Diff for /imach/src/imach.c between versions 1.35 and 1.97

version 1.35, 2002/03/26 17:08:39 version 1.97, 2004/02/20 13:25:42
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.97  2004/02/20 13:25:42  lievre
      Version 0.96d. Population forecasting command line is (temporarily)
   This program computes Healthy Life Expectancies from    suppressed.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.96  2003/07/15 15:38:55  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   case of a health survey which is our main interest) -2- at least a    rewritten within the same printf. Workaround: many printfs.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.95  2003/07/08 07:54:34  brouard
   computed from the time spent in each health state according to a    * imach.c (Repository):
   model. More health states you consider, more time is necessary to reach the    (Repository): Using imachwizard code to output a more meaningful covariance
   Maximum Likelihood of the parameters involved in the model.  The    matrix (cov(a12,c31) instead of numbers.
   simplest model is the multinomial logistic model where pij is the  
   probabibility to be observed in state j at the second wave    Revision 1.94  2003/06/27 13:00:02  brouard
   conditional to be observed in state i at the first wave. Therefore    Just cleaning
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.93  2003/06/25 16:33:55  brouard
   complex model than "constant and age", you should modify the program    (Module): On windows (cygwin) function asctime_r doesn't
   where the markup *Covariates have to be included here again* invites    exist so I changed back to asctime which exists.
   you to do it.  More covariates you add, slower the    (Module): Version 0.96b
   convergence.  
     Revision 1.92  2003/06/25 16:30:45  brouard
   The advantage of this computer programme, compared to a simple    (Module): On windows (cygwin) function asctime_r doesn't
   multinomial logistic model, is clear when the delay between waves is not    exist so I changed back to asctime which exists.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.91  2003/06/25 15:30:29  brouard
   account using an interpolation or extrapolation.      * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
   hPijx is the probability to be observed in state i at age x+h    helps to forecast when convergence will be reached. Elapsed time
   conditional to the observed state i at age x. The delay 'h' can be    is stamped in powell.  We created a new html file for the graphs
   split into an exact number (nh*stepm) of unobserved intermediate    concerning matrix of covariance. It has extension -cov.htm.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.90  2003/06/24 12:34:15  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Some bugs corrected for windows. Also, when
   and the contribution of each individual to the likelihood is simply    mle=-1 a template is output in file "or"mypar.txt with the design
   hPijx.    of the covariance matrix to be input.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.89  2003/06/24 12:30:52  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    of the covariance matrix to be input.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.88  2003/06/23 17:54:56  brouard
   from the European Union.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.87  2003/06/18 12:26:01  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.96
   **********************************************************************/  
      Revision 1.86  2003/06/17 20:04:08  brouard
 #include <math.h>    (Module): Change position of html and gnuplot routines and added
 #include <stdio.h>    routine fileappend.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 #define MAXLINE 256    current date of interview. It may happen when the death was just
 #define GNUPLOTPROGRAM "wgnuplot"    prior to the death. In this case, dh was negative and likelihood
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    was wrong (infinity). We still send an "Error" but patch by
 #define FILENAMELENGTH 80    assuming that the date of death was just one stepm after the
 /*#define DEBUG*/    interview.
 #define windows    (Repository): Because some people have very long ID (first column)
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    we changed int to long in num[] and we added a new lvector for
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    memory allocation. But we also truncated to 8 characters (left
     truncation)
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Repository): No more line truncation errors.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.84  2003/06/13 21:44:43  brouard
 #define NINTERVMAX 8    * imach.c (Repository): Replace "freqsummary" at a correct
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    place. It differs from routine "prevalence" which may be called
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    many times. Probs is memory consuming and must be used with
 #define NCOVMAX 8 /* Maximum number of covariates */    parcimony.
 #define MAXN 20000    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.83  2003/06/10 13:39:11  lievre
 #define AGEBASE 40    *** empty log message ***
   
     Revision 1.82  2003/06/05 15:57:20  brouard
 int erreur; /* Error number */    Add log in  imach.c and  fullversion number is now printed.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  */
 int npar=NPARMAX;  /*
 int nlstate=2; /* Number of live states */     Interpolated Markov Chain
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Short summary of the programme:
 int popbased=0;    
     This program computes Healthy Life Expectancies from
 int *wav; /* Number of waves for this individuual 0 is possible */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int maxwav; /* Maxim number of waves */    first survey ("cross") where individuals from different ages are
 int jmin, jmax; /* min, max spacing between 2 waves */    interviewed on their health status or degree of disability (in the
 int mle, weightopt;    case of a health survey which is our main interest) -2- at least a
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    second wave of interviews ("longitudinal") which measure each change
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (if any) in individual health status.  Health expectancies are
 double jmean; /* Mean space between 2 waves */    computed from the time spent in each health state according to a
 double **oldm, **newm, **savm; /* Working pointers to matrices */    model. More health states you consider, more time is necessary to reach the
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Maximum Likelihood of the parameters involved in the model.  The
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    simplest model is the multinomial logistic model where pij is the
 FILE *ficgp,*ficresprob,*ficpop;    probability to be observed in state j at the second wave
 FILE *ficreseij;    conditional to be observed in state i at the first wave. Therefore
   char filerese[FILENAMELENGTH];    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  FILE  *ficresvij;    'age' is age and 'sex' is a covariate. If you want to have a more
   char fileresv[FILENAMELENGTH];    complex model than "constant and age", you should modify the program
  FILE  *ficresvpl;    where the markup *Covariates have to be included here again* invites
   char fileresvpl[FILENAMELENGTH];    you to do it.  More covariates you add, slower the
     convergence.
 #define NR_END 1  
 #define FREE_ARG char*    The advantage of this computer programme, compared to a simple
 #define FTOL 1.0e-10    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 #define NRANSI    intermediate interview, the information is lost, but taken into
 #define ITMAX 200    account using an interpolation or extrapolation.  
   
 #define TOL 2.0e-4    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 #define CGOLD 0.3819660    split into an exact number (nh*stepm) of unobserved intermediate
 #define ZEPS 1.0e-10    states. This elementary transition (by month, quarter,
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 #define GOLD 1.618034    and the contribution of each individual to the likelihood is simply
 #define GLIMIT 100.0    hPijx.
 #define TINY 1.0e-20  
     Also this programme outputs the covariance matrix of the parameters but also
 static double maxarg1,maxarg2;    of the life expectancies. It also computes the stable prevalence. 
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
               Institut national d'études démographiques, Paris.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    This software have been partly granted by Euro-REVES, a concerted action
 #define rint(a) floor(a+0.5)    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 static double sqrarg;    software can be distributed freely for non commercial use. Latest version
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    can be accessed at http://euroreves.ined.fr/imach .
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int imx;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int stepm;    
 /* Stepm, step in month: minimum step interpolation*/    **********************************************************************/
   /*
 int m,nb;    main
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    read parameterfile
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    read datafile
 double **pmmij, ***probs, ***mobaverage;    concatwav
 double dateintmean=0;    freqsummary
     if (mle >= 1)
 double *weight;      mlikeli
 int **s; /* Status */    print results files
 double *agedc, **covar, idx;    if mle==1 
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */        begin-prev-date,...
 double ftolhess; /* Tolerance for computing hessian */    open gnuplot file
     open html file
 /**************** split *************************/    stable prevalence
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )     for age prevalim()
 {    h Pij x
    char *s;                             /* pointer */    variance of p varprob
    int  l1, l2;                         /* length counters */    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
    l1 = strlen( path );                 /* length of path */    Variance-covariance of DFLE
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    prevalence()
 #ifdef windows     movingaverage()
    s = strrchr( path, '\\' );           /* find last / */    varevsij() 
 #else    if popbased==1 varevsij(,popbased)
    s = strrchr( path, '/' );            /* find last / */    total life expectancies
 #endif    Variance of stable prevalence
    if ( s == NULL ) {                   /* no directory, so use current */   end
 #if     defined(__bsd__)                /* get current working directory */  */
       extern char       *getwd( );  
   
       if ( getwd( dirc ) == NULL ) {  
 #else   
       extern char       *getcwd( );  #include <math.h>
   #include <stdio.h>
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #include <stdlib.h>
 #endif  #include <unistd.h>
          return( GLOCK_ERROR_GETCWD );  
       }  #include <sys/time.h>
       strcpy( name, path );             /* we've got it */  #include <time.h>
    } else {                             /* strip direcotry from path */  #include "timeval.h"
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  /* #include <libintl.h> */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /* #define _(String) gettext (String) */
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define MAXLINE 256
       dirc[l1-l2] = 0;                  /* add zero */  #define GNUPLOTPROGRAM "gnuplot"
    }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    l1 = strlen( dirc );                 /* length of directory */  #define FILENAMELENGTH 132
 #ifdef windows  /*#define DEBUG*/
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /*#define windows*/
 #else  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #endif  
    s = strrchr( name, '.' );            /* find last / */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    s++;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  #define NINTERVMAX 8
    l2= strlen( s)+1;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    strncpy( finame, name, l1-l2);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    finame[l1-l2]= 0;  #define NCOVMAX 8 /* Maximum number of covariates */
    return( 0 );                         /* we're done */  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
   #define AGEBASE 40
 /******************************************/  #ifdef unix
   #define DIRSEPARATOR '/'
 void replace(char *s, char*t)  #define ODIRSEPARATOR '\\'
 {  #else
   int i;  #define DIRSEPARATOR '\\'
   int lg=20;  #define ODIRSEPARATOR '/'
   i=0;  #endif
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  /* $Id$ */
     (s[i] = t[i]);  /* $State$ */
     if (t[i]== '\\') s[i]='/';  
   }  char version[]="Imach version 0.96d, February 2004, INED-EUROREVES ";
 }  char fullversion[]="$Revision$ $Date$"; 
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int nbocc(char *s, char occ)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int i,j=0;  int npar=NPARMAX;
   int lg=20;  int nlstate=2; /* Number of live states */
   i=0;  int ndeath=1; /* Number of dead states */
   lg=strlen(s);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for(i=0; i<= lg; i++) {  int popbased=0;
   if  (s[i] == occ ) j++;  
   }  int *wav; /* Number of waves for this individuual 0 is possible */
   return j;  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
 void cutv(char *u,char *v, char*t, char occ)                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   int i,lg,j,p=0;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   i=0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for(j=0; j<=strlen(t)-1; j++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   lg=strlen(t);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for(j=0; j<p; j++) {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     (u[j] = t[j]);  FILE *ficlog, *ficrespow;
   }  int globpr; /* Global variable for printing or not */
      u[p]='\0';  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
    for(j=0; j<= lg; j++) {  double sw; /* Sum of weights */
     if (j>=(p+1))(v[j-p-1] = t[j]);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   }  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /********************** nrerror ********************/  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 void nrerror(char error_text[])  char filerese[FILENAMELENGTH];
 {  FILE  *ficresvij;
   fprintf(stderr,"ERREUR ...\n");  char fileresv[FILENAMELENGTH];
   fprintf(stderr,"%s\n",error_text);  FILE  *ficresvpl;
   exit(1);  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
 /*********************** vector *******************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double *vector(int nl, int nh)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double *v;  char command[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int  outcmd=0;
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /************************ free vector ******************/  char filerest[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /************************ivector *******************************/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 int *ivector(long nl,long nh)  struct timezone tzp;
 {  extern int gettimeofday();
   int *v;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  long time_value;
   if (!v) nrerror("allocation failure in ivector");  extern long time();
   return v-nl+NR_END;  char strcurr[80], strfor[80];
 }  
   #define NR_END 1
 /******************free ivector **************************/  #define FREE_ARG char*
 void free_ivector(int *v, long nl, long nh)  #define FTOL 1.0e-10
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define NRANSI 
 }  #define ITMAX 200 
   
 /******************* imatrix *******************************/  #define TOL 2.0e-4 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   int **m;  
    #define GOLD 1.618034 
   /* allocate pointers to rows */  #define GLIMIT 100.0 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define TINY 1.0e-20 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  static double maxarg1,maxarg2;
   m -= nrl;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
   /* allocate rows and set pointers to them */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define rint(a) floor(a+0.5)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  static double sqrarg;
   m[nrl] -= ncl;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    int imx; 
   /* return pointer to array of pointers to rows */  int stepm;
   return m;  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /****************** free_imatrix *************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  int m,nb;
       long nch,ncl,nrh,nrl;  long *num;
      /* free an int matrix allocated by imatrix() */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  double **pmmij, ***probs;
   free((FREE_ARG) (m+nrl-NR_END));  double dateintmean=0;
 }  
   double *weight;
 /******************* matrix *******************************/  int **s; /* Status */
 double **matrix(long nrl, long nrh, long ncl, long nch)  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /**************** split *************************/
   m += NR_END;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m -= nrl;  {
     char  *ss;                            /* pointer */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int   l1, l2;                         /* length counters */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    l1 = strlen(path );                   /* length of path */
   m[nrl] -= ncl;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if ( ss == NULL ) {                   /* no directory, so use current */
   return m;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /*************************free matrix ************************/      /*    extern  char* getcwd ( char *buf , int len);*/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      }
   free((FREE_ARG)(m+nrl-NR_END));      strcpy( name, path );               /* we've got it */
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /******************* ma3x *******************************/      l2 = strlen( ss );                  /* length of filename */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double ***m;      dirc[l1-l2] = 0;                    /* add zero */
     }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    l1 = strlen( dirc );                  /* length of directory */
   if (!m) nrerror("allocation failure 1 in matrix()");    /*#ifdef windows
   m += NR_END;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m -= nrl;  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #endif
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    */
   m[nrl] += NR_END;    ss = strrchr( name, '.' );            /* find last / */
   m[nrl] -= ncl;    ss++;
     strcpy(ext,ss);                       /* save extension */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    l1= strlen( name);
     l2= strlen(ss)+1;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    strncpy( finame, name, l1-l2);
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    finame[l1-l2]= 0;
   m[nrl][ncl] += NR_END;    return( 0 );                          /* we're done */
   m[nrl][ncl] -= nll;  }
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /******************************************/
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  void replace_back_to_slash(char *s, char*t)
     for (j=ncl+1; j<=nch; j++)  {
       m[i][j]=m[i][j-1]+nlay;    int i;
   }    int lg=0;
   return m;    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /*************************free ma3x ************************/      (s[i] = t[i]);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      if (t[i]== '\\') s[i]='/';
 {    }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /***************** f1dim *************************/    int lg=20;
 extern int ncom;    i=0;
 extern double *pcom,*xicom;    lg=strlen(s);
 extern double (*nrfunc)(double []);    for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
 double f1dim(double x)    }
 {    return j;
   int j;  }
   double f;  
   double *xt;  void cutv(char *u,char *v, char*t, char occ)
    {
   xt=vector(1,ncom);    /* cuts string t into u and v where u is ended by char occ excluding it
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   f=(*nrfunc)(xt);       gives u="abcedf" and v="ghi2j" */
   free_vector(xt,1,ncom);    int i,lg,j,p=0;
   return f;    i=0;
 }    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 /*****************brent *************************/    }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    lg=strlen(t);
   int iter;    for(j=0; j<p; j++) {
   double a,b,d,etemp;      (u[j] = t[j]);
   double fu,fv,fw,fx;    }
   double ftemp;       u[p]='\0';
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
   a=(ax < cx ? ax : cx);    }
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /********************** nrerror ********************/
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  void nrerror(char error_text[])
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    fprintf(stderr,"ERREUR ...\n");
     printf(".");fflush(stdout);    fprintf(stderr,"%s\n",error_text);
 #ifdef DEBUG    exit(EXIT_FAILURE);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /*********************** vector *******************/
 #endif  double *vector(int nl, int nh)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    double *v;
       return fx;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     }    if (!v) nrerror("allocation failure in vector");
     ftemp=fu;    return v-nl+NR_END;
     if (fabs(e) > tol1) {  }
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /************************ free vector ******************/
       p=(x-v)*q-(x-w)*r;  void free_vector(double*v, int nl, int nh)
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    free((FREE_ARG)(v+nl-NR_END));
       q=fabs(q);  }
       etemp=e;  
       e=d;  /************************ivector *******************************/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int *ivector(long nl,long nh)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
       else {    int *v;
         d=p/q;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         u=x+d;    if (!v) nrerror("allocation failure in ivector");
         if (u-a < tol2 || b-u < tol2)    return v-nl+NR_END;
           d=SIGN(tol1,xm-x);  }
       }  
     } else {  /******************free ivector **************************/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  void free_ivector(int *v, long nl, long nh)
     }  {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    free((FREE_ARG)(v+nl-NR_END));
     fu=(*f)(u);  }
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /************************lvector *******************************/
       SHFT(v,w,x,u)  long *lvector(long nl,long nh)
         SHFT(fv,fw,fx,fu)  {
         } else {    long *v;
           if (u < x) a=u; else b=u;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           if (fu <= fw || w == x) {    if (!v) nrerror("allocation failure in ivector");
             v=w;    return v-nl+NR_END;
             w=u;  }
             fv=fw;  
             fw=fu;  /******************free lvector **************************/
           } else if (fu <= fv || v == x || v == w) {  void free_lvector(long *v, long nl, long nh)
             v=u;  {
             fv=fu;    free((FREE_ARG)(v+nl-NR_END));
           }  }
         }  
   }  /******************* imatrix *******************************/
   nrerror("Too many iterations in brent");  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   *xmin=x;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   return fx;  { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 /****************** mnbrak ***********************/    
     /* allocate pointers to rows */ 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
             double (*func)(double))    if (!m) nrerror("allocation failure 1 in matrix()"); 
 {    m += NR_END; 
   double ulim,u,r,q, dum;    m -= nrl; 
   double fu;    
      
   *fa=(*func)(*ax);    /* allocate rows and set pointers to them */ 
   *fb=(*func)(*bx);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   if (*fb > *fa) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     SHFT(dum,*ax,*bx,dum)    m[nrl] += NR_END; 
       SHFT(dum,*fb,*fa,dum)    m[nrl] -= ncl; 
       }    
   *cx=(*bx)+GOLD*(*bx-*ax);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   *fc=(*func)(*cx);    
   while (*fb > *fc) {    /* return pointer to array of pointers to rows */ 
     r=(*bx-*ax)*(*fb-*fc);    return m; 
     q=(*bx-*cx)*(*fb-*fa);  } 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  /****************** free_imatrix *************************/
     ulim=(*bx)+GLIMIT*(*cx-*bx);  void free_imatrix(m,nrl,nrh,ncl,nch)
     if ((*bx-u)*(u-*cx) > 0.0) {        int **m;
       fu=(*func)(u);        long nch,ncl,nrh,nrl; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {       /* free an int matrix allocated by imatrix() */ 
       fu=(*func)(u);  { 
       if (fu < *fc) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    free((FREE_ARG) (m+nrl-NR_END)); 
           SHFT(*fb,*fc,fu,(*func)(u))  } 
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /******************* matrix *******************************/
       u=ulim;  double **matrix(long nrl, long nrh, long ncl, long nch)
       fu=(*func)(u);  {
     } else {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       u=(*cx)+GOLD*(*cx-*bx);    double **m;
       fu=(*func)(u);  
     }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     SHFT(*ax,*bx,*cx,u)    if (!m) nrerror("allocation failure 1 in matrix()");
       SHFT(*fa,*fb,*fc,fu)    m += NR_END;
       }    m -= nrl;
 }  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /*************** linmin ************************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 int ncom;    m[nrl] -= ncl;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 {     */
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /*************************free matrix ************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
               double *fc, double (*func)(double));  {
   int j;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double xx,xmin,bx,ax;    free((FREE_ARG)(m+nrl-NR_END));
   double fx,fb,fa;  }
    
   ncom=n;  /******************* ma3x *******************************/
   pcom=vector(1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   xicom=vector(1,n);  {
   nrfunc=func;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   for (j=1;j<=n;j++) {    double ***m;
     pcom[j]=p[j];  
     xicom[j]=xi[j];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
   ax=0.0;    m += NR_END;
   xx=1.0;    m -= nrl;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl] += NR_END;
 #endif    m[nrl] -= ncl;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     p[j] += xi[j];  
   }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   free_vector(xicom,1,n);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   free_vector(pcom,1,n);    m[nrl][ncl] += NR_END;
 }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 /*************** powell ************************/      m[nrl][j]=m[nrl][j-1]+nlay;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    
             double (*func)(double []))    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   void linmin(double p[], double xi[], int n, double *fret,      for (j=ncl+1; j<=nch; j++) 
               double (*func)(double []));        m[i][j]=m[i][j-1]+nlay;
   int i,ibig,j;    }
   double del,t,*pt,*ptt,*xit;    return m; 
   double fp,fptt;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double *xits;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   pt=vector(1,n);    */
   ptt=vector(1,n);  }
   xit=vector(1,n);  
   xits=vector(1,n);  /*************************free ma3x ************************/
   *fret=(*func)(p);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (j=1;j<=n;j++) pt[j]=p[j];  {
   for (*iter=1;;++(*iter)) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     fp=(*fret);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     ibig=0;    free((FREE_ARG)(m+nrl-NR_END));
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /*************** function subdirf ***********/
       printf(" %d %.12f",i, p[i]);  char *subdirf(char fileres[])
     printf("\n");  {
     for (i=1;i<=n;i++) {    /* Caution optionfilefiname is hidden */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    strcpy(tmpout,optionfilefiname);
       fptt=(*fret);    strcat(tmpout,"/"); /* Add to the right */
 #ifdef DEBUG    strcat(tmpout,fileres);
       printf("fret=%lf \n",*fret);    return tmpout;
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /*************** function subdirf2 ***********/
       if (fabs(fptt-(*fret)) > del) {  char *subdirf2(char fileres[], char *preop)
         del=fabs(fptt-(*fret));  {
         ibig=i;    
       }    /* Caution optionfilefiname is hidden */
 #ifdef DEBUG    strcpy(tmpout,optionfilefiname);
       printf("%d %.12e",i,(*fret));    strcat(tmpout,"/");
       for (j=1;j<=n;j++) {    strcat(tmpout,preop);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    strcat(tmpout,fileres);
         printf(" x(%d)=%.12e",j,xit[j]);    return tmpout;
       }  }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  /*************** function subdirf3 ***********/
       printf("\n");  char *subdirf3(char fileres[], char *preop, char *preop2)
 #endif  {
     }    
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /* Caution optionfilefiname is hidden */
 #ifdef DEBUG    strcpy(tmpout,optionfilefiname);
       int k[2],l;    strcat(tmpout,"/");
       k[0]=1;    strcat(tmpout,preop);
       k[1]=-1;    strcat(tmpout,preop2);
       printf("Max: %.12e",(*func)(p));    strcat(tmpout,fileres);
       for (j=1;j<=n;j++)    return tmpout;
         printf(" %.12e",p[j]);  }
       printf("\n");  
       for(l=0;l<=1;l++) {  /***************** f1dim *************************/
         for (j=1;j<=n;j++) {  extern int ncom; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  extern double *pcom,*xicom;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  extern double (*nrfunc)(double []); 
         }   
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double f1dim(double x) 
       }  { 
 #endif    int j; 
     double f;
     double *xt; 
       free_vector(xit,1,n);   
       free_vector(xits,1,n);    xt=vector(1,ncom); 
       free_vector(ptt,1,n);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       free_vector(pt,1,n);    f=(*nrfunc)(xt); 
       return;    free_vector(xt,1,ncom); 
     }    return f; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  } 
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /*****************brent *************************/
       xit[j]=p[j]-pt[j];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       pt[j]=p[j];  { 
     }    int iter; 
     fptt=(*func)(ptt);    double a,b,d,etemp;
     if (fptt < fp) {    double fu,fv,fw,fx;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    double ftemp;
       if (t < 0.0) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         linmin(p,xit,n,fret,func);    double e=0.0; 
         for (j=1;j<=n;j++) {   
           xi[j][ibig]=xi[j][n];    a=(ax < cx ? ax : cx); 
           xi[j][n]=xit[j];    b=(ax > cx ? ax : cx); 
         }    x=w=v=bx; 
 #ifdef DEBUG    fw=fv=fx=(*f)(x); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for (iter=1;iter<=ITMAX;iter++) { 
         for(j=1;j<=n;j++)      xm=0.5*(a+b); 
           printf(" %.12e",xit[j]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         printf("\n");      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 #endif      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /**** Prevalence limit ****************/  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        *xmin=x; 
 {        return fx; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      } 
      matrix by transitions matrix until convergence is reached */      ftemp=fu;
       if (fabs(e) > tol1) { 
   int i, ii,j,k;        r=(x-w)*(fx-fv); 
   double min, max, maxmin, maxmax,sumnew=0.;        q=(x-v)*(fx-fw); 
   double **matprod2();        p=(x-v)*q-(x-w)*r; 
   double **out, cov[NCOVMAX], **pmij();        q=2.0*(q-r); 
   double **newm;        if (q > 0.0) p = -p; 
   double agefin, delaymax=50 ; /* Max number of years to converge */        q=fabs(q); 
         etemp=e; 
   for (ii=1;ii<=nlstate+ndeath;ii++)        e=d; 
     for (j=1;j<=nlstate+ndeath;j++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }        else { 
           d=p/q; 
    cov[1]=1.;          u=x+d; 
            if (u-a < tol2 || b-u < tol2) 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */            d=SIGN(tol1,xm-x); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        } 
     newm=savm;      } else { 
     /* Covariates have to be included here again */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      cov[2]=agefin;      } 
        u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       for (k=1; k<=cptcovn;k++) {      fu=(*f)(u); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if (fu <= fx) { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          SHFT(fv,fw,fx,fu) 
       for (k=1; k<=cptcovprod;k++)          } else { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/              v=w; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/              w=u; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/              fv=fw; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
     savm=oldm;              v=u; 
     oldm=newm;              fv=fu; 
     maxmax=0.;            } 
     for(j=1;j<=nlstate;j++){          } 
       min=1.;    } 
       max=0.;    nrerror("Too many iterations in brent"); 
       for(i=1; i<=nlstate; i++) {    *xmin=x; 
         sumnew=0;    return fx; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  } 
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /****************** mnbrak ***********************/
         min=FMIN(min,prlim[i][j]);  
       }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       maxmin=max-min;              double (*func)(double)) 
       maxmax=FMAX(maxmax,maxmin);  { 
     }    double ulim,u,r,q, dum;
     if(maxmax < ftolpl){    double fu; 
       return prlim;   
     }    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
 }    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
 /*************** transition probabilities ***************/        SHFT(dum,*fb,*fa,dum) 
         } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    *cx=(*bx)+GOLD*(*bx-*ax); 
 {    *fc=(*func)(*cx); 
   double s1, s2;    while (*fb > *fc) { 
   /*double t34;*/      r=(*bx-*ax)*(*fb-*fc); 
   int i,j,j1, nc, ii, jj;      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(i=1; i<= nlstate; i++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(j=1; j<i;j++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if ((*bx-u)*(u-*cx) > 0.0) { 
         /*s2 += param[i][j][nc]*cov[nc];*/        fu=(*func)(u); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        fu=(*func)(u); 
       }        if (fu < *fc) { 
       ps[i][j]=s2;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
     for(j=i+1; j<=nlstate+ndeath;j++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        u=ulim; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fu=(*func)(u); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      } else { 
       }        u=(*cx)+GOLD*(*cx-*bx); 
       ps[i][j]=s2;        fu=(*func)(u); 
     }      } 
   }      SHFT(*ax,*bx,*cx,u) 
     /*ps[3][2]=1;*/        SHFT(*fa,*fb,*fc,fu) 
         } 
   for(i=1; i<= nlstate; i++){  } 
      s1=0;  
     for(j=1; j<i; j++)  /*************** linmin ************************/
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  int ncom; 
       s1+=exp(ps[i][j]);  double *pcom,*xicom;
     ps[i][i]=1./(s1+1.);  double (*nrfunc)(double []); 
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(j=i+1; j<=nlstate+ndeath; j++)  { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double brent(double ax, double bx, double cx, 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */                 double (*f)(double), double tol, double *xmin); 
   } /* end i */    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){                double *fc, double (*func)(double)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    int j; 
       ps[ii][jj]=0;    double xx,xmin,bx,ax; 
       ps[ii][ii]=1;    double fx,fb,fa;
     }   
   }    ncom=n; 
     pcom=vector(1,n); 
     xicom=vector(1,n); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    nrfunc=func; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (j=1;j<=n;j++) { 
      printf("%lf ",ps[ii][jj]);      pcom[j]=p[j]; 
    }      xicom[j]=xi[j]; 
     printf("\n ");    } 
     }    ax=0.0; 
     printf("\n ");printf("%lf ",cov[2]);*/    xx=1.0; 
 /*    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   goto end;*/  #ifdef DEBUG
     return ps;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 /**************** Product of 2 matrices ******************/    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      p[j] += xi[j]; 
 {    } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    free_vector(xicom,1,n); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    free_vector(pcom,1,n); 
   /* in, b, out are matrice of pointers which should have been initialized  } 
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  char *asc_diff_time(long time_sec, char ascdiff[])
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    long sec_left, days, hours, minutes;
     for(k=ncolol; k<=ncoloh; k++)    days = (time_sec) / (60*60*24);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    sec_left = (time_sec) % (60*60*24);
         out[i][k] +=in[i][j]*b[j][k];    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   return out;    minutes = (sec_left) /60;
 }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*************** powell ************************/
 {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month              double (*func)(double [])) 
      duration (i.e. until  { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    void linmin(double p[], double xi[], int n, double *fret, 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step                double (*func)(double [])); 
      (typically every 2 years instead of every month which is too big).    int i,ibig,j; 
      Model is determined by parameters x and covariates have to be    double del,t,*pt,*ptt,*xit;
      included manually here.    double fp,fptt;
     double *xits;
      */    int niterf, itmp;
   
   int i, j, d, h, k;    pt=vector(1,n); 
   double **out, cov[NCOVMAX];    ptt=vector(1,n); 
   double **newm;    xit=vector(1,n); 
     xits=vector(1,n); 
   /* Hstepm could be zero and should return the unit matrix */    *fret=(*func)(p); 
   for (i=1;i<=nlstate+ndeath;i++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (j=1;j<=nlstate+ndeath;j++){    for (*iter=1;;++(*iter)) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      fp=(*fret); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      ibig=0; 
     }      del=0.0; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      last_time=curr_time;
   for(h=1; h <=nhstepm; h++){      (void) gettimeofday(&curr_time,&tzp);
     for(d=1; d <=hstepm; d++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       newm=savm;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       /* Covariates have to be included here again */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       cov[1]=1.;      for (i=1;i<=n;i++) {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        printf(" %d %.12f",i, p[i]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fprintf(ficlog," %d %.12lf",i, p[i]);
       for (k=1; k<=cptcovage;k++)        fprintf(ficrespow," %.12lf", p[i]);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
       for (k=1; k<=cptcovprod;k++)      printf("\n");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        tm = *localtime(&curr_time.tv_sec);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        strcpy(strcurr,asctime(&tmf));
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*       asctime_r(&tm,strcurr); */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        forecast_time=curr_time;
       savm=oldm;        itmp = strlen(strcurr);
       oldm=newm;        if(strcurr[itmp-1]=='\n')
     }          strcurr[itmp-1]='\0';
     for(i=1; i<=nlstate+ndeath; i++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for(j=1;j<=nlstate+ndeath;j++) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         po[i][j][h]=newm[i][j];        for(niterf=10;niterf<=30;niterf+=10){
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
          */          tmf = *localtime(&forecast_time.tv_sec);
       }  /*      asctime_r(&tmf,strfor); */
   } /* end h */          strcpy(strfor,asctime(&tmf));
   return po;          itmp = strlen(strfor);
 }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /*************** log-likelihood *************/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 double func( double *x)        }
 {      }
   int i, ii, j, k, mi, d, kk;      for (i=1;i<=n;i++) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double **out;        fptt=(*fret); 
   double sw; /* Sum of weights */  #ifdef DEBUG
   double lli; /* Individual log likelihood */        printf("fret=%lf \n",*fret);
   long ipmx;        fprintf(ficlog,"fret=%lf \n",*fret);
   /*extern weight */  #endif
   /* We are differentiating ll according to initial status */        printf("%d",i);fflush(stdout);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
   /*for(i=1;i<imx;i++)        linmin(p,xit,n,fret,func); 
     printf(" %d\n",s[4][i]);        if (fabs(fptt-(*fret)) > del) { 
   */          del=fabs(fptt-(*fret)); 
   cov[1]=1.;          ibig=i; 
         } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #ifdef DEBUG
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        printf("%d %.12e",i,(*fret));
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        fprintf(ficlog,"%d %.12e",i,(*fret));
     for(mi=1; mi<= wav[i]-1; mi++){        for (j=1;j<=n;j++) {
       for (ii=1;ii<=nlstate+ndeath;ii++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf(" x(%d)=%.12e",j,xit[j]);
       for(d=0; d<dh[mi][i]; d++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         newm=savm;        }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(j=1;j<=n;j++) {
         for (kk=1; kk<=cptcovage;kk++) {          printf(" p=%.12e",p[j]);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          fprintf(ficlog," p=%.12e",p[j]);
         }        }
                printf("\n");
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"\n");
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
         savm=oldm;      } 
         oldm=newm;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
          #ifdef DEBUG
                int k[2],l;
       } /* end mult */        k[0]=1;
              k[1]=-1;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        printf("Max: %.12e",(*func)(p));
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
       ipmx +=1;        for (j=1;j<=n;j++) {
       sw += weight[i];          printf(" %.12e",p[j]);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          fprintf(ficlog," %.12e",p[j]);
     } /* end of wave */        }
   } /* end of individual */        printf("\n");
         fprintf(ficlog,"\n");
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        for(l=0;l<=1;l++) {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          for (j=1;j<=n;j++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   return -l;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /*********** Maximum Likelihood Estimation ***************/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  #endif
 {  
   int i,j, iter;  
   double **xi,*delti;        free_vector(xit,1,n); 
   double fret;        free_vector(xits,1,n); 
   xi=matrix(1,npar,1,npar);        free_vector(ptt,1,n); 
   for (i=1;i<=npar;i++)        free_vector(pt,1,n); 
     for (j=1;j<=npar;j++)        return; 
       xi[i][j]=(i==j ? 1.0 : 0.0);      } 
   printf("Powell\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        xit[j]=p[j]-pt[j]; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        pt[j]=p[j]; 
       } 
 }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 /**** Computes Hessian and covariance matrix ***/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        if (t < 0.0) { 
 {          linmin(p,xit,n,fret,func); 
   double  **a,**y,*x,pd;          for (j=1;j<=n;j++) { 
   double **hess;            xi[j][ibig]=xi[j][n]; 
   int i, j,jk;            xi[j][n]=xit[j]; 
   int *indx;          }
   #ifdef DEBUG
   double hessii(double p[], double delta, int theta, double delti[]);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double hessij(double p[], double delti[], int i, int j);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          for(j=1;j<=n;j++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   hess=matrix(1,npar,1,npar);          }
           printf("\n");
   printf("\nCalculation of the hessian matrix. Wait...\n");          fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++){  #endif
     printf("%d",i);fflush(stdout);        }
     hess[i][i]=hessii(p,ftolhess,i,delti);      } 
     /*printf(" %f ",p[i]);*/    } 
     /*printf(" %lf ",hess[i][i]);*/  } 
   }  
    /**** Prevalence limit (stable prevalence)  ****************/
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       if (j>i) {  {
         printf(".%d%d",i,j);fflush(stdout);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         hess[i][j]=hessij(p,delti,i,j);       matrix by transitions matrix until convergence is reached */
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/    int i, ii,j,k;
       }    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
   printf("\n");    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
      for (ii=1;ii<=nlstate+ndeath;ii++)
   a=matrix(1,npar,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   y=matrix(1,npar,1,npar);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   x=vector(1,npar);      }
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)     cov[1]=1.;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];   
   ludcmp(a,npar,indx,&pd);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for (j=1;j<=npar;j++) {      newm=savm;
     for (i=1;i<=npar;i++) x[i]=0;      /* Covariates have to be included here again */
     x[j]=1;       cov[2]=agefin;
     lubksb(a,npar,indx,x);    
     for (i=1;i<=npar;i++){        for (k=1; k<=cptcovn;k++) {
       matcov[i][j]=x[i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("\n#Hessian matrix#\n");        for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=npar;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     printf("\n");        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   /* Recompute Inverse */      savm=oldm;
   for (i=1;i<=npar;i++)      oldm=newm;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      maxmax=0.;
   ludcmp(a,npar,indx,&pd);      for(j=1;j<=nlstate;j++){
         min=1.;
   /*  printf("\n#Hessian matrix recomputed#\n");        max=0.;
         for(i=1; i<=nlstate; i++) {
   for (j=1;j<=npar;j++) {          sumnew=0;
     for (i=1;i<=npar;i++) x[i]=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     x[j]=1;          prlim[i][j]= newm[i][j]/(1-sumnew);
     lubksb(a,npar,indx,x);          max=FMAX(max,prlim[i][j]);
     for (i=1;i<=npar;i++){          min=FMIN(min,prlim[i][j]);
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
     printf("\n");      }
   }      if(maxmax < ftolpl){
   */        return prlim;
       }
   free_matrix(a,1,npar,1,npar);    }
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /*************** transition probabilities ***************/ 
   free_matrix(hess,1,npar,1,npar);  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 }    double s1, s2;
     /*double t34;*/
 /*************** hessian matrix ****************/    int i,j,j1, nc, ii, jj;
 double hessii( double x[], double delta, int theta, double delti[])  
 {      for(i=1; i<= nlstate; i++){
   int i;      for(j=1; j<i;j++){
   int l=1, lmax=20;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double k1,k2;          /*s2 += param[i][j][nc]*cov[nc];*/
   double p2[NPARMAX+1];          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double res;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        }
   double fx;        ps[i][j]=s2;
   int k=0,kmax=10;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   double l1;      }
       for(j=i+1; j<=nlstate+ndeath;j++){
   fx=func(x);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=npar;i++) p2[i]=x[i];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for(l=0 ; l <=lmax; l++){          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
     l1=pow(10,l);        }
     delts=delt;        ps[i][j]=s2;
     for(k=1 ; k <kmax; k=k+1){      }
       delt = delta*(l1*k);    }
       p2[theta]=x[theta] +delt;      /*ps[3][2]=1;*/
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;    for(i=1; i<= nlstate; i++){
       k2=func(p2)-fx;       s1=0;
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for(j=1; j<i; j++)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        s1+=exp(ps[i][j]);
            for(j=i+1; j<=nlstate+ndeath; j++)
 #ifdef DEBUG        s1+=exp(ps[i][j]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      ps[i][i]=1./(s1+1.);
 #endif      for(j=1; j<i; j++)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        ps[i][j]= exp(ps[i][j])*ps[i][i];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for(j=i+1; j<=nlstate+ndeath; j++)
         k=kmax;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       }      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    } /* end i */
         k=kmax; l=lmax*10.;  
       }    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      for(jj=1; jj<= nlstate+ndeath; jj++){
         delts=delt;        ps[ii][jj]=0;
       }        ps[ii][ii]=1;
     }      }
   }    }
   delti[theta]=delts;  
   return res;  
      /*   for(ii=1; ii<= nlstate+ndeath; ii++){
 }      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
 double hessij( double x[], double delti[], int thetai,int thetaj)     }
 {      printf("\n ");
   int i;      }
   int l=1, l1, lmax=20;      printf("\n ");printf("%lf ",cov[2]);*/
   double k1,k2,k3,k4,res,fx;  /*
   double p2[NPARMAX+1];    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int k;    goto end;*/
       return ps;
   fx=func(x);  }
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /**************** Product of 2 matrices ******************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     k1=func(p2)-fx;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     p2[thetai]=x[thetai]+delti[thetai]/k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* in, b, out are matrice of pointers which should have been initialized 
     k2=func(p2)-fx;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
     p2[thetai]=x[thetai]-delti[thetai]/k;    long i, j, k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for(i=nrl; i<= nrh; i++)
     k3=func(p2)-fx;      for(k=ncolol; k<=ncoloh; k++)
          for(j=ncl,out[i][k]=0.; j<=nch; j++)
     p2[thetai]=x[thetai]-delti[thetai]/k;          out[i][k] +=in[i][j]*b[j][k];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;    return out;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  }
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /************* Higher Matrix Product ***************/
   }  
   return res;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 }  {
     /* Computes the transition matrix starting at age 'age' over 
 /************** Inverse of matrix **************/       'nhstepm*hstepm*stepm' months (i.e. until
 void ludcmp(double **a, int n, int *indx, double *d)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 {       nhstepm*hstepm matrices. 
   int i,imax,j,k;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double big,dum,sum,temp;       (typically every 2 years instead of every month which is too big 
   double *vv;       for the memory).
         Model is determined by parameters x and covariates have to be 
   vv=vector(1,n);       included manually here. 
   *d=1.0;  
   for (i=1;i<=n;i++) {       */
     big=0.0;  
     for (j=1;j<=n;j++)    int i, j, d, h, k;
       if ((temp=fabs(a[i][j])) > big) big=temp;    double **out, cov[NCOVMAX];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double **newm;
     vv[i]=1.0/big;  
   }    /* Hstepm could be zero and should return the unit matrix */
   for (j=1;j<=n;j++) {    for (i=1;i<=nlstate+ndeath;i++)
     for (i=1;i<j;i++) {      for (j=1;j<=nlstate+ndeath;j++){
       sum=a[i][j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        po[i][j][0]=(i==j ? 1.0 : 0.0);
       a[i][j]=sum;      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     big=0.0;    for(h=1; h <=nhstepm; h++){
     for (i=j;i<=n;i++) {      for(d=1; d <=hstepm; d++){
       sum=a[i][j];        newm=savm;
       for (k=1;k<j;k++)        /* Covariates have to be included here again */
         sum -= a[i][k]*a[k][j];        cov[1]=1.;
       a[i][j]=sum;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         big=dum;        for (k=1; k<=cptcovage;k++)
         imax=i;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     if (j != imax) {  
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         a[imax][k]=a[j][k];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         a[j][k]=dum;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       *d = -(*d);        savm=oldm;
       vv[imax]=vv[j];        oldm=newm;
     }      }
     indx[j]=imax;      for(i=1; i<=nlstate+ndeath; i++)
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(j=1;j<=nlstate+ndeath;j++) {
     if (j != n) {          po[i][j][h]=newm[i][j];
       dum=1.0/(a[j][j]);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           */
     }        }
   }    } /* end h */
   free_vector(vv,1,n);  /* Doesn't work */    return po;
 ;  }
 }  
   
 void lubksb(double **a, int n, int *indx, double b[])  /*************** log-likelihood *************/
 {  double func( double *x)
   int i,ii=0,ip,j;  {
   double sum;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=1;i<=n;i++) {    double **out;
     ip=indx[i];    double sw; /* Sum of weights */
     sum=b[ip];    double lli; /* Individual log likelihood */
     b[ip]=b[i];    int s1, s2;
     if (ii)    double bbh, survp;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    long ipmx;
     else if (sum) ii=i;    /*extern weight */
     b[i]=sum;    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (i=n;i>=1;i--) {    /*for(i=1;i<imx;i++) 
     sum=b[i];      printf(" %d\n",s[4][i]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    */
     b[i]=sum/a[i][i];    cov[1]=1.;
   }  
 }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /************ Frequencies ********************/    if(mle==1){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {  /* Some frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***freq; /* Frequencies */            for (j=1;j<=nlstate+ndeath;j++){
   double *pp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2, dateintsum=0,k2cpt=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   FILE *ficresp;            }
   char fileresp[FILENAMELENGTH];          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   pp=vector(1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (kk=1; kk<=cptcovage;kk++) {
   strcpy(fileresp,"p");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcat(fileresp,fileres);            }
   if((ficresp=fopen(fileresp,"w"))==NULL) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("Problem with prevalence resultfile: %s\n", fileresp);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     exit(0);            savm=oldm;
   }            oldm=newm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          } /* end mult */
   j1=0;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   j=cptcoveff;          /* But now since version 0.9 we anticipate for bias and large stepm.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   for(k1=1; k1<=j;k1++){           * the nearest (and in case of equal distance, to the lowest) interval but now
     for(i1=1; i1<=ncodemax[k1];i1++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       j1++;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * probability in order to take into account the bias as a fraction of the way
         scanf("%d", i);*/           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       for (i=-1; i<=nlstate+ndeath; i++)             * -stepm/2 to stepm/2 .
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * For stepm=1 the results are the same as for previous versions of Imach.
           for(m=agemin; m <= agemax+3; m++)           * For stepm > 1 the results are less biased than in previous versions. 
             freq[i][jk][m]=0;           */
                s1=s[mw[mi][i]][i];
       dateintsum=0;          s2=s[mw[mi+1][i]][i];
       k2cpt=0;          bbh=(double)bh[mi][i]/(double)stepm; 
       for (i=1; i<=imx; i++) {          /* bias is positive if real duration
         bool=1;           * is higher than the multiple of stepm and negative otherwise.
         if  (cptcovn>0) {           */
           for (z1=1; z1<=cptcoveff; z1++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          if( s2 > nlstate){ 
               bool=0;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         }               to the likelihood is the probability to die between last step unit time and current 
         if (bool==1) {               step unit time, which is also the differences between probability to die before dh 
           for(m=firstpass; m<=lastpass; m++){               and probability to die before dh-stepm . 
             k2=anint[m][i]+(mint[m][i]/12.);               In version up to 0.92 likelihood was computed
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          as if date of death was unknown. Death was treated as any other
               if(agev[m][i]==0) agev[m][i]=agemax+1;          health state: the date of the interview describes the actual state
               if(agev[m][i]==1) agev[m][i]=agemax+2;          and not the date of a change in health state. The former idea was
               if (m<lastpass) {          to consider that at each interview the state was recorded
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          (healthy, disable or death) and IMaCh was corrected; but when we
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          introduced the exact date of death then we should have modified
               }          the contribution of an exact death to the likelihood. This new
                        contribution is smaller and very dependent of the step unit
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          stepm. It is no more the probability to die between last interview
                 dateintsum=dateintsum+k2;          and month of death but the probability to survive from last
                 k2cpt++;          interview up to one month before death multiplied by the
               }          probability to die within a month. Thanks to Chris
             }          Jackson for correcting this bug.  Former versions increased
           }          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
                    */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
       if  (cptcovn>0) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         fprintf(ficresp, "\n#********** Variable ");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } 
         fprintf(ficresp, "**********\n#");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       }          /*if(lli ==000.0)*/
       for(i=1; i<=nlstate;i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ipmx +=1;
       fprintf(ficresp, "\n");          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=(int)agemin; i <= (int)agemax+3; i++){        } /* end of wave */
         if(i==(int)agemax+3)      } /* end of individual */
           printf("Total");    }  else if(mle==2){
         else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           printf("Age %d", i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          for(d=0; d<=dh[mi][i]; d++){
           if(pp[jk]>=1.e-10)            newm=savm;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else            for (kk=1; kk<=cptcovage;kk++) {
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
         
         for(jk=1,pos=0; jk <=nlstate ; jk++)          s1=s[mw[mi][i]][i];
           pos += pp[jk];          s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
           if(pos>=1.e-5)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          ipmx +=1;
           else          sw += weight[i];
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if( i <= (int) agemax){        } /* end of wave */
             if(pos>=1.e-5){      } /* end of individual */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    }  else if(mle==3){  /* exponential inter-extrapolation */
               probs[i][jk][j1]= pp[jk]/pos;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
             else          for (ii=1;ii<=nlstate+ndeath;ii++)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
         for(jk=-1; jk <=nlstate+ndeath; jk++)          for(d=0; d<dh[mi][i]; d++){
           for(m=-1; m <=nlstate+ndeath; m++)            newm=savm;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(i <= (int) agemax)            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficresp,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         printf("\n");            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   dateintmean=dateintsum/k2cpt;            oldm=newm;
            } /* end mult */
   fclose(ficresp);        
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s1=s[mw[mi][i]][i];
   free_vector(pp,1,nlstate);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   /* End of Freq */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 }          ipmx +=1;
           sw += weight[i];
 /************ Prevalence ********************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        } /* end of wave */
 {  /* Some frequencies */      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *pp;        for(mi=1; mi<= wav[i]-1; mi++){
   double pos, k2;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   pp=vector(1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for(d=0; d<dh[mi][i]; d++){
   j1=0;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j=cptcoveff;            for (kk=1; kk<=cptcovage;kk++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
  for(k1=1; k1<=j;k1++){          
     for(i1=1; i1<=ncodemax[k1];i1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       j1++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
       for (i=-1; i<=nlstate+ndeath; i++)              oldm=newm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            } /* end mult */
           for(m=agemin; m <= agemax+3; m++)        
             freq[i][jk][m]=0;          s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       for (i=1; i<=imx; i++) {          if( s2 > nlstate){ 
         bool=1;            lli=log(out[s1][s2] - savm[s1][s2]);
         if  (cptcovn>0) {          }else{
           for (z1=1; z1<=cptcoveff; z1++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          }
               bool=0;          ipmx +=1;
         }          sw += weight[i];
         if (bool==1) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=firstpass; m<=lastpass; m++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             k2=anint[m][i]+(mint[m][i]/12.);        } /* end of wave */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } /* end of individual */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */        for(mi=1; mi<= wav[i]-1; mi++){
             }          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=(int)agemin; i <= (int)agemax+3; i++){            }
           for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            newm=savm;
               pp[jk] += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
           for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            oldm=newm;
              pp[jk] += freq[jk][m][i];          } /* end mult */
          }        
                    s1=s[mw[mi][i]][i];
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
          for(jk=1; jk <=nlstate ; jk++){                    ipmx +=1;
            if( i <= (int) agemax){          sw += weight[i];
              if(pos>=1.e-5){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                probs[i][jk][j1]= pp[jk]/pos;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
              }        } /* end of wave */
            }      } /* end of individual */
          }    } /* End of if */
              for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    return -l;
    }
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*************** log-likelihood *************/
   free_vector(pp,1,nlstate);  double funcone( double *x)
    {
 }  /* End of Freq */    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
 /************* Waves Concatenation ***************/    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double lli; /* Individual log likelihood */
 {    double llt;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int s1, s2;
      Death is a valid wave (if date is known).    double bbh, survp;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    /*extern weight */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    /* We are differentiating ll according to initial status */
      and mw[mi+1][i]. dh depends on stepm.    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      */    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   int i, mi, m;    */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    cov[1]=1.;
      double sum=0., jmean=0.;*/  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   int j, k=0,jk, ju, jl;  
   double sum=0.;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jmin=1e+5;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   jmax=-1;      for(mi=1; mi<= wav[i]-1; mi++){
   jmean=0.;        for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=imx; i++){          for (j=1;j<=nlstate+ndeath;j++){
     mi=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     m=firstpass;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){          }
       if(s[m][i]>=1)        for(d=0; d<dh[mi][i]; d++){
         mw[++mi][i]=m;          newm=savm;
       if(m >=lastpass)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         break;          for (kk=1; kk<=cptcovage;kk++) {
       else            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         m++;          }
     }/* end while */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (s[m][i] > nlstate){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       mi++;     /* Death is another wave */          savm=oldm;
       /* if(mi==0)  never been interviewed correctly before death */          oldm=newm;
          /* Only death is a correct wave */        } /* end mult */
       mw[mi][i]=m;        
     }        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
     wav[i]=mi;        bbh=(double)bh[mi][i]/(double)stepm; 
     if(mi==0)        /* bias is positive if real duration
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);         * is higher than the multiple of stepm and negative otherwise.
   }         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   for(i=1; i<=imx; i++){          lli=log(out[s1][s2] - savm[s1][s2]);
     for(mi=1; mi<wav[i];mi++){        } else if (mle==1){
       if (stepm <=0)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         dh[mi][i]=1;        } else if(mle==2){
       else{          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         if (s[mw[mi+1][i]][i] > nlstate) {        } else if(mle==3){  /* exponential inter-extrapolation */
           if (agedc[i] < 2*AGESUP) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           if(j==0) j=1;  /* Survives at least one month after exam */          lli=log(out[s1][s2]); /* Original formula */
           k=k+1;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           if (j >= jmax) jmax=j;          lli=log(out[s1][s2]); /* Original formula */
           if (j <= jmin) jmin=j;        } /* End of if */
           sum=sum+j;        ipmx +=1;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        sw += weight[i];
           }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         else{        if(globpr){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
           k=k+1;   %10.6f %10.6f %10.6f ", \
           if (j >= jmax) jmax=j;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           else if (j <= jmin)jmin=j;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           sum=sum+j;            llt +=ll[k]*gipmx/gsw;
         }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         jk= j/stepm;          }
         jl= j -jk*stepm;          fprintf(ficresilk," %10.6f\n", -llt);
         ju= j -(jk+1)*stepm;        }
         if(jl <= -ju)      } /* end of wave */
           dh[mi][i]=jk;    } /* end of individual */
         else    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           dh[mi][i]=jk+1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if(dh[mi][i]==0)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           dh[mi][i]=1; /* At least one step */    if(globpr==0){ /* First time we count the contributions and weights */
       }      gipmx=ipmx;
     }      gsw=sw;
   }    }
   jmean=sum/k;    return -l;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  }
  }  
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  /*************** function likelione ***********/
 {  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int Ndum[20],ij=1, k, j, i;  {
   int cptcode=0;    /* This routine should help understanding what is done with 
   cptcoveff=0;       the selection of individuals/waves and
         to check the exact contribution to the likelihood.
   for (k=0; k<19; k++) Ndum[k]=0;       Plotting could be done.
   for (k=1; k<=7; k++) ncodemax[k]=0;     */
     int k;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
       ij=(int)(covar[Tvar[j]][i]);      strcpy(fileresilk,"ilk"); 
       Ndum[ij]++;      strcat(fileresilk,fileres);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       if (ij > cptcode) cptcode=ij;        printf("Problem with resultfile: %s\n", fileresilk);
     }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
     for (i=0; i<=cptcode; i++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       if(Ndum[i]!=0) ncodemax[j]++;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     ij=1;      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for (i=1; i<=ncodemax[j]; i++) {    }
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {    *fretone=(*funcone)(p);
           nbcode[Tvar[j]][ij]=k;    if(*globpri !=0){
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/      fclose(ficresilk);
           ij++;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         }      fflush(fichtm); 
         if (ij > ncodemax[j]) break;    } 
       }      return;
     }  }
   }    
   
  for (k=0; k<19; k++) Ndum[k]=0;  /*********** Maximum Likelihood Estimation ***************/
   
  for (i=1; i<=ncovmodel-2; i++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       ij=Tvar[i];  {
       Ndum[ij]++;    int i,j, iter;
     }    double **xi;
     double fret;
  ij=1;    double fretone; /* Only one call to likelihood */
  for (i=1; i<=10; i++) {    char filerespow[FILENAMELENGTH];
    if((Ndum[i]!=0) && (i<=ncovcol)){    xi=matrix(1,npar,1,npar);
      Tvaraff[ij]=i;    for (i=1;i<=npar;i++)
      ij++;      for (j=1;j<=npar;j++)
    }        xi[i][j]=(i==j ? 1.0 : 0.0);
  }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      strcpy(filerespow,"pow"); 
     cptcoveff=ij-1;    strcat(filerespow,fileres);
 }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
 /*********** Health Expectancies ****************/      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 {    for (i=1;i<=nlstate;i++)
   /* Health expectancies */      for(j=1;j<=nlstate+ndeath;j++)
   int i, j, nhstepm, hstepm, h, nstepm, k;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double age, agelim, hf;    fprintf(ficrespow,"\n");
   double ***p3mat;  
      powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");    fclose(ficrespow);
   for(i=1; i<=nlstate;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fprintf(ficreseij," %1d-%1d",i,j);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficreseij,"\n");  
   }
   k=1;             /* For example stepm=6 months */  
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */  /**** Computes Hessian and covariance matrix ***/
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  {
      nhstepm is the number of hstepm from age to agelim    double  **a,**y,*x,pd;
      nstepm is the number of stepm from age to agelin.    double **hess;
      Look at hpijx to understand the reason of that which relies in memory size    int i, j,jk;
      and note for a fixed period like k years */    int *indx;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    double hessii(double p[], double delta, int theta, double delti[]);
      means that if the survival funtion is printed only each two years of age and if    double hessij(double p[], double delti[], int i, int j);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    void lubksb(double **a, int npar, int *indx, double b[]) ;
      results. So we changed our mind and took the option of the best precision.    void ludcmp(double **a, int npar, int *indx, double *d) ;
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    hess=matrix(1,npar,1,npar);
   
   agelim=AGESUP;    printf("\nCalculation of the hessian matrix. Wait...\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     /* nhstepm age range expressed in number of stepm */    for (i=1;i<=npar;i++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      printf("%d",i);fflush(stdout);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      fprintf(ficlog,"%d",i);fflush(ficlog);
     /* if (stepm >= YEARM) hstepm=1;*/      hess[i][i]=hessii(p,ftolhess,i,delti);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      /*printf(" %f ",p[i]);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*printf(" %lf ",hess[i][i]);*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (i=1;i<=npar;i++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=1;j<=npar;j++)  {
     for(i=1; i<=nlstate;i++)        if (j>i) { 
       for(j=1; j<=nlstate;j++)          printf(".%d%d",i,j);fflush(stdout);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          hess[i][j]=hessij(p,delti,i,j);
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          hess[j][i]=hess[i][j];    
         }          /*printf(" %lf ",hess[i][j]);*/
     fprintf(ficreseij,"%3.0f",age );        }
     for(i=1; i<=nlstate;i++)      }
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    printf("\n");
       }    fprintf(ficlog,"\n");
     fprintf(ficreseij,"\n");  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 }    
     a=matrix(1,npar,1,npar);
 /************ Variance ******************/    y=matrix(1,npar,1,npar);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    x=vector(1,npar);
 {    indx=ivector(1,npar);
   /* Variance of health expectancies */    for (i=1;i<=npar;i++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double **newm;    ludcmp(a,npar,indx,&pd);
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm, kk;    for (j=1;j<=npar;j++) {
   int k, cptcode;      for (i=1;i<=npar;i++) x[i]=0;
   double *xp;      x[j]=1;
   double **gp, **gm;      lubksb(a,npar,indx,x);
   double ***gradg, ***trgradg;      for (i=1;i<=npar;i++){ 
   double ***p3mat;        matcov[i][j]=x[i];
   double age,agelim, hf;      }
   int theta;    }
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");    printf("\n#Hessian matrix#\n");
   fprintf(ficresvij,"# Age");    fprintf(ficlog,"\n#Hessian matrix#\n");
   for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) { 
     for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++) { 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        printf("%.3e ",hess[i][j]);
   fprintf(ficresvij,"\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   xp=vector(1,npar);      printf("\n");
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficlog,"\n");
   doldm=matrix(1,nlstate,1,nlstate);    }
    
   kk=1;             /* For example stepm=6 months */    /* Recompute Inverse */
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */    for (i=1;i<=npar;i++)
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    ludcmp(a,npar,indx,&pd);
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    /*  printf("\n#Hessian matrix recomputed#\n");
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    for (j=1;j<=npar;j++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (i=1;i<=npar;i++) x[i]=0;
      survival function given by stepm (the optimization length). Unfortunately it      x[j]=1;
      means that if the survival funtion is printed only each two years of age and if      lubksb(a,npar,indx,x);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (i=1;i<=npar;i++){ 
      results. So we changed our mind and took the option of the best precision.        y[i][j]=x[i];
   */        printf("%.3e ",y[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */        fprintf(ficlog,"%.3e ",y[i][j]);
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);    free_matrix(a,1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
     for(theta=1; theta <=npar; theta++){    free_ivector(indx,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_matrix(hess,1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   /*************** hessian matrix ****************/
       if (popbased==1) {  double hessii( double x[], double delta, int theta, double delti[])
         for(i=1; i<=nlstate;i++)  {
           prlim[i][i]=probs[(int)age][i][ij];    int i;
       }    int l=1, lmax=20;
      double k1,k2;
       for(j=1; j<= nlstate; j++){    double p2[NPARMAX+1];
         for(h=0; h<=nhstepm; h++){    double res;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double fx;
         }    int k=0,kmax=10;
       }    double l1;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    fx=func(x);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) p2[i]=x[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(l=0 ; l <=lmax; l++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      l1=pow(10,l);
        delts=delt;
       if (popbased==1) {      for(k=1 ; k <kmax; k=k+1){
         for(i=1; i<=nlstate;i++)        delt = delta*(l1*k);
           prlim[i][i]=probs[(int)age][i][ij];        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
       for(j=1; j<= nlstate; j++){        k2=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        
         }  #ifdef DEBUG
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<= nlstate; j++)  #endif
         for(h=0; h<=nhstepm; h++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }          k=kmax;
     } /* End theta */        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          k=kmax; l=lmax*10.;
         }
     for(h=0; h<=nhstepm; h++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(j=1; j<=nlstate;j++)          delts=delt;
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];      }
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    delti[theta]=delts;
     for(i=1;i<=nlstate;i++)    return res; 
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;  }
   
     for(h=0;h<=nhstepm;h++){  double hessij( double x[], double delti[], int thetai,int thetaj)
       for(k=0;k<=nhstepm;k++){  {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    int i;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int l=1, l1, lmax=20;
         for(i=1;i<=nlstate;i++)    double k1,k2,k3,k4,res,fx;
           for(j=1;j<=nlstate;j++)    double p2[NPARMAX+1];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    int k;
       }  
     }    fx=func(x);
     for (k=1; k<=2; k++) {
     fprintf(ficresvij,"%.0f ",age );      for (i=1;i<=npar;i++) p2[i]=x[i];
     for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<=nlstate;j++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      k1=func(p2)-fx;
       }    
     fprintf(ficresvij,"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_matrix(gp,0,nhstepm,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_matrix(gm,0,nhstepm,1,nlstate);      k2=func(p2)-fx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   } /* End age */      k3=func(p2)-fx;
      
   free_vector(xp,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 }  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 /************ Variance of prevlim ******************/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  #endif
 {    }
   /* Variance of prevalence limit */    return res;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  }
   double **newm;  
   double **dnewm,**doldm;  /************** Inverse of matrix **************/
   int i, j, nhstepm, hstepm;  void ludcmp(double **a, int n, int *indx, double *d) 
   int k, cptcode;  { 
   double *xp;    int i,imax,j,k; 
   double *gp, *gm;    double big,dum,sum,temp; 
   double **gradg, **trgradg;    double *vv; 
   double age,agelim;   
   int theta;    vv=vector(1,n); 
        *d=1.0; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    for (i=1;i<=n;i++) { 
   fprintf(ficresvpl,"# Age");      big=0.0; 
   for(i=1; i<=nlstate;i++)      for (j=1;j<=n;j++) 
       fprintf(ficresvpl," %1d-%1d",i,i);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   fprintf(ficresvpl,"\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
   xp=vector(1,npar);    } 
   dnewm=matrix(1,nlstate,1,npar);    for (j=1;j<=n;j++) { 
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<j;i++) { 
          sum=a[i][j]; 
   hstepm=1*YEARM; /* Every year of age */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        a[i][j]=sum; 
   agelim = AGESUP;      } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      big=0.0; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=j;i<=n;i++) { 
     if (stepm >= YEARM) hstepm=1;        sum=a[i][j]; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (k=1;k<j;k++) 
     gradg=matrix(1,npar,1,nlstate);          sum -= a[i][k]*a[k][j]; 
     gp=vector(1,nlstate);        a[i][j]=sum; 
     gm=vector(1,nlstate);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     for(theta=1; theta <=npar; theta++){          imax=i; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } 
       }      if (j != imax) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<=n;k++) { 
       for(i=1;i<=nlstate;i++)          dum=a[imax][k]; 
         gp[i] = prlim[i][i];          a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
       for(i=1; i<=npar; i++) /* Computes gradient */        } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        *d = -(*d); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        vv[imax]=vv[j]; 
       for(i=1;i<=nlstate;i++)      } 
         gm[i] = prlim[i][i];      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(i=1;i<=nlstate;i++)      if (j != n) { 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        dum=1.0/(a[j][j]); 
     } /* End theta */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     trgradg =matrix(1,nlstate,1,npar);    } 
     free_vector(vv,1,n);  /* Doesn't work */
     for(j=1; j<=nlstate;j++)  ;
       for(theta=1; theta <=npar; theta++)  } 
         trgradg[j][theta]=gradg[theta][j];  
   void lubksb(double **a, int n, int *indx, double b[]) 
     for(i=1;i<=nlstate;i++)  { 
       varpl[i][(int)age] =0.;    int i,ii=0,ip,j; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double sum; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);   
     for(i=1;i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      ip=indx[i]; 
       sum=b[ip]; 
     fprintf(ficresvpl,"%.0f ",age );      b[ip]=b[i]; 
     for(i=1; i<=nlstate;i++)      if (ii) 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     fprintf(ficresvpl,"\n");      else if (sum) ii=i; 
     free_vector(gp,1,nlstate);      b[i]=sum; 
     free_vector(gm,1,nlstate);    } 
     free_matrix(gradg,1,npar,1,nlstate);    for (i=n;i>=1;i--) { 
     free_matrix(trgradg,1,nlstate,1,npar);      sum=b[i]; 
   } /* End age */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   free_vector(xp,1,npar);    } 
   free_matrix(doldm,1,nlstate,1,npar);  } 
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   /************ Frequencies ********************/
 }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
 /************ Variance of one-step probabilities  ******************/    
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 {    int first;
   int i, j;    double ***freq; /* Frequencies */
   int k=0, cptcode;    double *pp, **prop;
   double **dnewm,**doldm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double *xp;    FILE *ficresp;
   double *gp, *gm;    char fileresp[FILENAMELENGTH];
   double **gradg, **trgradg;    
   double age,agelim, cov[NCOVMAX];    pp=vector(1,nlstate);
   int theta;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   char fileresprob[FILENAMELENGTH];    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
   strcpy(fileresprob,"prob");    if((ficresp=fopen(fileresp,"w"))==NULL) {
   strcat(fileresprob,fileres);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     printf("Problem with resultfile: %s\n", fileresprob);      exit(0);
   }    }
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
     
   xp=vector(1,npar);    j=cptcoveff;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      first=1;
   cov[1]=1;  
   for (age=bage; age<=fage; age ++){    for(k1=1; k1<=j;k1++){
     cov[2]=age;      for(i1=1; i1<=ncodemax[k1];i1++){
     gradg=matrix(1,npar,1,9);        j1++;
     trgradg=matrix(1,9,1,npar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          scanf("%d", i);*/
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for (i=-1; i<=nlstate+ndeath; i++)  
              for (jk=-1; jk<=nlstate+ndeath; jk++)  
     for(theta=1; theta <=npar; theta++){            for(m=iagemin; m <= iagemax+3; m++)
       for(i=1; i<=npar; i++)              freq[i][jk][m]=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
            for (i=1; i<=nlstate; i++)  
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0;
       k=0;        
       for(i=1; i<= (nlstate+ndeath); i++){        dateintsum=0;
         for(j=1; j<=(nlstate+ndeath);j++){        k2cpt=0;
            k=k+1;        for (i=1; i<=imx; i++) {
           gp[k]=pmmij[i][j];          bool=1;
         }          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for(i=1; i<=npar; i++)                bool=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
              if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
       pmij(pmmij,cov,ncovmodel,xp,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
       k=0;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(i=1; i<=(nlstate+ndeath); i++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for(j=1; j<=(nlstate+ndeath);j++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           k=k+1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           gm[k]=pmmij[i][j];                if (m<lastpass) {
         }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                      }
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)                
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     }                  dateintsum=dateintsum+k2;
                   k2cpt++;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                }
       for(theta=1; theta <=npar; theta++)                /*}*/
       trgradg[j][theta]=gradg[theta][j];            }
            }
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      pmij(pmmij,cov,ncovmodel,x,nlstate);  
         if  (cptcovn>0) {
      k=0;          fprintf(ficresp, "\n#********** Variable "); 
      for(i=1; i<=(nlstate+ndeath); i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficresp, "**********\n#");
          k=k+1;        }
          gm[k]=pmmij[i][j];        for(i=1; i<=nlstate;i++) 
         }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      }        fprintf(ficresp, "\n");
              
      /*printf("\n%d ",(int)age);        for(i=iagemin; i <= iagemax+3; i++){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          if(i==iagemax+3){
                    fprintf(ficlog,"Total");
           }else{
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            if(first==1){
      }*/              first=0;
               printf("See log file for details...\n");
   fprintf(ficresprob,"\n%d ",(int)age);            }
             fprintf(ficlog,"Age %d", i);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          }
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          for(jk=1; jk <=nlstate ; jk++){
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i]; 
           }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=1; jk <=nlstate ; jk++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=-1, pos=0; m <=0 ; m++)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              pos += freq[jk][m][i];
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            if(pp[jk]>=1.e-10){
 }              if(first==1){
  free_vector(xp,1,npar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 fclose(ficresprob);              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 }            }else{
               if(first==1)
 /******************* Printing html file ***********/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  int lastpass, int stepm, int weightopt, char model[],\            }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast ){          for(jk=1; jk <=nlstate ; jk++){
   int jj1, k1, i1, cpt;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   FILE *fichtm;              pp[jk] += freq[jk][m][i];
   /*char optionfilehtm[FILENAMELENGTH];*/          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   strcpy(optionfilehtm,optionfile);            pos += pp[jk];
   strcat(optionfilehtm,".htm");            posprop += prop[jk][i];
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);          for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
               if(first==1)
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 \n            }else{
 Total number of observations=%d <br>\n              if(first==1)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 <hr  size=\"2\" color=\"#EC5E5E\">              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  <ul><li>Outputs files<br>\n            }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            if( i <= iagemax){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n              if(pos>=1.e-5){
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n                /*probs[i][jk][j1]= pp[jk]/pos;*/
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);              }
               else
  fprintf(fichtm,"\n                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n            }
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n          }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
  if(popforecast==1) fprintf(fichtm,"\n              if(freq[jk][m][i] !=0 ) {
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              if(first==1)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         <br>",fileres,fileres,fileres,fileres);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  else              }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          if(i <= iagemax)
 fprintf(fichtm," <li>Graphs</li><p>");            fprintf(ficresp,"\n");
           if(first==1)
  m=cptcoveff;            printf("Others in log...\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          fprintf(ficlog,"\n");
         }
  jj1=0;      }
  for(k1=1; k1<=m;k1++){    }
    for(i1=1; i1<=ncodemax[k1];i1++){    dateintmean=dateintsum/k2cpt; 
        jj1++;   
        if (cptcovn > 0) {    fclose(ficresp);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
          for (cpt=1; cpt<=cptcoveff;cpt++)    free_vector(pp,1,nlstate);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /* End of Freq */
        }  }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      /************ Prevalence ********************/
        for(cpt=1; cpt<nlstate;cpt++){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  {  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        }       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for(cpt=1; cpt<=nlstate;cpt++) {       We still use firstpass and lastpass as another selection.
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    */
 interval) in state (%d): v%s%d%d.gif <br>   
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      }    double ***freq; /* Frequencies */
      for(cpt=1; cpt<=nlstate;cpt++) {    double *pp, **prop;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    double pos,posprop; 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double  y2; /* in fractional years */
      }    int iagemin, iagemax;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.gif<br>    iagemin= (int) agemin;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    iagemax= (int) agemax;
 fprintf(fichtm,"\n</body>");    /*pp=vector(1,nlstate);*/
    }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
    }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 fclose(fichtm);    j1=0;
 }    
     j=cptcoveff;
 /******************* Gnuplot file **************/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    
     for(k1=1; k1<=j;k1++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   strcpy(optionfilegnuplot,optionfilefiname);        
   strcat(optionfilegnuplot,".gp.txt");        for (i=1; i<=nlstate; i++)  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          for(m=iagemin; m <= iagemax+3; m++)
     printf("Problem with file %s",optionfilegnuplot);            prop[i][m]=0.0;
   }       
         for (i=1; i<=imx; i++) { /* Each individual */
 #ifdef windows          bool=1;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          if  (cptcovn>0) {
 #endif            for (z1=1; z1<=cptcoveff; z1++) 
 m=pow(2,cptcoveff);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
  /* 1eme*/          } 
   for (cpt=1; cpt<= nlstate ; cpt ++) {          if (bool==1) { 
    for (k1=1; k1<= m ; k1 ++) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 #ifdef windows              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 #endif                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 #ifdef unix                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 #endif                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
 for (i=1; i<= nlstate ; i ++) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }            } /* end selection of waves */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          }
     for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(i=iagemin; i <= iagemax+3; i++){  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          
 }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            posprop += prop[jk][i]; 
      for (i=1; i<= nlstate ; i ++) {          } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){     
 }              if( i <=  iagemax){ 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              if(posprop>=1.e-5){ 
 #ifdef unix                probs[i][jk][j1]= prop[jk][i]/posprop;
 fprintf(ficgp,"\nset ter gif small size 400,300");              } 
 #endif            } 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }/* end jk */ 
    }        }/* end i */ 
   }      } /* end i1 */
   /*2 eme*/    } /* end k1 */
     
   for (k1=1; k1<= m ; k1 ++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    /*free_vector(pp,1,nlstate);*/
        free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     for (i=1; i<= nlstate+1 ; i ++) {  }  /* End of prevalence */
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  /************* Waves Concatenation ***************/
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       Death is a valid wave (if date is known).
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       for (j=1; j<= nlstate+1 ; j ++) {       and mw[mi+1][i]. dh depends on stepm.
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       */
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      int i, mi, m;
       fprintf(ficgp,"\" t\"\" w l 0,");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);       double sum=0., jmean=0.;*/
       for (j=1; j<= nlstate+1 ; j ++) {    int first;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int j, k=0,jk, ju, jl;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double sum=0.;
 }      first=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    jmin=1e+5;
       else fprintf(ficgp,"\" t\"\" w l 0,");    jmax=-1;
     }    jmean=0.;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    for(i=1; i<=imx; i++){
   }      mi=0;
        m=firstpass;
   /*3eme*/      while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
   for (k1=1; k1<= m ; k1 ++) {          mw[++mi][i]=m;
     for (cpt=1; cpt<= nlstate ; cpt ++) {        if(m >=lastpass)
       k=2+nlstate*(cpt-1);          break;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        else
       for (i=1; i< nlstate ; i ++) {          m++;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      }/* end while */
       }      if (s[m][i] > nlstate){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        mi++;     /* Death is another wave */
     }        /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
          mw[mi][i]=m;
   /* CV preval stat */      }
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {      wav[i]=mi;
       k=3;      if(mi==0){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        nbwarn++;
         if(first==0){
       for (i=1; i< nlstate ; i ++)          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         fprintf(ficgp,"+$%d",k+i+1);          first=1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        }
              if(first==1){
       l=3+(nlstate+ndeath)*cpt;          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {      } /* end mi==0 */
         l=3+(nlstate+ndeath)*cpt;    } /* End individuals */
         fprintf(ficgp,"+$%d",l+i+1);  
       }    for(i=1; i<=imx; i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        for(mi=1; mi<wav[i];mi++){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        if (stepm <=0)
     }          dh[mi][i]=1;
   }          else{
            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   /* proba elementaires */            if (agedc[i] < 2*AGESUP) {
    for(i=1,jk=1; i <=nlstate; i++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     for(k=1; k <=(nlstate+ndeath); k++){              if(j==0) j=1;  /* Survives at least one month after exam */
       if (k != i) {              else if(j<0){
         for(j=1; j <=ncovmodel; j++){                nberr++;
                        printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                j=1; /* Temporary Dangerous patch */
           jk++;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficgp,"\n");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       }              }
     }              k=k+1;
     }              if (j >= jmax) jmax=j;
               if (j <= jmin) jmin=j;
     for(jk=1; jk <=m; jk++) {              sum=sum+j;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    i=1;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    for(k2=1; k2<=nlstate; k2++) {            }
      k3=i;          }
      for(k=1; k<=(nlstate+ndeath); k++) {          else{
        if (k != k2){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 ij=1;            k=k+1;
         for(j=3; j <=ncovmodel; j++) {            if (j >= jmax) jmax=j;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            else if (j <= jmin)jmin=j;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             ij++;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           }            if(j<0){
           else              nberr++;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,")/(1");            }
                    sum=sum+j;
         for(k1=1; k1 <=nlstate; k1++){            }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          jk= j/stepm;
 ij=1;          jl= j -jk*stepm;
           for(j=3; j <=ncovmodel; j++){          ju= j -(jk+1)*stepm;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            if(jl==0){
             ij++;              dh[mi][i]=jk;
           }              bh[mi][i]=0;
           else            }else{ /* We want a negative bias in order to only have interpolation ie
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                    * at the price of an extra matrix product in likelihood */
           }              dh[mi][i]=jk+1;
           fprintf(ficgp,")");              bh[mi][i]=ju;
         }            }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          }else{
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            if(jl <= -ju){
         i=i+ncovmodel;              dh[mi][i]=jk;
        }              bh[mi][i]=jl;       /* bias is positive if real duration
      }                                   * is higher than the multiple of stepm and negative otherwise.
    }                                   */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            }
    }            else{
                  dh[mi][i]=jk+1;
   fclose(ficgp);              bh[mi][i]=ju;
 }  /* end gnuplot */            }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 /*************** Moving average **************/              bh[mi][i]=ju; /* At least one step */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   int i, cpt, cptcod;          } /* end if mle */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        }
       for (i=1; i<=nlstate;i++)      } /* end wave */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    }
           mobaverage[(int)agedeb][i][cptcod]=0.;    jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       for (i=1; i<=nlstate;i++){   }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){  /*********** Tricode ****************************/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  void tricode(int *Tvar, int **nbcode, int imx)
           }  {
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    
         }    int Ndum[20],ij=1, k, j, i, maxncov=19;
       }    int cptcode=0;
     }    cptcoveff=0; 
       
 }    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   
 /************** Forecasting ******************/    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                   modality*/ 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   int *popage;        Ndum[ij]++; /*store the modality */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   double *popeffectif,*popcount;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   double ***p3mat;                                         Tvar[j]. If V=sex and male is 0 and 
   char fileresf[FILENAMELENGTH];                                         female is 1, then  cptcode=1.*/
       }
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      }
    
        ij=1; 
   strcpy(fileresf,"f");      for (i=1; i<=ncodemax[j]; i++) {
   strcat(fileresf,fileres);        for (k=0; k<= maxncov; k++) {
   if((ficresf=fopen(fileresf,"w"))==NULL) {          if (Ndum[k] != 0) {
     printf("Problem with forecast resultfile: %s\n", fileresf);            nbcode[Tvar[j]][ij]=k; 
   }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   printf("Computing forecasting: result on file '%s' \n", fileresf);            
             ij++;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }
           if (ij > ncodemax[j]) break; 
   if (mobilav==1) {        }  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } 
     movingaverage(agedeb, fage, ageminpar, mobaverage);    }  
   }  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;   for (i=1; i<=ncovmodel-2; i++) { 
       /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   agelim=AGESUP;     ij=Tvar[i];
       Ndum[ij]++;
   hstepm=1;   }
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);   ij=1;
   anprojmean=yp;   for (i=1; i<= maxncov; i++) {
   yp2=modf((yp1*12),&yp);     if((Ndum[i]!=0) && (i<=ncovcol)){
   mprojmean=yp;       Tvaraff[ij]=i; /*For printing */
   yp1=modf((yp2*30.5),&yp);       ij++;
   jprojmean=yp;     }
   if(jprojmean==0) jprojmean=1;   }
   if(mprojmean==0) jprojmean=1;   
     cptcoveff=ij-1; /*Number of simple covariates*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  }
    
   for(cptcov=1;cptcov<=i2;cptcov++){  /*********** Health Expectancies ****************/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {  {
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* Health expectancies */
       }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       fprintf(ficresf,"******\n");    double age, agelim, hf;
       fprintf(ficresf,"# StartingAge FinalAge");    double ***p3mat,***varhe;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double **dnewm,**doldm;
          double *xp;
          double **gp, **gm;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double ***gradg, ***trgradg;
         fprintf(ficresf,"\n");    int theta;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    xp=vector(1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    dnewm=matrix(1,nlstate*nlstate,1,npar);
           nhstepm = nhstepm/hstepm;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficreseij,"# Health expectancies\n");
           oldm=oldms;savm=savms;    fprintf(ficreseij,"# Age");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for(i=1; i<=nlstate;i++)
              for(j=1; j<=nlstate;j++)
           for (h=0; h<=nhstepm; h++){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficreseij,"\n");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }    if(estepm < stepm){
             for(j=1; j<=nlstate+ndeath;j++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                  else  hstepm=estepm;   
                 if (mobilav==1)    /* We compute the life expectancy from trapezoids spaced every estepm months
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * This is mainly to measure the difference between two models: for example
                 else {     * if stepm=24 months pijx are given only every 2 years and by summing them
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * we are calculating an estimate of the Life Expectancy assuming a linear 
                 }     * progression in between and thus overestimating or underestimating according
                     * to the curvature of the survival function. If, for the same date, we 
               }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               if (h==(int)(calagedate+12*cpt)){     * to compare the new estimate of Life expectancy with the same linear 
                 fprintf(ficresf," %.3f", kk1);     * hypothesis. A more precise result, taking into account a more precise
                             * curvature will be obtained if estepm is as small as stepm. */
               }  
             }    /* For example we decided to compute the life expectancy with the smallest unit */
           }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               survival function given by stepm (the optimization length). Unfortunately it
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fclose(ficresf);       results. So we changed our mind and took the option of the best precision.
 }    */
 /************** Forecasting ******************/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
      agelim=AGESUP;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int *popage;      /* nhstepm age range expressed in number of stepm */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   double *popeffectif,*popcount;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double ***p3mat,***tabpop,***tabpopprev;      /* if (stepm >= YEARM) hstepm=1;*/
   char filerespop[FILENAMELENGTH];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   agelim=AGESUP;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);      /* Computing  Variances of health expectancies */
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   if (mobilav==1) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     movingaverage(agedeb, fage, ageminpar, mobaverage);        cptj=0;
   }        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            cptj=cptj+1;
   if (stepm<=12) stepsize=1;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   agelim=AGESUP;            }
            }
   hstepm=1;        }
   hstepm=hstepm/stepm;       
         
   if (popforecast==1) {        for(i=1; i<=npar; i++) 
     if((ficpop=fopen(popfile,"r"))==NULL) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       printf("Problem with population file : %s\n",popfile);exit(0);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        
     popage=ivector(0,AGESUP);        cptj=0;
     popeffectif=vector(0,AGESUP);        for(j=1; j<= nlstate; j++){
     popcount=vector(0,AGESUP);          for(i=1;i<=nlstate;i++){
                cptj=cptj+1;
     i=1;              for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
                  gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     imx=i;            }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          }
   }        }
         for(j=1; j<= nlstate*nlstate; j++)
   for(cptcov=1;cptcov<=i2;cptcov++){          for(h=0; h<=nhstepm-1; h++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       k=k+1;          }
       fprintf(ficrespop,"\n#******");       } 
       for(j=1;j<=cptcoveff;j++) {     
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /* End theta */
       }  
       fprintf(ficrespop,"******\n");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       for(h=0; h<=nhstepm-1; h++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");        for(j=1; j<=nlstate*nlstate;j++)
                for(theta=1; theta <=npar; theta++)
       for (cpt=0; cpt<=0;cpt++) {            trgradg[h][j][theta]=gradg[h][theta][j];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       for(i=1;i<=nlstate*nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=1;j<=nlstate*nlstate;j++)
           nhstepm = nhstepm/hstepm;          varhe[i][j][(int)age] =0.;
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       printf("%d|",(int)age);fflush(stdout);
           oldm=oldms;savm=savms;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         for(h=0;h<=nhstepm-1;h++){
                for(k=0;k<=nhstepm-1;k++){
           for (h=0; h<=nhstepm; h++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             if (h==(int) (calagedate+YEARM*cpt)) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(i=1;i<=nlstate*nlstate;i++)
             }            for(j=1;j<=nlstate*nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++) {              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                    }
                 if (mobilav==1)      /* Computing expectancies */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(i=1; i<=nlstate;i++)
                 else {        for(j=1; j<=nlstate;j++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                 }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               }            
               if (h==(int)(calagedate+12*cpt)){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);          }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }      fprintf(ficreseij,"%3.0f",age );
             }      cptj=0;
             for(i=1; i<=nlstate;i++){      for(i=1; i<=nlstate;i++)
               kk1=0.;        for(j=1; j<=nlstate;j++){
                 for(j=1; j<=nlstate;j++){          cptj++;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                 }        }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      fprintf(ficreseij,"\n");
             }     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    }
       }    printf("\n");
      fprintf(ficlog,"\n");
   /******/  
     free_vector(xp,1,npar);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  }
           nhstepm = nhstepm/hstepm;  
            /************ Variance ******************/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           oldm=oldms;savm=savms;  {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Variance of health expectancies */
           for (h=0; h<=nhstepm; h++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
             if (h==(int) (calagedate+YEARM*cpt)) {    /* double **newm;*/
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double **dnewm,**doldm;
             }    double **dnewmp,**doldmp;
             for(j=1; j<=nlstate+ndeath;j++) {    int i, j, nhstepm, hstepm, h, nstepm ;
               kk1=0.;kk2=0;    int k, cptcode;
               for(i=1; i<=nlstate;i++) {                  double *xp;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double **gp, **gm;  /* for var eij */
               }    double ***gradg, ***trgradg; /*for var eij */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    double **gradgp, **trgradgp; /* for var p point j */
             }    double *gpp, *gmp; /* for var p point j */
           }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***p3mat;
         }    double age,agelim, hf;
       }    double ***mobaverage;
    }    int theta;
   }    char digit[4];
      char digitp[25];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     char fileresprobmorprev[FILENAMELENGTH];
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    if(popbased==1){
     free_vector(popeffectif,0,AGESUP);      if(mobilav!=0)
     free_vector(popcount,0,AGESUP);        strcpy(digitp,"-populbased-mobilav-");
   }      else strcpy(digitp,"-populbased-nomobil-");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else 
   fclose(ficrespop);      strcpy(digitp,"-stablbased-");
 }  
     if (mobilav!=0) {
 /***********************************************/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /**************** Main Program *****************/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 /***********************************************/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
 int main(int argc, char *argv[])      }
 {    }
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    strcpy(fileresprobmorprev,"prmorprev"); 
   double agedeb, agefin,hf;    sprintf(digit,"%-d",ij);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   double fret;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   double **xi,tmp,delta;    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   double dum; /* Dummy variable */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   double ***p3mat;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   int *indx;    }
   char line[MAXLINE], linepar[MAXLINE];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   char title[MAXLINE];    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   char filerest[FILENAMELENGTH];        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   char fileregp[FILENAMELENGTH];    }  
   char popfile[FILENAMELENGTH];    fprintf(ficresprobmorprev,"\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    fprintf(ficgp,"\n# Routine varevsij");
   int firstobs=1, lastobs=10;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   int sdeb, sfin; /* Status at beginning and end */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   int c,  h , cpt,l;  /*   } */
   int ju,jl, mi;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   int mobilav=0,popforecast=0;    fprintf(ficresvij,"# Age");
   int hstepm, nhstepm;    for(i=1; i<=nlstate;i++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   double bage, fage, age, agelim, agebase;    fprintf(ficresvij,"\n");
   double ftolpl=FTOL;  
   double **prlim;    xp=vector(1,npar);
   double *severity;    dnewm=matrix(1,nlstate,1,npar);
   double ***param; /* Matrix of parameters */    doldm=matrix(1,nlstate,1,nlstate);
   double  *p;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   double **matcov; /* Matrix of covariance */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double ***delti3; /* Scale */  
   double *delti; /* Scale */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   double ***eij, ***vareij;    gpp=vector(nlstate+1,nlstate+ndeath);
   double **varpl; /* Variances of prevalence limits by age */    gmp=vector(nlstate+1,nlstate+ndeath);
   double *epj, vepp;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double kk1, kk2;    
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";    else  hstepm=estepm;   
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   char z[1]="c", occ;       nstepm is the number of stepm from age to agelin. 
 #include <sys/time.h>       Look at hpijx to understand the reason of that which relies in memory size
 #include <time.h>       and note for a fixed period like k years */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   /* long total_usecs;       means that if the survival funtion is printed every two years of age and if
   struct timeval start_time, end_time;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    */
   getcwd(pathcd, size);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
   printf("\n%s",version);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if(argc <=1){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     printf("\nEnter the parameter file name: ");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     scanf("%s",pathtot);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   else{      gp=matrix(0,nhstepm,1,nlstate);
     strcpy(pathtot,argv[1]);      gm=matrix(0,nhstepm,1,nlstate);
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);      for(theta=1; theta <=npar; theta++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   /* cutv(path,optionfile,pathtot,'\\');*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   chdir(path);  
   replace(pathc,path);        if (popbased==1) {
           if(mobilav ==0){
 /*-------- arguments in the command line --------*/            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   strcpy(fileres,"r");          }else{ /* mobilav */ 
   strcat(fileres, optionfilefiname);            for(i=1; i<=nlstate;i++)
   strcat(fileres,".txt");    /* Other files have txt extension */              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   /*---------arguments file --------*/        }
     
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(j=1; j<= nlstate; j++){
     printf("Problem with optionfile %s\n",optionfile);          for(h=0; h<=nhstepm; h++){
     goto end;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   strcpy(filereso,"o");        }
   strcat(filereso,fileres);        /* This for computing probability of death (h=1 means
   if((ficparo=fopen(filereso,"w"))==NULL) {           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;           as a weighted average of prlim.
   }        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /* Reads comments: lines beginning with '#' */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   while((c=getc(ficpar))=='#' && c!= EOF){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     ungetc(c,ficpar);        }    
     fgets(line, MAXLINE, ficpar);        /* end probability of death */
     puts(line);  
     fputs(line,ficparo);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        if (popbased==1) {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          if(mobilav ==0){
 while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);          }else{ /* mobilav */ 
     puts(line);            for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
   ungetc(c,ficpar);        }
    
            for(j=1; j<= nlstate; j++){
   covar=matrix(0,NCOVMAX,1,n);          for(h=0; h<=nhstepm; h++){
   cptcovn=0;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   /* Read guess parameters */           as a weighted average of prlim.
   /* Reads comments: lines beginning with '#' */        */
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     ungetc(c,ficpar);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     fgets(line, MAXLINE, ficpar);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     puts(line);        }    
     fputs(line,ficparo);        /* end probability of death */
   }  
   ungetc(c,ficpar);        for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for(i=1; i <=nlstate; i++)          }
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       fprintf(ficparo,"%1d%1d",i1,j1);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       printf("%1d%1d",i,j);        }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);      } /* End theta */
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }  
       fscanf(ficpar,"\n");      for(h=0; h<=nhstepm; h++) /* veij */
       printf("\n");        for(j=1; j<=nlstate;j++)
       fprintf(ficparo,"\n");          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   p=param[1][1];          trgradgp[j][theta]=gradgp[theta][j];
      
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        for(j=1;j<=nlstate;j++)
     puts(line);          vareij[i][j][(int)age] =0.;
     fputs(line,ficparo);  
   }      for(h=0;h<=nhstepm;h++){
   ungetc(c,ficpar);        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for(i=1;i<=nlstate;i++)
   for(i=1; i <=nlstate; i++){            for(j=1;j<=nlstate;j++)
     for(j=1; j <=nlstate+ndeath-1; j++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       printf("%1d%1d",i,j);      }
       fprintf(ficparo,"%1d%1d",i1,j1);    
       for(k=1; k<=ncovmodel;k++){      /* pptj */
         fscanf(ficpar,"%le",&delti3[i][j][k]);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         printf(" %le",delti3[i][j][k]);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         fprintf(ficparo," %le",delti3[i][j][k]);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fscanf(ficpar,"\n");          varppt[j][i]=doldmp[j][i];
       printf("\n");      /* end ppptj */
       fprintf(ficparo,"\n");      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   delti=delti3[1][1];   
        if (popbased==1) {
   /* Reads comments: lines beginning with '#' */        if(mobilav ==0){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);            prlim[i][i]=probs[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);        }else{ /* mobilav */ 
     puts(line);          for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);            prlim[i][i]=mobaverage[(int)age][i][ij];
   }        }
   ungetc(c,ficpar);      }
                 
   matcov=matrix(1,npar,1,npar);      /* This for computing probability of death (h=1 means
   for(i=1; i <=npar; i++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     fscanf(ficpar,"%s",&str);         as a weighted average of prlim.
     printf("%s",str);      */
     fprintf(ficparo,"%s",str);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for(j=1; j <=i; j++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       fscanf(ficpar," %le",&matcov[i][j]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       printf(" %.5le",matcov[i][j]);      }    
       fprintf(ficparo," %.5le",matcov[i][j]);      /* end probability of death */
     }  
     fscanf(ficpar,"\n");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     printf("\n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficparo,"\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   }        for(i=1; i<=nlstate;i++){
   for(i=1; i <=npar; i++)          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     for(j=i+1;j<=npar;j++)        }
       matcov[i][j]=matcov[j][i];      } 
          fprintf(ficresprobmorprev,"\n");
   printf("\n");  
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
     /*-------- Rewriting paramater file ----------*/        for(j=1; j<=nlstate;j++){
      strcpy(rfileres,"r");    /* "Rparameterfile */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }
      strcat(rfileres,".");    /* */      fprintf(ficresvij,"\n");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      free_matrix(gp,0,nhstepm,1,nlstate);
     if((ficres =fopen(rfileres,"w"))==NULL) {      free_matrix(gm,0,nhstepm,1,nlstate);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     fprintf(ficres,"#%s\n",version);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        } /* End age */
     /*-------- data file ----------*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
     if((fic=fopen(datafile,"r"))==NULL)    {    free_vector(gmp,nlstate+1,nlstate+ndeath);
       printf("Problem with datafile: %s\n", datafile);goto end;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     n= lastobs;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     severity = vector(1,maxwav);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     outcome=imatrix(1,maxwav+1,1,n);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     num=ivector(1,n);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     moisnais=vector(1,n);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     annais=vector(1,n);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     moisdc=vector(1,n);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     andc=vector(1,n);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     agedc=vector(1,n);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     cod=ivector(1,n);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     weight=vector(1,n);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  */
     mint=matrix(1,maxwav,1,n);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     anint=matrix(1,maxwav,1,n);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);        free_vector(xp,1,npar);
     tab=ivector(1,NCOVMAX);    free_matrix(doldm,1,nlstate,1,nlstate);
     ncodemax=ivector(1,8);    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     i=1;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       if ((i >= firstobs) && (i <=lastobs)) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fclose(ficresprobmorprev);
         for (j=maxwav;j>=1;j--){    fflush(ficgp);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fflush(fichtm); 
           strcpy(line,stra);  }  /* end varevsij */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /************ Variance of prevlim ******************/
         }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
          {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    /* Variance of prevalence limit */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double **dnewm,**doldm;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    int i, j, nhstepm, hstepm;
     int k, cptcode;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double *xp;
         for (j=ncovcol;j>=1;j--){    double *gp, *gm;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double **gradg, **trgradg;
         }    double age,agelim;
         num[i]=atol(stra);    int theta;
             
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         i=i+1;        fprintf(ficresvpl," %1d-%1d",i,i);
       }    fprintf(ficresvpl,"\n");
     }  
     /* printf("ii=%d", ij);    xp=vector(1,npar);
        scanf("%d",i);*/    dnewm=matrix(1,nlstate,1,npar);
   imx=i-1; /* Number of individuals */    doldm=matrix(1,nlstate,1,nlstate);
     
   /* for (i=1; i<=imx; i++){    hstepm=1*YEARM; /* Every year of age */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    agelim = AGESUP;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        if (stepm >= YEARM) hstepm=1;
   /* for (i=1; i<=imx; i++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
      if (s[4][i]==9)  s[4][i]=-1;      gradg=matrix(1,npar,1,nlstate);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}      gp=vector(1,nlstate);
   */      gm=vector(1,nlstate);
    
   /* Calculation of the number of parameter from char model*/      for(theta=1; theta <=npar; theta++){
   Tvar=ivector(1,15);        for(i=1; i<=npar; i++){ /* Computes gradient */
   Tprod=ivector(1,15);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   Tvaraff=ivector(1,15);        }
   Tvard=imatrix(1,15,1,2);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   Tage=ivector(1,15);              for(i=1;i<=nlstate;i++)
              gp[i] = prlim[i][i];
   if (strlen(model) >1){      
     j=0, j1=0, k1=1, k2=1;        for(i=1; i<=npar; i++) /* Computes gradient */
     j=nbocc(model,'+');          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     j1=nbocc(model,'*');        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     cptcovn=j+1;        for(i=1;i<=nlstate;i++)
     cptcovprod=j1;          gm[i] = prlim[i][i];
      
     strcpy(modelsav,model);        for(i=1;i<=nlstate;i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       printf("Error. Non available option model=%s ",model);      } /* End theta */
       goto end;  
     }      trgradg =matrix(1,nlstate,1,npar);
      
     for(i=(j+1); i>=1;i--){      for(j=1; j<=nlstate;j++)
       cutv(stra,strb,modelsav,'+');        for(theta=1; theta <=npar; theta++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          trgradg[j][theta]=gradg[theta][j];
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/      for(i=1;i<=nlstate;i++)
       if (strchr(strb,'*')) {        varpl[i][(int)age] =0.;
         cutv(strd,strc,strb,'*');      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         if (strcmp(strc,"age")==0) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           cptcovprod--;      for(i=1;i<=nlstate;i++)
           cutv(strb,stre,strd,'V');        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           Tvar[i]=atoi(stre);  
           cptcovage++;      fprintf(ficresvpl,"%.0f ",age );
             Tage[cptcovage]=i;      for(i=1; i<=nlstate;i++)
             /*printf("stre=%s ", stre);*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         }      fprintf(ficresvpl,"\n");
         else if (strcmp(strd,"age")==0) {      free_vector(gp,1,nlstate);
           cptcovprod--;      free_vector(gm,1,nlstate);
           cutv(strb,stre,strc,'V');      free_matrix(gradg,1,npar,1,nlstate);
           Tvar[i]=atoi(stre);      free_matrix(trgradg,1,nlstate,1,npar);
           cptcovage++;    } /* End age */
           Tage[cptcovage]=i;  
         }    free_vector(xp,1,npar);
         else {    free_matrix(doldm,1,nlstate,1,npar);
           cutv(strb,stre,strc,'V');    free_matrix(dnewm,1,nlstate,1,nlstate);
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');  }
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);  /************ Variance of one-step probabilities  ******************/
           Tvard[k1][2]=atoi(stre);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
           Tvar[cptcovn+k2]=Tvard[k1][1];  {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    int i, j=0,  i1, k1, l1, t, tj;
           for (k=1; k<=lastobs;k++)    int k2, l2, j1,  z1;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    int k=0,l, cptcode;
           k1++;    int first=1, first1;
           k2=k2+2;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         }    double **dnewm,**doldm;
       }    double *xp;
       else {    double *gp, *gm;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double **gradg, **trgradg;
        /*  scanf("%d",i);*/    double **mu;
       cutv(strd,strc,strb,'V');    double age,agelim, cov[NCOVMAX];
       Tvar[i]=atoi(strc);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       }    int theta;
       strcpy(modelsav,stra);      char fileresprob[FILENAMELENGTH];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    char fileresprobcov[FILENAMELENGTH];
         scanf("%d",i);*/    char fileresprobcor[FILENAMELENGTH];
     }  
 }    double ***varpij;
    
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    strcpy(fileresprob,"prob"); 
   printf("cptcovprod=%d ", cptcovprod);    strcat(fileresprob,fileres);
   scanf("%d ",i);*/    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     fclose(fic);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     /*  if(mle==1){*/    }
     if (weightopt != 1) { /* Maximisation without weights*/    strcpy(fileresprobcov,"probcov"); 
       for(i=1;i<=n;i++) weight[i]=1.0;    strcat(fileresprobcov,fileres);
     }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     /*-calculation of age at interview from date of interview and age at death -*/      printf("Problem with resultfile: %s\n", fileresprobcov);
     agev=matrix(1,maxwav,1,imx);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     for (i=1; i<=imx; i++) {    strcpy(fileresprobcor,"probcor"); 
       for(m=2; (m<= maxwav); m++) {    strcat(fileresprobcor,fileres);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          anint[m][i]=9999;      printf("Problem with resultfile: %s\n", fileresprobcor);
          s[m][i]=-1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        }    }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     for (i=1; i<=imx; i++)  {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(m=1; (m<= maxwav); m++){    
         if(s[m][i] >0){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           if (s[m][i] >= nlstate+1) {    fprintf(ficresprob,"# Age");
             if(agedc[i]>0)    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
               if(moisdc[i]!=99 && andc[i]!=9999)    fprintf(ficresprobcov,"# Age");
                 agev[m][i]=agedc[i];    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    fprintf(ficresprobcov,"# Age");
            else {  
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    for(i=1; i<=nlstate;i++)
               agev[m][i]=-1;      for(j=1; j<=(nlstate+ndeath);j++){
               }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
             }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           else if(s[m][i] !=9){ /* Should no more exist */      }  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   /* fprintf(ficresprob,"\n");
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficresprobcov,"\n");
               agev[m][i]=1;    fprintf(ficresprobcor,"\n");
             else if(agev[m][i] <agemin){   */
               agemin=agev[m][i];   xp=vector(1,npar);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             else if(agev[m][i] >agemax){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               agemax=agev[m][i];    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    first=1;
             }    fprintf(ficgp,"\n# Routine varprob");
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(fichtm,"\n");
           }  
           else { /* =9 */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
             agev[m][i]=1;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
             s[m][i]=-1;    file %s<br>\n",optionfilehtmcov);
           }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         }  and drawn. It helps understanding how is the covariance between two incidences.\
         else /*= 0 Unknown */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           agev[m][i]=1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     }  standard deviations wide on each axis. <br>\
     for (i=1; i<=imx; i++)  {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       for(m=1; (m<= maxwav); m++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         if (s[m][i] > (nlstate+ndeath)) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;    cov[1]=1;
         }    tj=cptcoveff;
       }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     }    j1=0;
     for(t=1; t<=tj;t++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
     free_vector(severity,1,maxwav);        if  (cptcovn>0) {
     free_imatrix(outcome,1,maxwav+1,1,n);          fprintf(ficresprob, "\n#********** Variable "); 
     free_vector(moisnais,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(annais,1,n);          fprintf(ficresprob, "**********\n#\n");
     /* free_matrix(mint,1,maxwav,1,n);          fprintf(ficresprobcov, "\n#********** Variable "); 
        free_matrix(anint,1,maxwav,1,n);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(moisdc,1,n);          fprintf(ficresprobcov, "**********\n#\n");
     free_vector(andc,1,n);          
           fprintf(ficgp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     wav=ivector(1,imx);          fprintf(ficgp, "**********\n#\n");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          
              fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     /* Concatenates waves */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
       Tcode=ivector(1,100);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          fprintf(ficresprobcor, "**********\n#");    
       ncodemax[1]=1;        }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        
              for (age=bage; age<=fage; age ++){ 
    codtab=imatrix(1,100,1,10);          cov[2]=age;
    h=0;          for (k=1; k<=cptcovn;k++) {
    m=pow(2,cptcoveff);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
            }
    for(k=1;k<=cptcoveff; k++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      for(i=1; i <=(m/pow(2,k));i++){          for (k=1; k<=cptcovprod;k++)
        for(j=1; j <= ncodemax[k]; j++){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          
            h++;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
          }          gm=vector(1,(nlstate)*(nlstate+ndeath));
        }      
      }          for(theta=1; theta <=npar; theta++){
    }            for(i=1; i<=npar; i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       codtab[1][2]=1;codtab[2][2]=2; */            
    /* for(i=1; i <=m ;i++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for(k=1; k <=cptcovn; k++){            
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            k=0;
       }            for(i=1; i<= (nlstate); i++){
       printf("\n");              for(j=1; j<=(nlstate+ndeath);j++){
       }                k=k+1;
       scanf("%d",i);*/                gp[k]=pmmij[i][j];
                  }
    /* Calculates basic frequencies. Computes observed prevalence at single age            }
        and prints on file fileres'p'. */            
             for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
          
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            k=0;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(i=1; i<=(nlstate); i++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              for(j=1; j<=(nlstate+ndeath);j++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                k=k+1;
                      gm[k]=pmmij[i][j];
     /* For Powell, parameters are in a vector p[] starting at p[1]              }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     if(mle==1){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          }
     }  
              for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     /*--------- results files --------------*/            for(theta=1; theta <=npar; theta++)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              trgradg[j][theta]=gradg[theta][j];
            
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
    jk=1;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
    for(i=1,jk=1; i <=nlstate; i++){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      for(k=1; k <=(nlstate+ndeath); k++){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        if (k != i)  
          {          pmij(pmmij,cov,ncovmodel,x,nlstate);
            printf("%d%d ",i,k);          
            fprintf(ficres,"%1d%1d ",i,k);          k=0;
            for(j=1; j <=ncovmodel; j++){          for(i=1; i<=(nlstate); i++){
              printf("%f ",p[jk]);            for(j=1; j<=(nlstate+ndeath);j++){
              fprintf(ficres,"%f ",p[jk]);              k=k+1;
              jk++;              mu[k][(int) age]=pmmij[i][j];
            }            }
            printf("\n");          }
            fprintf(ficres,"\n");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
          }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
      }              varpij[i][j][(int)age] = doldm[i][j];
    }  
  if(mle==1){          /*printf("\n%d ",(int)age);
     /* Computing hessian and covariance matrix */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     ftolhess=ftol; /* Usually correct */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     hesscov(matcov, p, npar, delti, ftolhess, func);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  }            }*/
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");          fprintf(ficresprob,"\n%d ",(int)age);
      for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresprobcov,"\n%d ",(int)age);
       for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficresprobcor,"\n%d ",(int)age);
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           printf("%1d%1d",i,j);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for(k=1; k<=ncovmodel;k++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf(" %.5e",delti[jk]);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficres," %.5e",delti[jk]);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             jk++;          }
           }          i=0;
           printf("\n");          for (k=1; k<=(nlstate);k++){
           fprintf(ficres,"\n");            for (l=1; l<=(nlstate+ndeath);l++){ 
         }              i=i++;
       }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
      }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                  for (j=1; j<=i;j++){
     k=1;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              }
     for(i=1;i<=npar;i++){            }
       /*  if (k>nlstate) k=1;          }/* end of loop for state */
       i1=(i-1)/(ncovmodel*nlstate)+1;        } /* end of loop for age */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/        /* Confidence intervalle of pij  */
       fprintf(ficres,"%3d",i);        /*
       printf("%3d",i);          fprintf(ficgp,"\nset noparametric;unset label");
       for(j=1; j<=i;j++){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficres," %.5e",matcov[i][j]);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         printf(" %.5e",matcov[i][j]);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       fprintf(ficres,"\n");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       printf("\n");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       k++;        */
     }  
            /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     while((c=getc(ficpar))=='#' && c!= EOF){        first1=1;
       ungetc(c,ficpar);        for (k2=1; k2<=(nlstate);k2++){
       fgets(line, MAXLINE, ficpar);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       puts(line);            if(l2==k2) continue;
       fputs(line,ficparo);            j=(k2-1)*(nlstate+ndeath)+l2;
     }            for (k1=1; k1<=(nlstate);k1++){
     ungetc(c,ficpar);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                  if(l1==k1) continue;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);                i=(k1-1)*(nlstate+ndeath)+l1;
                    if(i<=j) continue;
     if (fage <= 2) {                for (age=bage; age<=fage; age ++){ 
       bage = ageminpar;                  if ((int)age %5==0){
       fage = agemaxpar;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                    mu1=mu[i][(int) age]/stepm*YEARM ;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);                    mu2=mu[j][(int) age]/stepm*YEARM;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);                    c12=cv12/sqrt(v1*v2);
                      /* Computing eigen value of matrix of covariance */
     while((c=getc(ficpar))=='#' && c!= EOF){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     ungetc(c,ficpar);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fgets(line, MAXLINE, ficpar);                    /* Eigen vectors */
     puts(line);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     fputs(line,ficparo);                    /*v21=sqrt(1.-v11*v11); *//* error */
   }                    v21=(lc1-v1)/cv12*v11;
   ungetc(c,ficpar);                    v12=-v21;
                      v22=v11;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                    tnalp=v21/v11;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    if(first1==1){
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                      first1=0;
                            printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   while((c=getc(ficpar))=='#' && c!= EOF){                    }
     ungetc(c,ficpar);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fgets(line, MAXLINE, ficpar);                    /*printf(fignu*/
     puts(line);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     fputs(line,ficparo);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   }                    if(first==1){
   ungetc(c,ficpar);                      first=0;
                        fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   fscanf(ficpar,"pop_based=%d\n",&popbased);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   fprintf(ficparo,"pop_based=%d\n",popbased);                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   fprintf(ficres,"pop_based=%d\n",popbased);                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     ungetc(c,ficpar);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     puts(line);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     fputs(line,ficparo);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   ungetc(c,ficpar);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                      first=0;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 while((c=getc(ficpar))=='#' && c!= EOF){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     ungetc(c,ficpar);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     fgets(line, MAXLINE, ficpar);                    }/* if first */
     puts(line);                  } /* age mod 5 */
     fputs(line,ficparo);                } /* end loop age */
   }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   ungetc(c,ficpar);                first=1;
               } /*l12 */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            } /* k12 */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          } /*l1 */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }/* k1 */
       } /* loop covariates */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 /*------------ gnuplot -------------*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    free_vector(xp,1,npar);
      fclose(ficresprob);
 /*------------ free_vector  -------------*/    fclose(ficresprobcov);
  chdir(path);    fclose(ficresprobcor);
      fflush(ficgp);
  free_ivector(wav,1,imx);    fflush(fichtmcov);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);  /******************* Printing html file ***********/
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
  fclose(ficparo);                    int lastpass, int stepm, int weightopt, char model[],\
  fclose(ficres);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
 /*--------- index.htm --------*/                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);    int jj1, k1, i1, cpt;
   
       fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   /*--------------- Prevalence limit --------------*/   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
               jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   strcpy(filerespl,"pl");     fprintf(fichtm,"\
   strcat(filerespl,fileres);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   if((ficrespl=fopen(filerespl,"w"))==NULL) {             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;     fprintf(fichtm,"\
   }   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   fprintf(ficrespl,"#Prevalence limit\n");     fprintf(fichtm,"\
   fprintf(ficrespl,"#Age ");   - Life expectancies by age and initial health status (estepm=%2d months): \
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     <a href=\"%s\">%s</a> <br>\n</li>",
   fprintf(ficrespl,"\n");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    
   prlim=matrix(1,nlstate,1,nlstate);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   m=cptcoveff;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   jj1=0;
   k=0;   for(k1=1; k1<=m;k1++){
   agebase=ageminpar;     for(i1=1; i1<=ncodemax[k1];i1++){
   agelim=agemaxpar;       jj1++;
   ftolpl=1.e-10;       if (cptcovn > 0) {
   i1=cptcoveff;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if (cptcovn < 1){i1=1;}         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       }
         k=k+1;       /* Pij */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
         fprintf(ficrespl,"\n#******");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         for(j=1;j<=cptcoveff;j++)       /* Quasi-incidences */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         fprintf(ficrespl,"******\n");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
          <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
         for (age=agebase; age<=agelim; age++){         /* Stable prevalence in each health state */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         for(cpt=1; cpt<nlstate;cpt++){
           fprintf(ficrespl,"%.0f",age );           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
           for(i=1; i<=nlstate;i++)  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           fprintf(ficrespl," %.5f", prlim[i][i]);         }
           fprintf(ficrespl,"\n");       for(cpt=1; cpt<=nlstate;cpt++) {
         }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     }       }
   fclose(ficrespl);     } /* end i1 */
    }/* End k1 */
   /*------------- h Pij x at various ages ------------*/   fprintf(fichtm,"</ul>");
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {   fprintf(fichtm,"\
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  \n<br><li><h4> Result files (second order: variances)</h4>\n\
   }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   printf("Computing pij: result on file '%s' \n", filerespij);  
     fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   stepsize=(int) (stepm+YEARM-1)/YEARM;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   /*if (stepm<=24) stepsize=2;*/   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   agelim=AGESUP;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   fprintf(fichtm,"\
     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   k=0;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   for(cptcov=1;cptcov<=i1;cptcov++){   fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       k=k+1;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         fprintf(ficrespij,"\n#****** ");   fprintf(fichtm,"\
         for(j=1;j<=cptcoveff;j++)   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
         fprintf(ficrespij,"******\n");   fprintf(fichtm,"\
           - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /*  if(popforecast==1) fprintf(fichtm,"\n */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           oldm=oldms;savm=savms;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*      <br>",fileres,fileres,fileres,fileres); */
           fprintf(ficrespij,"# Age");  /*  else  */
           for(i=1; i<=nlstate;i++)  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
             for(j=1; j<=nlstate+ndeath;j++)   fflush(fichtm);
               fprintf(ficrespij," %1d-%1d",i,j);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){   m=cptcoveff;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)   jj1=0;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);   for(k1=1; k1<=m;k1++){
             fprintf(ficrespij,"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
           }       jj1++;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       if (cptcovn > 0) {
           fprintf(ficrespij,"\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         }         for (cpt=1; cpt<=cptcoveff;cpt++) 
     }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   fclose(ficrespij);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
   /*---------- Forecasting ------------------*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   if((stepm == 1) && (strcmp(model,".")==0)){  health expectancies in states (1) and (2): %s%d.png<br>\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     } /* end i1 */
     free_matrix(mint,1,maxwav,1,n);   }/* End k1 */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   fprintf(fichtm,"</ul>");
     free_vector(weight,1,n);}   fflush(fichtm);
   else{  }
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  /******************* Gnuplot file **************/
   }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
     char dirfileres[132],optfileres[132];
   /*---------- Health expectancies and variances ------------*/    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   strcpy(filerest,"t");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   strcat(filerest,fileres);  /*     printf("Problem with file %s",optionfilegnuplot); */
   if((ficrest=fopen(filerest,"w"))==NULL) {  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /*   } */
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   strcpy(filerese,"e");    m=pow(2,cptcoveff);
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    strcpy(dirfileres,optionfilefiname);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    strcpy(optfileres,"vpl");
   }   /* 1eme*/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
  strcpy(fileresv,"v");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   strcat(fileresv,fileres);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       fprintf(ficgp,"set xlabel \"Age\" \n\
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  set ylabel \"Probability\" \n\
   }  set ter png small\n\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){       for (i=1; i<= nlstate ; i ++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       k=k+1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficrest,"\n#****** ");       }
       for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficrest,"******\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficreseij,"\n#****** ");       } 
       for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficreseij,"******\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficresvij,"\n#****** ");       }  
       for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     }
       fprintf(ficresvij,"******\n");    }
     /*2 eme*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    for (k1=1; k1<= m ; k1 ++) { 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       oldm=oldms;savm=savms;      
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for (i=1; i<= nlstate+1 ; i ++) {
            k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficrest,"\n");        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       epj=vector(1,nlstate+1);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       for(age=bage; age <=fage ;age++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for (j=1; j<= nlstate+1 ; j ++) {
         if (popbased==1) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           for(i=1; i<=nlstate;i++)          else fprintf(ficgp," \%%*lf (\%%*lf)");
             prlim[i][i]=probs[(int)age][i][k];        }   
         }        fprintf(ficgp,"\" t\"\" w l 0,");
                fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficrest," %4.0f",age);        for (j=1; j<= nlstate+1 ; j ++) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        }   
           }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           epj[nlstate+1] +=epj[j];        else fprintf(ficgp,"\" t\"\" w l 0,");
         }      }
         for(i=1, vepp=0.;i <=nlstate;i++)    }
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];    /*3eme*/
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));    
         for(j=1;j <=nlstate;j++){    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));      for (cpt=1; cpt<= nlstate ; cpt ++) {
         }        k=2+nlstate*(2*cpt-2);
         fprintf(ficrest,"\n");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       }        fprintf(ficgp,"set ter png small\n\
     }  set size 0.65,0.65\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   fclose(ficreseij);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fclose(ficresvij);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fclose(ficrest);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   fclose(ficpar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_vector(epj,1,nlstate+1);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            
   /*------- Variance limit prevalence------*/          */
         for (i=1; i< nlstate ; i ++) {
   strcpy(fileresvpl,"vpl");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   strcat(fileresvpl,fileres);          
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        } 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      }
     exit(0);    }
   }    
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
   k=0;      for (cpt=1; cpt<=nlstate ; cpt ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){        k=3;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       k=k+1;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       fprintf(ficresvpl,"\n#****** ");  set ter png small\nset size 0.65,0.65\n\
       for(j=1;j<=cptcoveff;j++)  unset log y\n\
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       fprintf(ficresvpl,"******\n");        
              for (i=1; i< nlstate ; i ++)
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          fprintf(ficgp,"+$%d",k+i+1);
       oldm=oldms;savm=savms;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        
     }        l=3+(nlstate+ndeath)*cpt;
  }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
   fclose(ficresvpl);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
   /*---------- End : free ----------------*/        }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
        } 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    
      /* proba elementaires */
      for(i=1,jk=1; i <=nlstate; i++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      for(k=1; k <=(nlstate+ndeath); k++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        if (k != i) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          for(j=1; j <=ncovmodel; j++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
              jk++; 
   free_matrix(matcov,1,npar,1,npar);            fprintf(ficgp,"\n");
   free_vector(delti,1,npar);          }
   free_matrix(agev,1,maxwav,1,imx);        }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      }
      }
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   else   printf("End of Imach\n");       for(jk=1; jk <=m; jk++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           if (ng==2)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   /*printf("Total time was %d uSec.\n", total_usecs);*/         else
   /*------ End -----------*/           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
  end:         for(k2=1; k2<=nlstate; k2++) {
 #ifdef windows           k3=i;
   /* chdir(pathcd);*/           for(k=1; k<=(nlstate+ndeath); k++) {
 #endif             if (k != k2){
  /*system("wgnuplot graph.plt");*/               if(ng==2)
  /*system("../gp37mgw/wgnuplot graph.plt");*/                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
  /*system("cd ../gp37mgw");*/               else
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
  strcpy(plotcmd,GNUPLOTPROGRAM);               ij=1;
  strcat(plotcmd," ");               for(j=3; j <=ncovmodel; j++) {
  strcat(plotcmd,optionfilegnuplot);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  system(plotcmd);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
 #ifdef windows                 }
   while (z[0] != 'q') {                 else
     /* chdir(path); */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");               }
     scanf("%s",z);               fprintf(ficgp,")/(1");
     if (z[0] == 'c') system("./imach");               
     else if (z[0] == 'e') system(optionfilehtm);               for(k1=1; k1 <=nlstate; k1++){   
     else if (z[0] == 'g') system(plotcmd);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     else if (z[0] == 'q') exit(0);                 ij=1;
   }                 for(j=3; j <=ncovmodel; j++){
 #endif                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){
             printf("%f ",p[jk]);
             fprintf(ficlog,"%f ",p[jk]);
             fprintf(ficres,"%f ",p[jk]);
             jk++; 
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   
   
   /* Just to have a covariance matrix which will be more understandable
      even is we still don't want to manage dictionary of variables
   */
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{
               if(mle>=1)
                 printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }else{
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             if(mle>=1)
               printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
     fflush(ficlog);
     fflush(ficres);
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     /*  fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);*/
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(i=1;i<=AGESUP;i++)
       for(j=1;j<=NCOVMAX;j++)
         for(k=1;k<=NCOVMAX;k++)
           probs[i][j][k]=0.;
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.97


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>