*yearp)){ */ |
for(cptcov=1, k=0;cptcov<=i1;cptcov++){ |
for(k=1;k<=i1;k++){ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
if(invalidvarcomb[k]){ |
k=k+1; |
printf("\nCombination (%d) projection ignored because no cases \n",k); |
fprintf(ficresf,"\n#******"); |
continue; |
for(j=1;j<=cptcoveff;j++) { |
} |
fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
} |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresf,"******\n"); |
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresf,"# Covariate valuofcovar yearproj age"); |
} |
for(j=1; j<=nlstate+ndeath;j++){ |
fprintf(ficresf," yearproj age"); |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++){ |
fprintf(ficresf," p%d%d",i,j); |
for(i=1; i<=nlstate;i++) |
fprintf(ficresf," p.%d",j); |
fprintf(ficresf," p%d%d",i,j); |
} |
fprintf(ficresf," wp.%d",j); |
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
} |
fprintf(ficresf,"\n"); |
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
fprintf(ficresf,"\n"); |
|
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
for (agec=fage; agec>=(ageminpar-1); agec--){ |
for (agec=fage; agec>=(ageminpar-1); agec--){ |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
nhstepm = nhstepm/hstepm; |
nhstepm = nhstepm/hstepm; |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
|
for (h=0; h<=nhstepm; h++){ |
for (h=0; h<=nhstepm; h++){ |
if (h*hstepm/YEARM*stepm ==yearp) { |
if (h*hstepm/YEARM*stepm ==yearp) { |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n"); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
} |
} |
for(j=1; j<=nlstate+ndeath;j++) { |
for(j=1; j<=nlstate+ndeath;j++) { |
ppij=0.; |
ppij=0.; |
for(i=1; i<=nlstate;i++) { |
for(i=1; i<=nlstate;i++) { |
if (mobilav==1) |
if (mobilav==1) |
ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; |
ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k]; |
else { |
else { |
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; |
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; |
} |
|
if (h*hstepm/YEARM*stepm== yearp) { |
|
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
|
} |
|
} /* end i */ |
|
if (h*hstepm/YEARM*stepm==yearp) { |
|
fprintf(ficresf," %.3f", ppij); |
|
} |
} |
}/* end j */ |
if (h*hstepm/YEARM*stepm== yearp) { |
} /* end h */ |
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
} |
} /* end agec */ |
} /* end i */ |
} /* end yearp */ |
if (h*hstepm/YEARM*stepm==yearp) { |
} /* end cptcod */ |
fprintf(ficresf," %.3f", ppij); |
} /* end cptcov */ |
} |
|
}/* end j */ |
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
} /* end h */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
} /* end yearp */ |
|
} /* end k */ |
|
|
fclose(ficresf); |
fclose(ficresf); |
} |
printf("End of Computing forecasting \n"); |
|
fprintf(ficlog,"End of Computing forecasting\n"); |
|
|
/************** Forecasting *****not tested NB*************/ |
} |
void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ |
|
|
|
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
|
int *popage; |
|
double calagedatem, agelim, kk1, kk2; |
|
double *popeffectif,*popcount; |
|
double ***p3mat,***tabpop,***tabpopprev; |
|
double ***mobaverage; |
|
char filerespop[FILENAMELENGTH]; |
|
|
|
tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
/* /\************** Back Forecasting ******************\/ */ |
tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
/* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */ |
agelim=AGESUP; |
/* /\* back1, year, month, day of starting backection */ |
calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; |
/* agemin, agemax range of age */ |
|
/* dateprev1 dateprev2 range of dates during which prevalence is computed */ |
|
/* anback2 year of en of backection (same day and month as back1). */ |
|
/* *\/ */ |
|
/* int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */ |
|
/* double agec; /\* generic age *\/ */ |
|
/* double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */ |
|
/* double *popeffectif,*popcount; */ |
|
/* double ***p3mat; */ |
|
/* /\* double ***mobaverage; *\/ */ |
|
/* char fileresfb[FILENAMELENGTH]; */ |
|
|
|
/* agelim=AGESUP; */ |
|
/* /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */ |
|
/* in each health status at the date of interview (if between dateprev1 and dateprev2). */ |
|
/* We still use firstpass and lastpass as another selection. */ |
|
/* *\/ */ |
|
/* /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */ |
|
/* /\* firstpass, lastpass, stepm, weightopt, model); *\/ */ |
|
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
|
|
/* strcpy(fileresfb,"FB_"); */ |
|
/* strcat(fileresfb,fileresu); */ |
|
/* if((ficresfb=fopen(fileresfb,"w"))==NULL) { */ |
|
/* printf("Problem with back forecast resultfile: %s\n", fileresfb); */ |
|
/* fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */ |
|
/* } */ |
|
/* printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
|
/* fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
|
|
|
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
|
|
|
/* /\* if (mobilav!=0) { *\/ */ |
|
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
|
/* /\* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* } *\/ */ |
|
|
|
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
|
/* if (stepm<=12) stepsize=1; */ |
|
/* if(estepm < stepm){ */ |
|
/* printf ("Problem %d lower than %d\n",estepm, stepm); */ |
|
/* } */ |
|
/* else hstepm=estepm; */ |
|
|
|
/* hstepm=hstepm/stepm; */ |
|
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
|
/* fractional in yp1 *\/ */ |
|
/* anprojmean=yp; */ |
|
/* yp2=modf((yp1*12),&yp); */ |
|
/* mprojmean=yp; */ |
|
/* yp1=modf((yp2*30.5),&yp); */ |
|
/* jprojmean=yp; */ |
|
/* if(jprojmean==0) jprojmean=1; */ |
|
/* if(mprojmean==0) jprojmean=1; */ |
|
|
|
/* i1=cptcoveff; */ |
|
/* if (cptcovn < 1){i1=1;} */ |
|
|
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
/* fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); */ |
|
|
|
/* fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */ |
|
|
|
/* /\* if (h==(int)(YEARM*yearp)){ *\/ */ |
|
/* for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */ |
|
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
|
/* k=k+1; */ |
|
/* fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */ |
|
/* for(j=1;j<=cptcoveff;j++) { */ |
|
/* fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
|
/* } */ |
|
/* fprintf(ficresfb," yearbproj age"); */ |
|
/* for(j=1; j<=nlstate+ndeath;j++){ */ |
|
/* for(i=1; i<=nlstate;i++) */ |
|
/* fprintf(ficresfb," p%d%d",i,j); */ |
|
/* fprintf(ficresfb," p.%d",j); */ |
|
/* } */ |
|
/* for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) { */ |
|
/* /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { *\/ */ |
|
/* fprintf(ficresfb,"\n"); */ |
|
/* fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
|
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
|
/* nhstepm=(int) rint((agelim-agec)*YEARM/stepm); */ |
|
/* nhstepm = nhstepm/hstepm; */ |
|
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
/* for (h=0; h<=nhstepm; h++){ */ |
|
/* if (h*hstepm/YEARM*stepm ==yearp) { */ |
|
/* fprintf(ficresfb,"\n"); */ |
|
/* for(j=1;j<=cptcoveff;j++) */ |
|
/* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
|
/* fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */ |
|
/* } */ |
|
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
|
/* ppij=0.; */ |
|
/* for(i=1; i<=nlstate;i++) { */ |
|
/* if (mobilav==1) */ |
|
/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */ |
|
/* else { */ |
|
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */ |
|
/* } */ |
|
/* if (h*hstepm/YEARM*stepm== yearp) { */ |
|
/* fprintf(ficresfb," %.3f", p3mat[i][j][h]); */ |
|
/* } */ |
|
/* } /\* end i *\/ */ |
|
/* if (h*hstepm/YEARM*stepm==yearp) { */ |
|
/* fprintf(ficresfb," %.3f", ppij); */ |
|
/* } */ |
|
/* }/\* end j *\/ */ |
|
/* } /\* end h *\/ */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } /\* end agec *\/ */ |
|
/* } /\* end yearp *\/ */ |
|
/* } /\* end cptcod *\/ */ |
|
/* } /\* end cptcov *\/ */ |
|
|
|
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
|
|
/* fclose(ficresfb); */ |
|
/* printf("End of Computing Back forecasting \n"); */ |
|
/* fprintf(ficlog,"End of Computing Back forecasting\n"); */ |
|
|
|
/* } */ |
|
|
|
/************** Forecasting *****not tested NB*************/ |
|
/* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */ |
|
|
strcpy(filerespop,"POP_"); |
/* int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */ |
strcat(filerespop,fileresu); |
/* int *popage; */ |
if((ficrespop=fopen(filerespop,"w"))==NULL) { |
/* double calagedatem, agelim, kk1, kk2; */ |
printf("Problem with forecast resultfile: %s\n", filerespop); |
/* double *popeffectif,*popcount; */ |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); |
/* double ***p3mat,***tabpop,***tabpopprev; */ |
} |
/* /\* double ***mobaverage; *\/ */ |
printf("Computing forecasting: result on file '%s' \n", filerespop); |
/* char filerespop[FILENAMELENGTH]; */ |
fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); |
|
|
/* tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* agelim=AGESUP; */ |
|
/* calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */ |
|
|
|
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
|
|
|
|
/* strcpy(filerespop,"POP_"); */ |
|
/* strcat(filerespop,fileresu); */ |
|
/* if((ficrespop=fopen(filerespop,"w"))==NULL) { */ |
|
/* printf("Problem with forecast resultfile: %s\n", filerespop); */ |
|
/* fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */ |
|
/* } */ |
|
/* printf("Computing forecasting: result on file '%s' \n", filerespop); */ |
|
/* fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */ |
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
|
|
if (mobilav!=0) { |
/* /\* if (mobilav!=0) { *\/ */ |
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ |
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
/* /\* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
} |
/* /\* } *\/ */ |
} |
/* /\* } *\/ */ |
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
if (stepm<=12) stepsize=1; |
/* if (stepm<=12) stepsize=1; */ |
|
|
agelim=AGESUP; |
|
|
|
hstepm=1; |
/* agelim=AGESUP; */ |
hstepm=hstepm/stepm; |
|
|
|
if (popforecast==1) { |
/* hstepm=1; */ |
if((ficpop=fopen(popfile,"r"))==NULL) { |
/* hstepm=hstepm/stepm; */ |
printf("Problem with population file : %s\n",popfile);exit(0); |
|
fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); |
/* if (popforecast==1) { */ |
} |
/* if((ficpop=fopen(popfile,"r"))==NULL) { */ |
popage=ivector(0,AGESUP); |
/* printf("Problem with population file : %s\n",popfile);exit(0); */ |
popeffectif=vector(0,AGESUP); |
/* fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */ |
popcount=vector(0,AGESUP); |
/* } */ |
|
/* popage=ivector(0,AGESUP); */ |
|
/* popeffectif=vector(0,AGESUP); */ |
|
/* popcount=vector(0,AGESUP); */ |
|
|
i=1; |
/* i=1; */ |
while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; |
/* while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */ |
|
|
imx=i; |
/* imx=i; */ |
for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; |
/* for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */ |
} |
/* } */ |
|
|
for(cptcov=1,k=0;cptcov<=i2;cptcov++){ |
/* for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
k=k+1; |
/* k=k+1; */ |
fprintf(ficrespop,"\n#******"); |
/* fprintf(ficrespop,"\n#******"); */ |
for(j=1;j<=cptcoveff;j++) { |
/* for(j=1;j<=cptcoveff;j++) { */ |
fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
} |
/* } */ |
fprintf(ficrespop,"******\n"); |
/* fprintf(ficrespop,"******\n"); */ |
fprintf(ficrespop,"# Age"); |
/* fprintf(ficrespop,"# Age"); */ |
for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); |
/* for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */ |
if (popforecast==1) fprintf(ficrespop," [Population]"); |
/* if (popforecast==1) fprintf(ficrespop," [Population]"); */ |
|
|
for (cpt=0; cpt<=0;cpt++) { |
/* for (cpt=0; cpt<=0;cpt++) { */ |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
|
|
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
nhstepm = nhstepm/hstepm; |
/* nhstepm = nhstepm/hstepm; */ |
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
oldm=oldms;savm=savms; |
/* oldm=oldms;savm=savms; */ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
|
for (h=0; h<=nhstepm; h++){ |
|
if (h==(int) (calagedatem+YEARM*cpt)) { |
|
fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
|
} |
|
for(j=1; j<=nlstate+ndeath;j++) { |
|
kk1=0.;kk2=0; |
|
for(i=1; i<=nlstate;i++) { |
|
if (mobilav==1) |
|
kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; |
|
else { |
|
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
|
} |
|
} |
|
if (h==(int)(calagedatem+12*cpt)){ |
|
tabpop[(int)(agedeb)][j][cptcod]=kk1; |
|
/*fprintf(ficrespop," %.3f", kk1); |
|
if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ |
|
} |
|
} |
|
for(i=1; i<=nlstate;i++){ |
|
kk1=0.; |
|
for(j=1; j<=nlstate;j++){ |
|
kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; |
|
} |
|
tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; |
|
} |
|
|
|
if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) |
|
fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} |
|
} |
|
|
|
/******/ |
|
|
|
for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { |
|
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
|
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
|
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
|
nhstepm = nhstepm/hstepm; |
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* for (h=0; h<=nhstepm; h++){ */ |
oldm=oldms;savm=savms; |
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
/* fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
for (h=0; h<=nhstepm; h++){ |
/* } */ |
if (h==(int) (calagedatem+YEARM*cpt)) { |
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
/* kk1=0.;kk2=0; */ |
} |
/* for(i=1; i<=nlstate;i++) { */ |
for(j=1; j<=nlstate+ndeath;j++) { |
/* if (mobilav==1) */ |
kk1=0.;kk2=0; |
/* kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */ |
for(i=1; i<=nlstate;i++) { |
/* else { */ |
kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; |
/* kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */ |
} |
/* } */ |
if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); |
/* } */ |
} |
/* if (h==(int)(calagedatem+12*cpt)){ */ |
} |
/* tabpop[(int)(agedeb)][j][cptcod]=kk1; */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* /\*fprintf(ficrespop," %.3f", kk1); */ |
} |
/* if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */ |
} |
/* } */ |
} |
/* } */ |
} |
/* for(i=1; i<=nlstate;i++){ */ |
|
/* kk1=0.; */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; */ |
|
/* } */ |
|
/* tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */ |
|
/* } */ |
|
|
|
/* if (h==(int)(calagedatem+12*cpt)) */ |
|
/* for(j=1; j<=nlstate;j++) */ |
|
/* fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */ |
|
/* } */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } */ |
|
/* } */ |
|
|
|
/* /\******\/ */ |
|
|
|
/* for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { */ |
|
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
|
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
|
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
|
/* nhstepm = nhstepm/hstepm; */ |
|
|
|
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* oldm=oldms;savm=savms; */ |
|
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
/* for (h=0; h<=nhstepm; h++){ */ |
|
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
|
/* fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
|
/* } */ |
|
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
|
/* kk1=0.;kk2=0; */ |
|
/* for(i=1; i<=nlstate;i++) { */ |
|
/* kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; */ |
|
/* } */ |
|
/* if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); */ |
|
/* } */ |
|
/* } */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
|
|
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
|
|
/* if (popforecast==1) { */ |
|
/* free_ivector(popage,0,AGESUP); */ |
|
/* free_vector(popeffectif,0,AGESUP); */ |
|
/* free_vector(popcount,0,AGESUP); */ |
|
/* } */ |
|
/* free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* fclose(ficrespop); */ |
|
/* } /\* End of popforecast *\/ */ |
|
|
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
|
|
if (popforecast==1) { |
|
free_ivector(popage,0,AGESUP); |
|
free_vector(popeffectif,0,AGESUP); |
|
free_vector(popcount,0,AGESUP); |
|
} |
|
free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
fclose(ficrespop); |
|
} /* End of popforecast */ |
|
|
|
int fileappend(FILE *fichier, char *optionfich) |
int fileappend(FILE *fichier, char *optionfich) |
{ |
{ |
if((fichier=fopen(optionfich,"a"))==NULL) { |
if((fichier=fopen(optionfich,"a"))==NULL) { |
Line 5472 double gompertz(double x[])
|
Line 7456 double gompertz(double x[])
|
double A,B,L=0.0,sump=0.,num=0.; |
double A,B,L=0.0,sump=0.,num=0.; |
int i,n=0; /* n is the size of the sample */ |
int i,n=0; /* n is the size of the sample */ |
|
|
for (i=0;i<=imx-1 ; i++) { |
for (i=1;i<=imx ; i++) { |
sump=sump+weight[i]; |
sump=sump+weight[i]; |
/* sump=sump+1;*/ |
/* sump=sump+1;*/ |
num=num+1; |
num=num+1; |
Line 5597 int readdata(char datafile[], int firsto
|
Line 7581 int readdata(char datafile[], int firsto
|
/*-------- data file ----------*/ |
/*-------- data file ----------*/ |
FILE *fic; |
FILE *fic; |
char dummy[]=" "; |
char dummy[]=" "; |
int i=0, j=0, n=0; |
int i=0, j=0, n=0, iv=0; |
|
int lstra; |
int linei, month, year,iout; |
int linei, month, year,iout; |
char line[MAXLINE], linetmp[MAXLINE]; |
char line[MAXLINE], linetmp[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char *stratrunc; |
char *stratrunc; |
int lstra; |
|
|
|
|
|
if((fic=fopen(datafile,"r"))==NULL) { |
if((fic=fopen(datafile,"r"))==NULL) { |
printf("Problem while opening datafile: %s\n", datafile);fflush(stdout); |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1; |
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
} |
} |
|
|
i=1; |
i=1; |
Line 5629 int readdata(char datafile[], int firsto
|
Line 7614 int readdata(char datafile[], int firsto
|
} |
} |
trimbb(linetmp,line); /* Trims multiple blanks in line */ |
trimbb(linetmp,line); /* Trims multiple blanks in line */ |
strcpy(line, linetmp); |
strcpy(line, linetmp); |
|
|
|
/* Loops on waves */ |
for (j=maxwav;j>=1;j--){ |
for (j=maxwav;j>=1;j--){ |
|
for (iv=nqtv;iv>=1;iv--){ /* Loop on time varying quantitative variables */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ |
|
cotvar[j][ntv+iv][i]=-1; /* For performance reasons */ |
|
if(isalpha(strb[1])) { /* .m or .d Really Missing value */ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); |
|
return 1; |
|
} |
|
}else{ |
|
errno=0; |
|
/* what_kind_of_number(strb); */ |
|
dval=strtod(strb,&endptr); |
|
/* if( strb[0]=='\0' || (*endptr != '\0')){ */ |
|
/* if(strb != endptr && *endptr == '\0') */ |
|
/* dval=dlval; */ |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
cotqvar[j][iv][i]=dval; |
|
cotvar[j][ntv+iv][i]=dval; |
|
} |
|
strcpy(line,stra); |
|
}/* end loop ntqv */ |
|
|
|
for (iv=ntv;iv>=1;iv--){ /* Loop on time varying dummies */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
}else{ |
|
errno=0; |
|
lval=strtol(strb,&endptr,10); |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
} |
|
if(lval <-1 || lval >1){ |
|
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,j); |
|
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
|
return 1; |
|
} |
|
cotvar[j][iv][i]=(double)(lval); |
|
strcpy(line,stra); |
|
}/* end loop ntv */ |
|
|
|
/* Statuses at wave */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing status */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
} |
} |
|
|
s[j][i]=lval; |
s[j][i]=lval; |
|
|
|
/* Date of Interview */ |
strcpy(line,stra); |
strcpy(line,stra); |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
Line 5662 int readdata(char datafile[], int firsto
|
Line 7719 int readdata(char datafile[], int firsto
|
anint[j][i]= (double) year; |
anint[j][i]= (double) year; |
mint[j][i]= (double)month; |
mint[j][i]= (double)month; |
strcpy(line,stra); |
strcpy(line,stra); |
} /* ENd Waves */ |
} /* End loop on waves */ |
|
|
|
/* Date of death */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
} |
} |
Line 5672 int readdata(char datafile[], int firsto
|
Line 7730 int readdata(char datafile[], int firsto
|
year=9999; |
year=9999; |
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
andc[i]=(double) year; |
andc[i]=(double) year; |
moisdc[i]=(double) month; |
moisdc[i]=(double) month; |
strcpy(line,stra); |
strcpy(line,stra); |
|
|
|
/* Date of birth */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
} |
} |
Line 5688 int readdata(char datafile[], int firsto
|
Line 7747 int readdata(char datafile[], int firsto
|
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
if (year==9999) { |
if (year==9999) { |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
|
|
} |
} |
annais[i]=(double)(year); |
annais[i]=(double)(year); |
moisnais[i]=(double)(month); |
moisnais[i]=(double)(month); |
strcpy(line,stra); |
strcpy(line,stra); |
|
|
|
/* Sample weight */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
errno=0; |
errno=0; |
dval=strtod(strb,&endptr); |
dval=strtod(strb,&endptr); |
Line 5712 int readdata(char datafile[], int firsto
|
Line 7772 int readdata(char datafile[], int firsto
|
weight[i]=dval; |
weight[i]=dval; |
strcpy(line,stra); |
strcpy(line,stra); |
|
|
|
for (iv=nqv;iv>=1;iv--){ /* Loop on fixed quantitative variables */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
}else{ |
|
errno=0; |
|
/* what_kind_of_number(strb); */ |
|
dval=strtod(strb,&endptr); |
|
/* if(strb != endptr && *endptr == '\0') */ |
|
/* dval=dlval; */ |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
coqvar[iv][i]=dval; |
|
covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ |
|
} |
|
strcpy(line,stra); |
|
}/* end loop nqv */ |
|
|
|
/* Covariate values */ |
for (j=ncovcol;j>=1;j--){ |
for (j=ncovcol;j>=1;j--){ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if(strb[0]=='.') { /* Missing status */ |
if(strb[0]=='.') { /* Missing covariate value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
Line 5729 int readdata(char datafile[], int firsto
|
Line 7812 int readdata(char datafile[], int firsto
|
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j); |
Exiting.\n",lval,linei, i,line,j); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
Line 5750 int readdata(char datafile[], int firsto
|
Line 7833 int readdata(char datafile[], int firsto
|
strcpy(line,stra); |
strcpy(line,stra); |
} |
} |
lstra=strlen(stra); |
lstra=strlen(stra); |
|
|
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
stratrunc = &(stra[lstra-9]); |
stratrunc = &(stra[lstra-9]); |
num[i]=atol(stratrunc); |
num[i]=atol(stratrunc); |
Line 5762 int readdata(char datafile[], int firsto
|
Line 7845 int readdata(char datafile[], int firsto
|
|
|
i=i+1; |
i=i+1; |
} /* End loop reading data */ |
} /* End loop reading data */ |
|
|
*imax=i-1; /* Number of individuals */ |
*imax=i-1; /* Number of individuals */ |
fclose(fic); |
fclose(fic); |
|
|
return (0); |
return (0); |
/* endread: */ |
/* endread: */ |
printf("Exiting readdata: "); |
printf("Exiting readdata: "); |
fclose(fic); |
fclose(fic); |
return (1); |
return (1); |
|
|
|
|
|
|
} |
} |
void removespace(char *str) { |
|
char *p1 = str, *p2 = str; |
void removespace(char **stri){/*, char stro[]) {*/ |
|
char *p1 = *stri, *p2 = *stri; |
do |
do |
while (*p2 == ' ') |
while (*p2 == ' ') |
p2++; |
p2++; |
while (*p1++ == *p2++); |
while (*p1++ == *p2++); |
|
*stri=p1; |
} |
} |
|
|
int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns: |
int decoderesult ( char resultline[]) |
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
/**< This routine decode one result line and returns the combination # of dummy covariates only **/ |
* - nagesqr = 1 if age*age in the model, otherwise 0. |
{ |
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
int j=0, k=0; |
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
char resultsav[MAXLINE]; |
* - cptcovage number of covariates with age*products =2 |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
* - cptcovs number of simple covariates |
|
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
removespace(&resultline); |
* which is a new column after the 9 (ncovcol) variables. |
printf("decoderesult=%s\n",resultline); |
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
|
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
if (strstr(resultline,"v") !=0){ |
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
printf("Error. 'v' must be in upper case 'V' result: %s ",resultline); |
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog); |
*/ |
return 1; |
|
} |
|
trimbb(resultsav, resultline); |
|
if (strlen(resultsav) >1){ |
|
j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */ |
|
} |
|
|
|
for(k=1; k<=j;k++){ /* Loop on total covariates of the model */ |
|
cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' |
|
resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */ |
|
cutl(strc,strd,strb,'='); /* strb:V4=1 strc=1 strd=V4 */ |
|
Tvalsel[k]=atof(strc); /* 1 */ |
|
|
|
cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */; |
|
Tvarsel[k]=atoi(strc); |
|
/* Typevarsel[k]=1; /\* 1 for age product *\/ */ |
|
/* cptcovsel++; */ |
|
if (nbocc(stra,'=') >0) |
|
strcpy(resultsav,stra); /* and analyzes it */ |
|
} |
|
return (0); |
|
} |
|
int selected( int kvar){ /* Selected combination of covariates */ |
|
if(Tvarsel[kvar]) |
|
return (0); |
|
else |
|
return(1); |
|
} |
|
int decodemodel( char model[], int lastobs) |
|
/**< This routine decodes the model and returns: |
|
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
|
* - nagesqr = 1 if age*age in the model, otherwise 0. |
|
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
|
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
|
* - cptcovage number of covariates with age*products =2 |
|
* - cptcovs number of simple covariates |
|
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
|
* which is a new column after the 9 (ncovcol) variables. |
|
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
|
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
|
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
|
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
|
*/ |
{ |
{ |
int i, j, k, ks; |
int i, j, k, ks; |
int j1, k1, k2; |
int j1, k1, k2, k3, k4; |
char modelsav[80]; |
char modelsav[80]; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char *strpt; |
char *strpt; |
Line 5821 int decodemodel ( char model[], int last
|
Line 7945 int decodemodel ( char model[], int last
|
if ((strpt=strstr(model,"age*age")) !=0){ |
if ((strpt=strstr(model,"age*age")) !=0){ |
printf(" strpt=%s, model=%s\n",strpt, model); |
printf(" strpt=%s, model=%s\n",strpt, model); |
if(strpt != model){ |
if(strpt != model){ |
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); |
corresponding column of parameters.\n",model); |
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); fflush(ficlog); |
corresponding column of parameters.\n",model); fflush(ficlog); |
return 1; |
return 1; |
} |
} |
|
|
nagesqr=1; |
nagesqr=1; |
if (strstr(model,"+age*age") !=0) |
if (strstr(model,"+age*age") !=0) |
substrchaine(modelsav, model, "+age*age"); |
substrchaine(modelsav, model, "+age*age"); |
else if (strstr(model,"age*age+") !=0) |
else if (strstr(model,"age*age+") !=0) |
substrchaine(modelsav, model, "age*age+"); |
substrchaine(modelsav, model, "age*age+"); |
else |
else |
substrchaine(modelsav, model, "age*age"); |
substrchaine(modelsav, model, "age*age"); |
}else |
}else |
nagesqr=0; |
nagesqr=0; |
if (strlen(modelsav) >1){ |
if (strlen(modelsav) >1){ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2 */ |
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2 */ |
cptcovt= j+1; /* Number of total covariates in the model, not including |
cptcovt= j+1; /* Number of total covariates in the model, not including |
* cst, age and age*age |
* cst, age and age*age |
* V1+V1*age+ V3 + V3*V4+age*age=> 4*/ |
* V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/ |
/* including age products which are counted in cptcovage. |
/* including age products which are counted in cptcovage. |
* but the covariates which are products must be treated |
* but the covariates which are products must be treated |
* separately: ncovn=4- 2=2 (V1+V3). */ |
* separately: ncovn=4- 2=2 (V1+V3). */ |
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
|
|
|
|
/* Design |
/* Design |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
* < ncovcol=8 > |
* < ncovcol=8 > |
Line 5860 int decodemodel ( char model[], int last
|
Line 7983 int decodemodel ( char model[], int last
|
* k= 1 2 3 4 5 6 7 8 |
* k= 1 2 3 4 5 6 7 8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* covar[k,i], value of kth covariate if not including age for individual i: |
* covar[k,i], value of kth covariate if not including age for individual i: |
* covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8) |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[4]=3 Tvar[8]=8 |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8 |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* Tage[++cptcovage]=k |
* Tage[++cptcovage]=k |
* if products, new covar are created after ncovcol with k1 |
* if products, new covar are created after ncovcol with k1 |
Line 5886 int decodemodel ( char model[], int last
|
Line 8009 int decodemodel ( char model[], int last
|
* {2, 1, 4, 8, 5, 6, 3, 7} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
* Struct [] |
* Struct [] |
*/ |
*/ |
|
|
/* This loop fills the array Tvar from the string 'model'.*/ |
/* This loop fills the array Tvar from the string 'model'.*/ |
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
Line 5901 int decodemodel ( char model[], int last
|
Line 8024 int decodemodel ( char model[], int last
|
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
/* |
/* |
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
for(k=cptcovt; k>=1;k--) /**< Number of covariates */ |
for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/ |
Tvar[k]=0; |
Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0; |
|
} |
cptcovage=0; |
cptcovage=0; |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/*scanf("%d",i);*/ |
/*scanf("%d",i);*/ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
/* covar is not filled and then is empty */ |
/* covar is not filled and then is empty */ |
cptcovprod--; |
cptcovprod--; |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
cptcovage++; /* Sums the number of covariates which include age as a product */ |
Typevar[k]=1; /* 1 for age product */ |
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
cptcovage++; /* Sums the number of covariates which include age as a product */ |
/*printf("stre=%s ", stre);*/ |
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
/*printf("stre=%s ", stre);*/ |
cptcovprod--; |
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
cutl(stre,strb,strc,'V'); |
cptcovprod--; |
Tvar[k]=atoi(stre); |
cutl(stre,strb,strc,'V'); |
cptcovage++; |
Tvar[k]=atoi(stre); |
Tage[cptcovage]=k; |
Typevar[k]=1; /* 1 for age product */ |
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
cptcovage++; |
/* loops on k1=1 (V3*V2) and k1=2 V4*V3 */ |
Tage[cptcovage]=k; |
cptcovn++; |
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
cptcovprodnoage++;k1++; |
/* loops on k1=1 (V3*V2) and k1=2 V4*V3 */ |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
cptcovn++; |
Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but |
cptcovprodnoage++;k1++; |
because this model-covariate is a construction we invent a new column |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
ncovcol + k1 |
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
because this model-covariate is a construction we invent a new column |
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
which is after existing variables ncovcol+nqv+ntv+nqtv + k1 |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
Typevar[k]=2; /* 2 for double fixed dummy covariates */ |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
k2=k2+2; |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */ |
Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */ |
Tvar[cptcovt+k2+1]=Tvard[k1][2]; /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */ |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
for (i=1; i<=lastobs;i++){ |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
/* Computes the new covariate which is a product of |
k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */ |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
/* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */ |
covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
/* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ |
} |
/*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ |
} /* End age is not in the model */ |
/* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ |
} /* End if model includes a product */ |
for (i=1; i<=lastobs;i++){ |
else { /* no more sum */ |
/* Computes the new covariate which is a product of |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
/* scanf("%d",i);*/ |
covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
cutl(strd,strc,strb,'V'); |
} |
ks++; /**< Number of simple covariates */ |
} /* End age is not in the model */ |
cptcovn++; |
} /* End if model includes a product */ |
Tvar[k]=atoi(strd); |
else { /* no more sum */ |
} |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
/* scanf("%d",i);*/ |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
cutl(strd,strc,strb,'V'); |
scanf("%d",i);*/ |
ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */ |
|
cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */ |
|
Tvar[k]=atoi(strd); |
|
Typevar[k]=0; /* 0 for simple covariates */ |
|
} |
|
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
|
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
|
scanf("%d",i);*/ |
} /* end of loop + on total covariates */ |
} /* end of loop + on total covariates */ |
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(model == 0) */ |
} /* end if strlen(model == 0) */ |
|
|
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
|
|
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
printf("cptcovprod=%d ", cptcovprod); |
printf("cptcovprod=%d ", cptcovprod); |
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
|
scanf("%d ",i);*/ |
scanf("%d ",i);*/ |
|
|
|
|
/* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind |
|
of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */ |
|
/* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1 = 5 possible variables data: 2 fixed 3, varying |
|
model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place |
|
k = 1 2 3 4 5 6 7 8 9 |
|
Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5 |
|
Typevar[k]= 0 0 0 2 1 0 2 1 1 |
|
Fixed[k] 1 1 1 1 3 0 0 or 2 2 3 |
|
Dummy[k] 1 0 0 0 3 1 1 2 3 |
|
Tmodelind[combination of covar]=k; |
|
*/ |
|
/* Dispatching between quantitative and time varying covariates */ |
|
/* If Tvar[k] >ncovcol it is a product */ |
|
/* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */ |
|
/* Computing effective variables, ie used by the model, that is from the cptcovt variables */ |
|
printf("Model=%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
fprintf(ficlog,"Model=%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
|
|
for(k=1, ncovf=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */ |
|
if (Tvar[k] <=ncovcol && (Typevar[k]==0 || Typevar[k]==2)){ /* Simple or product fixed dummy (<=ncovcol) covariates */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
modell[k].maintype= FTYPE; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
}else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){ /* Remind that product Vn*Vm are added in k*/ /* Only simple fixed quantitative variable */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 1; |
|
nqfveff++; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FQ; |
|
ncovf++; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
ntveff++; /* Only simple time varying dummy variable */ |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VD; |
|
ncovv++; /* Only simple time varying variables */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4 TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
|
printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
nqtveff++; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VQ; |
|
ncovv++; /* Only simple time varying variables */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
|
/* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */ |
|
printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); |
|
printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); |
|
}else if (Typevar[k] == 1) { /* product with age */ |
|
ncova++; |
|
TvarA[ncova]=Tvar[k]; |
|
TvarAind[ncova]=k; |
|
if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */ |
|
Fixed[k]= 2; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFD; |
|
/* ncoveff++; */ |
|
}else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/ |
|
Fixed[k]= 2; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFQ; /* Product age * fixed quantitative */ |
|
/* nqfveff++; /\* Only simple fixed quantitative variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv ){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVD; /* Product age * varying dummy */ |
|
/* ntveff++; /\* Only simple time varying dummy variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVQ; /* Product age * varying quantitative */ |
|
/* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ |
|
} |
|
}else if (Typevar[k] == 2) { /* product without age */ |
|
k1=Tposprod[k]; |
|
ncovv++; /* Only time varying variables */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
if(Tvard[k1][1] <=ncovcol){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 0; /* or 2 ?*/ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */ |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 0; /* or 2 ?*/ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */ |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */ |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */ |
|
} |
|
}else{ |
|
printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
} /* end k1 */ |
|
}else{ |
|
printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
} |
|
printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
|
printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); |
|
fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
|
} |
|
/* Searching for doublons in the model */ |
|
for(k1=1; k1<= cptcovt;k1++){ |
|
for(k2=1; k2 <k1;k2++){ |
|
if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ |
|
if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ |
|
if(Tvar[k1]==Tvar[k2]){ |
|
printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
|
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
|
return(1); |
|
} |
|
}else if (Typevar[k1] ==2){ |
|
k3=Tposprod[k1]; |
|
k4=Tposprod[k2]; |
|
if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ |
|
printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
|
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
|
return(1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
printf("ncovf=%d, ncovv=%d, ncova=%d\n",ncovf,ncovv,ncova); |
|
fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d\n",ncovf,ncovv,ncova); |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
/*endread:*/ |
/*endread:*/ |
printf("Exiting decodemodel: "); |
printf("Exiting decodemodel: "); |
return (1); |
return (1); |
} |
} |
|
|
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
{ |
{ |
int i, m; |
int i, m; |
|
int firstone=0; |
|
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
for(m=2; (m<= maxwav); m++) { |
for(m=2; (m<= maxwav); m++) { |
if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ |
if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ |
anint[m][i]=9999; |
anint[m][i]=9999; |
s[m][i]=-1; |
if (s[m][i] != -2) /* Keeping initial status of unknown vital status */ |
|
s[m][i]=-1; |
} |
} |
if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ |
if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ |
*nberr = *nberr + 1; |
*nberr = *nberr + 1; |
printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr); |
if(firstone == 0){ |
fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr); |
firstone=1; |
|
printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
|
} |
|
fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
s[m][i]=-1; |
s[m][i]=-1; |
} |
} |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
Line 6009 int calandcheckages(int imx, int maxwav,
|
Line 8373 int calandcheckages(int imx, int maxwav,
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); |
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); |
for(m=firstpass; (m<= lastpass); m++){ |
for(m=firstpass; (m<= lastpass); m++){ |
if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ |
if(s[m][i] >0 || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */ |
if (s[m][i] >= nlstate+1) { |
if (s[m][i] >= nlstate+1) { |
if(agedc[i]>0){ |
if(agedc[i]>0){ |
if((int)moisdc[i]!=99 && (int)andc[i]!=9999){ |
if((int)moisdc[i]!=99 && (int)andc[i]!=9999){ |
agev[m][i]=agedc[i]; |
agev[m][i]=agedc[i]; |
/*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ |
/*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ |
}else { |
}else { |
if ((int)andc[i]!=9999){ |
if ((int)andc[i]!=9999){ |
nbwarn++; |
nbwarn++; |
Line 6024 int calandcheckages(int imx, int maxwav,
|
Line 8388 int calandcheckages(int imx, int maxwav,
|
} |
} |
} |
} |
} /* agedc > 0 */ |
} /* agedc > 0 */ |
} |
} /* end if */ |
else if(s[m][i] !=9){ /* Standard case, age in fractional |
else if(s[m][i] !=9){ /* Standard case, age in fractional |
years but with the precision of a month */ |
years but with the precision of a month */ |
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); |
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); |
Line 6040 int calandcheckages(int imx, int maxwav,
|
Line 8404 int calandcheckages(int imx, int maxwav,
|
} |
} |
/*agev[m][i]=anint[m][i]-annais[i];*/ |
/*agev[m][i]=anint[m][i]-annais[i];*/ |
/* agev[m][i] = age[i]+2*m;*/ |
/* agev[m][i] = age[i]+2*m;*/ |
} |
} /* en if 9*/ |
else { /* =9 */ |
else { /* =9 */ |
|
/* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */ |
agev[m][i]=1; |
agev[m][i]=1; |
s[m][i]=-1; |
s[m][i]=-1; |
} |
} |
} |
} |
else /*= 0 Unknown */ |
else if(s[m][i]==0) /*= 0 Unknown */ |
agev[m][i]=1; |
agev[m][i]=1; |
} |
else{ |
|
printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); |
|
fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); |
|
agev[m][i]=0; |
|
} |
|
} /* End for lastpass */ |
} |
} |
|
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
for(m=firstpass; (m<=lastpass); m++){ |
for(m=firstpass; (m<=lastpass); m++){ |
if (s[m][i] > (nlstate+ndeath)) { |
if (s[m][i] > (nlstate+ndeath)) { |
Line 6274 void syscompilerinfo(int logged)
|
Line 8644 void syscompilerinfo(int logged)
|
#endif |
#endif |
|
|
|
|
} |
} |
|
|
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){ |
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
int i, j, k, i1 ; |
int i, j, k, i1 ; |
double ftolpl = 1.e-10; |
/* double ftolpl = 1.e-10; */ |
double age, agebase, agelim; |
double age, agebase, agelim; |
|
double tot; |
|
|
strcpy(filerespl,"PL_"); |
strcpy(filerespl,"PL_"); |
strcat(filerespl,fileresu); |
strcat(filerespl,fileresu); |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
} |
} |
printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
pstamp(ficrespl); |
pstamp(ficrespl); |
fprintf(ficrespl,"# Period (stable) prevalence \n"); |
fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"#Age "); |
fprintf(ficrespl,"#Age "); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
fprintf(ficrespl,"\n"); |
fprintf(ficrespl,"\n"); |
|
|
/* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */ |
/* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */ |
|
|
agebase=ageminpar; |
agebase=ageminpar; |
agelim=agemaxpar; |
agelim=agemaxpar; |
|
|
i1=pow(2,cptcoveff); |
/* i1=pow(2,ncoveff); */ |
if (cptcovn < 1){i1=1;} |
i1=pow(2,cptcoveff); /* Number of dummy covariates */ |
|
if (cptcovn < 1){i1=1;} |
|
|
for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
for(k=1; k<=i1;k++){ |
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
k=k+1; |
/* k=k+1; */ |
/* to clean */ |
/* to clean */ |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
fprintf(ficrespl,"#******"); |
fprintf(ficrespl,"#******"); |
printf("#******"); |
printf("#******"); |
fprintf(ficlog,"#******"); |
fprintf(ficlog,"#******"); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/ |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} |
} |
fprintf(ficrespl,"******\n"); |
fprintf(ficrespl,"******\n"); |
printf("******\n"); |
printf("******\n"); |
fprintf(ficlog,"******\n"); |
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
fprintf(ficrespl,"#Age "); |
printf("\nCombination (%d) ignored because no case \n",k); |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); |
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); |
} |
continue; |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
} |
fprintf(ficrespl,"\n"); |
|
|
fprintf(ficrespl,"#Age "); |
for (age=agebase; age<=agelim; age++){ |
for(j=1;j<=cptcoveff;j++) { |
/* for (age=agebase; age<=agebase; age++){ */ |
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); |
} |
fprintf(ficrespl,"%.0f ",age ); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficrespl,"Total Years_to_converge\n"); |
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
for(i=1; i<=nlstate;i++) |
for (age=agebase; age<=agelim; age++){ |
fprintf(ficrespl," %.5f", prlim[i][i]); |
/* for (age=agebase; age<=agebase; age++){ */ |
fprintf(ficrespl,"\n"); |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k); |
} /* Age */ |
fprintf(ficrespl,"%.0f ",age ); |
/* was end of cptcod */ |
for(j=1;j<=cptcoveff;j++) |
} /* cptcov */ |
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
return 0; |
tot=0.; |
|
for(i=1; i<=nlstate;i++){ |
|
tot += prlim[i][i]; |
|
fprintf(ficrespl," %.5f", prlim[i][i]); |
|
} |
|
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
} /* cptcov */ |
|
return 0; |
} |
} |
|
|
|
int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){ |
|
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
|
|
|
/* Computes the back prevalence limit for any combination of covariate values |
|
* at any age between ageminpar and agemaxpar |
|
*/ |
|
int i, j, k, i1 ; |
|
/* double ftolpl = 1.e-10; */ |
|
double age, agebase, agelim; |
|
double tot; |
|
/* double ***mobaverage; */ |
|
/* double **dnewm, **doldm, **dsavm; /\* for use *\/ */ |
|
|
|
strcpy(fileresplb,"PLB_"); |
|
strcat(fileresplb,fileresu); |
|
if((ficresplb=fopen(fileresplb,"w"))==NULL) { |
|
printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
|
fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
|
} |
|
printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
|
fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
|
pstamp(ficresplb); |
|
fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl); |
|
fprintf(ficresplb,"#Age "); |
|
for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i); |
|
fprintf(ficresplb,"\n"); |
|
|
|
|
|
/* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */ |
|
|
|
agebase=ageminpar; |
|
agelim=agemaxpar; |
|
|
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(k=1; k<=i1;k++){ |
|
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
|
fprintf(ficresplb,"#******"); |
|
printf("#******"); |
|
fprintf(ficlog,"#******"); |
|
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
|
fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficresplb,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) ignored because no cases \n",k); |
|
fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
|
fprintf(ficresplb,"#Age "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
|
fprintf(ficresplb,"Total Years_to_converge\n"); |
|
|
|
|
|
for (age=agebase; age<=agelim; age++){ |
|
/* for (age=agebase; age<=agebase; age++){ */ |
|
if(mobilavproj > 0){ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k); |
|
}else if (mobilavproj == 0){ |
|
printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
exit(1); |
|
}else{ |
|
/* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k); |
|
} |
|
fprintf(ficresplb,"%.0f ",age ); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
tot=0.; |
|
for(i=1; i<=nlstate;i++){ |
|
tot += bprlim[i][i]; |
|
fprintf(ficresplb," %.5f", bprlim[i][i]); |
|
} |
|
fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
} /* cptcov */ |
|
|
|
/* hBijx(p, bage, fage); */ |
|
/* fclose(ficrespijb); */ |
|
|
|
return 0; |
|
} |
|
|
int hPijx(double *p, int bage, int fage){ |
int hPijx(double *p, int bage, int fage){ |
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
|
|
Line 6370 int hPijx(double *p, int bage, int fage)
|
Line 8850 int hPijx(double *p, int bage, int fage)
|
agelim=AGESUP; |
agelim=AGESUP; |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
/* hstepm=1; aff par mois*/ |
/* hstepm=1; aff par mois*/ |
pstamp(ficrespij); |
pstamp(ficrespij); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
i1= pow(2,cptcoveff); |
i1= pow(2,cptcoveff); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
fprintf(ficrespij,"\n#****** "); |
fprintf(ficrespij,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
Line 6411 int hPijx(double *p, int bage, int fage)
|
Line 8891 int hPijx(double *p, int bage, int fage)
|
} |
} |
/*}*/ |
/*}*/ |
} |
} |
return 0; |
return 0; |
} |
} |
|
|
|
int hBijx(double *p, int bage, int fage, double ***prevacurrent){ |
|
/*------------- h Bij x at various ages ------------*/ |
|
|
|
int stepsize; |
|
/* int agelim; */ |
|
int ageminl; |
|
int hstepm; |
|
int nhstepm; |
|
int h, i, i1, j, k; |
|
|
|
double agedeb; |
|
double ***p3mat; |
|
|
|
strcpy(filerespijb,"PIJB_"); strcat(filerespijb,fileresu); |
|
if((ficrespijb=fopen(filerespijb,"w"))==NULL) { |
|
printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1; |
|
fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1; |
|
} |
|
printf("Computing pij back: result on file '%s' \n", filerespijb); |
|
fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb); |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
/*if (stepm<=24) stepsize=2;*/ |
|
|
|
/* agelim=AGESUP; */ |
|
ageminl=30; |
|
hstepm=stepsize*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
|
/* hstepm=1; aff par mois*/ |
|
pstamp(ficrespijb); |
|
fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x "); |
|
i1= pow(2,cptcoveff); |
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
|
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
|
/* k=k+1; */ |
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficrespijb,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficrespijb,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
|
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
|
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
|
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
|
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */ |
|
|
|
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k); |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %1d-%1d",i,j); |
|
fprintf(ficrespijb,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); |
|
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespijb,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespijb,"\n"); |
|
} |
|
/*}*/ |
|
} |
|
return 0; |
|
} /* hBijx */ |
|
|
|
|
/***********************************************/ |
/***********************************************/ |
Line 6430 int main(int argc, char *argv[])
|
Line 8991 int main(int argc, char *argv[])
|
#endif |
#endif |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; |
int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; |
|
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
int jj, ll, li, lj, lk; |
int jj, ll, li, lj, lk; |
int numlinepar=0; /* Current linenumber of parameter file */ |
int numlinepar=0; /* Current linenumber of parameter file */ |
int num_filled; |
int num_filled; |
Line 6445 int main(int argc, char *argv[])
|
Line 9006 int main(int argc, char *argv[])
|
double agedeb=0.; |
double agedeb=0.; |
|
|
double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW; |
double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW; |
|
double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */ |
|
|
double fret; |
double fret; |
double dum=0.; /* Dummy variable */ |
double dum=0.; /* Dummy variable */ |
double ***p3mat; |
double ***p3mat; |
double ***mobaverage; |
/* double ***mobaverage; */ |
|
|
char line[MAXLINE]; |
char line[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
|
|
char model[MAXLINE], modeltemp[MAXLINE]; |
char model[MAXLINE], modeltemp[MAXLINE]; |
|
char resultline[MAXLINE]; |
|
|
char pathr[MAXLINE], pathimach[MAXLINE]; |
char pathr[MAXLINE], pathimach[MAXLINE]; |
char *tok, *val; /* pathtot */ |
char *tok, *val; /* pathtot */ |
int firstobs=1, lastobs=10; |
int firstobs=1, lastobs=10; |
Line 6465 int main(int argc, char *argv[])
|
Line 9029 int main(int argc, char *argv[])
|
|
|
int *tab; |
int *tab; |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
|
int backcast=0; |
int mobilav=0,popforecast=0; |
int mobilav=0,popforecast=0; |
int hstepm=0, nhstepm=0; |
int hstepm=0, nhstepm=0; |
int agemortsup; |
int agemortsup; |
Line 6475 int main(int argc, char *argv[])
|
Line 9040 int main(int argc, char *argv[])
|
double bage=0, fage=110., age, agelim=0., agebase=0.; |
double bage=0, fage=110., age, agelim=0., agebase=0.; |
double ftolpl=FTOL; |
double ftolpl=FTOL; |
double **prlim; |
double **prlim; |
|
double **bprlim; |
double ***param; /* Matrix of parameters */ |
double ***param; /* Matrix of parameters */ |
double *p; |
double *p; |
double **matcov; /* Matrix of covariance */ |
double **matcov; /* Matrix of covariance */ |
|
double **hess; /* Hessian matrix */ |
double ***delti3; /* Scale */ |
double ***delti3; /* Scale */ |
double *delti; /* Scale */ |
double *delti; /* Scale */ |
double ***eij, ***vareij; |
double ***eij, ***vareij; |
Line 6485 int main(int argc, char *argv[])
|
Line 9052 int main(int argc, char *argv[])
|
double *epj, vepp; |
double *epj, vepp; |
|
|
double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
|
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000; |
|
|
double **ximort; |
double **ximort; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
int *dcwave; |
int *dcwave; |
Line 6537 int main(int argc, char *argv[])
|
Line 9106 int main(int argc, char *argv[])
|
printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion); |
printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion); |
if(argc <=1){ |
if(argc <=1){ |
printf("\nEnter the parameter file name: "); |
printf("\nEnter the parameter file name: "); |
fgets(pathr,FILENAMELENGTH,stdin); |
if(!fgets(pathr,FILENAMELENGTH,stdin)){ |
|
printf("ERROR Empty parameter file name\n"); |
|
goto end; |
|
} |
i=strlen(pathr); |
i=strlen(pathr); |
if(pathr[i-1]=='\n') |
if(pathr[i-1]=='\n') |
pathr[i-1]='\0'; |
pathr[i-1]='\0'; |
i=strlen(pathr); |
i=strlen(pathr); |
if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */ |
if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */ |
pathr[i-1]='\0'; |
pathr[i-1]='\0'; |
for (tok = pathr; tok != NULL; ){ |
} |
|
i=strlen(pathr); |
|
if( i==0 ){ |
|
printf("ERROR Empty parameter file name\n"); |
|
goto end; |
|
} |
|
for (tok = pathr; tok != NULL; ){ |
printf("Pathr |%s|\n",pathr); |
printf("Pathr |%s|\n",pathr); |
while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0'); |
while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0'); |
printf("val= |%s| pathr=%s\n",val,pathr); |
printf("val= |%s| pathr=%s\n",val,pathr); |
Line 6677 int main(int argc, char *argv[])
|
Line 9255 int main(int argc, char *argv[])
|
}else |
}else |
break; |
break; |
} |
} |
if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \ |
if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \ |
&ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){ |
&ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){ |
if (num_filled != 8) { |
if (num_filled != 11) { |
printf("Not 8\n"); |
printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
|
printf("but line=%s\n",line); |
} |
} |
printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt); |
printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
} |
} |
|
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
|
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
/* Third parameter line */ |
/* Third parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
Line 6714 int main(int argc, char *argv[])
|
Line 9294 int main(int argc, char *argv[])
|
} |
} |
} |
} |
/* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ |
/* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ |
|
printf("model=1+age+%s\n",model);fflush(stdout); |
} |
} |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */ |
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
model[strlen(model)-1]='\0'; |
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); |
|
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); |
|
fflush(ficlog); |
fflush(ficlog); |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
if(model[0]=='#'){ |
if(model[0]=='#'){ |
Line 6750 int main(int argc, char *argv[])
|
Line 9329 int main(int argc, char *argv[])
|
|
|
|
|
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
|
coqvar=matrix(1,nqv,1,n); /**< Fixed quantitative covariate */ |
|
cotvar=ma3x(1,maxwav,1,ntv,1,n); /**< Time varying covariate */ |
|
cotqvar=ma3x(1,maxwav,1,nqtv,1,n); /**< Time varying quantitative covariate */ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
Line 6779 int main(int argc, char *argv[])
|
Line 9361 int main(int argc, char *argv[])
|
fclose (ficlog); |
fclose (ficlog); |
goto end; |
goto end; |
exit(0); |
exit(0); |
} |
} else if(mle==-5) { /* Main Wizard */ |
else if(mle==-3) { /* Main Wizard */ |
|
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
matcov=matrix(1,npar,1,npar); |
matcov=matrix(1,npar,1,npar); |
} |
hess=matrix(1,npar,1,npar); |
else{ |
} else{ /* Begin of mle != -1 or -5 */ |
/* Read guessed parameters */ |
/* Read guessed parameters */ |
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
Line 6802 int main(int argc, char *argv[])
|
Line 9383 int main(int argc, char *argv[])
|
|
|
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
j=0; |
j=0; |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
if(jj==i) continue; |
if(jj==i) continue; |
j++; |
j++; |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
if ((i1 != i) || (j1 != jj)){ |
if ((i1 != i) || (j1 != jj)){ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
It might be a problem of design; if ncovcol and the model are correct\n \ |
It might be a problem of design; if ncovcol and the model are correct\n \ |
run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1); |
run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1); |
exit(1); |
exit(1); |
} |
} |
fprintf(ficparo,"%1d%1d",i1,j1); |
fprintf(ficparo,"%1d%1d",i1,j1); |
if(mle==1) |
if(mle==1) |
printf("%1d%1d",i,jj); |
printf("%1d%1d",i,jj); |
fprintf(ficlog,"%1d%1d",i,jj); |
fprintf(ficlog,"%1d%1d",i,jj); |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
fscanf(ficpar," %lf",¶m[i][j][k]); |
fscanf(ficpar," %lf",¶m[i][j][k]); |
if(mle==1){ |
if(mle==1){ |
printf(" %lf",param[i][j][k]); |
printf(" %lf",param[i][j][k]); |
fprintf(ficlog," %lf",param[i][j][k]); |
fprintf(ficlog," %lf",param[i][j][k]); |
} |
} |
else |
else |
fprintf(ficlog," %lf",param[i][j][k]); |
fprintf(ficlog," %lf",param[i][j][k]); |
fprintf(ficparo," %lf",param[i][j][k]); |
fprintf(ficparo," %lf",param[i][j][k]); |
} |
} |
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
if(mle==1) |
if(mle==1) |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficparo,"\n"); |
} |
} |
} |
} |
fflush(ficlog); |
fflush(ficlog); |
Line 6853 run imach with mle=-1 to get a correct t
|
Line 9434 run imach with mle=-1 to get a correct t
|
|
|
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
for(j=1; j <=nlstate+ndeath-1; j++){ |
for(j=1; j <=nlstate+ndeath-1; j++){ |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
if ( (i1-i) * (j1-j) != 0){ |
if ( (i1-i) * (j1-j) != 0){ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); |
exit(1); |
exit(1); |
} |
} |
printf("%1d%1d",i,j); |
printf("%1d%1d",i,j); |
fprintf(ficparo,"%1d%1d",i1,j1); |
fprintf(ficparo,"%1d%1d",i1,j1); |
fprintf(ficlog,"%1d%1d",i1,j1); |
fprintf(ficlog,"%1d%1d",i1,j1); |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
fscanf(ficpar,"%le",&delti3[i][j][k]); |
fscanf(ficpar,"%le",&delti3[i][j][k]); |
printf(" %le",delti3[i][j][k]); |
printf(" %le",delti3[i][j][k]); |
fprintf(ficparo," %le",delti3[i][j][k]); |
fprintf(ficparo," %le",delti3[i][j][k]); |
fprintf(ficlog," %le",delti3[i][j][k]); |
fprintf(ficlog," %le",delti3[i][j][k]); |
} |
} |
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
printf("\n"); |
printf("\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
} |
} |
} |
} |
fflush(ficlog); |
fflush(ficlog); |
|
|
/* Reads covariance matrix */ |
/* Reads covariance matrix */ |
delti=delti3[1][1]; |
delti=delti3[1][1]; |
|
|
|
|
/* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ |
/* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ |
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
ungetc(c,ficpar); |
ungetc(c,ficpar); |
Line 6892 run imach with mle=-1 to get a correct t
|
Line 9473 run imach with mle=-1 to get a correct t
|
fputs(line,ficlog); |
fputs(line,ficlog); |
} |
} |
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
matcov=matrix(1,npar,1,npar); |
matcov=matrix(1,npar,1,npar); |
|
hess=matrix(1,npar,1,npar); |
for(i=1; i <=npar; i++) |
for(i=1; i <=npar; i++) |
for(j=1; j <=npar; j++) matcov[i][j]=0.; |
for(j=1; j <=npar; j++) matcov[i][j]=0.; |
|
|
/* Scans npar lines */ |
/* Scans npar lines */ |
for(i=1; i <=npar; i++){ |
for(i=1; i <=npar; i++){ |
count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk); |
count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk); |
if(count != 3){ |
if(count != 3){ |
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
Line 6908 Please run with mle=-1 to get a correct
|
Line 9490 Please run with mle=-1 to get a correct
|
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
exit(1); |
exit(1); |
}else |
}else{ |
if(mle==1) |
if(mle==1) |
printf("%1d%1d%1d",i1,j1,jk); |
printf("%1d%1d%d",i1,j1,jk); |
fprintf(ficlog,"%1d%1d%1d",i1,j1,jk); |
} |
fprintf(ficparo,"%1d%1d%1d",i1,j1,jk); |
fprintf(ficlog,"%1d%1d%d",i1,j1,jk); |
|
fprintf(ficparo,"%1d%1d%d",i1,j1,jk); |
for(j=1; j <=i; j++){ |
for(j=1; j <=i; j++){ |
fscanf(ficpar," %le",&matcov[i][j]); |
fscanf(ficpar," %le",&matcov[i][j]); |
if(mle==1){ |
if(mle==1){ |
Line 6924 Please run with mle=-1 to get a correct
|
Line 9507 Please run with mle=-1 to get a correct
|
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
if(mle==1) |
if(mle==1) |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficparo,"\n"); |
} |
} |
Line 6950 Please run with mle=-1 to get a correct
|
Line 9533 Please run with mle=-1 to get a correct
|
} |
} |
fprintf(ficres,"#%s\n",version); |
fprintf(ficres,"#%s\n",version); |
} /* End of mle != -3 */ |
} /* End of mle != -3 */ |
|
|
/* Main data |
/* Main data |
*/ |
*/ |
n= lastobs; |
n= lastobs; |
Line 6959 Please run with mle=-1 to get a correct
|
Line 9542 Please run with mle=-1 to get a correct
|
annais=vector(1,n); |
annais=vector(1,n); |
moisdc=vector(1,n); |
moisdc=vector(1,n); |
andc=vector(1,n); |
andc=vector(1,n); |
|
weight=vector(1,n); |
agedc=vector(1,n); |
agedc=vector(1,n); |
cod=ivector(1,n); |
cod=ivector(1,n); |
weight=vector(1,n); |
for(i=1;i<=n;i++){ |
for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ |
num[i]=0; |
|
moisnais[i]=0; |
|
annais[i]=0; |
|
moisdc[i]=0; |
|
andc[i]=0; |
|
agedc[i]=0; |
|
cod[i]=0; |
|
weight[i]=1.0; /* Equal weights, 1 by default */ |
|
} |
mint=matrix(1,maxwav,1,n); |
mint=matrix(1,maxwav,1,n); |
anint=matrix(1,maxwav,1,n); |
anint=matrix(1,maxwav,1,n); |
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
Line 6981 Please run with mle=-1 to get a correct
|
Line 9573 Please run with mle=-1 to get a correct
|
k=2 V1 Tvar[k=2]= 1 (from V1) |
k=2 V1 Tvar[k=2]= 1 (from V1) |
k=1 Tvar[1]=2 (from V2) |
k=1 Tvar[1]=2 (from V2) |
*/ |
*/ |
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
|
|
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
|
TvarF=ivector(1,NCOVMAX); /* */ |
|
TvarFind=ivector(1,NCOVMAX); /* */ |
|
TvarV=ivector(1,NCOVMAX); /* */ |
|
TvarVind=ivector(1,NCOVMAX); /* */ |
|
TvarA=ivector(1,NCOVMAX); /* */ |
|
TvarAind=ivector(1,NCOVMAX); /* */ |
|
TvarFD=ivector(1,NCOVMAX); /* */ |
|
TvarFDind=ivector(1,NCOVMAX); /* */ |
|
TvarFQ=ivector(1,NCOVMAX); /* */ |
|
TvarFQind=ivector(1,NCOVMAX); /* */ |
|
TvarVD=ivector(1,NCOVMAX); /* */ |
|
TvarVDind=ivector(1,NCOVMAX); /* */ |
|
TvarVQ=ivector(1,NCOVMAX); /* */ |
|
TvarVQind=ivector(1,NCOVMAX); /* */ |
|
|
|
Tvalsel=vector(1,NCOVMAX); /* */ |
|
Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */ |
|
Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */ |
|
Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */ |
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Line 6991 Please run with mle=-1 to get a correct
|
Line 9603 Please run with mle=-1 to get a correct
|
ncovcol + k1 |
ncovcol + k1 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
Tvar[3=V1*V4]=4+1 etc */ |
Tvar[3=V1*V4]=4+1 etc */ |
Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */ |
Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */ |
|
Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */ |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
|
Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 |
*/ |
*/ |
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
Line 7003 Please run with mle=-1 to get a correct
|
Line 9617 Please run with mle=-1 to get a correct
|
4 covariates (3 plus signs) |
4 covariates (3 plus signs) |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
*/ |
*/ |
|
Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual dummy, fixed or varying: |
|
* Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , |
|
* V1 df, V2 qf, V3 & V4 dv, V5 qv |
|
* Tmodelind[1]@9={9,0,3,2,}*/ |
|
TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/ |
|
TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual quantitative, fixed or varying: |
|
* Tmodelqind[1]=1,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
/* Main decodemodel */ |
/* Main decodemodel */ |
|
|
|
|
if(decodemodel(model, lastobs) == 1) |
if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3 = {4, 3, 5}*/ |
goto end; |
goto end; |
|
|
if((double)(lastobs-imx)/(double)imx > 1.10){ |
if((double)(lastobs-imx)/(double)imx > 1.10){ |
Line 7032 Please run with mle=-1 to get a correct
|
Line 9658 Please run with mle=-1 to get a correct
|
free_vector(annais,1,n); |
free_vector(annais,1,n); |
/* free_matrix(mint,1,maxwav,1,n); |
/* free_matrix(mint,1,maxwav,1,n); |
free_matrix(anint,1,maxwav,1,n);*/ |
free_matrix(anint,1,maxwav,1,n);*/ |
free_vector(moisdc,1,n); |
/* free_vector(moisdc,1,n); */ |
free_vector(andc,1,n); |
/* free_vector(andc,1,n); */ |
/* */ |
/* */ |
|
|
wav=ivector(1,imx); |
wav=ivector(1,imx); |
dh=imatrix(1,lastpass-firstpass+1,1,imx); |
/* dh=imatrix(1,lastpass-firstpass+1,1,imx); */ |
bh=imatrix(1,lastpass-firstpass+1,1,imx); |
/* bh=imatrix(1,lastpass-firstpass+1,1,imx); */ |
mw=imatrix(1,lastpass-firstpass+1,1,imx); |
/* mw=imatrix(1,lastpass-firstpass+1,1,imx); */ |
|
dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/ |
|
bh=imatrix(1,lastpass-firstpass+2,1,imx); |
|
mw=imatrix(1,lastpass-firstpass+2,1,imx); |
|
|
/* Concatenates waves */ |
/* Concatenates waves */ |
|
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
|
Death is a valid wave (if date is known). |
|
mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i |
|
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
|
and mw[mi+1][i]. dh depends on stepm. |
|
*/ |
|
|
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
/* */ |
/* */ |
|
|
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
free_vector(moisdc,1,n); |
|
free_vector(andc,1,n); |
|
|
|
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
ncodemax[1]=1; |
ncodemax[1]=1; |
Ndum =ivector(-1,NCOVMAX); |
Ndum =ivector(-1,NCOVMAX); |
if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */ |
cptcoveff=0; |
tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
/* Nbcode gives the value of the lth modality of jth covariate, in |
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
|
} |
|
|
|
ncovcombmax=pow(2,cptcoveff); |
|
invalidvarcomb=ivector(1, ncovcombmax); |
|
for(i=1;i<ncovcombmax;i++) |
|
invalidvarcomb[i]=0; |
|
|
|
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
/* 1 to ncodemax[j] is the maximum value of this jth covariate */ |
/* 1 to ncodemax[j] which is the maximum value of this jth covariate */ |
|
|
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
h=0; |
/* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, |
|
* codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded |
|
* (currently 0 or 1) in the data. |
|
* In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of |
|
* corresponding modality (h,j). |
|
*/ |
|
|
|
h=0; |
/*if (cptcovn > 0) */ |
/*if (cptcovn > 0) */ |
|
|
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
|
|
/**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1 |
/**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1 |
* For k=4 covariates, h goes from 1 to 2**k |
* For k=4 covariates, h goes from 1 to m=2**k |
* codtabm(h,k)= 1 & (h-1) >> (k-1) ; |
* codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1; |
|
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
* h\k 1 2 3 4 |
* h\k 1 2 3 4 |
*______________________________ |
*______________________________ |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 |
Line 7089 Please run with mle=-1 to get a correct
|
Line 9739 Please run with mle=-1 to get a correct
|
* 15 i=8 1 2 2 2 |
* 15 i=8 1 2 2 2 |
* 16 2 2 2 2 |
* 16 2 2 2 2 |
*/ |
*/ |
for(h=1; h <=100 ;h++){ |
/* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */ |
/* printf("h=%2d ", h); */ |
/* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4 |
/* for(k=1; k <=10; k++){ */ |
* and the value of each covariate? |
/* printf("k=%d %d ",k,codtabm(h,k)); */ |
* V1=1, V2=1, V3=2, V4=1 ? |
/* codtab[h][k]=codtabm(h,k); */ |
* h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok. |
/* } */ |
* h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st. |
/* printf("\n"); */ |
* In order to get the real value in the data, we use nbcode |
} |
* nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0 |
/* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */ |
* We are keeping this crazy system in order to be able (in the future?) |
/* for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/ */ |
* to have more than 2 values (0 or 1) for a covariate. |
/* for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */ |
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
/* for(cpt=1; cpt <=pow(2,k-1); cpt++){ /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/ */ |
* h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1 |
/* h++; */ |
* bbbbbbbb |
/* if (h>m) */ |
* 76543210 |
/* h=1; */ |
* h-1 00000101 (6-1=5) |
/* codtab[h][k]=j; */ |
*(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift |
/* /\* codtab[12][3]=1; *\/ */ |
* & |
/* /\*codtab[h][Tvar[k]]=j;*\/ */ |
* 1 00000001 (1) |
/* /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */ |
* 00000000 = 1 & ((h-1) >> (k-1)) |
/* } */ |
* +1= 00000001 =1 |
/* } */ |
* |
/* } */ |
* h=14, k=3 => h'=h-1=13, k'=k-1=2 |
/* } */ |
* h' 1101 =2^3+2^2+0x2^1+2^0 |
/* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); |
* >>k' 11 |
codtab[1][2]=1;codtab[2][2]=2; */ |
* & 00000001 |
/* for(i=1; i <=m ;i++){ */ |
* = 00000001 |
/* for(k=1; k <=cptcovn; k++){ */ |
* +1 = 00000010=2 = codtabm(14,3) |
/* printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */ |
* Reverse h=6 and m=16? |
/* } */ |
* cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1. |
/* printf("\n"); */ |
* for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff) |
/* } */ |
* decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 |
/* scanf("%d",i);*/ |
* decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1) |
|
* V3=decodtabm(14,3,2**4)=2 |
|
* h'=13 1101 =2^3+2^2+0x2^1+2^0 |
|
*(h-1) >> (j-1) 0011 =13 >> 2 |
|
* &1 000000001 |
|
* = 000000001 |
|
* +1= 000000010 =2 |
|
* 2211 |
|
* V1=1+1, V2=0+1, V3=1+1, V4=1+1 |
|
* V3=2 |
|
* codtabm and decodtabm are identical |
|
*/ |
|
|
|
|
free_ivector(Ndum,-1,NCOVMAX); |
free_ivector(Ndum,-1,NCOVMAX); |
|
|
Line 7136 Please run with mle=-1 to get a correct
|
Line 9798 Please run with mle=-1 to get a correct
|
printf("Problem with file %s",optionfilegnuplot); |
printf("Problem with file %s",optionfilegnuplot); |
} |
} |
else{ |
else{ |
fprintf(ficgp,"\n# %s\n", version); |
fprintf(ficgp,"\n# IMaCh-%s\n", version); |
fprintf(ficgp,"# %s\n", optionfilegnuplot); |
fprintf(ficgp,"# %s\n", optionfilegnuplot); |
//fprintf(ficgp,"set missing 'NaNq'\n"); |
//fprintf(ficgp,"set missing 'NaNq'\n"); |
fprintf(ficgp,"set datafile missing 'NaNq'\n"); |
fprintf(ficgp,"set datafile missing 'NaNq'\n"); |
Line 7163 Please run with mle=-1 to get a correct
|
Line 9825 Please run with mle=-1 to get a correct
|
else{ |
else{ |
fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
|
|
fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C) 2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
<font size=\"2\">IMaCh-%s <br> %s</font> \ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\ |
\n\ |
\n\ |
<hr size=\"2\" color=\"#EC5E5E\">\ |
<hr size=\"2\" color=\"#EC5E5E\">\ |
<ul><li><h4>Parameter files</h4>\n\ |
<ul><li><h4>Parameter files</h4>\n\ |
Line 7193 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 9857 Title=%s <br>Datafile=%s Firstpass=%d La
|
#endif |
#endif |
|
|
|
|
/* Calculates basic frequencies. Computes observed prevalence at single age |
/* Calculates basic frequencies. Computes observed prevalence at single age |
|
and for any valid combination of covariates |
and prints on file fileres'p'. */ |
and prints on file fileres'p'. */ |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart); |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
|
firstpass, lastpass, stepm, weightopt, model); |
|
|
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ |
fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ |
Line 7203 Youngest age at first (selected) pass %.
|
Line 9869 Youngest age at first (selected) pass %.
|
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
imx,agemin,agemax,jmin,jmax,jmean); |
imx,agemin,agemax,jmin,jmax,jmean); |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
|
|
|
|
/* For Powell, parameters are in a vector p[] starting at p[1] |
/* For Powell, parameters are in a vector p[] starting at p[1] |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
Line 7217 Interval (in months) between two waves:
|
Line 9882 Interval (in months) between two waves:
|
/* For mortality only */ |
/* For mortality only */ |
if (mle==-3){ |
if (mle==-3){ |
ximort=matrix(1,NDIM,1,NDIM); |
ximort=matrix(1,NDIM,1,NDIM); |
|
for(i=1;i<=NDIM;i++) |
|
for(j=1;j<=NDIM;j++) |
|
ximort[i][j]=0.; |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
cens=ivector(1,n); |
cens=ivector(1,n); |
ageexmed=vector(1,n); |
ageexmed=vector(1,n); |
agecens=vector(1,n); |
agecens=vector(1,n); |
dcwave=ivector(1,n); |
dcwave=ivector(1,n); |
|
|
for (i=1; i<=imx; i++){ |
for (i=1; i<=imx; i++){ |
dcwave[i]=-1; |
dcwave[i]=-1; |
for (m=firstpass; m<=lastpass; m++) |
for (m=firstpass; m<=lastpass; m++) |
Line 7232 Interval (in months) between two waves:
|
Line 9900 Interval (in months) between two waves:
|
break; |
break; |
} |
} |
} |
} |
|
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
if (wav[i]>0){ |
if (wav[i]>0){ |
ageexmed[i]=agev[mw[1][i]][i]; |
ageexmed[i]=agev[mw[1][i]][i]; |
j=wav[i]; |
j=wav[i]; |
agecens[i]=1.; |
agecens[i]=1.; |
|
|
if (ageexmed[i]> 1 && wav[i] > 0){ |
if (ageexmed[i]> 1 && wav[i] > 0){ |
agecens[i]=agev[mw[j][i]][i]; |
agecens[i]=agev[mw[j][i]][i]; |
cens[i]= 1; |
cens[i]= 1; |
Line 7361 Interval (in months) between two waves:
|
Line 10029 Interval (in months) between two waves:
|
#endif |
#endif |
fclose(ficrespow); |
fclose(ficrespow); |
|
|
hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); |
hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); |
|
|
for(i=1; i <=NDIM; i++) |
for(i=1; i <=NDIM; i++) |
for(j=i+1;j<=NDIM;j++) |
for(j=i+1;j<=NDIM;j++) |
matcov[i][j]=matcov[j][i]; |
matcov[i][j]=matcov[j][i]; |
|
|
printf("\nCovariance matrix\n "); |
printf("\nCovariance matrix\n "); |
|
fprintf(ficlog,"\nCovariance matrix\n "); |
for(i=1; i <=NDIM; i++) { |
for(i=1; i <=NDIM; i++) { |
for(j=1;j<=NDIM;j++){ |
for(j=1;j<=NDIM;j++){ |
printf("%f ",matcov[i][j]); |
printf("%f ",matcov[i][j]); |
|
fprintf(ficlog,"%f ",matcov[i][j]); |
} |
} |
printf("\n "); |
printf("\n "); fprintf(ficlog,"\n "); |
} |
} |
|
|
printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp); |
printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp); |
Line 7411 Interval (in months) between two waves:
|
Line 10081 Interval (in months) between two waves:
|
|
|
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
|
ageminpar=50; |
|
agemaxpar=100; |
if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Line 7418 Please run with mle=-1 to get a correct
|
Line 10090 Please run with mle=-1 to get a correct
|
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
}else |
}else{ |
|
printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar); |
|
fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar); |
printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); |
printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); |
|
} |
printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \ |
printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \ |
stepm, weightopt,\ |
stepm, weightopt,\ |
model,imx,p,matcov,agemortsup); |
model,imx,p,matcov,agemortsup); |
Line 7427 Please run with mle=-1 to get a correct
|
Line 10102 Please run with mle=-1 to get a correct
|
free_vector(lsurv,1,AGESUP); |
free_vector(lsurv,1,AGESUP); |
free_vector(lpop,1,AGESUP); |
free_vector(lpop,1,AGESUP); |
free_vector(tpop,1,AGESUP); |
free_vector(tpop,1,AGESUP); |
#ifdef GSL |
free_matrix(ximort,1,NDIM,1,NDIM); |
free_ivector(cens,1,n); |
free_ivector(cens,1,n); |
free_vector(agecens,1,n); |
free_vector(agecens,1,n); |
free_ivector(dcwave,1,n); |
free_ivector(dcwave,1,n); |
free_matrix(ximort,1,NDIM,1,NDIM); |
#ifdef GSL |
#endif |
#endif |
} /* Endof if mle==-3 mortality only */ |
} /* Endof if mle==-3 mortality only */ |
/* Standard maximisation */ |
/* Standard */ |
else{ /* For mle >=1 */ |
else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */ |
globpr=0;/* debug */ |
globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */ |
/* Computes likelihood for initial parameters */ |
/* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
for (k=1; k<=npar;k++) |
for (k=1; k<=npar;k++) |
printf(" %d %8.5f",k,p[k]); |
printf(" %d %8.5f",k,p[k]); |
printf("\n"); |
printf("\n"); |
globpr=1; /* again, to print the contributions */ |
if(mle>=1){ /* Could be 1 or 2, Real Maximization */ |
|
/* mlikeli uses func not funcone */ |
|
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
|
} |
|
if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ |
|
globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */ |
|
/* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */ |
|
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
|
} |
|
globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
for (k=1; k<=npar;k++) |
for (k=1; k<=npar;k++) |
printf(" %d %8.5f",k,p[k]); |
printf(" %d %8.5f",k,p[k]); |
printf("\n"); |
printf("\n"); |
if(mle>=1){ /* Could be 1 or 2, Real Maximisation */ |
|
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
|
} |
|
|
|
/*--------- results files --------------*/ |
/*--------- results files --------------*/ |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); |
|
|
|
|
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
Line 7478 Please run with mle=-1 to get a correct
|
Line 10159 Please run with mle=-1 to get a correct
|
} |
} |
} |
} |
} |
} |
if(mle!=0){ |
if(mle != 0){ |
/* Computing hessian and covariance matrix */ |
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
ftolhess=ftol; /* Usually correct */ |
ftolhess=ftol; /* Usually correct */ |
hesscov(matcov, p, npar, delti, ftolhess, func); |
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
} |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
printf("%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
jk++; |
jk++; |
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
} |
} |
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
} |
} |
} |
} |
} /* end of hesscov and Wald tests */ |
|
|
|
/* */ |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
printf("# Scales (for hessian or gradient estimation)\n"); |
printf("# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); |
Line 7524 Please run with mle=-1 to get a correct
|
Line 10206 Please run with mle=-1 to get a correct
|
} |
} |
|
|
fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
if(mle>=1) |
if(mle >= 1) /* To big for the screen */ |
printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
/* # 121 Var(a12)\n\ */ |
/* # 121 Var(a12)\n\ */ |
Line 7587 Please run with mle=-1 to get a correct
|
Line 10269 Please run with mle=-1 to get a correct
|
fprintf(ficres," Var(%s%1d%1d)",ca,i,j); |
fprintf(ficres," Var(%s%1d%1d)",ca,i,j); |
}else{ |
}else{ |
if(mle>=1) |
if(mle>=1) |
printf(" %.5e",matcov[jj][ll]); |
printf(" %.7e",matcov[jj][ll]); |
fprintf(ficlog," %.5e",matcov[jj][ll]); |
fprintf(ficlog," %.7e",matcov[jj][ll]); |
fprintf(ficres," %.5e",matcov[jj][ll]); |
fprintf(ficres," %.7e",matcov[jj][ll]); |
} |
} |
} |
} |
} |
} |
Line 7608 Please run with mle=-1 to get a correct
|
Line 10290 Please run with mle=-1 to get a correct
|
|
|
fflush(ficlog); |
fflush(ficlog); |
fflush(ficres); |
fflush(ficres); |
|
while(fgets(line, MAXLINE, ficpar)) { |
while((c=getc(ficpar))=='#' && c!= EOF){ |
/* If line starts with a # it is a comment */ |
ungetc(c,ficpar); |
if (line[0] == '#') { |
fgets(line, MAXLINE, ficpar); |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
} |
} |
ungetc(c,ficpar); |
|
|
/* while((c=getc(ficpar))=='#' && c!= EOF){ */ |
|
/* ungetc(c,ficpar); */ |
|
/* fgets(line, MAXLINE, ficpar); */ |
|
/* fputs(line,stdout); */ |
|
/* fputs(line,ficparo); */ |
|
/* } */ |
|
/* ungetc(c,ficpar); */ |
|
|
estepm=0; |
estepm=0; |
fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); |
if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){ |
|
|
|
if (num_filled != 6) { |
|
printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
|
fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
|
goto end; |
|
} |
|
printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl); |
|
} |
|
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
|
/*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
|
|
|
/* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */ |
if (estepm==0 || estepm < stepm) estepm=stepm; |
if (estepm==0 || estepm < stepm) estepm=stepm; |
if (fage <= 2) { |
if (fage <= 2) { |
bage = ageminpar; |
bage = ageminpar; |
Line 7626 Please run with mle=-1 to get a correct
|
Line 10331 Please run with mle=-1 to get a correct
|
} |
} |
|
|
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); |
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); |
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); |
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
|
|
/* Other stuffs, more or less useful */ |
/* Other stuffs, more or less useful */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
ungetc(c,ficpar); |
ungetc(c,ficpar); |
Line 7676 Please run with mle=-1 to get a correct
|
Line 10381 Please run with mle=-1 to get a correct
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
/* day and month of proj2 are not used but only year anproj2.*/ |
/* day and month of proj2 are not used but only year anproj2.*/ |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj); |
|
fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
|
|
/* Results */ |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
while((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){ |
|
if (num_filled == 0) |
|
resultline[0]='\0'; |
|
else if (num_filled != 1){ |
|
printf("ERROR %d: result line should be at minimum 'result=' %s\n",num_filled, line); |
|
} |
|
printf("Result %d: result line should be at minimum 'line=' %s, result=%s\n",num_filled, line, resultline); |
|
decoderesult(resultline); |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
if (feof(ficpar)) |
|
break; |
|
else{ /* Processess output results for this combination of covariate values */ |
|
} |
|
} |
|
|
|
|
|
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
}else |
}else{ |
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); |
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p); |
|
} |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\ |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \ |
jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); |
jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2); |
|
|
/*------------ free_vector -------------*/ |
/*------------ free_vector -------------*/ |
/* chdir(path); */ |
/* chdir(path); */ |
|
|
free_ivector(wav,1,imx); |
/* free_ivector(wav,1,imx); */ /* Moved after last prevalence call */ |
free_imatrix(dh,1,lastpass-firstpass+1,1,imx); |
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
free_imatrix(bh,1,lastpass-firstpass+1,1,imx); |
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
free_imatrix(mw,1,lastpass-firstpass+1,1,imx); |
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
free_lvector(num,1,n); |
free_lvector(num,1,n); |
free_vector(agedc,1,n); |
free_vector(agedc,1,n); |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
fclose(ficparo); |
fclose(ficparo); |
fclose(ficres); |
fclose(ficres); |
|
|
|
|
/* Other results (useful)*/ |
/* Other results (useful)*/ |
|
|
|
|
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
prlim=matrix(1,nlstate,1,nlstate); |
prlim=matrix(1,nlstate,1,nlstate); |
prevalence_limit(p, prlim, ageminpar, agemaxpar); |
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
fclose(ficrespl); |
fclose(ficrespl); |
|
|
#ifdef FREEEXIT2 |
|
#include "freeexit2.h" |
|
#endif |
|
|
|
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
/*#include "hpijx.h"*/ |
/*#include "hpijx.h"*/ |
hPijx(p, bage, fage); |
hPijx(p, bage, fage); |
fclose(ficrespij); |
fclose(ficrespij); |
|
|
/*-------------- Variance of one-step probabilities---*/ |
/* ncovcombmax= pow(2,cptcoveff); */ |
|
/*-------------- Variance of one-step probabilities---*/ |
k=1; |
k=1; |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
|
|
|
/* Prevalence for each covariates in probs[age][status][cov] */ |
probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
for(i=1;i<=AGESUP;i++) |
for(i=1;i<=AGESUP;i++) |
for(j=1;j<=NCOVMAX;j++) |
for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */ |
for(k=1;k<=NCOVMAX;k++) |
for(k=1;k<=ncovcombmax;k++) |
probs[i][j][k]=0.; |
probs[i][j][k]=0.; |
|
prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
if (mobilav!=0 ||mobilavproj !=0 ) { |
|
mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
|
for(i=1;i<=AGESUP;i++) |
|
for(j=1;j<=nlstate;j++) |
|
for(k=1;k<=ncovcombmax;k++) |
|
mobaverages[i][j][k]=0.; |
|
mobaverage=mobaverages; |
|
if (mobilav!=0) { |
|
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
/* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */ |
|
/* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
else if (mobilavproj !=0) { |
|
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj); |
|
printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj); |
|
} |
|
} |
|
}/* end if moving average */ |
|
|
/*---------- Forecasting ------------------*/ |
/*---------- Forecasting ------------------*/ |
/*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
/*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* if(stepm ==1){*/ |
/* if(stepm ==1){*/ |
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
/* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/ |
|
/* } */ |
|
/* else{ */ |
|
/* erreur=108; */ |
|
/* printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ |
|
/* fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ |
|
/* } */ |
|
} |
} |
|
if(backcast==1){ |
|
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
|
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
|
ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
|
|
|
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
|
|
|
bprlim=matrix(1,nlstate,1,nlstate); |
|
back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj); |
|
fclose(ficresplb); |
|
|
|
hBijx(p, bage, fage, mobaverage); |
|
fclose(ficrespijb); |
|
free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
|
|
|
/* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj, |
|
bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */ |
|
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
|
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
|
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
|
} |
|
|
|
|
/* ------ Other prevalence ratios------------ */ |
/* ------ Other prevalence ratios------------ */ |
|
|
/* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */ |
free_ivector(wav,1,imx); |
|
free_imatrix(dh,1,lastpass-firstpass+2,1,imx); |
prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
free_imatrix(bh,1,lastpass-firstpass+2,1,imx); |
/* printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d, mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\ |
free_imatrix(mw,1,lastpass-firstpass+2,1,imx); |
ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass); |
|
*/ |
|
|
|
if (mobilav!=0) { |
|
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
|
|
|
|
/*---------- Health expectancies, no variances ------------*/ |
/*---------- Health expectancies, no variances ------------*/ |
|
|
strcpy(filerese,"E_"); |
strcpy(filerese,"E_"); |
strcat(filerese,fileresu); |
strcat(filerese,fileresu); |
if((ficreseij=fopen(filerese,"w"))==NULL) { |
if((ficreseij=fopen(filerese,"w"))==NULL) { |
printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); |
printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); |
fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0); |
fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0); |
} |
} |
printf("Computing Health Expectancies: result on file '%s' \n", filerese); |
printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout); |
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese); |
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog); |
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ /* For any combination of dummy covariates, fixed and varying */ |
|
fprintf(ficreseij,"\n#****** "); |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficreseij,"\n#****** "); |
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
for(j=1;j<=cptcoveff;j++) { |
} |
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficreseij,"******\n"); |
} |
|
fprintf(ficreseij,"******\n"); |
|
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart); |
|
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
/*}*/ |
oldm=oldms;savm=savms; |
|
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart); |
|
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
} |
} |
fclose(ficreseij); |
fclose(ficreseij); |
|
printf("done evsij\n");fflush(stdout); |
|
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
/*---------- Health expectancies and variances ------------*/ |
|
|
/*---------- State-specific expectancies and variances ------------*/ |
|
|
|
|
strcpy(filerest,"T_"); |
strcpy(filerest,"T_"); |
strcat(filerest,fileresu); |
strcat(filerest,fileresu); |
if((ficrest=fopen(filerest,"w"))==NULL) { |
if((ficrest=fopen(filerest,"w"))==NULL) { |
printf("Problem with total LE resultfile: %s\n", filerest);goto end; |
printf("Problem with total LE resultfile: %s\n", filerest);goto end; |
fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end; |
fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end; |
} |
} |
printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); |
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
|
|
|
|
strcpy(fileresstde,"STDE_"); |
strcpy(fileresstde,"STDE_"); |
strcat(fileresstde,fileresu); |
strcat(fileresstde,fileresu); |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
} |
} |
printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
printf(" Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
fprintf(ficlog," Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
|
|
strcpy(filerescve,"CVE_"); |
strcpy(filerescve,"CVE_"); |
strcat(filerescve,fileresu); |
strcat(filerescve,fileresu); |
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
} |
} |
printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
printf(" Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
fprintf(ficlog," Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
|
|
strcpy(fileresv,"V_"); |
strcpy(fileresv,"V_"); |
strcat(fileresv,fileresu); |
strcat(fileresv,fileresu); |
Line 7839 Please run with mle=-1 to get a correct
|
Line 10618 Please run with mle=-1 to get a correct
|
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
} |
} |
printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
printf(" Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout); |
fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
fprintf(ficlog," Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog); |
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
fprintf(ficrest,"\n#****** "); |
printf("\n#****** "); |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficrest,"\n#****** "); |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog,"\n#****** "); |
fprintf(ficrest,"******\n"); |
for(j=1;j<=cptcoveff;j++){ |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrescveij,"\n#****** "); |
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
for(j=1;j<=cptcoveff;j++) { |
} |
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrest,"******\n"); |
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog,"******\n"); |
} |
printf("******\n"); |
fprintf(ficresstdeij,"******\n"); |
|
fprintf(ficrescveij,"******\n"); |
fprintf(ficresstdeij,"\n#****** "); |
|
fprintf(ficrescveij,"\n#****** "); |
fprintf(ficresvij,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresvij,"******\n"); |
} |
|
fprintf(ficresstdeij,"******\n"); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
fprintf(ficrescveij,"******\n"); |
oldm=oldms;savm=savms; |
|
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart); |
fprintf(ficresvij,"\n#****** "); |
/* |
for(j=1;j<=cptcoveff;j++) |
*/ |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* goto endfree; */ |
fprintf(ficresvij,"******\n"); |
|
|
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
pstamp(ficrest); |
oldm=oldms;savm=savms; |
|
printf(" cvevsij combination#=%d, ",k); |
|
fprintf(ficlog, " cvevsij combination#=%d, ",k); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart); |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
printf(" end cvevsij \n "); |
cptcod= 0; /* To be deleted */ |
fprintf(ficlog, " end cvevsij \n "); |
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */ |
|
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); |
/* |
if(vpopbased==1) |
*/ |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
/* goto endfree; */ |
else |
|
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
pstamp(ficrest); |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
|
fprintf(ficrest,"\n"); |
|
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
epj=vector(1,nlstate+1); |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
for(age=bage; age <=fage ;age++){ |
cptcod= 0; /* To be deleted */ |
prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); /*ZZ Is it the correct prevalim */ |
printf("varevsij vpopbased=%d \n",vpopbased); |
if (vpopbased==1) { |
fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased); |
if(mobilav ==0){ |
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */ |
for(i=1; i<=nlstate;i++) |
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); |
prlim[i][i]=probs[(int)age][i][k]; |
if(vpopbased==1) |
}else{ /* mobilav */ |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
for(i=1; i<=nlstate;i++) |
else |
prlim[i][i]=mobaverage[(int)age][i][k]; |
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
} |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
} |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
|
fprintf(ficrest,"\n"); |
fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav); |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
/* printf(" age %4.0f ",age); */ |
epj=vector(1,nlstate+1); |
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ |
printf("Computing age specific period (stable) prevalences in each health state \n"); |
for(i=1, epj[j]=0.;i <=nlstate;i++) { |
fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n"); |
epj[j] += prlim[i][i]*eij[i][j][(int)age]; |
for(age=bage; age <=fage ;age++){ |
/*ZZZ printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */ |
/* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */ |
if (vpopbased==1) { |
} |
if(mobilav ==0){ |
epj[nlstate+1] +=epj[j]; |
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][k]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][k]; |
} |
} |
/* printf(" age %4.0f \n",age); */ |
} |
|
|
for(i=1, vepp=0.;i <=nlstate;i++) |
fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav); |
for(j=1;j <=nlstate;j++) |
/* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */ |
vepp += vareij[i][j][(int)age]; |
/* printf(" age %4.0f ",age); */ |
fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); |
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ |
for(j=1;j <=nlstate;j++){ |
for(i=1, epj[j]=0.;i <=nlstate;i++) { |
fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); |
epj[j] += prlim[i][i]*eij[i][j][(int)age]; |
|
/*ZZZ printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ |
|
/* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */ |
} |
} |
fprintf(ficrest,"\n"); |
epj[nlstate+1] +=epj[j]; |
|
} |
|
/* printf(" age %4.0f \n",age); */ |
|
|
|
for(i=1, vepp=0.;i <=nlstate;i++) |
|
for(j=1;j <=nlstate;j++) |
|
vepp += vareij[i][j][(int)age]; |
|
fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); |
|
for(j=1;j <=nlstate;j++){ |
|
fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); |
} |
} |
|
fprintf(ficrest,"\n"); |
} |
} |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
} /* End vpopbased */ |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_vector(epj,1,nlstate+1); |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
|
free_vector(epj,1,nlstate+1); |
|
printf("done \n");fflush(stdout); |
|
fprintf(ficlog,"done\n");fflush(ficlog); |
|
|
/*}*/ |
/*}*/ |
} |
} /* End k */ |
free_vector(weight,1,n); |
|
free_imatrix(Tvard,1,NCOVMAX,1,2); |
|
free_imatrix(s,1,maxwav+1,1,n); |
|
free_matrix(anint,1,maxwav,1,n); |
|
free_matrix(mint,1,maxwav,1,n); |
|
free_ivector(cod,1,n); |
|
free_ivector(tab,1,NCOVMAX); |
|
fclose(ficresstdeij); |
|
fclose(ficrescveij); |
|
fclose(ficresvij); |
|
fclose(ficrest); |
|
fclose(ficpar); |
|
|
|
/*------- Variance of period (stable) prevalence------*/ |
|
|
|
|
printf("done State-specific expectancies\n");fflush(stdout); |
|
fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog); |
|
|
|
/*------- Variance of period (stable) prevalence------*/ |
|
|
strcpy(fileresvpl,"VPL_"); |
strcpy(fileresvpl,"VPL_"); |
strcat(fileresvpl,fileresu); |
strcat(fileresvpl,fileresu); |
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
exit(0); |
exit(0); |
} |
} |
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl); |
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
fprintf(ficresvpl,"\n#****** "); |
fprintf(ficresvpl,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) |
printf("\n#****** "); |
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog,"\n#****** "); |
fprintf(ficresvpl,"******\n"); |
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficresvpl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart); |
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart); |
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
/*}*/ |
/*}*/ |
} |
} |
|
|
fclose(ficresvpl); |
fclose(ficresvpl); |
|
printf("done variance-covariance of period prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog); |
|
|
|
free_vector(weight,1,n); |
|
free_imatrix(Tvard,1,NCOVMAX,1,2); |
|
free_imatrix(s,1,maxwav+1,1,n); |
|
free_matrix(anint,1,maxwav,1,n); |
|
free_matrix(mint,1,maxwav,1,n); |
|
free_ivector(cod,1,n); |
|
free_ivector(tab,1,NCOVMAX); |
|
fclose(ficresstdeij); |
|
fclose(ficrescveij); |
|
fclose(ficresvij); |
|
fclose(ficrest); |
|
fclose(ficpar); |
|
|
|
|
/*---------- End : free ----------------*/ |
/*---------- End : free ----------------*/ |
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
if (mobilav!=0 ||mobilavproj !=0) |
free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */ |
} /* mle==-3 arrives here for freeing */ |
free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
/* endfree:*/ |
|
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
} /* mle==-3 arrives here for freeing */ |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
/* endfree:*/ |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(covar,0,NCOVMAX,1,n); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
/*free_vector(delti,1,npar);*/ |
free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n); |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ma3x(cotvar,1,maxwav,1,ntv,1,n); |
free_matrix(agev,1,maxwav,1,imx); |
free_matrix(coqvar,1,maxwav,1,n); |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_matrix(covar,0,NCOVMAX,1,n); |
|
free_matrix(matcov,1,npar,1,npar); |
free_ivector(ncodemax,1,NCOVMAX); |
free_matrix(hess,1,npar,1,npar); |
free_ivector(ncodemaxwundef,1,NCOVMAX); |
/*free_vector(delti,1,npar);*/ |
free_ivector(Tvar,1,NCOVMAX); |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ivector(Tprod,1,NCOVMAX); |
free_matrix(agev,1,maxwav,1,imx); |
free_ivector(Tvaraff,1,NCOVMAX); |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ivector(Tage,1,NCOVMAX); |
|
|
free_ivector(ncodemax,1,NCOVMAX); |
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
free_ivector(ncodemaxwundef,1,NCOVMAX); |
/* free_imatrix(codtab,1,100,1,10); */ |
free_ivector(Dummy,-1,NCOVMAX); |
|
free_ivector(Fixed,-1,NCOVMAX); |
|
free_ivector(Typevar,-1,NCOVMAX); |
|
free_ivector(Tvar,1,NCOVMAX); |
|
free_ivector(TvarFD,1,NCOVMAX); |
|
free_ivector(TvarFDind,1,NCOVMAX); |
|
free_ivector(TvarF,1,NCOVMAX); |
|
free_ivector(TvarFind,1,NCOVMAX); |
|
free_ivector(TvarV,1,NCOVMAX); |
|
free_ivector(TvarVind,1,NCOVMAX); |
|
free_ivector(TvarA,1,NCOVMAX); |
|
free_ivector(TvarAind,1,NCOVMAX); |
|
free_ivector(TvarFQ,1,NCOVMAX); |
|
free_ivector(TvarFQind,1,NCOVMAX); |
|
free_ivector(TvarVD,1,NCOVMAX); |
|
free_ivector(TvarVDind,1,NCOVMAX); |
|
free_ivector(TvarVQ,1,NCOVMAX); |
|
free_ivector(TvarVQind,1,NCOVMAX); |
|
free_ivector(Tvarsel,1,NCOVMAX); |
|
free_vector(Tvalsel,1,NCOVMAX); |
|
free_ivector(Tposprod,1,NCOVMAX); |
|
free_ivector(Tprod,1,NCOVMAX); |
|
free_ivector(Tvaraff,1,NCOVMAX); |
|
free_ivector(invalidvarcomb,1,ncovcombmax); |
|
free_ivector(Tage,1,NCOVMAX); |
|
free_ivector(Tmodelind,1,NCOVMAX); |
|
free_ivector(TmodelInvind,1,NCOVMAX); |
|
free_ivector(TmodelInvQind,1,NCOVMAX); |
|
|
|
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
|
/* free_imatrix(codtab,1,100,1,10); */ |
fflush(fichtm); |
fflush(fichtm); |
fflush(ficgp); |
fflush(ficgp); |
|
|
|
|
if((nberr >0) || (nbwarn>0)){ |
if((nberr >0) || (nbwarn>0)){ |
printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn); |
printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn); |
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn); |
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn); |
}else{ |
}else{ |
printf("End of Imach\n"); |
printf("End of Imach\n"); |
fprintf(ficlog,"End of Imach\n"); |
fprintf(ficlog,"End of Imach\n"); |
Line 8017 Please run with mle=-1 to get a correct
|
Line 10860 Please run with mle=-1 to get a correct
|
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
|
|
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
Line 8030 Please run with mle=-1 to get a correct
|
Line 10873 Please run with mle=-1 to get a correct
|
fclose(ficgp); |
fclose(ficgp); |
fclose(ficlog); |
fclose(ficlog); |
/*------ End -----------*/ |
/*------ End -----------*/ |
|
|
|
|
printf("Before Current directory %s!\n",pathcd); |
printf("Before Current directory %s!\n",pathcd); |
#ifdef WIN32 |
#ifdef WIN32 |
if (_chdir(pathcd) != 0) |
if (_chdir(pathcd) != 0) |
printf("Can't move to directory %s!\n",path); |
printf("Can't move to directory %s!\n",path); |
if(_getcwd(pathcd,MAXLINE) > 0) |
if(_getcwd(pathcd,MAXLINE) > 0) |
#else |
#else |
if(chdir(pathcd) != 0) |
if(chdir(pathcd) != 0) |
printf("Can't move to directory %s!\n", path); |
printf("Can't move to directory %s!\n", path); |
if (getcwd(pathcd, MAXLINE) > 0) |
if (getcwd(pathcd, MAXLINE) > 0) |
#endif |
#endif |
printf("Current directory %s!\n",pathcd); |
printf("Current directory %s!\n",pathcd); |
/*strcat(plotcmd,CHARSEPARATOR);*/ |
/*strcat(plotcmd,CHARSEPARATOR);*/ |
Line 8066 Please run with mle=-1 to get a correct
|
Line 10909 Please run with mle=-1 to get a correct
|
|
|
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
|
|
if((outcmd=system(plotcmd)) != 0){ |
if((outcmd=system(plotcmd)) != 0){ |
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
Line 8094 Please run with mle=-1 to get a correct
|
Line 10937 Please run with mle=-1 to get a correct
|
else if (z[0] == 'g') system(plotcmd); |
else if (z[0] == 'g') system(plotcmd); |
else if (z[0] == 'q') exit(0); |
else if (z[0] == 'q') exit(0); |
} |
} |
end: |
end: |
while (z[0] != 'q') { |
while (z[0] != 'q') { |
printf("\nType q for exiting: "); fflush(stdout); |
printf("\nType q for exiting: "); fflush(stdout); |
scanf("%s",z); |
scanf("%s",z); |