version 1.242, 2016/08/30 15:01:20
|
version 1.245, 2016/09/02 07:25:01
|
Line 1
|
Line 1
|
/* $Id$ |
/* $Id$ |
$State$ |
$State$ |
$Log$ |
$Log$ |
|
Revision 1.245 2016/09/02 07:25:01 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.244 2016/09/02 07:17:34 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.243 2016/09/02 06:45:35 brouard |
|
*** empty log message *** |
|
|
Revision 1.242 2016/08/30 15:01:20 brouard |
Revision 1.242 2016/08/30 15:01:20 brouard |
Summary: Fixing a lots |
Summary: Fixing a lots |
|
|
Line 2222 void powell(double p[], double **xi, int
|
Line 2231 void powell(double p[], double **xi, int
|
/* printf("\n"); */ |
/* printf("\n"); */ |
/* fprintf(ficlog,"\n"); */ |
/* fprintf(ficlog,"\n"); */ |
} |
} |
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */ |
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */ |
|
if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
Line 3213 double func( double *x)
|
Line 3223 double func( double *x)
|
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
to be observed in j being in i according to the model. |
to be observed in j being in i according to the model. |
*/ |
*/ |
ioffset=2+nagesqr+cptcovage; |
ioffset=2+nagesqr ; |
/* Fixed */ |
/* Fixed */ |
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
Line 3532 double funcone( double *x)
|
Line 3542 double funcone( double *x)
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
ioffset=0; |
ioffset=0; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
ioffset=2+nagesqr+cptcovage; |
/* ioffset=2+nagesqr+cptcovage; */ |
|
ioffset=2+nagesqr; |
/* Fixed */ |
/* Fixed */ |
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
Line 6436 void printinggnuplot(char fileresu[], ch
|
Line 6447 void printinggnuplot(char fileresu[], ch
|
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
if(cptcoveff ==0){ |
if(cptcoveff ==0){ |
fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ", 2+(cpt-1), cpt ); |
fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3", 2+(cpt-1), cpt ); |
}else{ |
}else{ |
kl=0; |
kl=0; |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
Line 6451 void printinggnuplot(char fileresu[], ch
|
Line 6462 void printinggnuplot(char fileresu[], ch
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
if(k==cptcoveff){ |
if(k==cptcoveff){ |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
}else{ |
}else{ |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
Line 6521 void printinggnuplot(char fileresu[], ch
|
Line 6532 void printinggnuplot(char fileresu[], ch
|
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
} /* state */ |
} /* state */ |
} /* vpopbased */ |
} /* vpopbased */ |
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ |
} /* end nres */ |
} /* end nres */ |
} /* k1 end 2 eme*/ |
} /* k1 end 2 eme*/ |
|
|