Diff for /imach/src/imach.c between versions 1.36 and 1.228

version 1.36, 2002/03/29 15:27:27 version 1.228, 2016/07/22 17:45:30
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.228  2016/07/22 17:45:30  brouard
      Summary: Fixing some arrays, still debugging
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.226  2016/07/12 18:42:34  brouard
   first survey ("cross") where individuals from different ages are    Summary: temp
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.225  2016/07/12 08:40:03  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: saving but not running
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.224  2016/07/01 13:16:01  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Fixes
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.223  2016/02/19 09:23:35  brouard
   probabibility to be observed in state j at the second wave    Summary: temporary
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.222  2016/02/17 08:14:50  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Summary: Probably last 0.98 stable version 0.98r6
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.221  2016/02/15 23:35:36  brouard
   you to do it.  More covariates you add, slower the    Summary: minor bug
   convergence.  
     Revision 1.219  2016/02/15 00:48:12  brouard
   The advantage of this computer programme, compared to a simple    *** empty log message ***
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.218  2016/02/12 11:29:23  brouard
   intermediate interview, the information is lost, but taken into    Summary: 0.99 Back projections
   account using an interpolation or extrapolation.    
     Revision 1.217  2015/12/23 17:18:31  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: Experimental backcast
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.216  2015/12/18 17:32:11  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: 0.98r4 Warning and status=-2
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.98r4 is now:
   and the contribution of each individual to the likelihood is simply     - displaying an error when status is -1, date of interview unknown and date of death known;
   hPijx.     - permitting a status -2 when the vital status is unknown at a known date of right truncation.
     Older changes concerning s=-2, dating from 2005 have been supersed.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.215  2015/12/16 08:52:24  brouard
      Summary: 0.98r4 working
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.214  2015/12/16 06:57:54  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: temporary not working
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.213  2015/12/11 18:22:17  brouard
   software can be distributed freely for non commercial use. Latest version    Summary: 0.98r4
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.212  2015/11/21 12:47:24  brouard
      Summary: minor typo
 #include <math.h>  
 #include <stdio.h>    Revision 1.211  2015/11/21 12:41:11  brouard
 #include <stdlib.h>    Summary: 0.98r3 with some graph of projected cross-sectional
 #include <unistd.h>  
     Author: Nicolas Brouard
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    Revision 1.210  2015/11/18 17:41:20  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Summary: Start working on projected prevalences
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.209  2015/11/17 22:12:03  brouard
 #define windows    Summary: Adding ftolpl parameter
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Author: N Brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     We had difficulties to get smoothed confidence intervals. It was due
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    to the period prevalence which wasn't computed accurately. The inner
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    parameter ftolpl is now an outer parameter of the .imach parameter
     file after estepm. If ftolpl is small 1.e-4 and estepm too,
 #define NINTERVMAX 8    computation are long.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.208  2015/11/17 14:31:57  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: temporary
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.207  2015/10/27 17:36:57  brouard
 #define AGESUP 130    *** empty log message ***
 #define AGEBASE 40  
     Revision 1.206  2015/10/24 07:14:11  brouard
     *** empty log message ***
 int erreur; /* Error number */  
 int nvar;    Revision 1.205  2015/10/23 15:50:53  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Summary: 0.98r3 some clarification for graphs on likelihood contributions
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.204  2015/10/01 16:20:26  brouard
 int ndeath=1; /* Number of dead states */    Summary: Some new graphs of contribution to likelihood
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.203  2015/09/30 17:45:14  brouard
     Summary: looking at better estimation of the hessian
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Also a better criteria for convergence to the period prevalence And
 int jmin, jmax; /* min, max spacing between 2 waves */    therefore adding the number of years needed to converge. (The
 int mle, weightopt;    prevalence in any alive state shold sum to one
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.202  2015/09/22 19:45:16  brouard
 double jmean; /* Mean space between 2 waves */    Summary: Adding some overall graph on contribution to likelihood. Might change
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.201  2015/09/15 17:34:58  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Summary: 0.98r0
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    - Some new graphs like suvival functions
   char filerese[FILENAMELENGTH];    - Some bugs fixed like model=1+age+V2.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.200  2015/09/09 16:53:55  brouard
  FILE  *ficresvpl;    Summary: Big bug thanks to Flavia
   char fileresvpl[FILENAMELENGTH];  
     Even model=1+age+V2. did not work anymore
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.199  2015/09/07 14:09:23  brouard
 #define FTOL 1.0e-10    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   
 #define NRANSI    Revision 1.198  2015/09/03 07:14:39  brouard
 #define ITMAX 200    Summary: 0.98q5 Flavia
   
 #define TOL 2.0e-4    Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.196  2015/08/18 23:17:52  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: 0.98q5
   
 #define GOLD 1.618034    Revision 1.195  2015/08/18 16:28:39  brouard
 #define GLIMIT 100.0    Summary: Adding a hack for testing purpose
 #define TINY 1.0e-20  
     After reading the title, ftol and model lines, if the comment line has
 static double maxarg1,maxarg2;    a q, starting with #q, the answer at the end of the run is quit. It
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    permits to run test files in batch with ctest. The former workaround was
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    $ echo q | imach foo.imach
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.194  2015/08/18 13:32:00  brouard
 #define rint(a) floor(a+0.5)    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   
 static double sqrarg;    Revision 1.193  2015/08/04 07:17:42  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Summary: 0.98q4
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.192  2015/07/16 16:49:02  brouard
 int imx;    Summary: Fixing some outputs
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.190  2015/05/05 08:51:13  brouard
     Summary: Adding digits in output parameters (7 digits instead of 6)
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Fix 1+age+.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.189  2015/04/30 14:45:16  brouard
 double dateintmean=0;    Summary: 0.98q2
   
 double *weight;    Revision 1.188  2015/04/30 08:27:53  brouard
 int **s; /* Status */    *** empty log message ***
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Some codes had been disabled in order to simplify and Vn*age was
 {    working in the optimization phase, ie, giving correct MLE parameters,
    char *s;                             /* pointer */    but, as usual, outputs were not correct and program core dumped.
    int  l1, l2;                         /* length counters */  
     Revision 1.185  2015/03/11 13:26:42  brouard
    l1 = strlen( path );                 /* length of path */    Summary: Inclusion of compile and links command line for Intel Compiler
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.184  2015/03/11 11:52:39  brouard
    s = strrchr( path, '\\' );           /* find last / */    Summary: Back from Windows 8. Intel Compiler
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.183  2015/03/10 20:34:32  brouard
 #endif    Summary: 0.98q0, trying with directest, mnbrak fixed
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    We use directest instead of original Powell test; probably no
       extern char       *getwd( );    incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
       if ( getwd( dirc ) == NULL ) {    wrong results.
 #else  
       extern char       *getcwd( );    Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Author: Nicolas Brouard
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.181  2015/02/11 23:22:24  brouard
       }    Summary: Comments on Powell added
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Author:
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.180  2015/02/11 17:33:45  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Summary: Finishing move from main to function (hpijx and prevalence_limit)
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.179  2015/01/04 09:57:06  brouard
       dirc[l1-l2] = 0;                  /* add zero */    Summary: back to OS/X
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.178  2015/01/04 09:35:48  brouard
 #ifdef windows    *** empty log message ***
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.177  2015/01/03 18:40:56  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Summary: Still testing ilc32 on OSX
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.176  2015/01/03 16:45:04  brouard
    s++;    *** empty log message ***
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.175  2015/01/03 16:33:42  brouard
    l2= strlen( s)+1;    *** empty log message ***
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.174  2015/01/03 16:15:49  brouard
    return( 0 );                         /* we're done */    Summary: Still in cross-compilation
 }  
     Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
 /******************************************/  
     Revision 1.172  2014/12/27 12:07:47  brouard
 void replace(char *s, char*t)    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 {  
   int i;    Revision 1.171  2014/12/23 13:26:59  brouard
   int lg=20;    Summary: Back from Visual C
   i=0;  
   lg=strlen(t);    Still problem with utsname.h on Windows
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.170  2014/12/23 11:17:12  brouard
     if (t[i]== '\\') s[i]='/';    Summary: Cleaning some \%% back to %%
   }  
 }    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
 int nbocc(char *s, char occ)    Revision 1.169  2014/12/22 23:08:31  brouard
 {    Summary: 0.98p
   int i,j=0;  
   int lg=20;    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   i=0;  
   lg=strlen(s);    Revision 1.168  2014/12/22 15:17:42  brouard
   for(i=0; i<= lg; i++) {    Summary: update
   if  (s[i] == occ ) j++;  
   }    Revision 1.167  2014/12/22 13:50:56  brouard
   return j;    Summary: Testing uname and compiler version and if compiled 32 or 64
 }  
     Testing on Linux 64
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.166  2014/12/22 11:40:47  brouard
   int i,lg,j,p=0;    *** empty log message ***
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.165  2014/12/16 11:20:36  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Summary: After compiling on Visual C
   }  
     * imach.c (Module): Merging 1.61 to 1.162
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.164  2014/12/16 10:52:11  brouard
     (u[j] = t[j]);    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   }  
      u[p]='\0';    * imach.c (Module): Merging 1.61 to 1.162
   
    for(j=0; j<= lg; j++) {    Revision 1.163  2014/12/16 10:30:11  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    * imach.c (Module): Merging 1.61 to 1.162
   }  
 }    Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
 /********************** nrerror ********************/  
     Revision 1.1  2014/09/16 11:06:58  brouard
 void nrerror(char error_text[])    Summary: With some code (wrong) for nlopt
 {  
   fprintf(stderr,"ERREUR ...\n");    Author:
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.161  2014/09/15 20:41:41  brouard
 }    Summary: Problem with macro SQR on Intel compiler
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.160  2014/09/02 09:24:05  brouard
 {    *** empty log message ***
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.159  2014/09/01 10:34:10  brouard
   if (!v) nrerror("allocation failure in vector");    Summary: WIN32
   return v-nl+NR_END;    Author: Brouard
 }  
     Revision 1.158  2014/08/27 17:11:51  brouard
 /************************ free vector ******************/    *** empty log message ***
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.157  2014/08/27 16:26:55  brouard
   free((FREE_ARG)(v+nl-NR_END));    Summary: Preparing windows Visual studio version
 }    Author: Brouard
   
 /************************ivector *******************************/    In order to compile on Visual studio, time.h is now correct and time_t
 int *ivector(long nl,long nh)    and tm struct should be used. difftime should be used but sometimes I
 {    just make the differences in raw time format (time(&now).
   int *v;    Trying to suppress #ifdef LINUX
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Add xdg-open for __linux in order to open default browser.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.156  2014/08/25 20:10:10  brouard
 }    *** empty log message ***
   
 /******************free ivector **************************/    Revision 1.155  2014/08/25 18:32:34  brouard
 void free_ivector(int *v, long nl, long nh)    Summary: New compile, minor changes
 {    Author: Brouard
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.153  2014/06/20 16:45:46  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Summary: If 3 live state, convergence to period prevalence on same graph
 {    Author: Brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.152  2014/06/18 17:54:09  brouard
      Summary: open browser, use gnuplot on same dir than imach if not found in the path
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.151  2014/06/18 16:43:30  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    *** empty log message ***
   m += NR_END;  
   m -= nrl;    Revision 1.150  2014/06/18 16:42:35  brouard
      Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
      Author: brouard
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.149  2014/06/18 15:51:14  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Summary: Some fixes in parameter files errors
   m[nrl] += NR_END;    Author: Nicolas Brouard
   m[nrl] -= ncl;  
      Revision 1.148  2014/06/17 17:38:48  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Summary: Nothing new
      Author: Brouard
   /* return pointer to array of pointers to rows */  
   return m;    Just a new packaging for OS/X version 0.98nS
 }  
     Revision 1.147  2014/06/16 10:33:11  brouard
 /****************** free_imatrix *************************/    *** empty log message ***
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;    Revision 1.146  2014/06/16 10:20:28  brouard
       long nch,ncl,nrh,nrl;    Summary: Merge
      /* free an int matrix allocated by imatrix() */    Author: Brouard
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Merge, before building revised version.
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
 /******************* matrix *******************************/    Author: Nicolas Brouard
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Lot of changes in order to output the results with some covariates
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    After the Edimburgh REVES conference 2014, it seems mandatory to
   double **m;    improve the code.
     No more memory valgrind error but a lot has to be done in order to
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    continue the work of splitting the code into subroutines.
   if (!m) nrerror("allocation failure 1 in matrix()");    Also, decodemodel has been improved. Tricode is still not
   m += NR_END;    optimal. nbcode should be improved. Documentation has been added in
   m -= nrl;    the source code.
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.143  2014/01/26 09:45:38  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.142  2014/01/26 03:57:36  brouard
 }    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
 /*************************free matrix ************************/    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.141  2014/01/26 02:42:01  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.139  2010/06/14 07:50:17  brouard
 {    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   double ***m;  
     Revision 1.138  2010/04/30 18:19:40  brouard
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    *** empty log message ***
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.137  2010/04/29 18:11:38  brouard
   m -= nrl;    (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.136  2010/04/26 20:30:53  brouard
   m[nrl] += NR_END;    (Module): merging some libgsl code. Fixing computation
   m[nrl] -= ncl;    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Some cleaning of code and comments added.
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Revision 1.135  2009/10/29 15:33:14  brouard
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.134  2009/10/29 13:18:53  brouard
   for (j=ncl+1; j<=nch; j++)    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
     m[nrl][j]=m[nrl][j-1]+nlay;  
      Revision 1.133  2009/07/06 10:21:25  brouard
   for (i=nrl+1; i<=nrh; i++) {    just nforces
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.132  2009/07/06 08:22:05  brouard
       m[i][j]=m[i][j-1]+nlay;    Many tings
   }  
   return m;    Revision 1.131  2009/06/20 16:22:47  brouard
 }    Some dimensions resccaled
   
 /*************************free ma3x ************************/    Revision 1.130  2009/05/26 06:44:34  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    (Module): Max Covariate is now set to 20 instead of 8. A
 {    lot of cleaning with variables initialized to 0. Trying to make
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.129  2007/08/31 13:49:27  lievre
 }    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
 /***************** f1dim *************************/    Revision 1.128  2006/06/30 13:02:05  brouard
 extern int ncom;    (Module): Clarifications on computing e.j
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    Revision 1.127  2006/04/28 18:11:50  brouard
      (Module): Yes the sum of survivors was wrong since
 double f1dim(double x)    imach-114 because nhstepm was no more computed in the age
 {    loop. Now we define nhstepma in the age loop.
   int j;    (Module): In order to speed up (in case of numerous covariates) we
   double f;    compute health expectancies (without variances) in a first step
   double *xt;    and then all the health expectancies with variances or standard
      deviation (needs data from the Hessian matrices) which slows the
   xt=vector(1,ncom);    computation.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    In the future we should be able to stop the program is only health
   f=(*nrfunc)(xt);    expectancies and graph are needed without standard deviations.
   free_vector(xt,1,ncom);  
   return f;    Revision 1.126  2006/04/28 17:23:28  brouard
 }    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 /*****************brent *************************/    loop. Now we define nhstepma in the age loop.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Version 0.98h
 {  
   int iter;    Revision 1.125  2006/04/04 15:20:31  lievre
   double a,b,d,etemp;    Errors in calculation of health expectancies. Age was not initialized.
   double fu,fv,fw,fx;    Forecasting file added.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.124  2006/03/22 17:13:53  lievre
   double e=0.0;    Parameters are printed with %lf instead of %f (more numbers after the comma).
      The log-likelihood is printed in the log file
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    Revision 1.123  2006/03/20 10:52:43  brouard
   x=w=v=bx;    * imach.c (Module): <title> changed, corresponds to .htm file
   fw=fv=fx=(*f)(x);    name. <head> headers where missing.
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    * imach.c (Module): Weights can have a decimal point as for
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    English (a comma might work with a correct LC_NUMERIC environment,
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    otherwise the weight is truncated).
     printf(".");fflush(stdout);    Modification of warning when the covariates values are not 0 or
 #ifdef DEBUG    1.
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Version 0.98g
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.122  2006/03/20 09:45:41  brouard
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    (Module): Weights can have a decimal point as for
       *xmin=x;    English (a comma might work with a correct LC_NUMERIC environment,
       return fx;    otherwise the weight is truncated).
     }    Modification of warning when the covariates values are not 0 or
     ftemp=fu;    1.
     if (fabs(e) > tol1) {    Version 0.98g
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    Revision 1.121  2006/03/16 17:45:01  lievre
       p=(x-v)*q-(x-w)*r;    * imach.c (Module): Comments concerning covariates added
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    * imach.c (Module): refinements in the computation of lli if
       q=fabs(q);    status=-2 in order to have more reliable computation if stepm is
       etemp=e;    not 1 month. Version 0.98f
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Revision 1.120  2006/03/16 15:10:38  lievre
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    (Module): refinements in the computation of lli if
       else {    status=-2 in order to have more reliable computation if stepm is
         d=p/q;    not 1 month. Version 0.98f
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    Revision 1.119  2006/03/15 17:42:26  brouard
           d=SIGN(tol1,xm-x);    (Module): Bug if status = -2, the loglikelihood was
       }    computed as likelihood omitting the logarithm. Version O.98e
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.118  2006/03/14 18:20:07  brouard
     }    (Module): varevsij Comments added explaining the second
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    table of variances if popbased=1 .
     fu=(*f)(u);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     if (fu <= fx) {    (Module): Function pstamp added
       if (u >= x) a=x; else b=x;    (Module): Version 0.98d
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    Revision 1.117  2006/03/14 17:16:22  brouard
         } else {    (Module): varevsij Comments added explaining the second
           if (u < x) a=u; else b=u;    table of variances if popbased=1 .
           if (fu <= fw || w == x) {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
             v=w;    (Module): Function pstamp added
             w=u;    (Module): Version 0.98d
             fv=fw;  
             fw=fu;    Revision 1.116  2006/03/06 10:29:27  brouard
           } else if (fu <= fv || v == x || v == w) {    (Module): Variance-covariance wrong links and
             v=u;    varian-covariance of ej. is needed (Saito).
             fv=fu;  
           }    Revision 1.115  2006/02/27 12:17:45  brouard
         }    (Module): One freematrix added in mlikeli! 0.98c
   }  
   nrerror("Too many iterations in brent");    Revision 1.114  2006/02/26 12:57:58  brouard
   *xmin=x;    (Module): Some improvements in processing parameter
   return fx;    filename with strsep.
 }  
     Revision 1.113  2006/02/24 14:20:24  brouard
 /****************** mnbrak ***********************/    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    allocation too.
             double (*func)(double))  
 {    Revision 1.112  2006/01/30 09:55:26  brouard
   double ulim,u,r,q, dum;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   double fu;  
      Revision 1.111  2006/01/25 20:38:18  brouard
   *fa=(*func)(*ax);    (Module): Lots of cleaning and bugs added (Gompertz)
   *fb=(*func)(*bx);    (Module): Comments can be added in data file. Missing date values
   if (*fb > *fa) {    can be a simple dot '.'.
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    Revision 1.110  2006/01/25 00:51:50  brouard
       }    (Module): Lots of cleaning and bugs added (Gompertz)
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    Revision 1.109  2006/01/24 19:37:15  brouard
   while (*fb > *fc) {    (Module): Comments (lines starting with a #) are allowed in data.
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Revision 1.108  2006/01/19 18:05:42  lievre
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    Gnuplot problem appeared...
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    To be fixed
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    Revision 1.107  2006/01/19 16:20:37  brouard
       fu=(*func)(u);    Test existence of gnuplot in imach path
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    Revision 1.106  2006/01/19 13:24:36  brouard
       if (fu < *fc) {    Some cleaning and links added in html output
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    Revision 1.105  2006/01/05 20:23:19  lievre
           }    *** empty log message ***
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    Revision 1.104  2005/09/30 16:11:43  lievre
       fu=(*func)(u);    (Module): sump fixed, loop imx fixed, and simplifications.
     } else {    (Module): If the status is missing at the last wave but we know
       u=(*cx)+GOLD*(*cx-*bx);    that the person is alive, then we can code his/her status as -2
       fu=(*func)(u);    (instead of missing=-1 in earlier versions) and his/her
     }    contributions to the likelihood is 1 - Prob of dying from last
     SHFT(*ax,*bx,*cx,u)    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       SHFT(*fa,*fb,*fc,fu)    the healthy state at last known wave). Version is 0.98
       }  
 }    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 /*************** linmin ************************/  
     Revision 1.102  2004/09/15 17:31:30  brouard
 int ncom;    Add the possibility to read data file including tab characters.
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    Revision 1.101  2004/09/15 10:38:38  brouard
      Fix on curr_time
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {    Revision 1.100  2004/07/12 18:29:06  brouard
   double brent(double ax, double bx, double cx,    Add version for Mac OS X. Just define UNIX in Makefile
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);    Revision 1.99  2004/06/05 08:57:40  brouard
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    *** empty log message ***
               double *fc, double (*func)(double));  
   int j;    Revision 1.98  2004/05/16 15:05:56  brouard
   double xx,xmin,bx,ax;    New version 0.97 . First attempt to estimate force of mortality
   double fx,fb,fa;    directly from the data i.e. without the need of knowing the health
      state at each age, but using a Gompertz model: log u =a + b*age .
   ncom=n;    This is the basic analysis of mortality and should be done before any
   pcom=vector(1,n);    other analysis, in order to test if the mortality estimated from the
   xicom=vector(1,n);    cross-longitudinal survey is different from the mortality estimated
   nrfunc=func;    from other sources like vital statistic data.
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    The same imach parameter file can be used but the option for mle should be -3.
     xicom[j]=xi[j];  
   }    Agnès, who wrote this part of the code, tried to keep most of the
   ax=0.0;    former routines in order to include the new code within the former code.
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    The output is very simple: only an estimate of the intercept and of
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    the slope with 95% confident intervals.
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    Current limitations:
 #endif    A) Even if you enter covariates, i.e. with the
   for (j=1;j<=n;j++) {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     xi[j] *= xmin;    B) There is no computation of Life Expectancy nor Life Table.
     p[j] += xi[j];  
   }    Revision 1.97  2004/02/20 13:25:42  lievre
   free_vector(xicom,1,n);    Version 0.96d. Population forecasting command line is (temporarily)
   free_vector(pcom,1,n);    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
 /*************** powell ************************/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    rewritten within the same printf. Workaround: many printfs.
             double (*func)(double []))  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   void linmin(double p[], double xi[], int n, double *fret,    * imach.c (Repository):
               double (*func)(double []));    (Repository): Using imachwizard code to output a more meaningful covariance
   int i,ibig,j;    matrix (cov(a12,c31) instead of numbers.
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;    Revision 1.94  2003/06/27 13:00:02  brouard
   double *xits;    Just cleaning
   pt=vector(1,n);  
   ptt=vector(1,n);    Revision 1.93  2003/06/25 16:33:55  brouard
   xit=vector(1,n);    (Module): On windows (cygwin) function asctime_r doesn't
   xits=vector(1,n);    exist so I changed back to asctime which exists.
   *fret=(*func)(p);    (Module): Version 0.96b
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {    Revision 1.92  2003/06/25 16:30:45  brouard
     fp=(*fret);    (Module): On windows (cygwin) function asctime_r doesn't
     ibig=0;    exist so I changed back to asctime which exists.
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    Revision 1.91  2003/06/25 15:30:29  brouard
     for (i=1;i<=n;i++)    * imach.c (Repository): Duplicated warning errors corrected.
       printf(" %d %.12f",i, p[i]);    (Repository): Elapsed time after each iteration is now output. It
     printf("\n");    helps to forecast when convergence will be reached. Elapsed time
     for (i=1;i<=n;i++) {    is stamped in powell.  We created a new html file for the graphs
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    concerning matrix of covariance. It has extension -cov.htm.
       fptt=(*fret);  
 #ifdef DEBUG    Revision 1.90  2003/06/24 12:34:15  brouard
       printf("fret=%lf \n",*fret);    (Module): Some bugs corrected for windows. Also, when
 #endif    mle=-1 a template is output in file "or"mypar.txt with the design
       printf("%d",i);fflush(stdout);    of the covariance matrix to be input.
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {    Revision 1.89  2003/06/24 12:30:52  brouard
         del=fabs(fptt-(*fret));    (Module): Some bugs corrected for windows. Also, when
         ibig=i;    mle=-1 a template is output in file "or"mypar.txt with the design
       }    of the covariance matrix to be input.
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));    Revision 1.88  2003/06/23 17:54:56  brouard
       for (j=1;j<=n;j++) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    Revision 1.87  2003/06/18 12:26:01  brouard
       }    Version 0.96
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    Revision 1.86  2003/06/17 20:04:08  brouard
       printf("\n");    (Module): Change position of html and gnuplot routines and added
 #endif    routine fileappend.
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    Revision 1.85  2003/06/17 13:12:43  brouard
 #ifdef DEBUG    * imach.c (Repository): Check when date of death was earlier that
       int k[2],l;    current date of interview. It may happen when the death was just
       k[0]=1;    prior to the death. In this case, dh was negative and likelihood
       k[1]=-1;    was wrong (infinity). We still send an "Error" but patch by
       printf("Max: %.12e",(*func)(p));    assuming that the date of death was just one stepm after the
       for (j=1;j<=n;j++)    interview.
         printf(" %.12e",p[j]);    (Repository): Because some people have very long ID (first column)
       printf("\n");    we changed int to long in num[] and we added a new lvector for
       for(l=0;l<=1;l++) {    memory allocation. But we also truncated to 8 characters (left
         for (j=1;j<=n;j++) {    truncation)
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    (Repository): No more line truncation errors.
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    Revision 1.84  2003/06/13 21:44:43  brouard
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    * imach.c (Repository): Replace "freqsummary" at a correct
       }    place. It differs from routine "prevalence" which may be called
 #endif    many times. Probs is memory consuming and must be used with
     parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    Revision 1.83  2003/06/10 13:39:11  lievre
       free_vector(ptt,1,n);    *** empty log message ***
       free_vector(pt,1,n);  
       return;    Revision 1.82  2003/06/05 15:57:20  brouard
     }    Add log in  imach.c and  fullversion number is now printed.
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  */
       ptt[j]=2.0*p[j]-pt[j];  /*
       xit[j]=p[j]-pt[j];     Interpolated Markov Chain
       pt[j]=p[j];  
     }    Short summary of the programme:
     fptt=(*func)(ptt);    
     if (fptt < fp) {    This program computes Healthy Life Expectancies or State-specific
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    (if states aren't health statuses) Expectancies from
       if (t < 0.0) {    cross-longitudinal data. Cross-longitudinal data consist in: 
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {    -1- a first survey ("cross") where individuals from different ages
           xi[j][ibig]=xi[j][n];    are interviewed on their health status or degree of disability (in
           xi[j][n]=xit[j];    the case of a health survey which is our main interest)
         }  
 #ifdef DEBUG    -2- at least a second wave of interviews ("longitudinal") which
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    measure each change (if any) in individual health status.  Health
         for(j=1;j<=n;j++)    expectancies are computed from the time spent in each health state
           printf(" %.12e",xit[j]);    according to a model. More health states you consider, more time is
         printf("\n");    necessary to reach the Maximum Likelihood of the parameters involved
 #endif    in the model.  The simplest model is the multinomial logistic model
       }    where pij is the probability to be observed in state j at the second
     }    wave conditional to be observed in state i at the first
   }    wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
 }    etc , where 'age' is age and 'sex' is a covariate. If you want to
     have a more complex model than "constant and age", you should modify
 /**** Prevalence limit ****************/    the program where the markup *Covariates have to be included here
     again* invites you to do it.  More covariates you add, slower the
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    convergence.
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    The advantage of this computer programme, compared to a simple
      matrix by transitions matrix until convergence is reached */    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
   int i, ii,j,k;    intermediate interview, the information is lost, but taken into
   double min, max, maxmin, maxmax,sumnew=0.;    account using an interpolation or extrapolation.  
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();    hPijx is the probability to be observed in state i at age x+h
   double **newm;    conditional to the observed state i at age x. The delay 'h' can be
   double agefin, delaymax=50 ; /* Max number of years to converge */    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
   for (ii=1;ii<=nlstate+ndeath;ii++)    semester or year) is modelled as a multinomial logistic.  The hPx
     for (j=1;j<=nlstate+ndeath;j++){    matrix is simply the matrix product of nh*stepm elementary matrices
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    and the contribution of each individual to the likelihood is simply
     }    hPijx.
   
    cov[1]=1.;    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the period (stable) prevalence.
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  Back prevalence and projections:
     newm=savm;  
     /* Covariates have to be included here again */   - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
      cov[2]=agefin;     double agemaxpar, double ftolpl, int *ncvyearp, double
       dateprev1,double dateprev2, int firstpass, int lastpass, int
       for (k=1; k<=cptcovn;k++) {     mobilavproj)
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      Computes the back prevalence limit for any combination of
       }      covariate values k at any age between ageminpar and agemaxpar and
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      returns it in **bprlim. In the loops,
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
          **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/     - hBijx Back Probability to be in state i at age x-h being in j at x
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/     Computes for any combination of covariates k and any age between bage and fage 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                           oldm=oldms;savm=savms;
     savm=oldm;  
     oldm=newm;     - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
     maxmax=0.;       Computes the transition matrix starting at age 'age' over
     for(j=1;j<=nlstate;j++){       'nhstepm*hstepm*stepm' months (i.e. until
       min=1.;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
       max=0.;       nhstepm*hstepm matrices. 
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;       Returns p3mat[i][j][h] after calling
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];       p3mat[i][j][h]=matprod2(newm,
         prlim[i][j]= newm[i][j]/(1-sumnew);       bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
         max=FMAX(max,prlim[i][j]);       dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         min=FMIN(min,prlim[i][j]);       oldm);
       }  
       maxmin=max-min;  Important routines
       maxmax=FMAX(maxmax,maxmin);  
     }  - func (or funcone), computes logit (pij) distinguishing
     if(maxmax < ftolpl){    o fixed variables (single or product dummies or quantitative);
       return prlim;    o varying variables by:
     }     (1) wave (single, product dummies, quantitative), 
   }     (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
 }         % fixed dummy (treated) or quantitative (not done because time-consuming);
          % varying dummy (not done) or quantitative (not done);
 /*************** transition probabilities ***************/  - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
     and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
 {    o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
   double s1, s2;      race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  
     
     for(i=1; i<= nlstate; i++){    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     for(j=1; j<i;j++){             Institut national d'études démographiques, Paris.
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    This software have been partly granted by Euro-REVES, a concerted action
         /*s2 += param[i][j][nc]*cov[nc];*/    from the European Union.
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    It is copyrighted identically to a GNU software product, ie programme and
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    software can be distributed freely for non commercial use. Latest version
       }    can be accessed at http://euroreves.ined.fr/imach .
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     for(j=i+1; j<=nlstate+ndeath;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    **********************************************************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    main
       }    read parameterfile
       ps[i][j]=s2;    read datafile
     }    concatwav
   }    freqsummary
     /*ps[3][2]=1;*/    if (mle >= 1)
       mlikeli
   for(i=1; i<= nlstate; i++){    print results files
      s1=0;    if mle==1 
     for(j=1; j<i; j++)       computes hessian
       s1+=exp(ps[i][j]);    read end of parameter file: agemin, agemax, bage, fage, estepm
     for(j=i+1; j<=nlstate+ndeath; j++)        begin-prev-date,...
       s1+=exp(ps[i][j]);    open gnuplot file
     ps[i][i]=1./(s1+1.);    open html file
     for(j=1; j<i; j++)    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       ps[i][j]= exp(ps[i][j])*ps[i][i];     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     for(j=i+1; j<=nlstate+ndeath; j++)                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       ps[i][j]= exp(ps[i][j])*ps[i][i];      freexexit2 possible for memory heap.
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */    h Pij x                         | pij_nom  ficrestpij
      # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     for(jj=1; jj<= nlstate+ndeath; jj++){         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       ps[ii][jj]=0;  
       ps[ii][ii]=1;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
     }         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   }    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
      Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
      Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){    forecasting if prevfcast==1 prevforecast call prevalence()
      printf("%lf ",ps[ii][jj]);    health expectancies
    }    Variance-covariance of DFLE
     printf("\n ");    prevalence()
     }     movingaverage()
     printf("\n ");printf("%lf ",cov[2]);*/    varevsij() 
 /*    if popbased==1 varevsij(,popbased)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    total life expectancies
   goto end;*/    Variance of period (stable) prevalence
     return ps;   end
 }  */
   
 /**************** Product of 2 matrices ******************/  /* #define DEBUG */
   /* #define DEBUGBRENT */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /* #define DEBUGLINMIN */
 {  /* #define DEBUGHESS */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #define DEBUGHESSIJ
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
   /* in, b, out are matrice of pointers which should have been initialized  #define POWELL /* Instead of NLOPT */
      before: only the contents of out is modified. The function returns  #define POWELLNOF3INFF1TEST /* Skip test */
      a pointer to pointers identical to out */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
   long i, j, k;  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  #include <math.h>
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #include <stdio.h>
         out[i][k] +=in[i][j]*b[j][k];  #include <stdlib.h>
   #include <string.h>
   return out;  #include <ctype.h>
 }  
   #ifdef _WIN32
   #include <io.h>
 /************* Higher Matrix Product ***************/  #include <windows.h>
   #include <tchar.h>
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #else
 {  #include <unistd.h>
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #endif
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  #include <limits.h>
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #include <sys/types.h>
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  #if defined(__GNUC__)
      included manually here.  #include <sys/utsname.h> /* Doesn't work on Windows */
   #endif
      */  
   #include <sys/stat.h>
   int i, j, d, h, k;  #include <errno.h>
   double **out, cov[NCOVMAX];  /* extern int errno; */
   double **newm;  
   /* #ifdef LINUX */
   /* Hstepm could be zero and should return the unit matrix */  /* #include <time.h> */
   for (i=1;i<=nlstate+ndeath;i++)  /* #include "timeval.h" */
     for (j=1;j<=nlstate+ndeath;j++){  /* #else */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /* #include <sys/time.h> */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /* #endif */
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #include <time.h>
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  #ifdef GSL
       newm=savm;  #include <gsl/gsl_errno.h>
       /* Covariates have to be included here again */  #include <gsl/gsl_multimin.h>
       cov[1]=1.;  #endif
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  #ifdef NLOPT
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #include <nlopt.h>
       for (k=1; k<=cptcovprod;k++)  typedef struct {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double (* function)(double [] );
   } myfunc_data ;
   #endif
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /* #include <libintl.h> */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /* #define _(String) gettext (String) */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       oldm=newm;  
     }  #define GNUPLOTPROGRAM "gnuplot"
     for(i=1; i<=nlstate+ndeath; i++)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       for(j=1;j<=nlstate+ndeath;j++) {  #define FILENAMELENGTH 132
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
          */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       }  
   } /* end h */  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   return po;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
   #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 /*************** log-likelihood *************/  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 double func( double *x)  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 {  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
   int i, ii, j, k, mi, d, kk;  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
   double **out;  #define MAXN 20000
   double sw; /* Sum of weights */  #define YEARM 12. /**< Number of months per year */
   double lli; /* Individual log likelihood */  /* #define AGESUP 130 */
   long ipmx;  #define AGESUP 150
   /*extern weight */  #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
   /* We are differentiating ll according to initial status */  #define AGEBASE 40
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  #define AGEOVERFLOW 1.e20
   /*for(i=1;i<imx;i++)  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
     printf(" %d\n",s[4][i]);  #ifdef _WIN32
   */  #define DIRSEPARATOR '\\'
   cov[1]=1.;  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #else
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #define DIRSEPARATOR '/'
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #define CHARSEPARATOR "/"
     for(mi=1; mi<= wav[i]-1; mi++){  #define ODIRSEPARATOR '\\'
       for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  /* $Id$ */
         newm=savm;  /* $State$ */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #include "version.h"
         for (kk=1; kk<=cptcovage;kk++) {  char version[]=__IMACH_VERSION__;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";
         }  char fullversion[]="$Revision$ $Date$"; 
          char strstart[80];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         savm=oldm;  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
         oldm=newm;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
          int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
          int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       } /* end mult */  int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */
        int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       ipmx +=1;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       sw += weight[i];  int ncoveff=0; /* Total number of effective covariates in the model */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
     } /* end of wave */  int ntveff=0; /**< ntveff number of effective time varying variables */
   } /* end of individual */  int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
   int cptcov=0; /* Working variable */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  int npar=NPARMAX;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  int nlstate=2; /* Number of live states */
   return -l;  int ndeath=1; /* Number of dead states */
 }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int  nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ 
   int popbased=0;
 /*********** Maximum Likelihood Estimation ***************/  
   int *wav; /* Number of waves for this individuual 0 is possible */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  int maxwav=0; /* Maxim number of waves */
 {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int i,j, iter;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   double **xi,*delti;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double fret;                     to the likelihood and the sum of weights (done by funcone)*/
   xi=matrix(1,npar,1,npar);  int mle=1, weightopt=0;
   for (i=1;i<=npar;i++)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     for (j=1;j<=npar;j++)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       xi[i][j]=(i==j ? 1.0 : 0.0);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   printf("Powell\n");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   powell(p,xi,npar,ftol,&iter,&fret,func);  int countcallfunc=0;  /* Count the number of calls to func */
   double jmean=1; /* Mean space between 2 waves */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  double **matprod2(); /* test */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  double   **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
   
 /**** Computes Hessian and covariance matrix ***/  /*FILE *fic ; */ /* Used in readdata only */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   double  **a,**y,*x,pd;  int globpr=0; /* Global variable for printing or not */
   double **hess;  double fretone; /* Only one call to likelihood */
   int i, j,jk;  long ipmx=0; /* Number of contributions */
   int *indx;  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
   double hessii(double p[], double delta, int theta, double delti[]);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double hessij(double p[], double delti[], int i, int j);  FILE *ficresilk;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   void ludcmp(double **a, int npar, int *indx, double *d) ;  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
   hess=matrix(1,npar,1,npar);  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   printf("\nCalculation of the hessian matrix. Wait...\n");  FILE *ficresstdeij;
   for (i=1;i<=npar;i++){  char fileresstde[FILENAMELENGTH];
     printf("%d",i);fflush(stdout);  FILE *ficrescveij;
     hess[i][i]=hessii(p,ftolhess,i,delti);  char filerescve[FILENAMELENGTH];
     /*printf(" %f ",p[i]);*/  FILE  *ficresvij;
     /*printf(" %lf ",hess[i][i]);*/  char fileresv[FILENAMELENGTH];
   }  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
   for (i=1;i<=npar;i++) {  char title[MAXLINE];
     for (j=1;j<=npar;j++)  {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
       if (j>i) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         printf(".%d%d",i,j);fflush(stdout);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         hess[i][j]=hessij(p,delti,i,j);  char command[FILENAMELENGTH];
         hess[j][i]=hess[i][j];      int  outcmd=0;
         /*printf(" %lf ",hess[i][j]);*/  
       }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     }  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
   }  char filelog[FILENAMELENGTH]; /* Log file */
   printf("\n");  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  char popfile[FILENAMELENGTH];
    
   a=matrix(1,npar,1,npar);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   indx=ivector(1,npar);  /* struct timezone tzp; */
   for (i=1;i<=npar;i++)  /* extern int gettimeofday(); */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  struct tm tml, *gmtime(), *localtime();
   ludcmp(a,npar,indx,&pd);  
   extern time_t time();
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     x[j]=1;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
     lubksb(a,npar,indx,x);  struct tm tm;
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  char strcurr[80], strfor[80];
     }  
   }  char *endptr;
   long lval;
   printf("\n#Hessian matrix#\n");  double dval;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  #define NR_END 1
       printf("%.3e ",hess[i][j]);  #define FREE_ARG char*
     }  #define FTOL 1.0e-10
     printf("\n");  
   }  #define NRANSI 
   #define ITMAX 200 
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  #define TOL 2.0e-4 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   /*  printf("\n#Hessian matrix recomputed#\n");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
   for (j=1;j<=npar;j++) {  #define GOLD 1.618034 
     for (i=1;i<=npar;i++) x[i]=0;  #define GLIMIT 100.0 
     x[j]=1;  #define TINY 1.0e-20 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  static double maxarg1,maxarg2;
       y[i][j]=x[i];  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       printf("%.3e ",y[i][j]);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     }    
     printf("\n");  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   }  #define rint(a) floor(a+0.5)
   */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   #define mytinydouble 1.0e-16
   free_matrix(a,1,npar,1,npar);  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   free_matrix(y,1,npar,1,npar);  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   free_vector(x,1,npar);  /* static double dsqrarg; */
   free_ivector(indx,1,npar);  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   free_matrix(hess,1,npar,1,npar);  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  int agegomp= AGEGOMP;
   
 /*************** hessian matrix ****************/  int imx; 
 double hessii( double x[], double delta, int theta, double delti[])  int stepm=1;
 {  /* Stepm, step in month: minimum step interpolation*/
   int i;  
   int l=1, lmax=20;  int estepm;
   double k1,k2;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double p2[NPARMAX+1];  
   double res;  int m,nb;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  long *num;
   double fx;  int firstpass=0, lastpass=4,*cod, *cens;
   int k=0,kmax=10;  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
   double l1;                     covariate for which somebody answered excluding 
                      undefined. Usually 2: 0 and 1. */
   fx=func(x);  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
   for (i=1;i<=npar;i++) p2[i]=x[i];                               covariate for which somebody answered including 
   for(l=0 ; l <=lmax; l++){                               undefined. Usually 3: -1, 0 and 1. */
     l1=pow(10,l);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     delts=delt;  double **pmmij, ***probs; /* Global pointer */
     for(k=1 ; k <kmax; k=k+1){  double ***mobaverage, ***mobaverages; /* New global variable */
       delt = delta*(l1*k);  double *ageexmed,*agecens;
       p2[theta]=x[theta] +delt;  double dateintmean=0;
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  double *weight;
       k2=func(p2)-fx;  int **s; /* Status */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  double *agedc;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
                          * covar=matrix(0,NCOVMAX,1,n); 
 #ifdef DEBUG                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  double **coqvar; /* Fixed quantitative covariate iqv */
 #endif  double ***cotvar; /* Time varying covariate itv */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  double ***cotqvar; /* Time varying quantitative covariate itqv */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  double  idx; 
         k=kmax;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       }  int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
         k=kmax; l=lmax*10.;  int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
       }  int *Tage;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
         delts=delt;  int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
       }  int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
     }  int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   }  int *Ndum; /** Freq of modality (tricode */
   delti[theta]=delts;  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
   return res;  int **Tvard;
    int *Tprod;/**< Gives the k position of the k1 product */
 }  int *Tposprod; /**< Gives the k1 product from the k position */
   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 double hessij( double x[], double delti[], int thetai,int thetaj)     if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 {     Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
   int i;  */
   int l=1, l1, lmax=20;  int cptcovprod, *Tvaraff, *invalidvarcomb;
   double k1,k2,k3,k4,res,fx;  double *lsurv, *lpop, *tpop;
   double p2[NPARMAX+1];  
   int k;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   double ftolhess; /**< Tolerance for computing hessian */
   fx=func(x);  
   for (k=1; k<=2; k++) {  /**************** split *************************/
     for (i=1;i<=npar;i++) p2[i]=x[i];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     k1=func(p2)-fx;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      */ 
     p2[thetai]=x[thetai]+delti[thetai]/k;    char  *ss;                            /* pointer */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    int   l1=0, l2=0;                             /* length counters */
     k2=func(p2)-fx;  
      l1 = strlen(path );                   /* length of path */
     p2[thetai]=x[thetai]-delti[thetai]/k;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     k3=func(p2)-fx;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
     p2[thetai]=x[thetai]-delti[thetai]/k;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     k4=func(p2)-fx;      /* get current working directory */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      /*    extern  char* getcwd ( char *buf , int len);*/
 #ifdef DEBUG  #ifdef WIN32
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
 #endif  #else
   }          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   return res;  #endif
 }        return( GLOCK_ERROR_GETCWD );
       }
 /************** Inverse of matrix **************/      /* got dirc from getcwd*/
 void ludcmp(double **a, int n, int *indx, double *d)      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip directory from path */
   int i,imax,j,k;      ss++;                               /* after this, the filename */
   double big,dum,sum,temp;      l2 = strlen( ss );                  /* length of filename */
   double *vv;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
   vv=vector(1,n);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   *d=1.0;      dirc[l1-l2] = '\0';                 /* add zero */
   for (i=1;i<=n;i++) {      printf(" DIRC2 = %s \n",dirc);
     big=0.0;    }
     for (j=1;j<=n;j++)    /* We add a separator at the end of dirc if not exists */
       if ((temp=fabs(a[i][j])) > big) big=temp;    l1 = strlen( dirc );                  /* length of directory */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    if( dirc[l1-1] != DIRSEPARATOR ){
     vv[i]=1.0/big;      dirc[l1] =  DIRSEPARATOR;
   }      dirc[l1+1] = 0; 
   for (j=1;j<=n;j++) {      printf(" DIRC3 = %s \n",dirc);
     for (i=1;i<j;i++) {    }
       sum=a[i][j];    ss = strrchr( name, '.' );            /* find last / */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    if (ss >0){
       a[i][j]=sum;      ss++;
     }      strcpy(ext,ss);                     /* save extension */
     big=0.0;      l1= strlen( name);
     for (i=j;i<=n;i++) {      l2= strlen(ss)+1;
       sum=a[i][j];      strncpy( finame, name, l1-l2);
       for (k=1;k<j;k++)      finame[l1-l2]= 0;
         sum -= a[i][k]*a[k][j];    }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {    return( 0 );                          /* we're done */
         big=dum;  }
         imax=i;  
       }  
     }  /******************************************/
     if (j != imax) {  
       for (k=1;k<=n;k++) {  void replace_back_to_slash(char *s, char*t)
         dum=a[imax][k];  {
         a[imax][k]=a[j][k];    int i;
         a[j][k]=dum;    int lg=0;
       }    i=0;
       *d = -(*d);    lg=strlen(t);
       vv[imax]=vv[j];    for(i=0; i<= lg; i++) {
     }      (s[i] = t[i]);
     indx[j]=imax;      if (t[i]== '\\') s[i]='/';
     if (a[j][j] == 0.0) a[j][j]=TINY;    }
     if (j != n) {  }
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  char *trimbb(char *out, char *in)
     }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   }    char *s;
   free_vector(vv,1,n);  /* Doesn't work */    s=out;
 ;    while (*in != '\0'){
 }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
 void lubksb(double **a, int n, int *indx, double b[])      }
 {      *out++ = *in++;
   int i,ii=0,ip,j;    }
   double sum;    *out='\0';
      return s;
   for (i=1;i<=n;i++) {  }
     ip=indx[i];  
     sum=b[ip];  /* char *substrchaine(char *out, char *in, char *chain) */
     b[ip]=b[i];  /* { */
     if (ii)  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*   char *s, *t; */
     else if (sum) ii=i;  /*   t=in;s=out; */
     b[i]=sum;  /*   while ((*in != *chain) && (*in != '\0')){ */
   }  /*     *out++ = *in++; */
   for (i=n;i>=1;i--) {  /*   } */
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /*   /\* *in matches *chain *\/ */
     b[i]=sum/a[i][i];  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   }  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
 }  /*   } */
   /*   in--; chain--; */
 /************ Frequencies ********************/  /*   while ( (*in != '\0')){ */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
 {  /* Some frequencies */  /*     *out++ = *in++; */
    /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  /*   } */
   double ***freq; /* Frequencies */  /*   *out='\0'; */
   double *pp;  /*   out=s; */
   double pos, k2, dateintsum=0,k2cpt=0;  /*   return out; */
   FILE *ficresp;  /* } */
   char fileresp[FILENAMELENGTH];  char *substrchaine(char *out, char *in, char *chain)
    {
   pp=vector(1,nlstate);    /* Substract chain 'chain' from 'in', return and output 'out' */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* in="V1+V1*age+age*age+V2", chain="age*age" */
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);    char *strloc;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    strcpy (out, in); 
     exit(0);    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   }    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    if(strloc != NULL){ 
   j1=0;      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
        memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
   j=cptcoveff;      /* strcpy (strloc, strloc +strlen(chain));*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }
      printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   for(k1=1; k1<=j;k1++){    return out;
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/  char *cutl(char *blocc, char *alocc, char *in, char occ)
       for (i=-1; i<=nlstate+ndeath; i++)    {
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
           for(m=agemin; m <= agemax+3; m++)       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
             freq[i][jk][m]=0;       gives blocc="abcdef" and alocc="ghi2j".
             If occ is not found blocc is null and alocc is equal to in. Returns blocc
       dateintsum=0;    */
       k2cpt=0;    char *s, *t;
       for (i=1; i<=imx; i++) {    t=in;s=in;
         bool=1;    while ((*in != occ) && (*in != '\0')){
         if  (cptcovn>0) {      *alocc++ = *in++;
           for (z1=1; z1<=cptcoveff; z1++)    }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    if( *in == occ){
               bool=0;      *(alocc)='\0';
         }      s=++in;
         if (bool==1) {    }
           for(m=firstpass; m<=lastpass; m++){   
             k2=anint[m][i]+(mint[m][i]/12.);    if (s == t) {/* occ not found */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      *(alocc-(in-s))='\0';
               if(agev[m][i]==0) agev[m][i]=agemax+1;      in=s;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    }
               if (m<lastpass) {    while ( *in != '\0'){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      *blocc++ = *in++;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    }
               }  
                  *blocc='\0';
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    return t;
                 dateintsum=dateintsum+k2;  }
                 k2cpt++;  char *cutv(char *blocc, char *alocc, char *in, char occ)
               }  {
             }    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
           }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         }       gives blocc="abcdef2ghi" and alocc="j".
       }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
            */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    char *s, *t;
     t=in;s=in;
       if  (cptcovn>0) {    while (*in != '\0'){
         fprintf(ficresp, "\n#********** Variable ");      while( *in == occ){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        *blocc++ = *in++;
         fprintf(ficresp, "**********\n#");        s=in;
       }      }
       for(i=1; i<=nlstate;i++)      *blocc++ = *in++;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    }
       fprintf(ficresp, "\n");    if (s == t) /* occ not found */
            *(blocc-(in-s))='\0';
       for(i=(int)agemin; i <= (int)agemax+3; i++){    else
         if(i==(int)agemax+3)      *(blocc-(in-s)-1)='\0';
           printf("Total");    in=s;
         else    while ( *in != '\0'){
           printf("Age %d", i);      *alocc++ = *in++;
         for(jk=1; jk <=nlstate ; jk++){    }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    *alocc='\0';
         }    return s;
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  int nbocc(char *s, char occ)
           if(pp[jk]>=1.e-10)  {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    int i,j=0;
           else    int lg=20;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    i=0;
         }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
         for(jk=1; jk <=nlstate ; jk++){    if  (s[i] == occ ) j++;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }
             pp[jk] += freq[jk][m][i];    return j;
         }  }
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)  /* void cutv(char *u,char *v, char*t, char occ) */
           pos += pp[jk];  /* { */
         for(jk=1; jk <=nlstate ; jk++){  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
           if(pos>=1.e-5)  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*      gives u="abcdef2ghi" and v="j" *\/ */
           else  /*   int i,lg,j,p=0; */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*   i=0; */
           if( i <= (int) agemax){  /*   lg=strlen(t); */
             if(pos>=1.e-5){  /*   for(j=0; j<=lg-1; j++) { */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
               probs[i][jk][j1]= pp[jk]/pos;  /*   } */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }  /*   for(j=0; j<p; j++) { */
             else  /*     (u[j] = t[j]); */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*   } */
           }  /*      u[p]='\0'; */
         }  
          /*    for(j=0; j<= lg; j++) { */
         for(jk=-1; jk <=nlstate+ndeath; jk++)  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
           for(m=-1; m <=nlstate+ndeath; m++)  /*   } */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  /* } */
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");  #ifdef _WIN32
         printf("\n");  char * strsep(char **pp, const char *delim)
       }  {
     }    char *p, *q;
   }           
   dateintmean=dateintsum/k2cpt;    if ((p = *pp) == NULL)
        return 0;
   fclose(ficresp);    if ((q = strpbrk (p, delim)) != NULL)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    {
   free_vector(pp,1,nlstate);      *pp = q + 1;
        *q = '\0';
   /* End of Freq */    }
 }    else
       *pp = 0;
 /************ Prevalence ********************/    return p;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  }
 {  /* Some frequencies */  #endif
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /********************** nrerror ********************/
   double ***freq; /* Frequencies */  
   double *pp;  void nrerror(char error_text[])
   double pos, k2;  {
     fprintf(stderr,"ERREUR ...\n");
   pp=vector(1,nlstate);    fprintf(stderr,"%s\n",error_text);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    exit(EXIT_FAILURE);
    }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*********************** vector *******************/
   j1=0;  double *vector(int nl, int nh)
    {
   j=cptcoveff;    double *v;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      if (!v) nrerror("allocation failure in vector");
  for(k1=1; k1<=j;k1++){    return v-nl+NR_END;
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
    /************************ free vector ******************/
       for (i=-1; i<=nlstate+ndeath; i++)    void free_vector(double*v, int nl, int nh)
         for (jk=-1; jk<=nlstate+ndeath; jk++)    {
           for(m=agemin; m <= agemax+3; m++)    free((FREE_ARG)(v+nl-NR_END));
             freq[i][jk][m]=0;  }
        
       for (i=1; i<=imx; i++) {  /************************ivector *******************************/
         bool=1;  int *ivector(long nl,long nh)
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    int *v;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
               bool=0;    if (!v) nrerror("allocation failure in ivector");
         }    return v-nl+NR_END;
         if (bool==1) {  }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /******************free ivector **************************/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  void free_ivector(int *v, long nl, long nh)
               if(agev[m][i]==0) agev[m][i]=agemax+1;  {
               if(agev[m][i]==1) agev[m][i]=agemax+2;    free((FREE_ARG)(v+nl-NR_END));
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  }
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */  
             }  /************************lvector *******************************/
           }  long *lvector(long nl,long nh)
         }  {
       }    long *v;
         for(i=(int)agemin; i <= (int)agemax+3; i++){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           for(jk=1; jk <=nlstate ; jk++){    if (!v) nrerror("allocation failure in ivector");
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    return v-nl+NR_END;
               pp[jk] += freq[jk][m][i];  }
           }  
           for(jk=1; jk <=nlstate ; jk++){  /******************free lvector **************************/
             for(m=-1, pos=0; m <=0 ; m++)  void free_lvector(long *v, long nl, long nh)
             pos += freq[jk][m][i];  {
         }    free((FREE_ARG)(v+nl-NR_END));
          }
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /******************* imatrix *******************************/
              pp[jk] += freq[jk][m][i];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
          }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
            { 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
          for(jk=1; jk <=nlstate ; jk++){              
            if( i <= (int) agemax){    /* allocate pointers to rows */ 
              if(pos>=1.e-5){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                probs[i][jk][j1]= pp[jk]/pos;    if (!m) nrerror("allocation failure 1 in matrix()"); 
              }    m += NR_END; 
            }    m -= nrl; 
          }    
              
         }    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
      m[nrl] -= ncl; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    
   free_vector(pp,1,nlstate);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
 }  /* End of Freq */    /* return pointer to array of pointers to rows */ 
     return m; 
 /************* Waves Concatenation ***************/  } 
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /****************** free_imatrix *************************/
 {  void free_imatrix(m,nrl,nrh,ncl,nch)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        int **m;
      Death is a valid wave (if date is known).        long nch,ncl,nrh,nrl; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       /* free an int matrix allocated by imatrix() */ 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  { 
      and mw[mi+1][i]. dh depends on stepm.    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      */    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
   int i, mi, m;  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /******************* matrix *******************************/
      double sum=0., jmean=0.;*/  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
   int j, k=0,jk, ju, jl;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double sum=0.;    double **m;
   jmin=1e+5;  
   jmax=-1;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   jmean=0.;    if (!m) nrerror("allocation failure 1 in matrix()");
   for(i=1; i<=imx; i++){    m += NR_END;
     mi=0;    m -= nrl;
     m=firstpass;  
     while(s[m][i] <= nlstate){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if(s[m][i]>=1)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         mw[++mi][i]=m;    m[nrl] += NR_END;
       if(m >=lastpass)    m[nrl] -= ncl;
         break;  
       else    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         m++;    return m;
     }/* end while */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     if (s[m][i] > nlstate){  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       mi++;     /* Death is another wave */  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       /* if(mi==0)  never been interviewed correctly before death */     */
          /* Only death is a correct wave */  }
       mw[mi][i]=m;  
     }  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     wav[i]=mi;  {
     if(mi==0)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   
   for(i=1; i<=imx; i++){  /******************* ma3x *******************************/
     for(mi=1; mi<wav[i];mi++){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (stepm <=0)  {
         dh[mi][i]=1;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       else{    double ***m;
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    if (!m) nrerror("allocation failure 1 in matrix()");
           if(j==0) j=1;  /* Survives at least one month after exam */    m += NR_END;
           k=k+1;    m -= nrl;
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           sum=sum+j;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    m[nrl] += NR_END;
           }    m[nrl] -= ncl;
         }  
         else{    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           if (j >= jmax) jmax=j;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           else if (j <= jmin)jmin=j;    m[nrl][ncl] += NR_END;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    m[nrl][ncl] -= nll;
           sum=sum+j;    for (j=ncl+1; j<=nch; j++) 
         }      m[nrl][j]=m[nrl][j-1]+nlay;
         jk= j/stepm;    
         jl= j -jk*stepm;    for (i=nrl+1; i<=nrh; i++) {
         ju= j -(jk+1)*stepm;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         if(jl <= -ju)      for (j=ncl+1; j<=nch; j++) 
           dh[mi][i]=jk;        m[i][j]=m[i][j-1]+nlay;
         else    }
           dh[mi][i]=jk+1;    return m; 
         if(dh[mi][i]==0)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           dh[mi][i]=1; /* At least one step */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       }    */
     }  }
   }  
   jmean=sum/k;  /*************************free ma3x ************************/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  }  {
 /*********** Tricode ****************************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 void tricode(int *Tvar, int **nbcode, int imx)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   int Ndum[20],ij=1, k, j, i;  }
   int cptcode=0;  
   cptcoveff=0;  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
   for (k=0; k<19; k++) Ndum[k]=0;  {
   for (k=1; k<=7; k++) ncodemax[k]=0;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    strcat(tmpout,"/"); /* Add to the right */
     for (i=1; i<=imx; i++) {    strcat(tmpout,fileres);
       ij=(int)(covar[Tvar[j]][i]);    return tmpout;
       Ndum[ij]++;  }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
   {
     for (i=0; i<=cptcode; i++) {    
       if(Ndum[i]!=0) ncodemax[j]++;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     ij=1;    strcat(tmpout,"/");
     strcat(tmpout,preop);
     strcat(tmpout,fileres);
     for (i=1; i<=ncodemax[j]; i++) {    return tmpout;
       for (k=0; k<=19; k++) {  }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  /*************** function subdirf3 ***********/
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
           ij++;  {
         }    
         if (ij > ncodemax[j]) break;    /* Caution optionfilefiname is hidden */
       }      strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
   }      strcat(tmpout,preop);
     strcat(tmpout,preop2);
  for (k=0; k<19; k++) Ndum[k]=0;    strcat(tmpout,fileres);
     return tmpout;
  for (i=1; i<=ncovmodel-2; i++) {  }
       ij=Tvar[i];   
       Ndum[ij]++;  /*************** function subdirfext ***********/
     }  char *subdirfext(char fileres[], char *preop, char *postop)
   {
  ij=1;    
  for (i=1; i<=10; i++) {    strcpy(tmpout,preop);
    if((Ndum[i]!=0) && (i<=ncovcol)){    strcat(tmpout,fileres);
      Tvaraff[ij]=i;    strcat(tmpout,postop);
      ij++;    return tmpout;
    }  }
  }  
    /*************** function subdirfext3 ***********/
     cptcoveff=ij-1;  char *subdirfext3(char fileres[], char *preop, char *postop)
 }  {
     
 /*********** Health Expectancies ****************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   /* Health expectancies */    strcat(tmpout,fileres);
   int i, j, nhstepm, hstepm, h, nstepm;    strcat(tmpout,postop);
   double age, agelim, hf;    return tmpout;
   double ***p3mat;  }
     
   fprintf(ficreseij,"# Health expectancies\n");  char *asc_diff_time(long time_sec, char ascdiff[])
   fprintf(ficreseij,"# Age");  {
   for(i=1; i<=nlstate;i++)    long sec_left, days, hours, minutes;
     for(j=1; j<=nlstate;j++)    days = (time_sec) / (60*60*24);
       fprintf(ficreseij," %1d-%1d",i,j);    sec_left = (time_sec) % (60*60*24);
   fprintf(ficreseij,"\n");    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   if(estepm < stepm){    minutes = (sec_left) /60;
     printf ("Problem %d lower than %d\n",estepm, stepm);    sec_left = (sec_left) % (60);
   }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   else  hstepm=estepm;      return ascdiff;
   /* We compute the life expectancy from trapezoids spaced every estepm months  }
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them  /***************** f1dim *************************/
    * we are calculating an estimate of the Life Expectancy assuming a linear  extern int ncom; 
    * progression inbetween and thus overestimating or underestimating according  extern double *pcom,*xicom;
    * to the curvature of the survival function. If, for the same date, we  extern double (*nrfunc)(double []); 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months   
    * to compare the new estimate of Life expectancy with the same linear  double f1dim(double x) 
    * hypothesis. A more precise result, taking into account a more precise  { 
    * curvature will be obtained if estepm is as small as stepm. */    int j; 
     double f;
   /* For example we decided to compute the life expectancy with the smallest unit */    double *xt; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   
      nhstepm is the number of hstepm from age to agelim    xt=vector(1,ncom); 
      nstepm is the number of stepm from age to agelin.    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      Look at hpijx to understand the reason of that which relies in memory size    f=(*nrfunc)(xt); 
      and note for a fixed period like estepm months */    free_vector(xt,1,ncom); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    return f; 
      survival function given by stepm (the optimization length). Unfortunately it  } 
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  /*****************brent *************************/
      results. So we changed our mind and took the option of the best precision.  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   */  {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
      * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
   agelim=AGESUP;     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
     /* nhstepm age range expressed in number of stepm */     * returned function value. 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    int iter; 
     /* if (stepm >= YEARM) hstepm=1;*/    double a,b,d,etemp;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double fu=0,fv,fw,fx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ftemp=0.;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double p,q,r,tol1,tol2,u,v,w,x,xm; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double e=0.0; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);     
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    a=(ax < cx ? ax : cx); 
     for(i=1; i<=nlstate;i++)    b=(ax > cx ? ax : cx); 
       for(j=1; j<=nlstate;j++)    x=w=v=bx; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    fw=fv=fx=(*f)(x); 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    for (iter=1;iter<=ITMAX;iter++) { 
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      xm=0.5*(a+b); 
         }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     fprintf(ficreseij,"%3.0f",age );      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(i=1; i<=nlstate;i++)      printf(".");fflush(stdout);
       for(j=1; j<=nlstate;j++){      fprintf(ficlog,".");fflush(ficlog);
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);  #ifdef DEBUGBRENT
       }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fprintf(ficreseij,"\n");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   }  #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 /************ Variance ******************/        return fx; 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      } 
 {      ftemp=fu;
   /* Variance of health expectancies */      if (fabs(e) > tol1) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        r=(x-w)*(fx-fv); 
   double **newm;        q=(x-v)*(fx-fw); 
   double **dnewm,**doldm;        p=(x-v)*q-(x-w)*r; 
   int i, j, nhstepm, hstepm, h, nstepm ;        q=2.0*(q-r); 
   int k, cptcode;        if (q > 0.0) p = -p; 
   double *xp;        q=fabs(q); 
   double **gp, **gm;        etemp=e; 
   double ***gradg, ***trgradg;        e=d; 
   double ***p3mat;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double age,agelim, hf;                                  d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int theta;        else { 
                                   d=p/q; 
    fprintf(ficresvij,"# Covariances of life expectancies\n");                                  u=x+d; 
   fprintf(ficresvij,"# Age");                                  if (u-a < tol2 || b-u < tol2) 
   for(i=1; i<=nlstate;i++)                                          d=SIGN(tol1,xm-x); 
     for(j=1; j<=nlstate;j++)        } 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      } else { 
   fprintf(ficresvij,"\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   xp=vector(1,npar);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   dnewm=matrix(1,nlstate,1,npar);      fu=(*f)(u); 
   doldm=matrix(1,nlstate,1,nlstate);      if (fu <= fx) { 
          if (u >= x) a=x; else b=x; 
   if(estepm < stepm){        SHFT(v,w,x,u) 
     printf ("Problem %d lower than %d\n",estepm, stepm);        SHFT(fv,fw,fx,fu) 
   }      } else { 
   else  hstepm=estepm;          if (u < x) a=u; else b=u; 
   /* For example we decided to compute the life expectancy with the smallest unit */        if (fu <= fw || w == x) { 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                                  v=w; 
      nhstepm is the number of hstepm from age to agelim                                  w=u; 
      nstepm is the number of stepm from age to agelin.                                  fv=fw; 
      Look at hpijx to understand the reason of that which relies in memory size                                  fw=fu; 
      and note for a fixed period like k years */        } else if (fu <= fv || v == x || v == w) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                                  v=u; 
      survival function given by stepm (the optimization length). Unfortunately it                                  fv=fu; 
      means that if the survival funtion is printed only each two years of age and if        } 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      } 
      results. So we changed our mind and took the option of the best precision.    } 
   */    nrerror("Too many iterations in brent"); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    *xmin=x; 
   agelim = AGESUP;    return fx; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  } 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  /****************** mnbrak ***********************/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     gp=matrix(0,nhstepm,1,nlstate);              double (*func)(double)) 
     gm=matrix(0,nhstepm,1,nlstate);  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   the downhill direction (defined by the function as evaluated at the initial points) and returns
     for(theta=1; theta <=npar; theta++){  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
       for(i=1; i<=npar; i++){ /* Computes gradient */  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     */
       }    double ulim,u,r,q, dum;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double fu; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     double scale=10.;
       if (popbased==1) {    int iterscale=0;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
       }    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
    
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    /*   *bx = *ax - (*ax - *bx)/scale; */
         }    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
       }    /* } */
      
       for(i=1; i<=npar; i++) /* Computes gradient */    if (*fb > *fa) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      SHFT(dum,*ax,*bx,dum) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        SHFT(dum,*fb,*fa,dum) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    } 
      *cx=(*bx)+GOLD*(*bx-*ax); 
       if (popbased==1) {    *fc=(*func)(*cx); 
         for(i=1; i<=nlstate;i++)  #ifdef DEBUG
           prlim[i][i]=probs[(int)age][i][ij];    printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
       }    fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
   #endif
       for(j=1; j<= nlstate; j++){    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
         for(h=0; h<=nhstepm; h++){      r=(*bx-*ax)*(*fb-*fc); 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
       if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
       for(j=1; j<= nlstate; j++)        fu=(*func)(u); 
         for(h=0; h<=nhstepm; h++){  #ifdef DEBUG
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        /* f(x)=A(x-u)**2+f(u) */
         }        double A, fparabu; 
     } /* End theta */        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         fparabu= *fa - A*(*ax-u)*(*ax-u);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
         fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
     for(h=0; h<=nhstepm; h++)        /* And thus,it can be that fu > *fc even if fparabu < *fc */
       for(j=1; j<=nlstate;j++)        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
         for(theta=1; theta <=npar; theta++)          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
           trgradg[h][j][theta]=gradg[h][theta][j];        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
   #endif 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  #ifdef MNBRAKORIGINAL
     for(i=1;i<=nlstate;i++)  #else
       for(j=1;j<=nlstate;j++)  /*       if (fu > *fc) { */
         vareij[i][j][(int)age] =0.;  /* #ifdef DEBUG */
   /*       printf("mnbrak4  fu > fc \n"); */
     for(h=0;h<=nhstepm;h++){  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
       for(k=0;k<=nhstepm;k++){  /* #endif */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
         for(i=1;i<=nlstate;i++)  /*      dum=u; /\* Shifting c and u *\/ */
           for(j=1;j<=nlstate;j++)  /*      u = *cx; */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  /*      *cx = dum; */
       }  /*      dum = fu; */
     }  /*      fu = *fc; */
   /*      *fc =dum; */
     fprintf(ficresvij,"%.0f ",age );  /*       } else { /\* end *\/ */
     for(i=1; i<=nlstate;i++)  /* #ifdef DEBUG */
       for(j=1; j<=nlstate;j++){  /*       printf("mnbrak3  fu < fc \n"); */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
       }  /* #endif */
     fprintf(ficresvij,"\n");  /*      dum=u; /\* Shifting c and u *\/ */
     free_matrix(gp,0,nhstepm,1,nlstate);  /*      u = *cx; */
     free_matrix(gm,0,nhstepm,1,nlstate);  /*      *cx = dum; */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  /*      dum = fu; */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  /*      fu = *fc; */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*      *fc =dum; */
   } /* End age */  /*       } */
    #ifdef DEBUGMNBRAK
   free_vector(xp,1,npar);                   double A, fparabu; 
   free_matrix(doldm,1,nlstate,1,npar);       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
   free_matrix(dnewm,1,nlstate,1,nlstate);       fparabu= *fa - A*(*ax-u)*(*ax-u);
        printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
 }       fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
   #endif
 /************ Variance of prevlim ******************/        dum=u; /* Shifting c and u */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        u = *cx;
 {        *cx = dum;
   /* Variance of prevalence limit */        dum = fu;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fu = *fc;
   double **newm;        *fc =dum;
   double **dnewm,**doldm;  #endif
   int i, j, nhstepm, hstepm;      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   int k, cptcode;  #ifdef DEBUG
   double *xp;        printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
   double *gp, *gm;        fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
   double **gradg, **trgradg;  #endif
   double age,agelim;        fu=(*func)(u); 
   int theta;        if (fu < *fc) { 
      #ifdef DEBUG
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");                                  printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
   fprintf(ficresvpl,"# Age");                            fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
   for(i=1; i<=nlstate;i++)  #endif
       fprintf(ficresvpl," %1d-%1d",i,i);                            SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   fprintf(ficresvpl,"\n");                                  SHFT(*fb,*fc,fu,(*func)(u)) 
   #ifdef DEBUG
   xp=vector(1,npar);                                          printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
   dnewm=matrix(1,nlstate,1,npar);  #endif
   doldm=matrix(1,nlstate,1,nlstate);        } 
        } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   hstepm=1*YEARM; /* Every year of age */  #ifdef DEBUG
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
   agelim = AGESUP;        fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #endif
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        u=ulim; 
     if (stepm >= YEARM) hstepm=1;        fu=(*func)(u); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } else { /* u could be left to b (if r > q parabola has a maximum) */
     gradg=matrix(1,npar,1,nlstate);  #ifdef DEBUG
     gp=vector(1,nlstate);        printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
     gm=vector(1,nlstate);        fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
   #endif
     for(theta=1; theta <=npar; theta++){        u=(*cx)+GOLD*(*cx-*bx); 
       for(i=1; i<=npar; i++){ /* Computes gradient */        fu=(*func)(u); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #ifdef DEBUG
       }        printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
       for(i=1;i<=nlstate;i++)  #endif
         gp[i] = prlim[i][i];      } /* end tests */
          SHFT(*ax,*bx,*cx,u) 
       for(i=1; i<=npar; i++) /* Computes gradient */      SHFT(*fa,*fb,*fc,fu) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #ifdef DEBUG
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
       for(i=1;i<=nlstate;i++)        fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
         gm[i] = prlim[i][i];  #endif
     } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
       for(i=1;i<=nlstate;i++)  } 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */  /*************** linmin ************************/
   /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
     trgradg =matrix(1,nlstate,1,npar);  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   and replaces xi by the actual vector displacement that p was moved. Also returns as fret
     for(j=1; j<=nlstate;j++)  the value of func at the returned location p . This is actually all accomplished by calling the
       for(theta=1; theta <=npar; theta++)  routines mnbrak and brent .*/
         trgradg[j][theta]=gradg[theta][j];  int ncom; 
   double *pcom,*xicom;
     for(i=1;i<=nlstate;i++)  double (*nrfunc)(double []); 
       varpl[i][(int)age] =0.;   
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  #ifdef LINMINORIGINAL
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(i=1;i<=nlstate;i++)  #else
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
   #endif
     fprintf(ficresvpl,"%.0f ",age );  { 
     for(i=1; i<=nlstate;i++)    double brent(double ax, double bx, double cx, 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                 double (*f)(double), double tol, double *xmin); 
     fprintf(ficresvpl,"\n");    double f1dim(double x); 
     free_vector(gp,1,nlstate);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     free_vector(gm,1,nlstate);                double *fc, double (*func)(double)); 
     free_matrix(gradg,1,npar,1,nlstate);    int j; 
     free_matrix(trgradg,1,nlstate,1,npar);    double xx,xmin,bx,ax; 
   } /* End age */    double fx,fb,fa;
   
   free_vector(xp,1,npar);  #ifdef LINMINORIGINAL
   free_matrix(doldm,1,nlstate,1,npar);  #else
   free_matrix(dnewm,1,nlstate,1,nlstate);    double scale=10., axs, xxs; /* Scale added for infinity */
   #endif
 }    
     ncom=n; 
 /************ Variance of one-step probabilities  ******************/    pcom=vector(1,n); 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    xicom=vector(1,n); 
 {    nrfunc=func; 
   int i, j;    for (j=1;j<=n;j++) { 
   int k=0, cptcode;      pcom[j]=p[j]; 
   double **dnewm,**doldm;      xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
   double *xp;    } 
   double *gp, *gm;  
   double **gradg, **trgradg;  #ifdef LINMINORIGINAL
   double age,agelim, cov[NCOVMAX];    xx=1.;
   int theta;  #else
   char fileresprob[FILENAMELENGTH];    axs=0.0;
     xxs=1.;
   strcpy(fileresprob,"prob");    do{
   strcat(fileresprob,fileres);      xx= xxs;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  #endif
     printf("Problem with resultfile: %s\n", fileresprob);      ax=0.;
   }      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
        /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
       /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
   xp=vector(1,npar);      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
    #ifdef LINMINORIGINAL
   cov[1]=1;  #else
   for (age=bage; age<=fage; age ++){      if (fx != fx){
     cov[2]=age;                          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
     gradg=matrix(1,npar,1,9);                          printf("|");
     trgradg=matrix(1,9,1,npar);                          fprintf(ficlog,"|");
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  #ifdef DEBUGLINMIN
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
      #endif
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++)    }while(fx != fx && xxs > 1.e-5);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #endif
          
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  #ifdef DEBUGLINMIN
        printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
       k=0;    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
       for(i=1; i<= (nlstate+ndeath); i++){  #endif
         for(j=1; j<=(nlstate+ndeath);j++){  #ifdef LINMINORIGINAL
            k=k+1;  #else
           gp[k]=pmmij[i][j];          if(fb == fx){ /* Flat function in the direction */
         }                  xmin=xx;
       }      *flat=1;
           }else{
       for(i=1; i<=npar; i++)      *flat=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #endif
                      /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
       k=0;    /* fmin = f(p[j] + xmin * xi[j]) */
       for(i=1; i<=(nlstate+ndeath); i++){    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
         for(j=1; j<=(nlstate+ndeath);j++){    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
           k=k+1;  #ifdef DEBUG
           gm[k]=pmmij[i][j];    printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
         }    fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
       }  #endif
        #ifdef LINMINORIGINAL
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  #else
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                            }
     }  #endif
   #ifdef DEBUGLINMIN
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    printf("linmin end ");
       for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"linmin end ");
       trgradg[j][theta]=gradg[theta][j];  #endif
      for (j=1;j<=n;j++) { 
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  #ifdef LINMINORIGINAL
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      xi[j] *= xmin; 
   #else
      pmij(pmmij,cov,ncovmodel,x,nlstate);  #ifdef DEBUGLINMIN
       if(xxs <1.0)
      k=0;        printf(" before xi[%d]=%12.8f", j,xi[j]);
      for(i=1; i<=(nlstate+ndeath); i++){  #endif
        for(j=1; j<=(nlstate+ndeath);j++){      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
          k=k+1;  #ifdef DEBUGLINMIN
          gm[k]=pmmij[i][j];      if(xxs <1.0)
         }        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
      }  #endif
        #endif
      /*printf("\n%d ",(int)age);      p[j] += xi[j]; /* Parameters values are updated accordingly */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    } 
          #ifdef DEBUGLINMIN
     printf("\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
      }*/    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     for (j=1;j<=n;j++) { 
   fprintf(ficresprob,"\n%d ",(int)age);      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
       fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      if(j % ncovmodel == 0){
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        printf("\n");
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        fprintf(ficlog,"\n");
   }      }
     }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  #else
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  #endif
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_vector(xicom,1,n); 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_vector(pcom,1,n); 
 }  } 
  free_vector(xp,1,npar);  
 fclose(ficresprob);  
   /*************** powell ************************/
 }  /*
   Minimization of a function func of n variables. Input consists of an initial starting point
 /******************* Printing html file ***********/  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
  int lastpass, int stepm, int weightopt, char model[],\  such that failure to decrease by more than this amount on one iteration signals doneness. On
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  function value at p , and iter is the number of iterations taken. The routine linmin is used.
  char version[], int popforecast, int estepm ){   */
   int jj1, k1, i1, cpt;  #ifdef LINMINORIGINAL
   FILE *fichtm;  #else
   /*char optionfilehtm[FILENAMELENGTH];*/          int *flatdir; /* Function is vanishing in that direction */
           int flat=0, flatd=0; /* Function is vanishing in that direction */
   strcpy(optionfilehtm,optionfile);  #endif
   strcat(optionfilehtm,".htm");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              double (*func)(double [])) 
     printf("Problem with %s \n",optionfilehtm), exit(0);  { 
   }  #ifdef LINMINORIGINAL
    void linmin(double p[], double xi[], int n, double *fret, 
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                double (*func)(double [])); 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  #else 
 \n   void linmin(double p[], double xi[], int n, double *fret, 
 Total number of observations=%d <br>\n                                                   double (*func)(double []),int *flat); 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  #endif
 <hr  size=\"2\" color=\"#EC5E5E\">    int i,ibig,j; 
  <ul><li>Outputs files<br>\n    double del,t,*pt,*ptt,*xit;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double directest;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    double fp,fptt;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    double *xits;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    int niterf, itmp;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  #ifdef LINMINORIGINAL
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,estepm);  #else
   
  fprintf(fichtm,"\n    flatdir=ivector(1,n); 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    for (j=1;j<=n;j++) flatdir[j]=0; 
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  #endif
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    pt=vector(1,n); 
     ptt=vector(1,n); 
  if(popforecast==1) fprintf(fichtm,"\n    xit=vector(1,n); 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    xits=vector(1,n); 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    *fret=(*func)(p); 
         <br>",fileres,fileres,fileres,fileres);    for (j=1;j<=n;j++) pt[j]=p[j]; 
  else    rcurr_time = time(NULL);  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    for (*iter=1;;++(*iter)) { 
 fprintf(fichtm," <li>Graphs</li><p>");      fp=(*fret); /* From former iteration or initial value */
       ibig=0; 
  m=cptcoveff;      del=0.0; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      rlast_time=rcurr_time;
       /* (void) gettimeofday(&curr_time,&tzp); */
  jj1=0;      rcurr_time = time(NULL);  
  for(k1=1; k1<=m;k1++){      curr_time = *localtime(&rcurr_time);
    for(i1=1; i1<=ncodemax[k1];i1++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
        jj1++;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
        if (cptcovn > 0) {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for (i=1;i<=n;i++) {
          for (cpt=1; cpt<=cptcoveff;cpt++)        printf(" %d %.12f",i, p[i]);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        fprintf(ficrespow," %.12lf", p[i]);
        }      }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      printf("\n");
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          fprintf(ficlog,"\n");
        for(cpt=1; cpt<nlstate;cpt++){      fprintf(ficrespow,"\n");fflush(ficrespow);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      if(*iter <=3){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        tml = *localtime(&rcurr_time);
        }        strcpy(strcurr,asctime(&tml));
     for(cpt=1; cpt<=nlstate;cpt++) {        rforecast_time=rcurr_time; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        itmp = strlen(strcurr);
 interval) in state (%d): v%s%d%d.gif <br>        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                                    strcurr[itmp-1]='\0';
      }        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
      for(cpt=1; cpt<=nlstate;cpt++) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        for(niterf=10;niterf<=30;niterf+=10){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                                  rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
      }                                  forecast_time = *localtime(&rforecast_time);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                                  strcpy(strfor,asctime(&forecast_time));
 health expectancies in states (1) and (2): e%s%d.gif<br>                                  itmp = strlen(strfor);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                                  if(strfor[itmp-1]=='\n')
 fprintf(fichtm,"\n</body>");                                          strfor[itmp-1]='\0';
    }                                  printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
    }                                  fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 fclose(fichtm);        }
 }      }
       for (i=1;i<=n;i++) { /* For each direction i */
 /******************* Gnuplot file **************/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        fptt=(*fret); 
   #ifdef DEBUG
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   strcpy(optionfilegnuplot,optionfilefiname);  #endif
   strcat(optionfilegnuplot,".gp.txt");        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        fprintf(ficlog,"%d",i);fflush(ficlog);
     printf("Problem with file %s",optionfilegnuplot);  #ifdef LINMINORIGINAL
   }        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   #else
 #ifdef windows        linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
     fprintf(ficgp,"cd \"%s\" \n",pathc);                          flatdir[i]=flat; /* Function is vanishing in that direction i */
 #endif  #endif
 m=pow(2,cptcoveff);                          /* Outputs are fret(new point p) p is updated and xit rescaled */
          if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
  /* 1eme*/                                  /* because that direction will be replaced unless the gain del is small */
   for (cpt=1; cpt<= nlstate ; cpt ++) {                                  /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
    for (k1=1; k1<= m ; k1 ++) {                                  /* Unless the n directions are conjugate some gain in the determinant may be obtained */
                                   /* with the new direction. */
 #ifdef windows                                  del=fabs(fptt-(*fret)); 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                                  ibig=i; 
 #endif        } 
 #ifdef unix  #ifdef DEBUG
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        printf("%d %.12e",i,(*fret));
 #endif        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 for (i=1; i<= nlstate ; i ++) {                                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                  printf(" x(%d)=%.12e",j,xit[j]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                                  fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 }        }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(j=1;j<=n;j++) {
     for (i=1; i<= nlstate ; i ++) {                                  printf(" p(%d)=%.12e",j,p[j]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                  fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }        printf("\n");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficlog,"\n");
      for (i=1; i<= nlstate ; i ++) {  #endif
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } /* end loop on each direction i */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
 }        /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      /* New value of last point Pn is not computed, P(n-1) */
 #ifdef unix        for(j=1;j<=n;j++) {
 fprintf(ficgp,"\nset ter gif small size 400,300");                                  if(flatdir[j] >0){
 #endif                                          printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                                          fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
    }                                  }
   }                                  /* printf("\n"); */
   /*2 eme*/                                  /* fprintf(ficlog,"\n"); */
                           }
   for (k1=1; k1<= m ; k1 ++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
            /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
     for (i=1; i<= nlstate+1 ; i ++) {        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
       k=2*i;        /* decreased of more than 3.84  */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
       for (j=1; j<= nlstate+1 ; j ++) {        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /* By adding 10 parameters more the gain should be 18.31 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");                          
 }          /* Starting the program with initial values given by a former maximization will simply change */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        /* the scales of the directions and the directions, because the are reset to canonical directions */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
       for (j=1; j<= nlstate+1 ; j ++) {  #ifdef DEBUG
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        int k[2],l;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        k[0]=1;
 }          k[1]=-1;
       fprintf(ficgp,"\" t\"\" w l 0,");        printf("Max: %.12e",(*func)(p));
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (j=1; j<= nlstate+1 ; j ++) {        for (j=1;j<=n;j++) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          printf(" %.12e",p[j]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog," %.12e",p[j]);
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        printf("\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*3eme*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   for (k1=1; k1<= m ; k1 ++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       k=2+nlstate*(cpt-1);        }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  #endif
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  #ifdef LINMINORIGINAL
       }  #else
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        free_ivector(flatdir,1,n); 
     }  #endif
     }        free_vector(xit,1,n); 
          free_vector(xits,1,n); 
   /* CV preval stat */        free_vector(ptt,1,n); 
     for (k1=1; k1<= m ; k1 ++) {        free_vector(pt,1,n); 
     for (cpt=1; cpt<nlstate ; cpt ++) {        return; 
       k=3;      } /* enough precision */ 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
       for (i=1; i< nlstate ; i ++)        ptt[j]=2.0*p[j]-pt[j]; 
         fprintf(ficgp,"+$%d",k+i+1);        xit[j]=p[j]-pt[j]; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        pt[j]=p[j]; 
            } 
       l=3+(nlstate+ndeath)*cpt;      fptt=(*func)(ptt); /* f_3 */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
       for (i=1; i< nlstate ; i ++) {                  if (*iter <=4) {
         l=3+(nlstate+ndeath)*cpt;  #else
         fprintf(ficgp,"+$%d",l+i+1);  #endif
       }  #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    #else
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
     }  #endif
   }          /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
          /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   /* proba elementaires */        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
    for(i=1,jk=1; i <=nlstate; i++){        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
     for(k=1; k <=(nlstate+ndeath); k++){        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       if (k != i) {        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
         for(j=1; j <=ncovmodel; j++){        /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
                /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
           jk++;        /*  Even if f3 <f1, directest can be negative and t >0 */
           fprintf(ficgp,"\n");        /* mu² and del² are equal when f3=f1 */
         }                          /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
       }                          /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
     }                          /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
     }                          /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
   #ifdef NRCORIGINAL
     for(jk=1; jk <=m; jk++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  #else
    i=1;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
    for(k2=1; k2<=nlstate; k2++) {        t= t- del*SQR(fp-fptt);
      k3=i;  #endif
      for(k=1; k<=(nlstate+ndeath); k++) {        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
        if (k != k2){  #ifdef DEBUG
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 ij=1;        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         for(j=3; j <=ncovmodel; j++) {        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
             ij++;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           }        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           else        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  #endif
         }  #ifdef POWELLORIGINAL
           fprintf(ficgp,")/(1");        if (t < 0.0) { /* Then we use it for new direction */
          #else
         for(k1=1; k1 <=nlstate; k1++){          if (directest*t < 0.0) { /* Contradiction between both tests */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                                  printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
 ij=1;          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
           for(j=3; j <=ncovmodel; j++){          fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        } 
             ij++;        if (directest < 0.0) { /* Then we use it for new direction */
           }  #endif
           else  #ifdef DEBUGLINMIN
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                                  printf("Before linmin in direction P%d-P0\n",n);
           }                                  for (j=1;j<=n;j++) {
           fprintf(ficgp,")");                                          printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         }                                          fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);                                          if(j % ncovmodel == 0){
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                                                  printf("\n");
         i=i+ncovmodel;                                                  fprintf(ficlog,"\n");
        }                                          }
      }                                  }
    }  #endif
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  #ifdef LINMINORIGINAL
    }                                  linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
      #else
   fclose(ficgp);                                  linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
 }  /* end gnuplot */                                  flatdir[i]=flat; /* Function is vanishing in that direction i */
   #endif
   
 /*************** Moving average **************/  #ifdef DEBUGLINMIN
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                                  for (j=1;j<=n;j++) { 
                                           printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   int i, cpt, cptcod;                                          fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                                          if(j % ncovmodel == 0){
       for (i=1; i<=nlstate;i++)                                                  printf("\n");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                                                  fprintf(ficlog,"\n");
           mobaverage[(int)agedeb][i][cptcod]=0.;                                          }
                                      }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  #endif
       for (i=1; i<=nlstate;i++){                                  for (j=1;j<=n;j++) { 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                          xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
           for (cpt=0;cpt<=4;cpt++){                                          xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                                  }
           }  #ifdef LINMINORIGINAL
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  #else
         }                                  for (j=1, flatd=0;j<=n;j++) {
       }                                          if(flatdir[j]>0)
     }                                                  flatd++;
                                      }
 }                                  if(flatd >0){
                                           printf("%d flat directions\n",flatd);
                                           fprintf(ficlog,"%d flat directions\n",flatd);
 /************** Forecasting ******************/                                          for (j=1;j<=n;j++) { 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){                                                  if(flatdir[j]>0){
                                                            printf("%d ",j);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                                                          fprintf(ficlog,"%d ",j);
   int *popage;                                                  }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                                          }
   double *popeffectif,*popcount;                                          printf("\n");
   double ***p3mat;                                          fprintf(ficlog,"\n");
   char fileresf[FILENAMELENGTH];                                  }
   #endif
  agelim=AGESUP;                                  printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;                                  fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                                   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  #ifdef DEBUG
                                    printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                                    fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   strcpy(fileresf,"f");                                  for(j=1;j<=n;j++){
   strcat(fileresf,fileres);                                          printf(" %lf",xit[j]);
   if((ficresf=fopen(fileresf,"w"))==NULL) {                                          fprintf(ficlog," %lf",xit[j]);
     printf("Problem with forecast resultfile: %s\n", fileresf);                                  }
   }                                  printf("\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);                                  fprintf(ficlog,"\n");
   #endif
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        } /* end of t or directest negative */
   #ifdef POWELLNOF3INFF1TEST
   if (mobilav==1) {  #else
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* end if (fptt < fp)  */
     movingaverage(agedeb, fage, ageminpar, mobaverage);  #endif
   }  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
                   } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  #else
   if (stepm<=12) stepsize=1;  #endif
      } /* loop iteration */ 
   agelim=AGESUP;  } 
    
   hstepm=1;  /**** Prevalence limit (stable or period prevalence)  ****************/
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
   anprojmean=yp;  {
   yp2=modf((yp1*12),&yp);    /* Computes the prevalence limit in each live state at age x and for covariate ij by left multiplying the unit
   mprojmean=yp;       matrix by transitions matrix until convergence is reached with precision ftolpl */
   yp1=modf((yp2*30.5),&yp);    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
   jprojmean=yp;    /* Wx is row vector: population in state 1, population in state 2, population dead */
   if(jprojmean==0) jprojmean=1;    /* or prevalence in state 1, prevalence in state 2, 0 */
   if(mprojmean==0) jprojmean=1;    /* newm is the matrix after multiplications, its rows are identical at a factor */
      /* Initial matrix pimij */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
      /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
   for(cptcov=1;cptcov<=i2;cptcov++){    /*  0,                   0                  , 1} */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /*
       k=k+1;     * and after some iteration: */
       fprintf(ficresf,"\n#******");    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
       for(j=1;j<=cptcoveff;j++) {    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  0,                   0                  , 1} */
       }    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
       fprintf(ficresf,"******\n");    /* {0.51571254859325999, 0.4842874514067399, */
       fprintf(ficresf,"# StartingAge FinalAge");    /*  0.51326036147820708, 0.48673963852179264} */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /* If we start from prlim again, prlim tends to a constant matrix */
        
          int i, ii,j,k;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double *min, *max, *meandiff, maxmax,sumnew=0.;
         fprintf(ficresf,"\n");    /* double **matprod2(); */ /* test */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
     double **newm;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int ncvloop=0;
           nhstepm = nhstepm/hstepm;    
              min=vector(1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    max=vector(1,nlstate);
           oldm=oldms;savm=savms;    meandiff=vector(1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
                  /* Starting with matrix unity */
           for (h=0; h<=nhstepm; h++){    for (ii=1;ii<=nlstate+ndeath;ii++)
             if (h==(int) (calagedate+YEARM*cpt)) {      for (j=1;j<=nlstate+ndeath;j++){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {    
               kk1=0.;kk2=0;    cov[1]=1.;
               for(i=1; i<=nlstate;i++) {                  
                 if (mobilav==1)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
                 else {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      ncvloop++;
                 }      newm=savm;
                      /* Covariates have to be included here again */
               }      cov[2]=agefin;
               if (h==(int)(calagedate+12*cpt)){      if(nagesqr==1)
                 fprintf(ficresf," %.3f", kk1);        cov[3]= agefin*agefin;;
                              for (k=1; k<=cptcovn;k++) {
               }        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
             }                          /* Here comes the value of the covariate 'ij' */
           }        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
         }      }
       }      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     }      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
   }      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
              for (k=1; k<=cptcovprod;k++) /* Useless */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
   fclose(ficresf);      
 }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 /************** Forecasting ******************/      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   int *popage;                  /* age and covariate values of ij are in 'cov' */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   double *popeffectif,*popcount;      
   double ***p3mat,***tabpop,***tabpopprev;      savm=oldm;
   char filerespop[FILENAMELENGTH];      oldm=newm;
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=nlstate; j++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        max[j]=0.;
   agelim=AGESUP;        min[j]=1.;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      }
        for(i=1;i<=nlstate;i++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        sumnew=0;
          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
          for(j=1; j<=nlstate; j++){ 
   strcpy(filerespop,"pop");          prlim[i][j]= newm[i][j]/(1-sumnew);
   strcat(filerespop,fileres);          max[j]=FMAX(max[j],prlim[i][j]);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          min[j]=FMIN(min[j],prlim[i][j]);
     printf("Problem with forecast resultfile: %s\n", filerespop);        }
   }      }
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
       maxmax=0.;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=1; j<=nlstate; j++){
         meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
   if (mobilav==1) {        maxmax=FMAX(maxmax,meandiff[j]);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
     movingaverage(agedeb, fage, ageminpar, mobaverage);      } /* j loop */
   }      *ncvyear= (int)age- (int)agefin;
       /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      if(maxmax < ftolpl){
   if (stepm<=12) stepsize=1;        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
          free_vector(min,1,nlstate);
   agelim=AGESUP;        free_vector(max,1,nlstate);
          free_vector(meandiff,1,nlstate);
   hstepm=1;        return prlim;
   hstepm=hstepm/stepm;      }
      } /* age loop */
   if (popforecast==1) {      /* After some age loop it doesn't converge */
     if((ficpop=fopen(popfile,"r"))==NULL) {    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
       printf("Problem with population file : %s\n",popfile);exit(0);  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     }    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     popage=ivector(0,AGESUP);    free_vector(min,1,nlstate);
     popeffectif=vector(0,AGESUP);    free_vector(max,1,nlstate);
     popcount=vector(0,AGESUP);    free_vector(meandiff,1,nlstate);
        
     i=1;      return prlim; /* should not reach here */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  }
      
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];   /**** Back Prevalence limit (stable or period prevalence)  ****************/
   }  
    /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
   for(cptcov=1;cptcov<=i2;cptcov++){   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij)
       k=k+1;  {
       fprintf(ficrespop,"\n#******");    /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit
       for(j=1;j<=cptcoveff;j++) {       matrix by transitions matrix until convergence is reached with precision ftolpl */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
       }    /* Wx is row vector: population in state 1, population in state 2, population dead */
       fprintf(ficrespop,"******\n");    /* or prevalence in state 1, prevalence in state 2, 0 */
       fprintf(ficrespop,"# Age");    /* newm is the matrix after multiplications, its rows are identical at a factor */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    /* Initial matrix pimij */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
          /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
       for (cpt=0; cpt<=0;cpt++) {    /*  0,                   0                  , 1} */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /*
             * and after some iteration: */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
           nhstepm = nhstepm/hstepm;    /*  0,                   0                  , 1} */
              /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* {0.51571254859325999, 0.4842874514067399, */
           oldm=oldms;savm=savms;    /*  0.51326036147820708, 0.48673963852179264} */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* If we start from prlim again, prlim tends to a constant matrix */
          
           for (h=0; h<=nhstepm; h++){    int i, ii,j,k;
             if (h==(int) (calagedate+YEARM*cpt)) {    double *min, *max, *meandiff, maxmax,sumnew=0.;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /* double **matprod2(); */ /* test */
             }    double **out, cov[NCOVMAX+1], **bmij();
             for(j=1; j<=nlstate+ndeath;j++) {    double **newm;
               kk1=0.;kk2=0;    double         **dnewm, **doldm, **dsavm;  /* for use */
               for(i=1; i<=nlstate;i++) {                  double         **oldm, **savm;  /* for use */
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
                 else {    int ncvloop=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }    min=vector(1,nlstate);
               }    max=vector(1,nlstate);
               if (h==(int)(calagedate+12*cpt)){    meandiff=vector(1,nlstate);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);          dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          oldm=oldms; savm=savms;
               }  
             }          /* Starting with matrix unity */
             for(i=1; i<=nlstate;i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
               kk1=0.;                  for (j=1;j<=nlstate+ndeath;j++){
                 for(j=1; j<=nlstate;j++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      }
                 }    
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    cov[1]=1.;
             }    
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
           }    for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      ncvloop++;
         }      newm=savm; /* oldm should be kept from previous iteration or unity at start */
       }                  /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
        /* Covariates have to be included here again */
   /******/      cov[2]=agefin;
       if(nagesqr==1)
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        cov[3]= agefin*agefin;;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for (k=1; k<=cptcovn;k++) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
           nhstepm = nhstepm/hstepm;        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
                }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           oldm=oldms;savm=savms;      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
           for (h=0; h<=nhstepm; h++){      for (k=1; k<=cptcovprod;k++) /* Useless */
             if (h==(int) (calagedate+YEARM*cpt)) {        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
             }      
             for(j=1; j<=nlstate+ndeath;j++) {      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
               kk1=0.;kk2=0;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
               for(i=1; i<=nlstate;i++) {                    /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
               }      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                  /* ij should be linked to the correct index of cov */
             }                  /* age and covariate values ij are in 'cov', but we need to pass
           }                   * ij for the observed prevalence at age and status and covariate
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                   * number:  prevacurrent[(int)agefin][ii][ij]
         }                   */
       }      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
    }      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
   }      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
        savm=oldm;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      oldm=newm;
       for(j=1; j<=nlstate; j++){
   if (popforecast==1) {        max[j]=0.;
     free_ivector(popage,0,AGESUP);        min[j]=1.;
     free_vector(popeffectif,0,AGESUP);      }
     free_vector(popcount,0,AGESUP);      for(j=1; j<=nlstate; j++){ 
   }        for(i=1;i<=nlstate;i++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                  /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                  bprlim[i][j]= newm[i][j];
   fclose(ficrespop);                                  max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
 }                                  min[i]=FMIN(min[i],bprlim[i][j]);
         }
 /***********************************************/      }
 /**************** Main Program *****************/                  
 /***********************************************/      maxmax=0.;
       for(i=1; i<=nlstate; i++){
 int main(int argc, char *argv[])        meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */
 {        maxmax=FMAX(maxmax,meandiff[i]);
         /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      } /* j loop */
   double agedeb, agefin,hf;      *ncvyear= -( (int)age- (int)agefin);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/
       if(maxmax < ftolpl){
   double fret;        /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
   double **xi,tmp,delta;        free_vector(min,1,nlstate);
         free_vector(max,1,nlstate);
   double dum; /* Dummy variable */        free_vector(meandiff,1,nlstate);
   double ***p3mat;        return bprlim;
   int *indx;      }
   char line[MAXLINE], linepar[MAXLINE];    } /* age loop */
   char title[MAXLINE];      /* After some age loop it doesn't converge */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
      /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    free_vector(min,1,nlstate);
     free_vector(max,1,nlstate);
   char filerest[FILENAMELENGTH];    free_vector(meandiff,1,nlstate);
   char fileregp[FILENAMELENGTH];    
   char popfile[FILENAMELENGTH];    return bprlim; /* should not reach here */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  }
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */  /*************** transition probabilities ***************/ 
   int c,  h , cpt,l;  
   int ju,jl, mi;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    /* According to parameters values stored in x and the covariate's values stored in cov,
   int mobilav=0,popforecast=0;       computes the probability to be observed in state j being in state i by appying the
   int hstepm, nhstepm;       model to the ncovmodel covariates (including constant and age).
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   double bage, fage, age, agelim, agebase;       ncth covariate in the global vector x is given by the formula:
   double ftolpl=FTOL;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   double **prlim;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   double *severity;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   double ***param; /* Matrix of parameters */       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   double  *p;       Outputs ps[i][j] the probability to be observed in j being in j according to
   double **matcov; /* Matrix of covariance */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   double ***delti3; /* Scale */    */
   double *delti; /* Scale */    double s1, lnpijopii;
   double ***eij, ***vareij;    /*double t34;*/
   double **varpl; /* Variances of prevalence limits by age */    int i,j, nc, ii, jj;
   double *epj, vepp;  
   double kk1, kk2;    for(i=1; i<= nlstate; i++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for(j=1; j<i;j++){
          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           /*lnpijopii += param[i][j][nc]*cov[nc];*/
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   char *alph[]={"a","a","b","c","d","e"}, str[4];          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   char z[1]="c", occ;        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 #include <sys/time.h>      }
 #include <time.h>      for(j=i+1; j<=nlstate+ndeath;j++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   /* long total_usecs;          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   struct timeval start_time, end_time;          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
          }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   getcwd(pathcd, size);      }
     }
   printf("\n%s",version);    
   if(argc <=1){    for(i=1; i<= nlstate; i++){
     printf("\nEnter the parameter file name: ");      s1=0;
     scanf("%s",pathtot);      for(j=1; j<i; j++){
   }        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   else{        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     strcpy(pathtot,argv[1]);      }
   }      for(j=i+1; j<=nlstate+ndeath; j++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   /*cygwin_split_path(pathtot,path,optionfile);        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      }
   /* cutv(path,optionfile,pathtot,'\\');*/      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       ps[i][i]=1./(s1+1.);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      /* Computing other pijs */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      for(j=1; j<i; j++)
   chdir(path);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   replace(pathc,path);      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
 /*-------- arguments in the command line --------*/      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   strcpy(fileres,"r");    
   strcat(fileres, optionfilefiname);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   strcat(fileres,".txt");    /* Other files have txt extension */      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
   /*---------arguments file --------*/        ps[ii][ii]=1;
       }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);    
     goto end;    
   }    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   strcpy(filereso,"o");    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   strcat(filereso,fileres);    /*   } */
   if((ficparo=fopen(filereso,"w"))==NULL) {    /*   printf("\n "); */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /* } */
   }    /* printf("\n ");printf("%lf ",cov[2]);*/
     /*
   /* Reads comments: lines beginning with '#' */      for(i=1; i<= npar; i++) printf("%f ",x[i]);
   while((c=getc(ficpar))=='#' && c!= EOF){                  goto end;*/
     ungetc(c,ficpar);    return ps;
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  /*************** backward transition probabilities ***************/ 
   }  
   ungetc(c,ficpar);   /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
   /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    /* Computes the backward probability at age agefin and covariate ij
 while((c=getc(ficpar))=='#' && c!= EOF){     * and returns in **ps as well as **bmij.
     ungetc(c,ficpar);     */
     fgets(line, MAXLINE, ficpar);    int i, ii, j,k;
     puts(line);    
     fputs(line,ficparo);    double **out, **pmij();
   }    double sumnew=0.;
   ungetc(c,ficpar);    double agefin;
      
        double **dnewm, **dsavm, **doldm;
   covar=matrix(0,NCOVMAX,1,n);    double **bbmij;
   cptcovn=0;    
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    doldm=ddoldms; /* global pointers */
     dnewm=ddnewms;
   ncovmodel=2+cptcovn;    dsavm=ddsavms;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    
      agefin=cov[2];
   /* Read guess parameters */    /* bmij *//* age is cov[2], ij is included in cov, but we need for
   /* Reads comments: lines beginning with '#' */       the observed prevalence (with this covariate ij) */
   while((c=getc(ficpar))=='#' && c!= EOF){    dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate);
     ungetc(c,ficpar);    /* We do have the matrix Px in savm  and we need pij */
     fgets(line, MAXLINE, ficpar);    for (j=1;j<=nlstate+ndeath;j++){
     puts(line);      sumnew=0.; /* w1 p11 + w2 p21 only on live states */
     fputs(line,ficparo);      for (ii=1;ii<=nlstate;ii++){
   }        sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij];
   ungetc(c,ficpar);      } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
        for (ii=1;ii<=nlstate+ndeath;ii++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        if(sumnew >= 1.e-10){
     for(i=1; i <=nlstate; i++)          /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
     for(j=1; j <=nlstate+ndeath-1; j++){          /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);          /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
       fprintf(ficparo,"%1d%1d",i1,j1);          /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
       printf("%1d%1d",i,j);          /* }else */
       for(k=1; k<=ncovmodel;k++){          doldm[ii][j]=(ii==j ? 1./sumnew : 0.0);
         fscanf(ficpar," %lf",&param[i][j][k]);        }else{
         printf(" %lf",param[i][j][k]);          printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin);
         fprintf(ficparo," %lf",param[i][j][k]);        }
       }      } /*End ii */
       fscanf(ficpar,"\n");    } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */
       printf("\n");    /* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */
       fprintf(ficparo,"\n");    bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */
     }    /* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */
      /* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    /* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
     /* left Product of this matrix by diag matrix of prevalences (savm) */
   p=param[1][1];    for (j=1;j<=nlstate+ndeath;j++){
        for (ii=1;ii<=nlstate+ndeath;ii++){
   /* Reads comments: lines beginning with '#' */        dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0);
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);    } /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */
     fgets(line, MAXLINE, ficpar);    ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */
     puts(line);    /* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
     fputs(line,ficparo);    /* end bmij */
   }    return ps; 
   ungetc(c,ficpar);  }
   /*************** transition probabilities ***************/ 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   for(i=1; i <=nlstate; i++){  {
     for(j=1; j <=nlstate+ndeath-1; j++){    /* According to parameters values stored in x and the covariate's values stored in cov,
       fscanf(ficpar,"%1d%1d",&i1,&j1);       computes the probability to be observed in state j being in state i by appying the
       printf("%1d%1d",i,j);       model to the ncovmodel covariates (including constant and age).
       fprintf(ficparo,"%1d%1d",i1,j1);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
       for(k=1; k<=ncovmodel;k++){       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         fscanf(ficpar,"%le",&delti3[i][j][k]);       ncth covariate in the global vector x is given by the formula:
         printf(" %le",delti3[i][j][k]);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         fprintf(ficparo," %le",delti3[i][j][k]);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       }       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       fscanf(ficpar,"\n");       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
       printf("\n");       Outputs ps[i][j] the probability to be observed in j being in j according to
       fprintf(ficparo,"\n");       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     }    */
   }    double s1, lnpijopii;
   delti=delti3[1][1];    /*double t34;*/
      int i,j, nc, ii, jj;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1; i<= nlstate; i++){
     ungetc(c,ficpar);                  for(j=1; j<i;j++){
     fgets(line, MAXLINE, ficpar);                          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     puts(line);                                  /*lnpijopii += param[i][j][nc]*cov[nc];*/
     fputs(line,ficparo);                                  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   }                                  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   ungetc(c,ficpar);                          }
                            ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   matcov=matrix(1,npar,1,npar);                          /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   for(i=1; i <=npar; i++){                  }
     fscanf(ficpar,"%s",&str);                  for(j=i+1; j<=nlstate+ndeath;j++){
     printf("%s",str);                          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     fprintf(ficparo,"%s",str);                                  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     for(j=1; j <=i; j++){                                  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       fscanf(ficpar," %le",&matcov[i][j]);                                  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       printf(" %.5le",matcov[i][j]);                          }
       fprintf(ficparo," %.5le",matcov[i][j]);                          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     }                  }
     fscanf(ficpar,"\n");          }
     printf("\n");          
     fprintf(ficparo,"\n");          for(i=1; i<= nlstate; i++){
   }                  s1=0;
   for(i=1; i <=npar; i++)                  for(j=1; j<i; j++){
     for(j=i+1;j<=npar;j++)                          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       matcov[i][j]=matcov[j][i];                          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                      }
   printf("\n");                  for(j=i+1; j<=nlstate+ndeath; j++){
                           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     /*-------- Rewriting paramater file ----------*/                  }
      strcpy(rfileres,"r");    /* "Rparameterfile */                  /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                  ps[i][i]=1./(s1+1.);
      strcat(rfileres,".");    /* */                  /* Computing other pijs */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                  for(j=1; j<i; j++)
     if((ficres =fopen(rfileres,"w"))==NULL) {                          ps[i][j]= exp(ps[i][j])*ps[i][i];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                  for(j=i+1; j<=nlstate+ndeath; j++)
     }                          ps[i][j]= exp(ps[i][j])*ps[i][i];
     fprintf(ficres,"#%s\n",version);                  /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
              } /* end i */
     /*-------- data file ----------*/          
     if((fic=fopen(datafile,"r"))==NULL)    {          for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       printf("Problem with datafile: %s\n", datafile);goto end;                  for(jj=1; jj<= nlstate+ndeath; jj++){
     }                          ps[ii][jj]=0;
                           ps[ii][ii]=1;
     n= lastobs;                  }
     severity = vector(1,maxwav);          }
     outcome=imatrix(1,maxwav+1,1,n);          /* Added for backcast */ /* Transposed matrix too */
     num=ivector(1,n);          for(jj=1; jj<= nlstate+ndeath; jj++){
     moisnais=vector(1,n);                  s1=0.;
     annais=vector(1,n);                  for(ii=1; ii<= nlstate+ndeath; ii++){
     moisdc=vector(1,n);                          s1+=ps[ii][jj];
     andc=vector(1,n);                  }
     agedc=vector(1,n);                  for(ii=1; ii<= nlstate; ii++){
     cod=ivector(1,n);                          ps[ii][jj]=ps[ii][jj]/s1;
     weight=vector(1,n);                  }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }
     mint=matrix(1,maxwav,1,n);          /* Transposition */
     anint=matrix(1,maxwav,1,n);          for(jj=1; jj<= nlstate+ndeath; jj++){
     s=imatrix(1,maxwav+1,1,n);                  for(ii=jj; ii<= nlstate+ndeath; ii++){
     adl=imatrix(1,maxwav+1,1,n);                              s1=ps[ii][jj];
     tab=ivector(1,NCOVMAX);                          ps[ii][jj]=ps[jj][ii];
     ncodemax=ivector(1,8);                          ps[jj][ii]=s1;
                   }
     i=1;          }
     while (fgets(line, MAXLINE, fic) != NULL)    {          /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       if ((i >= firstobs) && (i <=lastobs)) {          /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                  /*      printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         for (j=maxwav;j>=1;j--){          /*   } */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          /*   printf("\n "); */
           strcpy(line,stra);          /* } */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          /* printf("\n ");printf("%lf ",cov[2]);*/
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          /*
         }                  for(i=1; i<= npar; i++) printf("%f ",x[i]);
                          goto end;*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          return ps;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  }
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  /**************** Product of 2 matrices ******************/
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         for (j=ncovcol;j>=1;j--){  {
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         num[i]=atol(stra);    /* in, b, out are matrice of pointers which should have been initialized 
               before: only the contents of out is modified. The function returns
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){       a pointer to pointers identical to out */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    int i, j, k;
     for(i=nrl; i<= nrh; i++)
         i=i+1;      for(k=ncolol; k<=ncoloh; k++){
       }        out[i][k]=0.;
     }        for(j=ncl; j<=nch; j++)
     /* printf("ii=%d", ij);          out[i][k] +=in[i][j]*b[j][k];
        scanf("%d",i);*/      }
   imx=i-1; /* Number of individuals */    return out;
   }
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  /************* Higher Matrix Product ***************/
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
    {
   /* for (i=1; i<=imx; i++){    /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over 
      if (s[4][i]==9)  s[4][i]=-1;       'nhstepm*hstepm*stepm' months (i.e. until
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   */       nhstepm*hstepm matrices. 
         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   /* Calculation of the number of parameter from char model*/       (typically every 2 years instead of every month which is too big 
   Tvar=ivector(1,15);       for the memory).
   Tprod=ivector(1,15);       Model is determined by parameters x and covariates have to be 
   Tvaraff=ivector(1,15);       included manually here. 
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);             */
      
   if (strlen(model) >1){    int i, j, d, h, k;
     j=0, j1=0, k1=1, k2=1;    double **out, cov[NCOVMAX+1];
     j=nbocc(model,'+');    double **newm;
     j1=nbocc(model,'*');    double agexact;
     cptcovn=j+1;    double agebegin, ageend;
     cptcovprod=j1;  
        /* Hstepm could be zero and should return the unit matrix */
     strcpy(modelsav,model);    for (i=1;i<=nlstate+ndeath;i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      for (j=1;j<=nlstate+ndeath;j++){
       printf("Error. Non available option model=%s ",model);        oldm[i][j]=(i==j ? 1.0 : 0.0);
       goto end;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
        /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(i=(j+1); i>=1;i--){    for(h=1; h <=nhstepm; h++){
       cutv(stra,strb,modelsav,'+');      for(d=1; d <=hstepm; d++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        newm=savm;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        /* Covariates have to be included here again */
       /*scanf("%d",i);*/        cov[1]=1.;
       if (strchr(strb,'*')) {        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
         cutv(strd,strc,strb,'*');        cov[2]=agexact;
         if (strcmp(strc,"age")==0) {        if(nagesqr==1)
           cptcovprod--;          cov[3]= agexact*agexact;
           cutv(strb,stre,strd,'V');        for (k=1; k<=cptcovn;k++) 
           Tvar[i]=atoi(stre);          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
           cptcovage++;        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
             Tage[cptcovage]=i;        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
             /*printf("stre=%s ", stre);*/          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         }          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         else if (strcmp(strd,"age")==0) {        /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
           cptcovprod--;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           cutv(strb,stre,strc,'V');          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           Tvar[i]=atoi(stre);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
           cptcovage++;        
           Tage[cptcovage]=i;        
         }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         else {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           cutv(strb,stre,strc,'V');                          /* right multiplication of oldm by the current matrix */
           Tvar[i]=ncovcol+k1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           cutv(strb,strc,strd,'V');                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           Tprod[k1]=i;        /* if((int)age == 70){ */
           Tvard[k1][1]=atoi(strc);        /*        printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
           Tvard[k1][2]=atoi(stre);        /*        for(i=1; i<=nlstate+ndeath; i++) { */
           Tvar[cptcovn+k2]=Tvard[k1][1];        /*          printf("%d pmmij ",i); */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        /*          for(j=1;j<=nlstate+ndeath;j++) { */
           for (k=1; k<=lastobs;k++)        /*            printf("%f ",pmmij[i][j]); */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        /*          } */
           k1++;        /*          printf(" oldm "); */
           k2=k2+2;        /*          for(j=1;j<=nlstate+ndeath;j++) { */
         }        /*            printf("%f ",oldm[i][j]); */
       }        /*          } */
       else {        /*          printf("\n"); */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        /*        } */
        /*  scanf("%d",i);*/        /* } */
       cutv(strd,strc,strb,'V');        savm=oldm;
       Tvar[i]=atoi(strc);        oldm=newm;
       }      }
       strcpy(modelsav,stra);        for(i=1; i<=nlstate+ndeath; i++)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(j=1;j<=nlstate+ndeath;j++) {
         scanf("%d",i);*/                                  po[i][j][h]=newm[i][j];
     }                                  /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 }        }
        /*printf("h=%d ",h);*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    } /* end h */
   printf("cptcovprod=%d ", cptcovprod);          /*     printf("\n H=%d \n",h); */
   scanf("%d ",i);*/    return po;
     fclose(fic);  }
   
     /*  if(mle==1){*/  /************* Higher Back Matrix Product ***************/
     if (weightopt != 1) { /* Maximisation without weights*/  /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
       for(i=1;i<=n;i++) weight[i]=1.0;  double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij )
     }  {
     /*-calculation of age at interview from date of interview and age at death -*/    /* Computes the transition matrix starting at age 'age' over
     agev=matrix(1,maxwav,1,imx);       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
     for (i=1; i<=imx; i++) {       nhstepm*hstepm matrices.
       for(m=2; (m<= maxwav); m++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       (typically every 2 years instead of every month which is too big
          anint[m][i]=9999;       for the memory).
          s[m][i]=-1;       Model is determined by parameters x and covariates have to be
        }       included manually here.
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }    */
     }  
     int i, j, d, h, k;
     for (i=1; i<=imx; i++)  {    double **out, cov[NCOVMAX+1];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double **newm;
       for(m=1; (m<= maxwav); m++){    double agexact;
         if(s[m][i] >0){    double agebegin, ageend;
           if (s[m][i] >= nlstate+1) {    double **oldm, **savm;
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)    oldm=oldms;savm=savms;
                 agev[m][i]=agedc[i];    /* Hstepm could be zero and should return the unit matrix */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    for (i=1;i<=nlstate+ndeath;i++)
            else {      for (j=1;j<=nlstate+ndeath;j++){
               if (andc[i]!=9999){        oldm[i][j]=(i==j ? 1.0 : 0.0);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        po[i][j][0]=(i==j ? 1.0 : 0.0);
               agev[m][i]=-1;      }
               }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             }    for(h=1; h <=nhstepm; h++){
           }      for(d=1; d <=hstepm; d++){
           else if(s[m][i] !=9){ /* Should no more exist */        newm=savm;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        /* Covariates have to be included here again */
             if(mint[m][i]==99 || anint[m][i]==9999)        cov[1]=1.;
               agev[m][i]=1;        agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
             else if(agev[m][i] <agemin){        /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
               agemin=agev[m][i];        cov[2]=agexact;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        if(nagesqr==1)
             }          cov[3]= agexact*agexact;
             else if(agev[m][i] >agemax){        for (k=1; k<=cptcovn;k++)
               agemax=agev[m][i];          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
             }        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
             /*agev[m][i]=anint[m][i]-annais[i];*/          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
             /*   agev[m][i] = age[i]+2*m;*/          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           }        /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
           else { /* =9 */        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
             agev[m][i]=1;          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
             s[m][i]=-1;        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
           }                          
         }                          
         else /*= 0 Unknown */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           agev[m][i]=1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       }        /* Careful transposed matrix */
            /* age is in cov[2] */
     }        /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
     for (i=1; i<=imx; i++)  {        /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
       for(m=1; (m<= maxwav); m++){        out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
         if (s[m][i] > (nlstate+ndeath)) {                     1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           printf("Error: Wrong value in nlstate or ndeath\n");          /* if((int)age == 70){ */
           goto end;        /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
         }        /*        for(i=1; i<=nlstate+ndeath; i++) { */
       }        /*          printf("%d pmmij ",i); */
     }        /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",pmmij[i][j]); */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        /*          } */
         /*          printf(" oldm "); */
     free_vector(severity,1,maxwav);        /*          for(j=1;j<=nlstate+ndeath;j++) { */
     free_imatrix(outcome,1,maxwav+1,1,n);        /*            printf("%f ",oldm[i][j]); */
     free_vector(moisnais,1,n);        /*          } */
     free_vector(annais,1,n);        /*          printf("\n"); */
     /* free_matrix(mint,1,maxwav,1,n);        /*        } */
        free_matrix(anint,1,maxwav,1,n);*/        /* } */
     free_vector(moisdc,1,n);        savm=oldm;
     free_vector(andc,1,n);        oldm=newm;
       }
          for(i=1; i<=nlstate+ndeath; i++)
     wav=ivector(1,imx);        for(j=1;j<=nlstate+ndeath;j++) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          po[i][j][h]=newm[i][j];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
            }
     /* Concatenates waves */      /*printf("h=%d ",h);*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    } /* end h */
     /*     printf("\n H=%d \n",h); */
     return po;
       Tcode=ivector(1,100);  }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  #ifdef NLOPT
          double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
    codtab=imatrix(1,100,1,10);    double fret;
    h=0;    double *xt;
    m=pow(2,cptcoveff);    int j;
      myfunc_data *d2 = (myfunc_data *) pd;
    for(k=1;k<=cptcoveff; k++){  /* xt = (p1-1); */
      for(i=1; i <=(m/pow(2,k));i++){    xt=vector(1,n); 
        for(j=1; j <= ncodemax[k]; j++){    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    printf("Function = %.12lf ",fret);
          }    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
        }    printf("\n");
      }   free_vector(xt,1,n);
    }    return fret;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  }
       codtab[1][2]=1;codtab[2][2]=2; */  #endif
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){  /*************** log-likelihood *************/
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  double func( double *x)
       }  {
       printf("\n");    int i, ii, j, k, mi, d, kk;
       }    int ioffset=0;
       scanf("%d",i);*/    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
        double **out;
    /* Calculates basic frequencies. Computes observed prevalence at single age    double lli; /* Individual log likelihood */
        and prints on file fileres'p'. */    int s1, s2;
     int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
        double bbh, survp;
        long ipmx;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double agexact;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*extern weight */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* We are differentiating ll according to initial status */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /*for(i=1;i<imx;i++) 
            printf(" %d\n",s[4][i]);
     /* For Powell, parameters are in a vector p[] starting at p[1]    */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    ++countcallfunc;
   
     if(mle==1){    cov[1]=1.;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
        ioffset=0;
     /*--------- results files --------------*/    if(mle==1){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          /* Computes the values of the ncovmodel covariates of the model
            depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
    jk=1;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           to be observed in j being in i according to the model.
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        */
    for(i=1,jk=1; i <=nlstate; i++){        ioffset=2+nagesqr+cptcovage;
      for(k=1; k <=(nlstate+ndeath); k++){        /* for (k=1; k<=cptcovn;k++){ /\* Simple and product covariates without age* products *\/ */
        if (k != i)        for (k=1; k<=ncoveff;k++){ /* Simple and product covariates without age* products */
          {          cov[++ioffset]=covar[Tvar[k]][i];
            printf("%d%d ",i,k);        }
            fprintf(ficres,"%1d%1d ",i,k);        for(iqv=1; iqv <= nqfveff; iqv++){ /* Quantitatives and Fixed covariates */
            for(j=1; j <=ncovmodel; j++){          cov[++ioffset]=coqvar[Tvar[iqv]][i];
              printf("%f ",p[jk]);        }
              fprintf(ficres,"%f ",p[jk]);  
              jk++;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            }           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            printf("\n");           has been calculated etc */
            fprintf(ficres,"\n");        /* For an individual i, wav[i] gives the number of effective waves */
          }        /* We compute the contribution to Likelihood of each effective transition
      }           mw[mi][i] is real wave of the mi th effectve wave */
    }        /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
  if(mle==1){           s2=s[mw[mi+1][i]][i];
     /* Computing hessian and covariance matrix */           And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
     ftolhess=ftol; /* Usually correct */           But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
     hesscov(matcov, p, npar, delti, ftolhess, func);           meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
  }        */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        for(mi=1; mi<= wav[i]-1; mi++){
     printf("# Scales (for hessian or gradient estimation)\n");          for(itv=1; itv <= ntveff; itv++){ /* Varying dummy covariates */
      for(i=1,jk=1; i <=nlstate; i++){            cov[ioffset+itv]=cotvar[mw[mi][i]][Tvar[itv]][i]; /* Not sure, Tvar V4+V3+V5 Tvaraff ? */
       for(j=1; j <=nlstate+ndeath; j++){          }
         if (j!=i) {          for(iqtv=1; iqtv <= nqtveff; iqtv++){ /* Varying quantitatives covariates */
           fprintf(ficres,"%1d%1d",i,j);            if(cotqvar[mw[mi][i]][iqtv][i] == -1){
           printf("%1d%1d",i,j);              printf("i=%d, mi=%d, iqtv=%d, cotqvar[mw[mi][i]][iqtv][i]=%f",i,mi,iqtv,cotqvar[mw[mi][i]][iqtv][i]);
           for(k=1; k<=ncovmodel;k++){            }
             printf(" %.5e",delti[jk]);            cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][iqtv][i];
             fprintf(ficres," %.5e",delti[jk]);          }
             jk++;          /* ioffset=2+nagesqr+cptcovn+nqv+ntv+nqtv; */
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
           printf("\n");            for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficres,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
      }          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
     k=1;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            cov[2]=agexact;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            if(nagesqr==1)
     for(i=1;i<=npar;i++){              cov[3]= agexact*agexact;  /* Should be changed here */
       /*  if (k>nlstate) k=1;            for (kk=1; kk<=cptcovage;kk++) {
       i1=(i-1)/(ncovmodel*nlstate)+1;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            }
       printf("%s%d%d",alph[k],i1,tab[i]);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficres,"%3d",i);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("%3d",i);            savm=oldm;
       for(j=1; j<=i;j++){            oldm=newm;
         fprintf(ficres," %.5e",matcov[i][j]);          } /* end mult */
         printf(" %.5e",matcov[i][j]);                                  
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       fprintf(ficres,"\n");          /* But now since version 0.9 we anticipate for bias at large stepm.
       printf("\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       k++;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
               * we keep into memory the bias bh[mi][i] and also the previous matrix product
     while((c=getc(ficpar))=='#' && c!= EOF){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       ungetc(c,ficpar);           * probability in order to take into account the bias as a fraction of the way
       fgets(line, MAXLINE, ficpar);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       puts(line);           * -stepm/2 to stepm/2 .
       fputs(line,ficparo);           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
     ungetc(c,ficpar);           */
     estepm=0;          s1=s[mw[mi][i]][i];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          s2=s[mw[mi+1][i]][i];
     if (estepm==0 || estepm < stepm) estepm=stepm;          bbh=(double)bh[mi][i]/(double)stepm; 
     if (fage <= 2) {          /* bias bh is positive if real duration
       bage = ageminpar;           * is higher than the multiple of stepm and negative otherwise.
       fage = agemaxpar;           */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
              if( s2 > nlstate){ 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            /* i.e. if s2 is a death state and if the date of death is known 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);               then the contribution to the likelihood is the probability to 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
     while((c=getc(ficpar))=='#' && c!= EOF){               minus probability to die before dh-stepm . 
     ungetc(c,ficpar);               In version up to 0.92 likelihood was computed
     fgets(line, MAXLINE, ficpar);               as if date of death was unknown. Death was treated as any other
     puts(line);               health state: the date of the interview describes the actual state
     fputs(line,ficparo);               and not the date of a change in health state. The former idea was
   }               to consider that at each interview the state was recorded
   ungetc(c,ficpar);               (healthy, disable or death) and IMaCh was corrected; but when we
                 introduced the exact date of death then we should have modified
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);               the contribution of an exact death to the likelihood. This new
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);               contribution is smaller and very dependent of the step unit
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);               stepm. It is no more the probability to die between last interview
                     and month of death but the probability to survive from last
   while((c=getc(ficpar))=='#' && c!= EOF){               interview up to one month before death multiplied by the
     ungetc(c,ficpar);               probability to die within a month. Thanks to Chris
     fgets(line, MAXLINE, ficpar);               Jackson for correcting this bug.  Former versions increased
     puts(line);               mortality artificially. The bad side is that we add another loop
     fputs(line,ficparo);               which slows down the processing. The difference can be up to 10%
   }               lower mortality.
   ungetc(c,ficpar);            */
              /* If, at the beginning of the maximization mostly, the
                cumulative probability or probability to be dead is
    dateprev1=anprev1+mprev1/12.+jprev1/365.;               constant (ie = 1) over time d, the difference is equal to
    dateprev2=anprev2+mprev2/12.+jprev2/365.;               0.  out[s1][3] = savm[s1][3]: probability, being at state
                s1 at precedent wave, to be dead a month before current
   fscanf(ficpar,"pop_based=%d\n",&popbased);               wave is equal to probability, being at state s1 at
   fprintf(ficparo,"pop_based=%d\n",popbased);                 precedent wave, to be dead at mont of the current
   fprintf(ficres,"pop_based=%d\n",popbased);                 wave. Then the observed probability (that this person died)
                 is null according to current estimated parameter. In fact,
   while((c=getc(ficpar))=='#' && c!= EOF){               it should be very low but not zero otherwise the log go to
     ungetc(c,ficpar);               infinity.
     fgets(line, MAXLINE, ficpar);            */
     puts(line);  /* #ifdef INFINITYORIGINAL */
     fputs(line,ficparo);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   }  /* #else */
   ungetc(c,ficpar);  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
   /*          lli=log(mytinydouble); */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  /*        else */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /* #endif */
             lli=log(out[s1][s2] - savm[s1][s2]);
             
 while((c=getc(ficpar))=='#' && c!= EOF){          } else if  ( s2==-1 ) { /* alive */
     ungetc(c,ficpar);            for (j=1,survp=0. ; j<=nlstate; j++) 
     fgets(line, MAXLINE, ficpar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     puts(line);            /*survp += out[s1][j]; */
     fputs(line,ficparo);            lli= log(survp);
   }          }
   ungetc(c,ficpar);          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            lli= log(survp); 
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          } 
           else if  (s2==-5) { 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /*------------ gnuplot -------------*/            lli= log(survp); 
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          } 
            else{
 /*------------ free_vector  -------------*/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  chdir(path);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
  free_ivector(wav,1,imx);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          /*if(lli ==000.0)*/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
  free_ivector(num,1,n);          ipmx +=1;
  free_vector(agedc,1,n);          sw += weight[i];
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  fclose(ficparo);          /* if (lli < log(mytinydouble)){ */
  fclose(ficres);          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
           /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
 /*--------- index.htm --------*/          /* } */
         } /* end of wave */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);      } /* end of individual */
     }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*--------------- Prevalence limit --------------*/        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   strcpy(filerespl,"pl");          for (ii=1;ii<=nlstate+ndeath;ii++)
   strcat(filerespl,fileres);            for (j=1;j<=nlstate+ndeath;j++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for(d=0; d<=dh[mi][i]; d++){
   fprintf(ficrespl,"#Prevalence limit\n");            newm=savm;
   fprintf(ficrespl,"#Age ");            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            cov[2]=agexact;
   fprintf(ficrespl,"\n");            if(nagesqr==1)
                cov[3]= agexact*agexact;
   prlim=matrix(1,nlstate,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            savm=oldm;
   k=0;            oldm=newm;
   agebase=ageminpar;          } /* end mult */
   agelim=agemaxpar;        
   ftolpl=1.e-10;          s1=s[mw[mi][i]][i];
   i1=cptcoveff;          s2=s[mw[mi+1][i]][i];
   if (cptcovn < 1){i1=1;}          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for(cptcov=1;cptcov<=i1;cptcov++){          ipmx +=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          sw += weight[i];
         k=k+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        } /* end of wave */
         fprintf(ficrespl,"\n#******");      } /* end of individual */
         for(j=1;j<=cptcoveff;j++)    }  else if(mle==3){  /* exponential inter-extrapolation */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficrespl,"******\n");        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
         for (age=agebase; age<=agelim; age++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficrespl,"%.0f",age );              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficrespl," %.5f", prlim[i][i]);            }
           fprintf(ficrespl,"\n");          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            cov[2]=agexact;
   fclose(ficrespl);            if(nagesqr==1)
               cov[3]= agexact*agexact;
   /*------------- h Pij x at various ages ------------*/            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   printf("Computing pij: result on file '%s' \n", filerespij);            oldm=newm;
            } /* end mult */
   stepsize=(int) (stepm+YEARM-1)/YEARM;        
   /*if (stepm<=24) stepsize=2;*/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   agelim=AGESUP;          bbh=(double)bh[mi][i]/(double)stepm; 
   hstepm=stepsize*YEARM; /* Every year of age */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          ipmx +=1;
            sw += weight[i];
   k=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(cptcov=1;cptcov<=i1;cptcov++){        } /* end of wave */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } /* end of individual */
       k=k+1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         fprintf(ficrespij,"\n#****** ");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(j=1;j<=cptcoveff;j++)        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficrespij,"******\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(d=0; d<dh[mi][i]; d++){
           oldm=oldms;savm=savms;            newm=savm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficrespij,"# Age");            cov[2]=agexact;
           for(i=1; i<=nlstate;i++)            if(nagesqr==1)
             for(j=1; j<=nlstate+ndeath;j++)              cov[3]= agexact*agexact;
               fprintf(ficrespij," %1d-%1d",i,j);            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficrespij,"\n");              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           for (h=0; h<=nhstepm; h++){            }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          
             for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               for(j=1; j<=nlstate+ndeath;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            savm=oldm;
             fprintf(ficrespij,"\n");            oldm=newm;
           }          } /* end mult */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
           fprintf(ficrespij,"\n");          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
     }          if( s2 > nlstate){ 
   }            lli=log(out[s1][s2] - savm[s1][s2]);
           } else if  ( s2==-1 ) { /* alive */
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
   fclose(ficrespij);            lli= log(survp);
           }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /*---------- Forecasting ------------------*/          }
   if((stepm == 1) && (strcmp(model,".")==0)){          ipmx +=1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          sw += weight[i];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(mint,1,maxwav,1,n);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        } /* end of wave */
     free_vector(weight,1,n);}      } /* end of individual */
   else{    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     erreur=108;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   /*---------- Health expectancies and variances ------------*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(filerest,"t");            }
   strcat(filerest,fileres);          for(d=0; d<dh[mi][i]; d++){
   if((ficrest=fopen(filerest,"w"))==NULL) {            newm=savm;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            cov[2]=agexact;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            if(nagesqr==1)
               cov[3]= agexact*agexact;
             for (kk=1; kk<=cptcovage;kk++) {
   strcpy(filerese,"e");              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   strcat(filerese,fileres);            }
   if((ficreseij=fopen(filerese,"w"))==NULL) {          
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            savm=oldm;
             oldm=newm;
  strcpy(fileresv,"v");          } /* end mult */
   strcat(fileresv,fileres);        
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          s2=s[mw[mi+1][i]][i];
   }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          ipmx +=1;
           sw += weight[i];
   k=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(cptcov=1;cptcov<=i1;cptcov++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        } /* end of wave */
       k=k+1;      } /* end of individual */
       fprintf(ficrest,"\n#****** ");    } /* End of if */
       for(j=1;j<=cptcoveff;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       fprintf(ficrest,"******\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
       fprintf(ficreseij,"\n#****** ");  }
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*************** log-likelihood *************/
       fprintf(ficreseij,"******\n");  double funcone( double *x)
   {
       fprintf(ficresvij,"\n#****** ");    /* Same as func but slower because of a lot of printf and if */
       for(j=1;j<=cptcoveff;j++)    int i, ii, j, k, mi, d, kk;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int ioffset=0;
       fprintf(ficresvij,"******\n");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double lli; /* Individual log likelihood */
       oldm=oldms;savm=savms;    double llt;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);      int s1, s2;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    double bbh, survp;
        double agexact;
     double agebegin, ageend;
      /*extern weight */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /* We are differentiating ll according to initial status */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       fprintf(ficrest,"\n");    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
       epj=vector(1,nlstate+1);    */
       for(age=bage; age <=fage ;age++){    cov[1]=1.;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(i=1; i<=nlstate;i++)    ioffset=0;
             prlim[i][i]=probs[(int)age][i][k];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      ioffset=2+nagesqr+cptcovage;
              /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
         fprintf(ficrest," %4.0f",age);      for (k=1; k<=ncoveff+nqfveff;k++){ /* Simple and product fixed covariates without age* products */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        cov[++ioffset]=covar[Tvar[k]][i];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      for(iqv=1; iqv <= nqfveff; iqv++){ /* Quantitative fixed covariates */
           }        cov[++ioffset]=coqvar[Tvar[iqv]][i];
           epj[nlstate+1] +=epj[j];      }
         }      
         for(i=1, vepp=0.;i <=nlstate;i++)      for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
           for(j=1;j <=nlstate;j++)        for(itv=1; itv <= ntveff; itv++){ /* Varying dummy covariates */
             vepp += vareij[i][j][(int)age];          /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));          /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */
         for(j=1;j <=nlstate;j++){          k=ioffset-2-nagesqr-cptcovage+itv; /* position in simple model */
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));          cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i];
         }          printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]);
         fprintf(ficrest,"\n");        }
       }        for(iqtv=1; iqtv <= nqtveff; iqtv++){ /* Varying quantitatives covariates */
     }          iv=TmodelInvQind[iqtv]; /* Counting the # varying covariate from 1 to ntveff */
   }          printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]);
           cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i];
   fclose(ficreseij);        }
   fclose(ficresvij);        for (ii=1;ii<=nlstate+ndeath;ii++)
   fclose(ficrest);          for (j=1;j<=nlstate+ndeath;j++){
   fclose(ficpar);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(epj,1,nlstate+1);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
   /*------- Variance limit prevalence------*/          
         agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
   strcpy(fileresvpl,"vpl");        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
   strcat(fileresvpl,fileres);        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            and mw[mi+1][i]. dh depends on stepm.*/
     exit(0);          newm=savm;
   }          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          cov[2]=agexact;
           if(nagesqr==1)
   k=0;            cov[3]= agexact*agexact;
   for(cptcov=1;cptcov<=i1;cptcov++){          for (kk=1; kk<=cptcovage;kk++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       k=k+1;          }
       fprintf(ficresvpl,"\n#****** ");          /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
       for(j=1;j<=cptcoveff;j++)          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresvpl,"******\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       oldm=oldms;savm=savms;          savm=oldm;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          oldm=newm;
     }        } /* end mult */
  }        
         s1=s[mw[mi][i]][i];
   fclose(ficresvpl);        s2=s[mw[mi+1][i]][i];
         /* if(s2==-1){ */
   /*---------- End : free ----------------*/        /*        printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        /*        /\* exit(1); *\/ */
          /* } */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        bbh=(double)bh[mi][i]/(double)stepm; 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
           */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          lli=log(out[s1][s2] - savm[s1][s2]);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        } else if  ( s2==-1 ) { /* alive */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (j=1,survp=0. ; j<=nlstate; j++) 
              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_matrix(matcov,1,npar,1,npar);          lli= log(survp);
   free_vector(delti,1,npar);        }else if (mle==1){
   free_matrix(agev,1,maxwav,1,imx);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   if(erreur >0)        } else if(mle==3){  /* exponential inter-extrapolation */
     printf("End of Imach with error or warning %d\n",erreur);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   else   printf("End of Imach\n");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* mle=0 back to 1 */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /*printf("Total time was %d uSec.\n", total_usecs);*/          /*lli=log(out[s1][s2]); */ /* Original formula */
   /*------ End -----------*/        } /* End of if */
         ipmx +=1;
         sw += weight[i];
  end:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 #ifdef windows        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   /* chdir(pathcd);*/        if(globpr){
 #endif          fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
  /*system("wgnuplot graph.plt");*/   %11.6f %11.6f %11.6f ", \
  /*system("../gp37mgw/wgnuplot graph.plt");*/                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
  /*system("cd ../gp37mgw");*/                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
  strcpy(plotcmd,GNUPLOTPROGRAM);            llt +=ll[k]*gipmx/gsw;
  strcat(plotcmd," ");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
  strcat(plotcmd,optionfilegnuplot);          }
  system(plotcmd);          fprintf(ficresilk," %10.6f\n", -llt);
         }
 #ifdef windows      } /* end of wave */
   while (z[0] != 'q') {    } /* end of individual */
     /* chdir(path); */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     scanf("%s",z);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if (z[0] == 'c') system("./imach");    if(globpr==0){ /* First time we count the contributions and weights */
     else if (z[0] == 'e') system(optionfilehtm);      gipmx=ipmx;
     else if (z[0] == 'g') system(plotcmd);      gsw=sw;
     else if (z[0] == 'q') exit(0);    }
   }    return -l;
 #endif  }
 }  
   
   /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     /* This routine should help understanding what is done with 
        the selection of individuals/waves and
        to check the exact contribution to the likelihood.
        Plotting could be done.
      */
     int k;
   
     if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ILK_"); 
       strcat(fileresilk,fileresu);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
       fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   
     *fretone=(*funcone)(p);
     if(*globpri !=0){
       fclose(ficresilk);
       if (mle ==0)
         fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
       else if(mle >=1)
         fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
       fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       
         
       for (k=1; k<= nlstate ; k++) {
         fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
   <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
       }
       fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
   <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
   <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fflush(fichtm);
     }
     return;
   }
   
   
   /*********** Maximum Likelihood Estimation ***************/
   
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     int i,j, iter=0;
     double **xi;
     double fret;
     double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
   
   #ifdef NLOPT
     int creturn;
     nlopt_opt opt;
     /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     double *lb;
     double minf; /* the minimum objective value, upon return */
     double * p1; /* Shifted parameters from 0 instead of 1 */
     myfunc_data dinst, *d = &dinst;
   #endif
   
   
     xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"POW_"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   #ifdef POWELL
     powell(p,xi,npar,ftol,&iter,&fret,func);
   #endif
   
   #ifdef NLOPT
   #ifdef NEWUOA
     opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   #else
     opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   #endif
     lb=vector(0,npar-1);
     for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     nlopt_set_lower_bounds(opt, lb);
     nlopt_set_initial_step1(opt, 0.1);
     
     p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     d->function = func;
     printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     nlopt_set_min_objective(opt, myfunc, d);
     nlopt_set_xtol_rel(opt, ftol);
     if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       printf("nlopt failed! %d\n",creturn); 
     }
     else {
       printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       iter=1; /* not equal */
     }
     nlopt_destroy(opt);
   #endif
     free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   
   }
   
   /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     double  **a,**y,*x,pd;
     /* double **hess; */
     int i, j;
     int *indx;
   
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     /* hess=matrix(1,npar,1,npar); */
   
     printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       printf("%d-",i);fflush(stdout);
       fprintf(ficlog,"%d-",i);fflush(ficlog);
      
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
       /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     
     for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
         if (j>i) { 
           printf(".%d-%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
           
           hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
         }
       }
     }
     printf("\n");
     fprintf(ficlog,"\n");
   
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
     a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   
     for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
       }
     }
   
     printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
         printf("%.6e ",hess[i][j]);
         fprintf(ficlog,"%.6e ",hess[i][j]);
       }
       printf("\n");
       fprintf(ficlog,"\n");
     }
   
     /* printf("\n#Covariance matrix#\n"); */
     /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
     /* for (i=1;i<=npar;i++) {  */
     /*   for (j=1;j<=npar;j++) {  */
     /*     printf("%.6e ",matcov[i][j]); */
     /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
     /*   } */
     /*   printf("\n"); */
     /*   fprintf(ficlog,"\n"); */
     /* } */
   
     /* Recompute Inverse */
     /* for (i=1;i<=npar;i++) */
     /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
     /* ludcmp(a,npar,indx,&pd); */
   
     /*  printf("\n#Hessian matrix recomputed#\n"); */
   
     /* for (j=1;j<=npar;j++) { */
     /*   for (i=1;i<=npar;i++) x[i]=0; */
     /*   x[j]=1; */
     /*   lubksb(a,npar,indx,x); */
     /*   for (i=1;i<=npar;i++){  */
     /*     y[i][j]=x[i]; */
     /*     printf("%.3e ",y[i][j]); */
     /*     fprintf(ficlog,"%.3e ",y[i][j]); */
     /*   } */
     /*   printf("\n"); */
     /*   fprintf(ficlog,"\n"); */
     /* } */
   
     /* Verifying the inverse matrix */
   #ifdef DEBUGHESS
     y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
   
      printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
      fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
   
     for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++){ 
         printf("%.2f ",y[i][j]);
         fprintf(ficlog,"%.2f ",y[i][j]);
       }
       printf("\n");
       fprintf(ficlog,"\n");
     }
   #endif
   
     free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     /* free_matrix(hess,1,npar,1,npar); */
   
   
   }
   
   /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   { /* Around values of x, computes the function func and returns the scales delti and hessian */
     int i;
     int l=1, lmax=20;
     double k1,k2, res, fx;
     double p2[MAXPARM+1]; /* identical to x */
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     int k=0,kmax=10;
     double l1;
   
     fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       l1=pow(10,l);
       delts=delt;
       for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
         
   #ifdef DEBUGHESSII
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
         }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
         }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
         }
       } /* End loop k */
     }
     delti[theta]=delts;
     return res; 
     
   }
   
   double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
     int i;
     int l=1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
     int k, kmax=1;
     double v1, v2, cv12, lc1, lc2;
   
     int firstime=0;
     
     fx=func(x);
     for (k=1; k<=kmax; k=k+10) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]*k;
       p2[thetaj]=x[thetaj]+delti[thetaj]*k;
       k1=func(p2)-fx;
     
       p2[thetai]=x[thetai]+delti[thetai]*k;
       p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       k2=func(p2)-fx;
     
       p2[thetai]=x[thetai]-delti[thetai]*k;
       p2[thetaj]=x[thetaj]+delti[thetaj]*k;
       k3=func(p2)-fx;
     
       p2[thetai]=x[thetai]-delti[thetai]*k;
       p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
       if(k1*k2*k3*k4 <0.){
         firstime=1;
         kmax=kmax+10;
       }
       if(kmax >=10 || firstime ==1){
         printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
         fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
         printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }
   #ifdef DEBUGHESSIJ
       v1=hess[thetai][thetai];
       v2=hess[thetaj][thetaj];
       cv12=res;
       /* Computing eigen value of Hessian matrix */
       lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       if ((lc2 <0) || (lc1 <0) ){
         printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
         fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
         printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }
   #endif
     }
     return res;
   }
   
       /* Not done yet: Was supposed to fix if not exactly at the maximum */
   /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
   /* { */
   /*   int i; */
   /*   int l=1, lmax=20; */
   /*   double k1,k2,k3,k4,res,fx; */
   /*   double p2[MAXPARM+1]; */
   /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
   /*   int k=0,kmax=10; */
   /*   double l1; */
     
   /*   fx=func(x); */
   /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
   /*     l1=pow(10,l); */
   /*     delts=delt; */
   /*     for(k=1 ; k <kmax; k=k+1){ */
   /*       delt = delti*(l1*k); */
   /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
   /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   /*       k1=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   /*       k2=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   /*       k3=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   /*       k4=func(p2)-fx; */
   /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
   /* #ifdef DEBUGHESSIJ */
   /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   /* #endif */
   /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
   /*      k=kmax; */
   /*       } */
   /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
   /*      k=kmax; l=lmax*10; */
   /*       } */
   /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
   /*      delts=delt; */
   /*       } */
   /*     } /\* End loop k *\/ */
   /*   } */
   /*   delti[theta]=delts; */
   /*   return res;  */
   /* } */
   
   
   /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     int i,imax,j,k; 
     double big,dum,sum,temp; 
     double *vv; 
    
     vv=vector(1,n); 
     *d=1.0; 
     for (i=1;i<=n;i++) { 
       big=0.0; 
       for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
     } 
     for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
         sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       } 
       big=0.0; 
       for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
         for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
           imax=i; 
         } 
       } 
       if (j != imax) { 
         for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
         } 
         *d = -(*d); 
         vv[imax]=vv[j]; 
       } 
       indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
         dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     } 
     free_vector(vv,1,n);  /* Doesn't work */
   ;
   } 
   
   void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     int i,ii=0,ip,j; 
     double sum; 
    
     for (i=1;i<=n;i++) { 
       ip=indx[i]; 
       sum=b[ip]; 
       b[ip]=b[i]; 
       if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
       b[i]=sum; 
     } 
     for (i=n;i>=1;i--) { 
       sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     } 
   } 
   
   void pstamp(FILE *fichier)
   {
     fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
   }
   
   /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
                     int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
                     int firstpass,  int lastpass, int stepm, int weightopt, char model[])
   {  /* Some frequencies */
     
     int i, m, jk, j1, bool, z1,j, k, iv;
     int iind=0, iage=0;
     int mi; /* Effective wave */
     int first;
     double ***freq; /* Frequencies */
     double *meanq;
     double **meanqt;
     double *pp, **prop, *posprop, *pospropt;
     double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
     double agebegin, ageend;
       
     pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
     posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
     pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
     /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
     meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     meanqt=matrix(1,lastpass,1,nqtveff);
     strcpy(fileresp,"P_");
     strcat(fileresp,fileresu);
     /*strcat(fileresphtm,fileresu);*/
     if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     }
   
     strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
     if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
       printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
       fflush(ficlog);
       exit(70); 
     }
     else{
       fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
               fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
     fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm);
       
     strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
     if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
       printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
       fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
       fflush(ficlog);
       exit(70); 
     }
     else{
       fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
               fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
     fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
   
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
     j1=0;
     
     /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
     j=cptcoveff;  /* Only dummy covariates of the model */
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
     first=1;
   
     /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
        reference=low_education V1=0,V2=0
        med_educ                V1=1 V2=0, 
        high_educ               V1=0 V2=1
        Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff 
     */
   
     for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */
       posproptt=0.;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         scanf("%d", i);*/
       for (i=-5; i<=nlstate+ndeath; i++)  
         for (jk=-5; jk<=nlstate+ndeath; jk++)  
           for(m=iagemin; m <= iagemax+3; m++)
             freq[i][jk][m]=0;
         
       for (i=1; i<=nlstate; i++)  {
         for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
         posprop[i]=0;
         pospropt[i]=0;
       }
       /* for (z1=1; z1<= nqfveff; z1++) {   */
       /*   meanq[z1]+=0.; */
       /*   for(m=1;m<=lastpass;m++){ */
       /*  meanqt[m][z1]=0.; */
       /*   } */
       /* } */
         
       dateintsum=0;
       k2cpt=0;
       /* For that combination of covariate j1, we count and print the frequencies in one pass */
       for (iind=1; iind<=imx; iind++) { /* For each individual iind */
         bool=1;
         if(anyvaryingduminmodel==0){ /* If All fixed covariates */
           if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             /* for (z1=1; z1<= nqfveff; z1++) {   */
             /*   meanq[z1]+=coqvar[Tvar[z1]][iind];  /\* Computes mean of quantitative with selected filter *\/ */
             /* } */
             for (z1=1; z1<=cptcoveff; z1++) {  
               /* if(Tvaraff[z1] ==-20){ */
               /*   /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
               /* }else  if(Tvaraff[z1] ==-10){ */
               /*   /\* sumnew+=coqvar[z1][iind]; *\/ */
               /* }else  */
               if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
                 /* Tests if this individual iind responded to j1 (V4=1 V3=0) */
                 bool=0;
                 /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                    bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
                    j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                 /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
               } /* Onlyf fixed */
             } /* end z1 */
           } /* cptcovn > 0 */
         } /* end any */
         if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */
           /* for(m=firstpass; m<=lastpass; m++){ */
           for(mi=1; mi<wav[iind];mi++){ /* For that wave */
             m=mw[mi][iind];
             if(anyvaryingduminmodel==1){ /* Some are varying covariates */
               for (z1=1; z1<=cptcoveff; z1++) {
                 if( Fixed[Tmodelind[z1]]==1){
                   iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
                   if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
                     bool=0;
                 }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
                   if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                     bool=0;
                   }
                 }
               }
             }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
             /* bool =0 we keep that guy which corresponds to the combination of dummy values */
             if(bool==1){
               /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                  and mw[mi+1][iind]. dh depends on stepm. */
               agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
               ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
               if(m >=firstpass && m <=lastpass){
                 k2=anint[m][iind]+(mint[m][iind]/12.);
                 /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
                 if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                 if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
                   prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
                 if (m<lastpass) {
                   /* if(s[m][iind]==4 && s[m+1][iind]==4) */
                   /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
                   if(s[m][iind]==-1)
                     printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
                   freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
                   /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
                   freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
                 }
               } /* end if between passes */  
               if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) {
                 dateintsum=dateintsum+k2;
                 k2cpt++;
                 /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
               }
             } /* end bool 2 */
           } /* end m */
         } /* end bool */
       } /* end iind = 1 to imx */
       /* prop[s][age] is feeded for any initial and valid live state as well as
          freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
   
   
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       pstamp(ficresp);
       /* if  (ncoveff>0) { */
       if  (cptcoveff>0) {
         fprintf(ficresp, "\n#********** Variable "); 
         fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
         fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++){
           fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         }
         fprintf(ficresp, "**********\n#");
         fprintf(ficresphtm, "**********</h3>\n");
         fprintf(ficresphtmfr, "**********</h3>\n");
         fprintf(ficlog, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficlog, "**********\n");
       }
       fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
       for(i=1; i<=nlstate;i++) {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
       }
       fprintf(ficresp, "\n");
       fprintf(ficresphtm, "\n");
         
       /* Header of frequency table by age */
       fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
       fprintf(ficresphtmfr,"<th>Age</th> ");
       for(jk=-1; jk <=nlstate+ndeath; jk++){
         for(m=-1; m <=nlstate+ndeath; m++){
           if(jk!=0 && m!=0)
             fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
         }
       }
       fprintf(ficresphtmfr, "\n");
         
       /* For each age */
       for(iage=iagemin; iage <= iagemax+3; iage++){
         fprintf(ficresphtm,"<tr>");
         if(iage==iagemax+1){
           fprintf(ficlog,"1");
           fprintf(ficresphtmfr,"<tr><th>0</th> ");
         }else if(iage==iagemax+2){
           fprintf(ficlog,"0");
           fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
         }else if(iage==iagemax+3){
           fprintf(ficlog,"Total");
           fprintf(ficresphtmfr,"<tr><th>Total</th> ");
         }else{
           if(first==1){
             first=0;
             printf("See log file for details...\n");
           }
           fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
           fprintf(ficlog,"Age %d", iage);
         }
         for(jk=1; jk <=nlstate ; jk++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             pp[jk] += freq[jk][m][iage]; 
         }
         for(jk=1; jk <=nlstate ; jk++){
           for(m=-1, pos=0; m <=0 ; m++)
             pos += freq[jk][m][iage];
           if(pp[jk]>=1.e-10){
             if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }else{
             if(first==1)
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           }
         }
   
         for(jk=1; jk <=nlstate ; jk++){ 
           /* posprop[jk]=0; */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
             pp[jk] += freq[jk][m][iage];
         } /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */
   
         for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){
           pos += pp[jk]; /* pos is the total number of transitions until this age */
           posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state
                                             from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
           pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state
                                           from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
         }
         for(jk=1; jk <=nlstate ; jk++){
           if(pos>=1.e-5){
             if(first==1)
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }else{
             if(first==1)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }
           if( iage <= iagemax){
             if(pos>=1.e-5){
               fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
               fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
               /*probs[iage][jk][j1]= pp[jk]/pos;*/
               /*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/
             }
             else{
               fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta);
               fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta);
             }
           }
           pospropt[jk] +=posprop[jk];
         } /* end loop jk */
         /* pospropt=0.; */
         for(jk=-1; jk <=nlstate+ndeath; jk++){
           for(m=-1; m <=nlstate+ndeath; m++){
             if(freq[jk][m][iage] !=0 ) { /* minimizing output */
               if(first==1){
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);
               }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);
             }
             if(jk!=0 && m!=0)
               fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]);
           }
         } /* end loop jk */
         posproptt=0.; 
         for(jk=1; jk <=nlstate; jk++){
           posproptt += pospropt[jk];
         }
         fprintf(ficresphtmfr,"</tr>\n ");
         if(iage <= iagemax){
           fprintf(ficresp,"\n");
           fprintf(ficresphtm,"</tr>\n");
         }
         if(first==1)
           printf("Others in log...\n");
         fprintf(ficlog,"\n");
       } /* end loop age iage */
       fprintf(ficresphtm,"<tr><th>Tot</th>");
       for(jk=1; jk <=nlstate ; jk++){
         if(posproptt < 1.e-5){
           fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt);   
         }else{
           fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt);    
         }
       }
       fprintf(ficresphtm,"</tr>\n");
       fprintf(ficresphtm,"</table>\n");
       fprintf(ficresphtmfr,"</table>\n");
       if(posproptt < 1.e-5){
         fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
         fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
         fprintf(ficres,"\n  This combination (%d) is not valid and no result will be produced\n\n",j1);
         invalidvarcomb[j1]=1;
       }else{
         fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);
         invalidvarcomb[j1]=0;
       }
       fprintf(ficresphtmfr,"</table>\n");
     } /* end selected combination of covariate j1 */
     dateintmean=dateintsum/k2cpt; 
                    
     fclose(ficresp);
     fclose(ficresphtm);
     fclose(ficresphtmfr);
     free_vector(meanq,1,nqfveff);
     free_matrix(meanqt,1,lastpass,1,nqtveff);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE);
     free_vector(pospropt,1,nlstate);
     free_vector(posprop,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE);
     free_vector(pp,1,nlstate);
     /* End of freqsummary */
   }
   
   /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
    
     int i, m, jk, j1, bool, z1,j, iv;
     int mi; /* Effective wave */
     int iage;
     double agebegin, ageend;
   
     double **prop;
     double posprop; 
     double  y2; /* in fractional years */
     int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
   
     iagemin= (int) agemin;
     iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     
     /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */
       for (i=1; i<=nlstate; i++)  
         for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++)
           prop[i][iage]=0.0;
       printf("Prevalence combination of varying and fixed dummies %d\n",j1);
       /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
       fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
       
       for (i=1; i<=imx; i++) { /* Each individual */
         bool=1;
         /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
         for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
           m=mw[mi][i];
           /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
           /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
           for (z1=1; z1<=cptcoveff; z1++){
             if( Fixed[Tmodelind[z1]]==1){
               iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
               if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
                 bool=0;
             }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                 bool=0;
               }
           }
           if(bool==1){ /* Otherwise we skip that wave/person */
             agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
             /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
             if(m >=firstpass && m <=lastpass){
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){
                   printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
                   exit(1);
                 }
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
                   prop[s[m][i]][iagemax+3] += weight[i]; 
                 } /* end valid statuses */ 
               } /* end selection of dates */
             } /* end selection of waves */
           } /* end bool */
         } /* end wave */
       } /* end individual */
       for(i=iagemin; i <= iagemax+3; i++){  
         for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           posprop += prop[jk][i]; 
         } 
         
         for(jk=1; jk <=nlstate ; jk++){       
           if( i <=  iagemax){ 
             if(posprop>=1.e-5){ 
               probs[i][jk][j1]= prop[jk][i]/posprop;
             } else{
               if(first==1){
                 first=0;
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]);
               }
             }
           } 
         }/* end jk */ 
       }/* end i */ 
        /*} *//* end i1 */
     } /* end j1 */
     
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE);
   }  /* End of prevalence */
   
   /************* Waves Concatenation ***************/
   
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     int i=0, mi=0, m=0, mli=0;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
     int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
     int j, k=0,jk, ju, jl;
     double sum=0.;
     first=0;
     firstwo=0;
     firsthree=0;
     firstfour=0;
     jmin=100000;
     jmax=-1;
     jmean=0.;
   
   /* Treating live states */
     for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
       mi=0;  /* First valid wave */
       mli=0; /* Last valid wave */
       m=firstpass;
       while(s[m][i] <= nlstate){  /* a live state */
         if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
           mli=m-1;/* mw[++mi][i]=m-1; */
         }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
           mw[++mi][i]=m;
           mli=m;
         } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
         if(m < lastpass){ /* m < lastpass, standard case */
           m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
         }
         else{ /* m >= lastpass, eventual special issue with warning */
   #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
           break;
   #else
           if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
             if(firsthree == 0){
               printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
               firsthree=1;
             }
             fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
             mw[++mi][i]=m;
             mli=m;
           }
           if(s[m][i]==-2){ /* Vital status is really unknown */
             nbwarn++;
             if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
               printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
               fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
             }
             break;
           }
           break;
   #endif
         }/* End m >= lastpass */
       }/* end while */
   
       /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
       /* After last pass */
   /* Treating death states */
       if (s[m][i] > nlstate){  /* In a death state */
         /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
         /* } */
         mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
         /* Only death is a correct wave */
         mw[mi][i]=m;
       }
   #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
       else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */
         /* m++; */
         /* mi++; */
         /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */
         /* mw[mi][i]=m; */
         if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
           if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */
             nbwarn++;
             if(firstfiv==0){
               printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
               firstfiv=1;
             }else{
               fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
             }
           }else{ /* Death occured afer last wave potential bias */
             nberr++;
             if(firstwo==0){
               printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
               firstwo=1;
             }
             fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
           }
         }else{ /* end date of interview is known */
           /* death is known but not confirmed by death status at any wave */
           if(firstfour==0){
             printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
             firstfour=1;
           }
           fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
         }
       } /* end if date of death is known */
   #endif
       wav[i]=mi; /* mi should be the last effective wave (or mli) */
       /* wav[i]=mw[mi][i]; */
       if(mi==0){
         nbwarn++;
         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
         }
         if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       } /* end mi==0 */
     } /* End individuals */
     /* wav and mw are no more changed */
           
     
     for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
           dh[mi][i]=1;
         else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                 nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
               k=k+1;
               if (j >= jmax){
                 jmax=j;
                 ijmax=i;
               }
               if (j <= jmin){
                 jmin=j;
                 ijmin=i;
               }
               sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
           else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                                           
             k=k+1;
             if (j >= jmax) {
               jmax=j;
               ijmax=i;
             }
             else if (j <= jmin){
               jmin=j;
               ijmin=i;
             }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
               nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
           }
           jk= j/stepm;
           jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
               dh[mi][i]=jk;
               bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
           }else{
             if(jl <= -ju){
               dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
                                    */
             }
             else{
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
           } /* end if mle */
         }
       } /* end wave */
     }
     jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   }
   
   /*********** Tricode ****************************/
    void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
   {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      * Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
      * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
     */
   
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
   
   
     /* cptcoveff=0;  */
           /* *cptcov=0; */
    
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
     /* Loop on covariates without age and products and no quantitative variable */
     /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */
     for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */
       for (j=-1; (j < maxncov); j++) Ndum[j]=0;
       if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
         switch(Fixed[k]) {
         case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
           for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
             ij=(int)(covar[Tvar[k]][i]);
             /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
              * If product of Vn*Vm, still boolean *:
              * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
              * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
             /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                modality of the nth covariate of individual i. */
             if (ij > modmaxcovj)
               modmaxcovj=ij; 
             else if (ij < modmincovj) 
               modmincovj=ij; 
             if ((ij < -1) && (ij > NCOVMAX)){
               printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
               exit(1);
             }else
               Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
             /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
             /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
             /* getting the maximum value of the modality of the covariate
                (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                female ies 1, then modmaxcovj=1.
             */
           } /* end for loop on individuals i */
           printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
           fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
           cptcode=modmaxcovj;
           /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
           /*for (i=0; i<=cptcode; i++) {*/
           for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
             printf("Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
             fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
             if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
               if( j != -1){
                 ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
                                    covariate for which somebody answered excluding 
                                    undefined. Usually 2: 0 and 1. */
               }
               ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
                                       covariate for which somebody answered including 
                                       undefined. Usually 3: -1, 0 and 1. */
             }
             /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
              * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           } /* Ndum[-1] number of undefined modalities */
           
           /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
           /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
              If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
              modmincovj=3; modmaxcovj = 7;
              There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
              which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
              defining two dummy variables: variables V1_1 and V1_2.
              nbcode[Tvar[j]][ij]=k;
              nbcode[Tvar[j]][1]=0;
              nbcode[Tvar[j]][2]=1;
              nbcode[Tvar[j]][3]=2;
              To be continued (not working yet).
           */
           ij=0; /* ij is similar to i but can jump over null modalities */
           for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
             if (Ndum[i] == 0) { /* If nobody responded to this modality k */
               break;
             }
             ij++;
             nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/
             cptcode = ij; /* New max modality for covar j */
           } /* end of loop on modality i=-1 to 1 or more */
           break;
         case 1: /* Testing on varying covariate, could be simple and
                  * should look at waves or product of fixed *
                  * varying. No time to test -1, assuming 0 and 1 only */
           ij=0;
           for(i=0; i<=1;i++){
             nbcode[Tvar[k]][++ij]=i;
           }
           break;
         default:
           break;
         } /* end switch */
       } /* end dummy test */
       
       /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       /*  /\*recode from 0 *\/ */
       /*                               k is a modality. If we have model=V1+V1*sex  */
       /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
       /*  } */
       /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
       /*  if (ij > ncodemax[j]) { */
       /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
       /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
       /*    break; */
       /*  } */
       /*   }  /\* end of loop on modality k *\/ */
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
     for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     /* Look at fixed dummy (single or product) covariates to check empty modalities */
     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
       Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
       /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
     } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
     
     ij=0;
     /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
     for (k=1; k<=  cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
       if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy and non empty in the model */
         /* If product not in single variable we don't print results */
         /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         ++ij;
         Tvaraff[ij]=Tvar[k]; /*For printing */
         Tmodelind[ij]=k;
         TmodelInvind[k]=Tvar[k]- ncovcol-nqv;
         if(Fixed[k]!=0)
           anyvaryingduminmodel=1;
       /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
       /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
       /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
       /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
       /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
       /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
       } 
     } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
     /* ij--; */
     /* cptcoveff=ij; /\*Number of total covariates*\/ */
     *cptcov=ij; /*Number of total real effective covariates: effective
                  * because they can be excluded from the model and real
                  * if in the model but excluded because missing values, but how to get k from ij?*/
     for(j=ij+1; j<= cptcovt; j++){
       Tvaraff[j]=0;
       Tmodelind[j]=0;
     }
     for(j=ntveff+1; j<= cptcovt; j++){
       TmodelInvind[j]=0;
     }
     /* To be sorted */
     ;
   }
   
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
        to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                           
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
                           
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
                   
       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
                   
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
                   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                                           
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                                           
           }
                   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
                   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
                   
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
           
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
    
   /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    {
      /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
      /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
      /* int movingaverage(); */
      double **dnewm,**doldm;
      double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
      int k;
      double *xp;
      double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
      double age,agelim, hf;
      /* double ***mobaverage; */
      int theta;
      char digit[4];
      char digitp[25];
   
      char fileresprobmorprev[FILENAMELENGTH];
   
      if(popbased==1){
        if(mobilav!=0)
          strcpy(digitp,"-POPULBASED-MOBILAV_");
        else strcpy(digitp,"-POPULBASED-NOMOBIL_");
      }
      else 
        strcpy(digitp,"-STABLBASED_");
   
      /* if (mobilav!=0) { */
      /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
      /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
      /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
      /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
      /*   } */
      /* } */
   
      strcpy(fileresprobmorprev,"PRMORPREV-"); 
      sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileresu);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
      fprintf(ficresprobmorprev,"\n");
     
      fprintf(ficgp,"\n# Routine varevsij");
      fprintf(ficgp,"\nunset title \n");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if(popbased==1)
        fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   
      xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
      }
      else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelim. 
         Look at function hpijx to understand why because of memory size limitations, 
         we decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
      */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
                   
                   
        for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
                           
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
                           
          if (popbased==1) {
            if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
                           
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
          for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* Next for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
                           
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
                           
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);
                           
          if (popbased==1) {
            if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
                           
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                           
          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
            for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
              gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
                           
          for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
                           
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
                           
        } /* End theta */
                   
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   
        for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
                   
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
                   
                   
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
                   
        for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
        }
                   
        /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
        /* end ppptj */
        /*  x centered again */
                   
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);
                   
        if (popbased==1) {
          if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
          }
        }
                   
        /* This for computing probability of death (h=1 means
           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
        */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
        /* end probability of death */
                   
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
        } 
        fprintf(ficresprobmorprev,"\n");
                   
        fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
        fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
      fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
       */
      /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
      free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
      fclose(ficresprobmorprev);
      fflush(ficgp);
      fflush(fichtm); 
    }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])
   {
     /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mgm, **mgp;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gp[i] = prlim[i][i];
           mgp[theta][i] = prlim[i][i];
         }
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gm[i] = prlim[i][i];
           mgm[theta][i] = prlim[i][i];
         }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    {
      int i, j=0,  k1, l1, tj;
      int k2, l2, j1,  z1;
      int k=0, l;
      int first=1, first1, first2;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
      double *xp;
      double *gp, *gm;
      double **gradg, **trgradg;
      double **mu;
      double age, cov[NCOVMAX+1];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      int theta;
      char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
      char fileresprobcor[FILENAMELENGTH];
      double ***varpij;
   
      strcpy(fileresprob,"PROB_"); 
      strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      }
      strcpy(fileresprobcov,"PROBCOV_"); 
      strcat(fileresprobcov,fileresu);
      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
      strcpy(fileresprobcor,"PROBCOR_"); 
      strcat(fileresprobcor,fileresu);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      pstamp(ficresprob);
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
      pstamp(ficresprobcov);
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
      pstamp(ficresprobcor);
      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      fprintf(ficresprobcor,"# Age");
   
   
      for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
        }  
      /* fprintf(ficresprob,"\n");
         fprintf(ficresprobcov,"\n");
         fprintf(ficresprobcor,"\n");
      */
      xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
      fprintf(ficgp,"\n# Routine varprob");
      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
   
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
      fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
      cov[1]=1;
      /* tj=cptcoveff; */
      tj = (int) pow(2,cptcoveff);
      if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
      for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/
        if  (cptcovn>0) {
          fprintf(ficresprob, "\n#********** Variable "); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(ficresprob, "**********\n#\n");
          fprintf(ficresprobcov, "\n#********** Variable "); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(ficresprobcov, "**********\n#\n");
                           
          fprintf(ficgp, "\n#********** Variable "); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(ficgp, "**********\n#\n");
                           
                           
          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                           
          fprintf(ficresprobcor, "\n#********** Variable ");    
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
          fprintf(ficresprobcor, "**********\n#");    
          if(invalidvarcomb[j1]){
            fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
            fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
            continue;
          }
        }
        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        gp=vector(1,(nlstate)*(nlstate+ndeath));
        gm=vector(1,(nlstate)*(nlstate+ndeath));
        for (age=bage; age<=fage; age ++){ 
          cov[2]=age;
          if(nagesqr==1)
            cov[3]= age*age;
          for (k=1; k<=cptcovn;k++) {
            cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
            /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                                       * 1  1 1 1 1
                                                                       * 2  2 1 1 1
                                                                       * 3  1 2 1 1
                                                                       */
            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
          }
          /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
          for (k=1; k<=cptcovprod;k++)
            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
                           
                           
          for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++)
              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                                   
            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                                   
            k=0;
            for(i=1; i<= (nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
                gp[k]=pmmij[i][j];
              }
            }
                                   
            for(i=1; i<=npar; i++)
              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                                   
            pmij(pmmij,cov,ncovmodel,xp,nlstate);
            k=0;
            for(i=1; i<=(nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
                gm[k]=pmmij[i][j];
              }
            }
                                   
            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
          }
   
          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
            for(theta=1; theta <=npar; theta++)
              trgradg[j][theta]=gradg[theta][j];
                           
          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                           
          pmij(pmmij,cov,ncovmodel,x,nlstate);
                           
          k=0;
          for(i=1; i<=(nlstate); i++){
            for(j=1; j<=(nlstate+ndeath);j++){
              k=k+1;
              mu[k][(int) age]=pmmij[i][j];
            }
          }
          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
              varpij[i][j][(int)age] = doldm[i][j];
                           
          /*printf("\n%d ",(int)age);
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            }*/
                           
          fprintf(ficresprob,"\n%d ",(int)age);
          fprintf(ficresprobcov,"\n%d ",(int)age);
          fprintf(ficresprobcor,"\n%d ",(int)age);
                           
          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
          }
          i=0;
          for (k=1; k<=(nlstate);k++){
            for (l=1; l<=(nlstate+ndeath);l++){ 
              i++;
              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
              for (j=1; j<=i;j++){
                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
              }
            }
          }/* end of loop for state */
        } /* end of loop for age */
        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       
        /* Confidence intervalle of pij  */
        /*
          fprintf(ficgp,"\nunset parametric;unset label");
          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
        */
                   
        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
        first1=1;first2=2;
        for (k2=1; k2<=(nlstate);k2++){
          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
            if(l2==k2) continue;
            j=(k2-1)*(nlstate+ndeath)+l2;
            for (k1=1; k1<=(nlstate);k1++){
              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                if(l1==k1) continue;
                i=(k1-1)*(nlstate+ndeath)+l1;
                if(i<=j) continue;
                for (age=bage; age<=fage; age ++){ 
                  if ((int)age %5==0){
                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    mu1=mu[i][(int) age]/stepm*YEARM ;
                    mu2=mu[j][(int) age]/stepm*YEARM;
                    c12=cv12/sqrt(v1*v2);
                    /* Computing eigen value of matrix of covariance */
                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    if ((lc2 <0) || (lc1 <0) ){
                      if(first2==1){
                        first1=0;
                        printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                      }
                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
                      /* lc2=fabs(lc2); */
                    }
                                                                   
                    /* Eigen vectors */
                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                    /*v21=sqrt(1.-v11*v11); *//* error */
                    v21=(lc1-v1)/cv12*v11;
                    v12=-v21;
                    v22=v11;
                    tnalp=v21/v11;
                    if(first1==1){
                      first1=0;
                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    }
                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    /*printf(fignu*/
                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                    if(first==1){
                      first=0;
                      fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                      fprintf(ficgp,"\nset parametric;unset label");
                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                      fprintf(ficgp,"\nset ter svg size 640, 480");
                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                           \
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                      fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                                                         \
                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                    }else{
                      first=0;
                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                 \
                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                    }/* if first */
                  } /* age mod 5 */
                } /* end loop age */
                fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                first=1;
              } /*l12 */
            } /* k12 */
          } /*l1 */
        }/* k1 */
      }  /* loop on combination of covariates j1 */
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      free_vector(xp,1,npar);
      fclose(ficresprob);
      fclose(ficresprobcov);
      fclose(ficresprobcor);
      fflush(ficgp);
      fflush(fichtmcov);
    }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int prevfcast, int backcast, int estepm , \
                     double jprev1, double mprev1,double anprev1, double dateprev1, \
                     double jprev2, double mprev2,double anprev2, double dateprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
      fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
      fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
      fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      if(prevfcast==1){
        fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
      fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
      m=pow(2,cptcoveff);
      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
      jj1=0;
      for(k1=1; k1<=m;k1++){
   
        /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
            printf("\nCombination (%d) ignored because no cases \n",k1); 
            continue;
          }
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
    incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
   divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.     \
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
        if(backcast==1){
          /* Period (stable) back prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1);
          }
        }
        if(prevfcast==1){
          /* Projection of prevalence up to period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
          }
        }
            
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
        /* } /\* end i1 *\/ */
      }/* End k1 */
      fprintf(fichtm,"</ul>");
   
      fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
      fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
      fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
      fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
      fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
      fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
      fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
              estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
      fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
              estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
      fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
              subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      fflush(fichtm);
      fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
      m=pow(2,cptcoveff);
      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
      jj1=0;
      for(k1=1; k1<=m;k1++){
        /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++)  /**< cptcoveff number of variables */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
            continue;
          }
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
        /* } /\* end i1 *\/ */
      }/* End k1 */
      fprintf(fichtm,"</ul>");
      fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     char gplotcondition[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int lv=0, vlv=0, kl=0;
     int ng=0;
     int vpopbased;
     int ioffset; /* variable offset for columns */
   
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
     /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
     fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
     /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
     fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
     /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
     fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
     fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
     for (i=1; i<= nlstate ; i ++) {
       fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
       fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
       fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
       for (j=2; j<= nlstate+ndeath ; j ++) {
         fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
       }
       fprintf(ficgp,";\nset out; unset ylabel;\n"); 
     }
     /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */                
     /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
     /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
     fprintf(ficgp,"\nset out;unset log\n");
     /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
       for (k1=1; k1<= m ; k1 ++) { /* For each valid combination of covariate */
         /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
           /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
         fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n   \
   set ter svg size 640, 480\n     \
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
                           
         for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
           else        fprintf(ficgp," %%*lf (%%*lf)");
         }
         fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
         for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         } 
         fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
         for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }  
         fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
         if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
           /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
           fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */
           if(cptcoveff ==0){
             fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ",  2+(cpt-1),  cpt );
           }else{
             kl=0;
             for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
               lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
               /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
               /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
               /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
               vlv= nbcode[Tvaraff[k]][lv];
               kl++;
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(k==cptcoveff){
                 fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                         4+(cpt-1),  cpt );  /* 4 or 6 ?*/
               }else{
                 fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                 kl++;
               }
             } /* end covariate */
           } /* end if no covariate */
         } /* end if backcast */
         fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     for (k1=1; k1<= m ; k1 ++) { 
   
       fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
       for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
         lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
         vlv= nbcode[Tvaraff[k]][lv];
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
       }
       fprintf(ficgp,"\n#\n");
       if(invalidvarcomb[k1]){
         fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
         continue;
       }
                           
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
           
           
     /*3eme*/
     for (k1=1; k1<= m ; k1 ++) { 
   
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
                           
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                                   
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                                   
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* 4eme */
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
   
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
                           
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n                                                                                                                                                                                     \
   unset log y\n                                                                                                                                                                                                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (i=1; i<= nlstate ; i ++){
           if(i==1){
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           }else{
             fprintf(ficgp,", '' ");
           }
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
           
   /* 5eme */
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
                           
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
         
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n                                             \
   unset log y\n                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
   /* 6eme */
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
         
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n                                             \
   unset log y\n                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     
   /* 7eme */
     if(backcast == 1){
       /* CV back preval stable (period) for each covariate */
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n                                             \
   unset log y\n                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3; /* Offset */
           for (i=1; i<= nlstate ; i ++){
             if(i==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
             else
               fprintf(ficgp,", '' ");
             /* l=(nlstate+ndeath)*(i-1)+1; */
             l=(nlstate+ndeath)*(cpt-1)+1;
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */
             /* for (j=2; j<= nlstate ; j ++) */
             /*    fprintf(ficgp,"+$%d",k+l+j-1); */
             /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
             fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* End if backcast */
     
     /* 8eme */
     if(prevfcast==1){
       /* Projection from cross-sectional to stable (period) for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\n                                             \
   unset log y\n                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               ioffset=2; /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               fprintf(ficgp," u %d:(", ioffset); 
               if(i==nlstate+1)
                 fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
               else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{ /* more than 2 covariates */
               if(cptcoveff ==1){
                 ioffset=4; /* Age is in 4 */
               }else{
                 ioffset=6; /* Age is in 6 */
                 /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                 /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               }   
               fprintf(ficgp," u %d:(",ioffset); 
               kl=0;
               strcpy(gplotcondition,"(");
               for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                 kl++;
                 sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                 kl++;
                 if(k <cptcoveff && cptcoveff>1)
                   sprintf(gplotcondition+strlen(gplotcondition)," && ");
               }
               strcpy(gplotcondition+strlen(gplotcondition),")");
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(i==nlstate+1){
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
               }else{
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
               }
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
     
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
     }
     fprintf(ficgp,"##############\n#\n");
     
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
     for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
       fprintf(ficgp,"# ng=%d\n",ng);
       fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
       for(jk=1; jk <=m; jk++) {
         fprintf(ficgp,"#    jk=%d\n",jk);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
         fprintf(ficgp,"\nset ter svg size 640, 480 ");
         if (ng==1){
           fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
           fprintf(ficgp,"\nunset log y");
         }else if (ng==2){
           fprintf(ficgp,"\nset ylabel \"Probability\"\n");
           fprintf(ficgp,"\nset log y");
         }else if (ng==3){
           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficgp,"\nset log y");
         }else
           fprintf(ficgp,"\nunset title ");
         fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         i=1;
         for(k2=1; k2<=nlstate; k2++) {
           k3=i;
           for(k=1; k<=(nlstate+ndeath); k++) {
             if (k != k2){
               switch( ng) {
               case 1:
                 if(nagesqr==0)
                   fprintf(ficgp," p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 2: /* ng=2 */
                 if(nagesqr==0)
                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 3:
                 if(nagesqr==0)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                 break;
               }
               ij=1;/* To be checked else nbcode[0][0] wrong */
               for(j=3; j <=ncovmodel-nagesqr; j++) {
                 /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                 if(ij <=cptcovage) { /* Bug valgrind */
                   if((j-2)==Tage[ij]) { /* Bug valgrind */
                     fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                     ij++;
                   }
                 }
                 else
                   fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); /* Valgrind bug nbcode */
               }
             }else{
               i=i-ncovmodel;
               if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */
                 fprintf(ficgp," (1.");
             }
             
             if(ng != 1){
               fprintf(ficgp,")/(1");
               
               for(k1=1; k1 <=nlstate; k1++){ 
                 if(nagesqr==0)
                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                  
                 ij=1;
                 for(j=3; j <=ncovmodel-nagesqr; j++){
                   if(ij <=cptcovage) { /* Bug valgrind */
                     if((j-2)==Tage[ij]) { /* Bug valgrind */
                       fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                       /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                       ij++;
                     }
                   }
                   else
                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);/* Valgrind bug nbcode */
                 }
                 fprintf(ficgp,")");
               }
               fprintf(ficgp,")");
               if(ng ==2)
                 fprintf(ficgp," t \"p%d%d\" ", k2,k);
               else /* ng= 3 */
                 fprintf(ficgp," t \"i%d%d\" ", k2,k);
             }else{ /* end ng <> 1 */
               if( k !=k2) /* logit p11 is hard to draw */
                 fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
             }
             if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
               fprintf(ficgp,",");
             if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
               fprintf(ficgp,",");
             i=i+ncovmodel;
           } /* end k */
         } /* end k2 */
         fprintf(ficgp,"\n set out\n");
       } /* end jk */
     } /* end ng */
     /* avoid: */
     fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
    int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
      
      int i, cpt, cptcod;
      int modcovmax =1;
      int mobilavrange, mob;
      int iage=0;
   
      double sum=0.;
      double age;
      double *sumnewp, *sumnewm;
      double *agemingood, *agemaxgood; /* Currently identical for all covariates */
     
     
      /* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose  */
      /*              a covariate has 2 modalities, should be equal to ncovcombmax  *\/ */
   
      sumnewp = vector(1,ncovcombmax);
      sumnewm = vector(1,ncovcombmax);
      agemingood = vector(1,ncovcombmax);  
      agemaxgood = vector(1,ncovcombmax);
   
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        sumnewm[cptcod]=0.;
        sumnewp[cptcod]=0.;
        agemingood[cptcod]=0;
        agemaxgood[cptcod]=0;
      }
      if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
     
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
        if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
          for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
        */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (i=1; i<=nlstate;i++){
              for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              }
            }
          }/* end age */
        }/* end mob */
      }else
        return -1;
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
        if(invalidvarcomb[cptcod]){
          printf("\nCombination (%d) ignored because no cases \n",cptcod); 
          continue;
        }
   
        agemingood[cptcod]=fage-(mob-1)/2;
        for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemingood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
        /* From youngest, finding the oldest wrong */
        agemaxgood[cptcod]=bage+(mob-1)/2;
        for (age=bage+(mob-1)/2; age<=fage; age++){
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemaxgood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
                   
        for (age=bage; age<=fage; age++){
          printf("%d %d ", cptcod, (int)age);
          sumnewp[cptcod]=0.;
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewp[cptcod]+=probs[(int)age][i][cptcod];
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
          }
          /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
        }
        /* printf("\n"); */
        /* } */
        /* brutal averaging */
        for (i=1; i<=nlstate;i++){
          for (age=1; age<=bage; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }        
          for (age=fage; age<=AGESUP; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }
        } /* end i status */
        for (i=nlstate+1; i<=nlstate+ndeath;i++){
          for (age=1; age<=AGESUP; age++){
            /*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/
            mobaverage[(int)age][i][cptcod]=0.;
          }
        }
      }/* end cptcod */
      free_vector(sumnewm,1, ncovcombmax);
      free_vector(sumnewp,1, ncovcombmax);
      free_vector(agemaxgood,1, ncovcombmax);
      free_vector(agemingood,1, ncovcombmax);
      return 0;
    }/* End movingaverage */
    
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     /* double ***mobaverage; */
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s', please wait... \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
     
   /*            if (h==(int)(YEARM*yearp)){ */
     for(k=1;k<=i1;k++){
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) projection ignored because no cases \n",k); 
         continue;
       }
       fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       fprintf(ficresf," yearproj age");
       for(j=1; j<=nlstate+ndeath;j++){ 
         for(i=1; i<=nlstate;i++)        
           fprintf(ficresf," p%d%d",i,j);
         fprintf(ficresf," wp.%d",j);
       }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
         fprintf(ficresf,"\n");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         for (agec=fage; agec>=(ageminpar-1); agec--){ 
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);
           
           for (h=0; h<=nhstepm; h++){
             if (h*hstepm/YEARM*stepm ==yearp) {
               fprintf(ficresf,"\n");
               for(j=1;j<=cptcoveff;j++) 
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
             } 
             for(j=1; j<=nlstate+ndeath;j++) {
               ppij=0.;
               for(i=1; i<=nlstate;i++) {
                 if (mobilav==1) 
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k];
                 else {
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
                 }
                 if (h*hstepm/YEARM*stepm== yearp) {
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);
                 }
               } /* end i */
               if (h*hstepm/YEARM*stepm==yearp) {
                 fprintf(ficresf," %.3f", ppij);
               }
             }/* end j */
           } /* end h */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */
       } /* end yearp */
     } /* end  k */
           
     fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
   }
   
   /* /\************** Back Forecasting ******************\/ */
   /* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
   /*   /\* back1, year, month, day of starting backection  */
   /*      agemin, agemax range of age */
   /*      dateprev1 dateprev2 range of dates during which prevalence is computed */
   /*      anback2 year of en of backection (same day and month as back1). */
   /*   *\/ */
   /*   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */
   /*   double agec; /\* generic age *\/ */
   /*   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char fileresfb[FILENAMELENGTH]; */
           
   /*   agelim=AGESUP; */
   /*   /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */
   /*      in each health status at the date of interview (if between dateprev1 and dateprev2). */
   /*      We still use firstpass and lastpass as another selection. */
   /*   *\/ */
   /*   /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */
   /*   /\*              firstpass, lastpass,  stepm,  weightopt, model); *\/ */
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
           
   /*   strcpy(fileresfb,"FB_");  */
   /*   strcat(fileresfb,fileresu); */
   /*   if((ficresfb=fopen(fileresfb,"w"))==NULL) { */
   /*     printf("Problem with back forecast resultfile: %s\n", fileresfb); */
   /*     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */
   /*   } */
   /*   printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
   /*   fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
           
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
           
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
           
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
   /*   if(estepm < stepm){ */
   /*     printf ("Problem %d lower than %d\n",estepm, stepm); */
   /*   } */
   /*   else  hstepm=estepm;    */
           
   /*   hstepm=hstepm/stepm;  */
   /*   yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
   /*                                fractional in yp1 *\/ */
   /*   anprojmean=yp; */
   /*   yp2=modf((yp1*12),&yp); */
   /*   mprojmean=yp; */
   /*   yp1=modf((yp2*30.5),&yp); */
   /*   jprojmean=yp; */
   /*   if(jprojmean==0) jprojmean=1; */
   /*   if(mprojmean==0) jprojmean=1; */
           
   /*   i1=cptcoveff; */
   /*   if (cptcovn < 1){i1=1;} */
     
   /*   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);  */
     
   /*   fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */
           
   /*      /\*           if (h==(int)(YEARM*yearp)){ *\/ */
   /*   for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*                              fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficresfb," yearbproj age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++){  */
   /*                              for(i=1; i<=nlstate;i++)               */
   /*           fprintf(ficresfb," p%d%d",i,j); */
   /*                              fprintf(ficresfb," p.%d",j); */
   /*       } */
   /*       for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {  */
   /*                              /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  *\/ */
   /*                              fprintf(ficresfb,"\n"); */
   /*                              fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);    */
   /*                              for (agec=fage; agec>=(ageminpar-1); agec--){  */
   /*                                      nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  */
   /*                                      nhstepm = nhstepm/hstepm;  */
   /*                                      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                                      oldm=oldms;savm=savms; */
   /*                                      hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k);       */
   /*                                      for (h=0; h<=nhstepm; h++){ */
   /*                                              if (h*hstepm/YEARM*stepm ==yearp) { */
   /*               fprintf(ficresfb,"\n"); */
   /*               for(j=1;j<=cptcoveff;j++)  */
   /*                 fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*                                                      fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */
   /*                                              }  */
   /*                                              for(j=1; j<=nlstate+ndeath;j++) { */
   /*                                                      ppij=0.; */
   /*                                                      for(i=1; i<=nlstate;i++) { */
   /*                                                              if (mobilav==1)  */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */
   /*                                                              else { */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */
   /*                                                              } */
   /*                                                              if (h*hstepm/YEARM*stepm== yearp) { */
   /*                                                                      fprintf(ficresfb," %.3f", p3mat[i][j][h]); */
   /*                                                              } */
   /*                                                      } /\* end i *\/ */
   /*                                                      if (h*hstepm/YEARM*stepm==yearp) { */
   /*                                                              fprintf(ficresfb," %.3f", ppij); */
   /*                                                      } */
   /*                                              }/\* end j *\/ */
   /*                                      } /\* end h *\/ */
   /*                                      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                              } /\* end agec *\/ */
   /*       } /\* end yearp *\/ */
   /*     } /\* end cptcod *\/ */
   /*   } /\* end  cptcov *\/ */
           
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
           
   /*   fclose(ficresfb); */
   /*   printf("End of Computing Back forecasting \n"); */
   /*   fprintf(ficlog,"End of Computing Back forecasting\n"); */
           
   /* } */
   
   /************** Forecasting *****not tested NB*************/
   /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
     
   /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
   /*   int *popage; */
   /*   double calagedatem, agelim, kk1, kk2; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat,***tabpop,***tabpopprev; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char filerespop[FILENAMELENGTH]; */
   
   /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   agelim=AGESUP; */
   /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
     
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
     
     
   /*   strcpy(filerespop,"POP_");  */
   /*   strcat(filerespop,fileresu); */
   /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
   /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
   /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
   /*   } */
   /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
   /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
   
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
   
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
   
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
     
   /*   agelim=AGESUP; */
     
   /*   hstepm=1; */
   /*   hstepm=hstepm/stepm;  */
           
   /*   if (popforecast==1) { */
   /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
   /*       printf("Problem with population file : %s\n",popfile);exit(0); */
   /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
   /*     }  */
   /*     popage=ivector(0,AGESUP); */
   /*     popeffectif=vector(0,AGESUP); */
   /*     popcount=vector(0,AGESUP); */
       
   /*     i=1;    */
   /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
       
   /*     imx=i; */
   /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
   /*   } */
     
   /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficrespop,"\n#******"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*      fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficrespop,"******\n"); */
   /*       fprintf(ficrespop,"# Age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
   /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
         
   /*       for (cpt=0; cpt<=0;cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
           
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
             
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              if (mobilav==1)  */
   /*                kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
   /*              else { */
   /*                kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
   /*              } */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)){ */
   /*              tabpop[(int)(agedeb)][j][cptcod]=kk1; */
   /*              /\*fprintf(ficrespop," %.3f", kk1); */
   /*                if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
   /*            } */
   /*          } */
   /*          for(i=1; i<=nlstate;i++){ */
   /*            kk1=0.; */
   /*            for(j=1; j<=nlstate;j++){ */
   /*              kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
   /*            } */
   /*            tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
   /*          } */
               
   /*          if (h==(int)(calagedatem+12*cpt)) */
   /*            for(j=1; j<=nlstate;j++)  */
   /*              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
         
   /*       /\******\/ */
         
   /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
   /*          } */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
   /*     }  */
   /*   } */
     
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
     
   /*   if (popforecast==1) { */
   /*     free_ivector(popage,0,AGESUP); */
   /*     free_vector(popeffectif,0,AGESUP); */
   /*     free_vector(popcount,0,AGESUP); */
   /*   } */
   /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   fclose(ficrespop); */
   /* } /\* End of popforecast *\/ */
    
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=1;i<=imx ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0, iv=0;
     int lstra;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
   
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
       
       /* Loops on waves */
       for (j=maxwav;j>=1;j--){
         for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
             cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
             if(isalpha(strb[1])) { /* .m or .d Really Missing value */
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
               return 1;
             }
           }else{
             errno=0;
             /* what_kind_of_number(strb); */
             dval=strtod(strb,&endptr); 
             /* if( strb[0]=='\0' || (*endptr != '\0')){ */
             /* if(strb != endptr && *endptr == '\0') */
             /*    dval=dlval; */
             /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
               return 1;
             }
             cotqvar[j][iv][i]=dval; 
           }
           strcpy(line,stra);
         }/* end loop ntqv */
         
         for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
           }else{
             errno=0;
             lval=strtol(strb,&endptr,10); 
             /*    if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
               return 1;
             }
           }
           if(lval <-1 || lval >1){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
             return 1;
           }
           cotvar[j][iv][i]=(double)(lval);
           strcpy(line,stra);
         }/* end loop ntv */
         
         /* Statuses  at wave */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         
         s[j][i]=lval;
         
         /* Date of Interview */
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* End loop on waves */
       
       /* Date of death */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       /* Date of birth */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
         
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       /* Sample weight */
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           /* what_kind_of_number(strb); */
           dval=strtod(strb,&endptr);
           /* if(strb != endptr && *endptr == '\0') */
           /*   dval=dlval; */
           /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
             return 1;
           }
           coqvar[iv][i]=dval; 
           covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
         }
         strcpy(line,stra);
       }/* end loop nqv */
       
       /* Covariate values */
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing covariate value */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     
     *imax=i-1; /* Number of individuals */
     fclose(fic);
     
     return (0);
     /* endread: */
     printf("Exiting readdata: ");
     fclose(fic);
     return (1);
   }
   
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs)
    /**< This routine decode the model and returns:
           * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
           * - nagesqr = 1 if age*age in the model, otherwise 0.
           * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
           * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
           * - cptcovage number of covariates with age*products =2
           * - cptcovs number of simple covariates
           * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
           *     which is a new column after the 9 (ncovcol) variables. 
           * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
           * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
           *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
           * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
           */
   {
     int i, j, k, ks;
     int  j1, k1, k2, k3, k4;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
           printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
           fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
           return 1;
         }
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                        * cst, age and age*age 
                        * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
         /* including age products which are counted in cptcovage.
          * but the covariates which are products must be treated 
          * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
         
         
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
         
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
           Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
         }
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               Typevar[k]=2;  /* 2 for double fixed dummy covariates */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
               /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
               /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
               /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
               /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
             cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
             Tvar[k]=atoi(strd);
             Typevar[k]=0;  /* 0 for simple covariates */
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
                                   /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                                     scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
     
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
        printf("cptcovprod=%d ", cptcovprod);
        fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
        scanf("%d ",i);*/
   
   
   /* Decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
      of variable (dummy vs quantitative, fixed vs time varying) is behind */
   /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
      model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
      k =           1    2   3     4       5       6      7      8        9
      Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
      Typevar[k]=   0    0   0     2       1       0      2      1        1
      Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
      Dummy[k]      1    0   0     0       3       1      1      2        3
             Tmodelind[combination of covar]=k;
   */  
   /* Dispatching between quantitative and time varying covariates */
     /* If Tvar[k] >ncovcol it is a product */
     /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
           /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
     printf("Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     fprintf(ficlog,"Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
   
     for(k=1, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
       if (Tvar[k] <=ncovcol && (Typevar[k]==0 || Typevar[k]==2)){ /* Simple or product fixed dummy covariatee */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
       }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){ /* Remind that product Vn*Vm are added in k*/
         Fixed[k]= 0;
         Dummy[k]= 1;
         nqfveff++;  /* Only simple fixed quantitative variable */
       }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){
         Fixed[k]= 1;
         Dummy[k]= 0;
         ntveff++; /* Only simple time varying dummy variable */
         printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
         printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){
           Fixed[k]= 1;
           Dummy[k]= 1;
           TmodelInvQind[++nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
           /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
           printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
         printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
       }else if (Typevar[k] == 1) {  /* product with age */
         if (Tvar[k] <=ncovcol ){ /* Simple or product fixed dummy covariatee */
           Fixed[k]= 2;
           Dummy[k]= 2;
           /* ncoveff++; */
         }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
           Fixed[k]= 2;
           Dummy[k]= 3;
           /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv ){
           Fixed[k]= 3;
           Dummy[k]= 2;
           /* ntveff++; /\* Only simple time varying dummy variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
           Fixed[k]= 3;
           Dummy[k]= 3;
           /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
         }
       }else if (Typevar[k] == 2) {  /* product without age */
         k1=Tposprod[k];
         if(Tvard[k1][1] <=ncovcol){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 0;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
           } 
         }else if(Tvard[k1][1] <=ncovcol+nqv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 0; /* or 2 ?*/
             Dummy[k]= 1;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
           } 
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
           } 
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
           } 
         }else{
           printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
           fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
         } /* end k1 */
       }else{
         printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
         fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
       }
       printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
       fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
     }
     /* Searching for doublons in the model */
     for(k1=1; k1<= cptcovt;k1++){
       for(k2=1; k2 <k1;k2++){
         if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){
           if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
             if(Tvar[k1]==Tvar[k2]){
               printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }else if (Typevar[k1] ==2){
             k3=Tposprod[k1];
             k4=Tposprod[k2];
             if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
               printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }
         }
       }
     }
     printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
     printf("Exiting decodemodel: ");
     return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
     int firstone=0;
     
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           if(firstone == 0){
             firstone=1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           }
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           } /* end if */
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           } /* en if 9*/
           else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else if(s[m][i]==0) /*= 0 Unknown */
           agev[m][i]=1;
         else{
           printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
     }
       
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
   }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
     agebase=ageminpar;
     agelim=agemaxpar;
   
     /* i1=pow(2,ncoveff); */
     i1=pow(2,cptcoveff); /* Number of dummy covariates */
     if (cptcovn < 1){i1=1;}
   
     for(k=1; k<=i1;k++){
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
       /* k=k+1; */
       /* to clean */
       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
       fprintf(ficrespl,"#******");
       printf("#******");
       fprintf(ficlog,"#******");
       for(j=1;j<=cptcoveff ;j++) {/* all covariates */
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       fprintf(ficrespl,"******\n");
       printf("******\n");
       fprintf(ficlog,"******\n");
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) ignored because no case \n",k); 
         fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
         fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
                                                   continue;
       }
   
       fprintf(ficrespl,"#Age ");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
       fprintf(ficrespl,"Total Years_to_converge\n");
       
       for (age=agebase; age<=agelim; age++){
         /* for (age=agebase; age<=agebase; age++){ */
         prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k);
         fprintf(ficrespl,"%.0f ",age );
         for(j=1;j<=cptcoveff;j++)
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         tot=0.;
         for(i=1; i<=nlstate;i++){
           tot +=  prlim[i][i];
           fprintf(ficrespl," %.5f", prlim[i][i]);
         }
         fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
       } /* Age */
       /* was end of cptcod */
     } /* cptcov */
     return 0;
   }
   
   int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
           /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
           
           /* Computes the back prevalence limit  for any combination      of covariate values 
      * at any age between ageminpar and agemaxpar
            */
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
     /* double ***mobaverage; */
     /* double      **dnewm, **doldm, **dsavm;  /\* for use *\/ */
   
     strcpy(fileresplb,"PLB_");
     strcat(fileresplb,fileresu);
     if((ficresplb=fopen(fileresplb,"w"))==NULL) {
       printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
       fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
     }
     printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     pstamp(ficresplb);
     fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficresplb,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
     fprintf(ficresplb,"\n");
     
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     
     agebase=ageminpar;
     agelim=agemaxpar;
     
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     for(k=1; k<=i1;k++){ 
       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
       fprintf(ficresplb,"#******");
       printf("#******");
       fprintf(ficlog,"#******");
       for(j=1;j<=cptcoveff ;j++) {/* all covariates */
         fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       fprintf(ficresplb,"******\n");
       printf("******\n");
       fprintf(ficlog,"******\n");
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) ignored because no cases \n",k); 
         fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
         fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
         continue;
       }
       
       fprintf(ficresplb,"#Age ");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
       fprintf(ficresplb,"Total Years_to_converge\n");
       
       
       for (age=agebase; age<=agelim; age++){
         /* for (age=agebase; age<=agebase; age++){ */
         if(mobilavproj > 0){
           /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
           /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
           bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k);
         }else if (mobilavproj == 0){
           printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
           fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
           exit(1);
         }else{
           /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
           bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k);
         }
         fprintf(ficresplb,"%.0f ",age );
         for(j=1;j<=cptcoveff;j++)
           fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         tot=0.;
         for(i=1; i<=nlstate;i++){
           tot +=  bprlim[i][i];
           fprintf(ficresplb," %.5f", bprlim[i][i]);
         }
         fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
       } /* Age */
       /* was end of cptcod */
     } /* cptcov */
     
     /* hBijx(p, bage, fage); */
     /* fclose(ficrespijb); */
     
     return 0;
   }
    
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
                   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   /*      k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
       return 0;
   }
    
    int hBijx(double *p, int bage, int fage, double ***prevacurrent){
       /*------------- h Bij x at various ages ------------*/
   
     int stepsize;
     /* int agelim; */
           int ageminl;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
           
     double agedeb;
     double ***p3mat;
           
     strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
     if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
       printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
       fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
     }
     printf("Computing pij back: result on file '%s' \n", filerespijb);
     fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
     
     /* agelim=AGESUP; */
     ageminl=30;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     
     /* hstepm=1;   aff par mois*/
     pstamp(ficrespijb);
     fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x ");
     i1= pow(2,cptcoveff);
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
     /*    k=k+1;  */
     for (k=1; k <= (int) pow(2,cptcoveff); k++){
       fprintf(ficrespijb,"\n#****** ");
       for(j=1;j<=cptcoveff;j++)
         fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       fprintf(ficrespijb,"******\n");
       if(invalidvarcomb[k]){
         fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
         continue;
       }
       
       /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
       for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
         /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
         nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */
         
         /*          nhstepm=nhstepm*YEARM; aff par mois*/
         
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         /* oldm=oldms;savm=savms; */
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
         hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k);
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
         fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j=");
         for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespijb," %1d-%1d",i,j);
         fprintf(ficrespijb,"\n");
         for (h=0; h<=nhstepm; h++){
           /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
           fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
           /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
           fprintf(ficrespijb,"\n");
         }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespijb,"\n");
       }
       /*}*/
     }
     return 0;
    } /*  hBijx */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
     double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     /* double ***mobaverage; */
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int backcast=0;
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double **bprlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000;
   
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 11) {
         printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     coqvar=matrix(1,nqv,1,n);  /**< Fixed quantitative covariate */
     cotvar=ma3x(1,maxwav,1,ntv,1,n);  /**< Time varying covariate */
     cotqvar=ma3x(1,maxwav,1,nqtv,1,n);  /**< Time varying quantitative covariate */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }  else if(mle==-5) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }  else{ /* Begin of mle != -1 or -5 */
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
                           j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
                                   if(jj==i) continue;
                                   j++;
                                   fscanf(ficpar,"%1d%1d",&i1,&j1);
                                   if ((i1 != i) || (j1 != jj)){
                                           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
                                           exit(1);
                                   }
                                   fprintf(ficparo,"%1d%1d",i1,j1);
                                   if(mle==1)
                                           printf("%1d%1d",i,jj);
                                   fprintf(ficlog,"%1d%1d",i,jj);
                                   for(k=1; k<=ncovmodel;k++){
                                           fscanf(ficpar," %lf",&param[i][j][k]);
                                           if(mle==1){
                                                   printf(" %lf",param[i][j][k]);
                                                   fprintf(ficlog," %lf",param[i][j][k]);
                                           }
                                           else
                                                   fprintf(ficlog," %lf",param[i][j][k]);
                                           fprintf(ficparo," %lf",param[i][j][k]);
                                   }
                                   fscanf(ficpar,"\n");
                                   numlinepar++;
                                   if(mle==1)
                                           printf("\n");
                                   fprintf(ficlog,"\n");
                                   fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
                                   fscanf(ficpar,"%1d%1d",&i1,&j1);
                                   if ( (i1-i) * (j1-j) != 0){
                                           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                                           exit(1);
                                   }
                                   printf("%1d%1d",i,j);
                                   fprintf(ficparo,"%1d%1d",i1,j1);
                                   fprintf(ficlog,"%1d%1d",i1,j1);
                                   for(k=1; k<=ncovmodel;k++){
                                           fscanf(ficpar,"%le",&delti3[i][j][k]);
                                           printf(" %le",delti3[i][j][k]);
                                           fprintf(ficparo," %le",delti3[i][j][k]);
                                           fprintf(ficlog," %le",delti3[i][j][k]);
                                   }
                                   fscanf(ficpar,"\n");
                                   numlinepar++;
                                   printf("\n");
                                   fprintf(ficparo,"\n");
                                   fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
                   
       /* Reads covariance matrix */
       delti=delti3[1][1];
                   
                   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                   
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
                   
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
                   
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else{
           if(mle==1)
             printf("%1d%1d%d",i1,j1,jk);
         }
         fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
                                   printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
     
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     weight=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     for(i=1;i<=n;i++){
                   num[i]=0;
                   moisnais[i]=0;
                   annais[i]=0;
                   moisdc[i]=0;
                   andc[i]=0;
                   agedc[i]=0;
                   cod[i]=0;
                   weight[i]=1.0; /* Equal weights, 1 by default */
           }
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
     Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
     Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
     Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
        Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
     Tmodelind=ivector(1,NCOVMAX);/** five the k model position of an
                                   * individual dummy, fixed or varying:
                                   * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
    TmodelInvind=ivector(1,NCOVMAX);
     TmodelInvQind=ivector(1,NCOVMAX);/** five the k model position of an
                                   * individual quantitative, fixed or varying:
                                   * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     /* free_vector(moisdc,1,n); */
     /* free_vector(andc,1,n); */
     /* */
     
     wav=ivector(1,imx);
     /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
      
     /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     cptcoveff=0;
     if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
       tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     }
     
     ncovcombmax=pow(2,cptcoveff);
     invalidvarcomb=ivector(1, ncovcombmax); 
     for(i=1;i<ncovcombmax;i++)
       invalidvarcomb[i]=0;
     
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
     
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
     /*if (cptcovn > 0) */
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000000        = 1 & ((h-1) >> (k-1))
        *          +1= 00000001 =1 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
                    * codtabm and decodtabm are identical
        */
   
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age 
                    and for any valid combination of covariates
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
                 firstpass, lastpass,  stepm,  weightopt, model);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
                   for(i=1;i<=NDIM;i++)
                           for(j=1;j<=NDIM;j++)
                                   ximort[i][j]=0.;
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
                   
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
       
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
           
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
                                   matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
                                   printf("%f ",matcov[i][j]);
                                   fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   ageminpar=50;
                   agemaxpar=100;
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
                           printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                           fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   }
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
       free_matrix(ximort,1,NDIM,1,NDIM);
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
   #ifdef GSL
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
       
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
       }
       
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
         
         if (num_filled != 6) {
           printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           goto end;
         }
         printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
       }
       /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
       /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
       
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
       fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
                   /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
                           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
                           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p);
       }
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \
                    jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
                   
       /*------------ free_vector  -------------*/
       /*  chdir(path); */
                   
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
                   
                   
       /* Other results (useful)*/
                   
                   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
       
       /* ncovcombmax=  pow(2,cptcoveff); */
       /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
       
       /* Prevalence for each covariates in probs[age][status][cov] */
       probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
           for(k=1;k<=ncovcombmax;k++)
             probs[i][j][k]=0.;
       prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       if (mobilav!=0 ||mobilavproj !=0 ) {
         mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
         for(i=1;i<=AGESUP;i++)
           for(j=1;j<=nlstate;j++)
             for(k=1;k<=ncovcombmax;k++)
               mobaverages[i][j][k]=0.;
         mobaverage=mobaverages;
         if (mobilav!=0) {
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
             fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }
         }
         /* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */
         /* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
         else if (mobilavproj !=0) {
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
             fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
             printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
           }
         }
       }/* end if moving average */
       
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
       }
       if(backcast==1){
         ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
   
         /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
   
         bprlim=matrix(1,nlstate,1,nlstate);
         back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
         fclose(ficresplb);
   
         hBijx(p, bage, fage, mobaverage);
         fclose(ficrespijb);
         free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
   
         /* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj,
            bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
         free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       }
       
    
       /* ------ Other prevalence ratios------------ */
   
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
                   
                   
       /*---------- Health expectancies, no variances ------------*/
                   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
                   
       for (k=1; k <= (int) pow(2,cptcoveff); k++){ /* For any combination of dummy covariates, fixed and varying */
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficreseij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
                   
       /*---------- State-specific expectancies and variances ------------*/
                   
                   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
                   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         printf("\n#****** ");
         fprintf(ficrest,"\n#****** ");
         fprintf(ficlog,"\n#****** ");
         for(j=1;j<=cptcoveff;j++){ 
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrest,"******\n");
         fprintf(ficlog,"******\n");
         printf("******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij combination#=%d, ",k);
         fprintf(ficlog, " cvevsij combination#=%d, ",k);
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij vpopbased=%d \n",vpopbased);
           fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done \n");fflush(stdout);
         fprintf(ficlog,"done\n");fflush(ficlog);
         
         /*}*/
       } /* End k */
   
       printf("done State-specific expectancies\n");fflush(stdout);
       fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
   
       /*------- Variance of period (stable) prevalence------*/   
       
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
       
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
       
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficresvpl,"\n#****** ");
         printf("\n#****** ");
         fprintf(ficlog,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresvpl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
       
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
       
       
       /*---------- End : free ----------------*/
       if (mobilav!=0 ||mobilavproj !=0)
         free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
       free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     }  /* mle==-3 arrives here for freeing */
     /* endfree:*/
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);
     free_ma3x(cotvar,1,maxwav,1,ntv,1,n);
     free_matrix(coqvar,1,maxwav,1,n);
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     free_matrix(hess,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     
     free_ivector(ncodemax,1,NCOVMAX);
     free_ivector(ncodemaxwundef,1,NCOVMAX);
     free_ivector(Dummy,-1,NCOVMAX);
     free_ivector(Fixed,-1,NCOVMAX);
     free_ivector(Typevar,-1,NCOVMAX);
     free_ivector(Tvar,1,NCOVMAX);
     free_ivector(Tposprod,1,NCOVMAX);
     free_ivector(Tprod,1,NCOVMAX);
     free_ivector(Tvaraff,1,NCOVMAX);
     free_ivector(invalidvarcomb,1,ncovcombmax);
     free_ivector(Tage,1,NCOVMAX);
     free_ivector(Tmodelind,1,NCOVMAX);
     free_ivector(TmodelInvind,1,NCOVMAX);
     free_ivector(TmodelInvQind,1,NCOVMAX);
     
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
     
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
     
     
     printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
     if (_chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(_getcwd(pathcd,MAXLINE) > 0)
   #else
       if(chdir(pathcd) != 0)
         printf("Can't move to directory %s!\n", path);
     if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
     
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
   end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.36  
changed lines
  Added in v.1.228


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>