Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.100

version 1.41.2.1, 2003/06/12 10:43:20 version 1.100, 2004/07/12 18:29:06
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.100  2004/07/12 18:29:06  brouard
      Add version for Mac OS X. Just define UNIX in Makefile
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.99  2004/06/05 08:57:40  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.98  2004/05/16 15:05:56  brouard
   second wave of interviews ("longitudinal") which measure each change    New version 0.97 . First attempt to estimate force of mortality
   (if any) in individual health status.  Health expectancies are    directly from the data i.e. without the need of knowing the health
   computed from the time spent in each health state according to a    state at each age, but using a Gompertz model: log u =a + b*age .
   model. More health states you consider, more time is necessary to reach the    This is the basic analysis of mortality and should be done before any
   Maximum Likelihood of the parameters involved in the model.  The    other analysis, in order to test if the mortality estimated from the
   simplest model is the multinomial logistic model where pij is the    cross-longitudinal survey is different from the mortality estimated
   probability to be observed in state j at the second wave    from other sources like vital statistic data.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    The same imach parameter file can be used but the option for mle should be -3.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Agnès, who wrote this part of the code, tried to keep most of the
   where the markup *Covariates have to be included here again* invites    former routines in order to include the new code within the former code.
   you to do it.  More covariates you add, slower the  
   convergence.    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Current limitations:
   identical for each individual. Also, if a individual missed an    A) Even if you enter covariates, i.e. with the
   intermediate interview, the information is lost, but taken into    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   account using an interpolation or extrapolation.      B) There is no computation of Life Expectancy nor Life Table.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.97  2004/02/20 13:25:42  lievre
   conditional to the observed state i at age x. The delay 'h' can be    Version 0.96d. Population forecasting command line is (temporarily)
   split into an exact number (nh*stepm) of unobserved intermediate    suppressed.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.96  2003/07/15 15:38:55  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   and the contribution of each individual to the likelihood is simply    rewritten within the same printf. Workaround: many printfs.
   hPijx.  
     Revision 1.95  2003/07/08 07:54:34  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Repository):
   of the life expectancies. It also computes the prevalence limits.    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.94  2003/06/27 13:00:02  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Just cleaning
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.93  2003/06/25 16:33:55  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): On windows (cygwin) function asctime_r doesn't
   can be accessed at http://euroreves.ined.fr/imach .    exist so I changed back to asctime which exists.
   **********************************************************************/    (Module): Version 0.96b
    
 #include <math.h>    Revision 1.92  2003/06/25 16:30:45  brouard
 #include <stdio.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <stdlib.h>    exist so I changed back to asctime which exists.
 #include <unistd.h>  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define MAXLINE 256    * imach.c (Repository): Duplicated warning errors corrected.
 #define GNUPLOTPROGRAM "wgnuplot"    (Repository): Elapsed time after each iteration is now output. It
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    helps to forecast when convergence will be reached. Elapsed time
 #define FILENAMELENGTH 80    is stamped in powell.  We created a new html file for the graphs
 /*#define DEBUG*/    concerning matrix of covariance. It has extension -cov.htm.
   
 /*#define windows*/    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Some bugs corrected for windows. Also, when
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define NINTERVMAX 8    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    of the covariance matrix to be input.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.88  2003/06/23 17:54:56  brouard
 #define MAXN 20000    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.87  2003/06/18 12:26:01  brouard
 #define AGEBASE 40    Version 0.96
   
     Revision 1.86  2003/06/17 20:04:08  brouard
 int erreur; /* Error number */    (Module): Change position of html and gnuplot routines and added
 int nvar;    routine fileappend.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.85  2003/06/17 13:12:43  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Repository): Check when date of death was earlier that
 int ndeath=1; /* Number of dead states */    current date of interview. It may happen when the death was just
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    prior to the death. In this case, dh was negative and likelihood
 int popbased=0;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 int *wav; /* Number of waves for this individuual 0 is possible */    interview.
 int maxwav; /* Maxim number of waves */    (Repository): Because some people have very long ID (first column)
 int jmin, jmax; /* min, max spacing between 2 waves */    we changed int to long in num[] and we added a new lvector for
 int mle, weightopt;    memory allocation. But we also truncated to 8 characters (left
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    truncation)
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Repository): No more line truncation errors.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.84  2003/06/13 21:44:43  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Repository): Replace "freqsummary" at a correct
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    place. It differs from routine "prevalence" which may be called
 FILE *ficgp,*ficresprob,*ficpop;    many times. Probs is memory consuming and must be used with
 FILE *ficreseij;    parcimony.
   char filerese[FILENAMELENGTH];    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.83  2003/06/10 13:39:11  lievre
  FILE  *ficresvpl;    *** empty log message ***
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define NR_END 1    Add log in  imach.c and  fullversion number is now printed.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10  */
   /*
 #define NRANSI     Interpolated Markov Chain
 #define ITMAX 200  
     Short summary of the programme:
 #define TOL 2.0e-4    
     This program computes Healthy Life Expectancies from
 #define CGOLD 0.3819660    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define ZEPS 1.0e-10    first survey ("cross") where individuals from different ages are
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 #define GOLD 1.618034    second wave of interviews ("longitudinal") which measure each change
 #define GLIMIT 100.0    (if any) in individual health status.  Health expectancies are
 #define TINY 1.0e-20    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 static double maxarg1,maxarg2;    Maximum Likelihood of the parameters involved in the model.  The
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    simplest model is the multinomial logistic model where pij is the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define rint(a) floor(a+0.5)    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 static double sqrarg;    where the markup *Covariates have to be included here again* invites
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    you to do it.  More covariates you add, slower the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    convergence.
   
 int imx;    The advantage of this computer programme, compared to a simple
 int stepm;    multinomial logistic model, is clear when the delay between waves is not
 /* Stepm, step in month: minimum step interpolation*/    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 int estepm;    account using an interpolation or extrapolation.  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     hPijx is the probability to be observed in state i at age x+h
 int m,nb;    conditional to the observed state i at age x. The delay 'h' can be
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    split into an exact number (nh*stepm) of unobserved intermediate
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    states. This elementary transition (by month, quarter,
 double **pmmij, ***probs, ***mobaverage;    semester or year) is modelled as a multinomial logistic.  The hPx
 double dateintmean=0;    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 double *weight;    hPijx.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Also this programme outputs the covariance matrix of the parameters but also
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    of the life expectancies. It also computes the stable prevalence. 
     
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double ftolhess; /* Tolerance for computing hessian */             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /**************** split *************************/    from the European Union.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
    char *s;                             /* pointer */    can be accessed at http://euroreves.ined.fr/imach .
    int  l1, l2;                         /* length counters */  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    l1 = strlen( path );                 /* length of path */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    
 #ifdef windows    **********************************************************************/
    s = strrchr( path, '\\' );           /* find last / */  /*
 #else    main
    s = strrchr( path, '/' );            /* find last / */    read parameterfile
 #endif    read datafile
    if ( s == NULL ) {                   /* no directory, so use current */    concatwav
 #if     defined(__bsd__)                /* get current working directory */    freqsummary
       extern char       *getwd( );    if (mle >= 1)
       mlikeli
       if ( getwd( dirc ) == NULL ) {    print results files
 #else    if mle==1 
       extern char       *getcwd( );       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {        begin-prev-date,...
 #endif    open gnuplot file
          return( GLOCK_ERROR_GETCWD );    open html file
       }    stable prevalence
       strcpy( name, path );             /* we've got it */     for age prevalim()
    } else {                             /* strip direcotry from path */    h Pij x
       s++;                              /* after this, the filename */    variance of p varprob
       l2 = strlen( s );                 /* length of filename */    forecasting if prevfcast==1 prevforecast call prevalence()
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    health expectancies
       strcpy( name, s );                /* save file name */    Variance-covariance of DFLE
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    prevalence()
       dirc[l1-l2] = 0;                  /* add zero */     movingaverage()
    }    varevsij() 
    l1 = strlen( dirc );                 /* length of directory */    if popbased==1 varevsij(,popbased)
 #ifdef windows    total life expectancies
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Variance of stable prevalence
 #else   end
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  */
 #endif  
    s = strrchr( name, '.' );            /* find last / */  
    s++;  
    strcpy(ext,s);                       /* save extension */   
    l1= strlen( name);  #include <math.h>
    l2= strlen( s)+1;  #include <stdio.h>
    strncpy( finame, name, l1-l2);  #include <stdlib.h>
    finame[l1-l2]= 0;  #include <unistd.h>
    return( 0 );                         /* we're done */  
 }  /* #include <sys/time.h> */
   #include <time.h>
   #include "timeval.h"
 /******************************************/  
   /* #include <libintl.h> */
 void replace(char *s, char*t)  /* #define _(String) gettext (String) */
 {  
   int i;  #define MAXLINE 256
   int lg=20;  #define GNUPLOTPROGRAM "gnuplot"
   i=0;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   lg=strlen(t);  #define FILENAMELENGTH 132
   for(i=0; i<= lg; i++) {  /*#define DEBUG*/
     (s[i] = t[i]);  /*#define windows*/
     if (t[i]== '\\') s[i]='/';  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int nbocc(char *s, char occ)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   int i,j=0;  #define NINTERVMAX 8
   int lg=20;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   i=0;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   lg=strlen(s);  #define NCOVMAX 8 /* Maximum number of covariates */
   for(i=0; i<= lg; i++) {  #define MAXN 20000
   if  (s[i] == occ ) j++;  #define YEARM 12. /* Number of months per year */
   }  #define AGESUP 130
   return j;  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 void cutv(char *u,char *v, char*t, char occ)  #define DIRSEPARATOR '/'
 {  #define ODIRSEPARATOR '\\'
   int i,lg,j,p=0;  #else
   i=0;  #define DIRSEPARATOR '\\'
   for(j=0; j<=strlen(t)-1; j++) {  #define ODIRSEPARATOR '/'
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #endif
   }  
   /* $Id$ */
   lg=strlen(t);  /* $State$ */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   }  char fullversion[]="$Revision$ $Date$"; 
      u[p]='\0';  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
    for(j=0; j<= lg; j++) {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int npar=NPARMAX;
   }  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /********************** nrerror ********************/  int popbased=0;
   
 void nrerror(char error_text[])  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   fprintf(stderr,"ERREUR ...\n");  int jmin, jmax; /* min, max spacing between 2 waves */
   fprintf(stderr,"%s\n",error_text);  int gipmx, gsw; /* Global variables on the number of contributions 
   exit(1);                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
 /*********************** vector *******************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double *vector(int nl, int nh)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double *v;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double jmean; /* Mean space between 2 waves */
   if (!v) nrerror("allocation failure in vector");  double **oldm, **newm, **savm; /* Working pointers to matrices */
   return v-nl+NR_END;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /************************ free vector ******************/  int globpr; /* Global variable for printing or not */
 void free_vector(double*v, int nl, int nh)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   free((FREE_ARG)(v+nl-NR_END));  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /************************ivector *******************************/  FILE *ficresilk;
 int *ivector(long nl,long nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   int *v;  FILE *fichtm, *fichtmcov; /* Html File */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  FILE *ficreseij;
   if (!v) nrerror("allocation failure in ivector");  char filerese[FILENAMELENGTH];
   return v-nl+NR_END;  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /******************free ivector **************************/  char fileresvpl[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************* imatrix *******************************/  int  outcmd=0;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char filelog[FILENAMELENGTH]; /* Log file */
   int **m;  char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
   /* allocate pointers to rows */  char popfile[FILENAMELENGTH];
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m += NR_END;  
   m -= nrl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
    extern int gettimeofday();
   /* allocate rows and set pointers to them */  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  long time_value;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  extern long time();
   m[nrl] += NR_END;  char strcurr[80], strfor[80];
   m[nrl] -= ncl;  
    #define NR_END 1
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define FREE_ARG char*
    #define FTOL 1.0e-10
   /* return pointer to array of pointers to rows */  
   return m;  #define NRANSI 
 }  #define ITMAX 200 
   
 /****************** free_imatrix *************************/  #define TOL 2.0e-4 
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  #define CGOLD 0.3819660 
       long nch,ncl,nrh,nrl;  #define ZEPS 1.0e-10 
      /* free an int matrix allocated by imatrix() */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define GOLD 1.618034 
   free((FREE_ARG) (m+nrl-NR_END));  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /******************* matrix *******************************/  static double maxarg1,maxarg2;
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    
   double **m;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double sqrarg;
   m += NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m -= nrl;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int imx; 
   m[nrl] += NR_END;  int stepm=1;
   m[nrl] -= ncl;  /* Stepm, step in month: minimum step interpolation*/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int estepm;
   return m;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /*************************free matrix ************************/  long *num;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double **pmmij, ***probs;
   free((FREE_ARG)(m+nrl-NR_END));  double *ageexmed,*agecens;
 }  double dateintmean=0;
   
 /******************* ma3x *******************************/  double *weight;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double ***m;  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double ftolhess; /* Tolerance for computing hessian */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /**************** split *************************/
   m -= nrl;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl] += NR_END;    */ 
   m[nrl] -= ncl;    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     l1 = strlen(path );                   /* length of path */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl][ncl] += NR_END;    if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl][ncl] -= nll;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (j=ncl+1; j<=nch; j++)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     m[nrl][j]=m[nrl][j-1]+nlay;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
   for (i=nrl+1; i<=nrh; i++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;        return( GLOCK_ERROR_GETCWD );
     for (j=ncl+1; j<=nch; j++)      }
       m[i][j]=m[i][j-1]+nlay;      strcpy( name, path );               /* we've got it */
   }    } else {                              /* strip direcotry from path */
   return m;      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*************************free ma3x ************************/      strcpy( name, ss );         /* save file name */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    l1 = strlen( dirc );                  /* length of directory */
   free((FREE_ARG)(m+nrl-NR_END));    /*#ifdef windows
 }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
 /***************** f1dim *************************/    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 extern int ncom;  #endif
 extern double *pcom,*xicom;    */
 extern double (*nrfunc)(double []);    ss = strrchr( name, '.' );            /* find last / */
      if (ss >0){
 double f1dim(double x)      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   int j;      l1= strlen( name);
   double f;      l2= strlen(ss)+1;
   double *xt;      strncpy( finame, name, l1-l2);
        finame[l1-l2]= 0;
   xt=vector(1,ncom);    }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    return( 0 );                          /* we're done */
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  
 }  /******************************************/
   
 /*****************brent *************************/  void replace_back_to_slash(char *s, char*t)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    int i;
   int iter;    int lg=0;
   double a,b,d,etemp;    i=0;
   double fu,fv,fw,fx;    lg=strlen(t);
   double ftemp;    for(i=0; i<= lg; i++) {
   double p,q,r,tol1,tol2,u,v,w,x,xm;      (s[i] = t[i]);
   double e=0.0;      if (t[i]== '\\') s[i]='/';
      }
   a=(ax < cx ? ax : cx);  }
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  int nbocc(char *s, char occ)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    int i,j=0;
     xm=0.5*(a+b);    int lg=20;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    i=0;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    lg=strlen(s);
     printf(".");fflush(stdout);    for(i=0; i<= lg; i++) {
 #ifdef DEBUG    if  (s[i] == occ ) j++;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return j;
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  void cutv(char *u,char *v, char*t, char occ)
       return fx;  {
     }    /* cuts string t into u and v where u is ended by char occ excluding it
     ftemp=fu;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     if (fabs(e) > tol1) {       gives u="abcedf" and v="ghi2j" */
       r=(x-w)*(fx-fv);    int i,lg,j,p=0;
       q=(x-v)*(fx-fw);    i=0;
       p=(x-v)*q-(x-w)*r;    for(j=0; j<=strlen(t)-1; j++) {
       q=2.0*(q-r);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       if (q > 0.0) p = -p;    }
       q=fabs(q);  
       etemp=e;    lg=strlen(t);
       e=d;    for(j=0; j<p; j++) {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      (u[j] = t[j]);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    }
       else {       u[p]='\0';
         d=p/q;  
         u=x+d;     for(j=0; j<= lg; j++) {
         if (u-a < tol2 || b-u < tol2)      if (j>=(p+1))(v[j-p-1] = t[j]);
           d=SIGN(tol1,xm-x);    }
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /********************** nrerror ********************/
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  void nrerror(char error_text[])
     fu=(*f)(u);  {
     if (fu <= fx) {    fprintf(stderr,"ERREUR ...\n");
       if (u >= x) a=x; else b=x;    fprintf(stderr,"%s\n",error_text);
       SHFT(v,w,x,u)    exit(EXIT_FAILURE);
         SHFT(fv,fw,fx,fu)  }
         } else {  /*********************** vector *******************/
           if (u < x) a=u; else b=u;  double *vector(int nl, int nh)
           if (fu <= fw || w == x) {  {
             v=w;    double *v;
             w=u;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
             fv=fw;    if (!v) nrerror("allocation failure in vector");
             fw=fu;    return v-nl+NR_END;
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  /************************ free vector ******************/
           }  void free_vector(double*v, int nl, int nh)
         }  {
   }    free((FREE_ARG)(v+nl-NR_END));
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
 /****************** mnbrak ***********************/    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!v) nrerror("allocation failure in ivector");
             double (*func)(double))    return v-nl+NR_END;
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    free((FREE_ARG)(v+nl-NR_END));
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /************************lvector *******************************/
       }  long *lvector(long nl,long nh)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    long *v;
   while (*fb > *fc) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     r=(*bx-*ax)*(*fb-*fc);    if (!v) nrerror("allocation failure in ivector");
     q=(*bx-*cx)*(*fb-*fa);    return v-nl+NR_END;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /******************free lvector **************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  void free_lvector(long *v, long nl, long nh)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /******************* imatrix *******************************/
           SHFT(*fb,*fc,fu,(*func)(u))  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  { 
       u=ulim;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       fu=(*func)(u);    int **m; 
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);    /* allocate pointers to rows */ 
       fu=(*func)(u);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     SHFT(*ax,*bx,*cx,u)    m += NR_END; 
       SHFT(*fa,*fb,*fc,fu)    m -= nrl; 
       }    
 }    
     /* allocate rows and set pointers to them */ 
 /*************** linmin ************************/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 int ncom;    m[nrl] += NR_END; 
 double *pcom,*xicom;    m[nrl] -= ncl; 
 double (*nrfunc)(double []);    
      for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    
 {    /* return pointer to array of pointers to rows */ 
   double brent(double ax, double bx, double cx,    return m; 
                double (*f)(double), double tol, double *xmin);  } 
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /****************** free_imatrix *************************/
               double *fc, double (*func)(double));  void free_imatrix(m,nrl,nrh,ncl,nch)
   int j;        int **m;
   double xx,xmin,bx,ax;        long nch,ncl,nrh,nrl; 
   double fx,fb,fa;       /* free an int matrix allocated by imatrix() */ 
    { 
   ncom=n;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   pcom=vector(1,n);    free((FREE_ARG) (m+nrl-NR_END)); 
   xicom=vector(1,n);  } 
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /******************* matrix *******************************/
     pcom[j]=p[j];  double **matrix(long nrl, long nrh, long ncl, long nch)
     xicom[j]=xi[j];  {
   }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   ax=0.0;    double **m;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m -= nrl;
 #endif  
   for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     xi[j] *= xmin;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     p[j] += xi[j];    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 /*************** powell ************************/     */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  }
             double (*func)(double []))  
 {  /*************************free matrix ************************/
   void linmin(double p[], double xi[], int n, double *fret,  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
               double (*func)(double []));  {
   int i,ibig,j;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double del,t,*pt,*ptt,*xit;    free((FREE_ARG)(m+nrl-NR_END));
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  /******************* ma3x *******************************/
   ptt=vector(1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   xit=vector(1,n);  {
   xits=vector(1,n);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   *fret=(*func)(p);    double ***m;
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     fp=(*fret);    if (!m) nrerror("allocation failure 1 in matrix()");
     ibig=0;    m += NR_END;
     del=0.0;    m -= nrl;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf(" %d %.12f",i, p[i]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\n");    m[nrl] += NR_END;
     for (i=1;i<=n;i++) {    m[nrl] -= ncl;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 #endif    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       printf("%d",i);fflush(stdout);    m[nrl][ncl] += NR_END;
       linmin(p,xit,n,fret,func);    m[nrl][ncl] -= nll;
       if (fabs(fptt-(*fret)) > del) {    for (j=ncl+1; j<=nch; j++) 
         del=fabs(fptt-(*fret));      m[nrl][j]=m[nrl][j-1]+nlay;
         ibig=i;    
       }    for (i=nrl+1; i<=nrh; i++) {
 #ifdef DEBUG      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       printf("%d %.12e",i,(*fret));      for (j=ncl+1; j<=nch; j++) 
       for (j=1;j<=n;j++) {        m[i][j]=m[i][j-1]+nlay;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    }
         printf(" x(%d)=%.12e",j,xit[j]);    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for(j=1;j<=n;j++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         printf(" p=%.12e",p[j]);    */
       printf("\n");  }
 #endif  
     }  /*************************free ma3x ************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #ifdef DEBUG  {
       int k[2],l;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       k[0]=1;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       k[1]=-1;    free((FREE_ARG)(m+nrl-NR_END));
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /*************** function subdirf ***********/
       printf("\n");  char *subdirf(char fileres[])
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcpy(tmpout,optionfilefiname);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,"/"); /* Add to the right */
         }    strcat(tmpout,fileres);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return tmpout;
       }  }
 #endif  
   /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);    /* Caution optionfilefiname is hidden */
       free_vector(pt,1,n);    strcpy(tmpout,optionfilefiname);
       return;    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    strcat(tmpout,fileres);
     for (j=1;j<=n;j++) {    return tmpout;
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /* Caution optionfilefiname is hidden */
       if (t < 0.0) {    strcpy(tmpout,optionfilefiname);
         linmin(p,xit,n,fret,func);    strcat(tmpout,"/");
         for (j=1;j<=n;j++) {    strcat(tmpout,preop);
           xi[j][ibig]=xi[j][n];    strcat(tmpout,preop2);
           xi[j][n]=xit[j];    strcat(tmpout,fileres);
         }    return tmpout;
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /***************** f1dim *************************/
           printf(" %.12e",xit[j]);  extern int ncom; 
         printf("\n");  extern double *pcom,*xicom;
 #endif  extern double (*nrfunc)(double []); 
       }   
     }  double f1dim(double x) 
   }  { 
 }    int j; 
     double f;
 /**** Prevalence limit ****************/    double *xt; 
    
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    xt=vector(1,ncom); 
 {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    f=(*nrfunc)(xt); 
      matrix by transitions matrix until convergence is reached */    free_vector(xt,1,ncom); 
     return f; 
   int i, ii,j,k;  } 
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /*****************brent *************************/
   double **out, cov[NCOVMAX], **pmij();  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double **newm;  { 
   double agefin, delaymax=50 ; /* Max number of years to converge */    int iter; 
     double a,b,d,etemp;
   for (ii=1;ii<=nlstate+ndeath;ii++)    double fu,fv,fw,fx;
     for (j=1;j<=nlstate+ndeath;j++){    double ftemp;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
    
    cov[1]=1.;    a=(ax < cx ? ax : cx); 
      b=(ax > cx ? ax : cx); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    x=w=v=bx; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    fw=fv=fx=(*f)(x); 
     newm=savm;    for (iter=1;iter<=ITMAX;iter++) { 
     /* Covariates have to be included here again */      xm=0.5*(a+b); 
      cov[2]=agefin;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (k=1; k<=cptcovn;k++) {      printf(".");fflush(stdout);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficlog,".");fflush(ficlog);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #ifdef DEBUG
       }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1; k<=cptcovprod;k++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        *xmin=x; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        return fx; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      ftemp=fu;
       if (fabs(e) > tol1) { 
     savm=oldm;        r=(x-w)*(fx-fv); 
     oldm=newm;        q=(x-v)*(fx-fw); 
     maxmax=0.;        p=(x-v)*q-(x-w)*r; 
     for(j=1;j<=nlstate;j++){        q=2.0*(q-r); 
       min=1.;        if (q > 0.0) p = -p; 
       max=0.;        q=fabs(q); 
       for(i=1; i<=nlstate; i++) {        etemp=e; 
         sumnew=0;        e=d; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         prlim[i][j]= newm[i][j]/(1-sumnew);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         max=FMAX(max,prlim[i][j]);        else { 
         min=FMIN(min,prlim[i][j]);          d=p/q; 
       }          u=x+d; 
       maxmin=max-min;          if (u-a < tol2 || b-u < tol2) 
       maxmax=FMAX(maxmax,maxmin);            d=SIGN(tol1,xm-x); 
     }        } 
     if(maxmax < ftolpl){      } else { 
       return prlim;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
 /*************** transition probabilities ***************/        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          SHFT(fv,fw,fx,fu) 
 {          } else { 
   double s1, s2;            if (u < x) a=u; else b=u; 
   /*double t34;*/            if (fu <= fw || w == x) { 
   int i,j,j1, nc, ii, jj;              v=w; 
               w=u; 
     for(i=1; i<= nlstate; i++){              fv=fw; 
     for(j=1; j<i;j++){              fw=fu; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            } else if (fu <= fv || v == x || v == w) { 
         /*s2 += param[i][j][nc]*cov[nc];*/              v=u; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              fv=fu; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/            } 
       }          } 
       ps[i][j]=s2;    } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
     for(j=i+1; j<=nlstate+ndeath;j++){    return fx; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /****************** mnbrak ***********************/
       }  
       ps[i][j]=s2;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
   }  { 
     /*ps[3][2]=1;*/    double ulim,u,r,q, dum;
     double fu; 
   for(i=1; i<= nlstate; i++){   
      s1=0;    *fa=(*func)(*ax); 
     for(j=1; j<i; j++)    *fb=(*func)(*bx); 
       s1+=exp(ps[i][j]);    if (*fb > *fa) { 
     for(j=i+1; j<=nlstate+ndeath; j++)      SHFT(dum,*ax,*bx,dum) 
       s1+=exp(ps[i][j]);        SHFT(dum,*fb,*fa,dum) 
     ps[i][i]=1./(s1+1.);        } 
     for(j=1; j<i; j++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fc=(*func)(*cx); 
     for(j=i+1; j<=nlstate+ndeath; j++)    while (*fb > *fc) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      r=(*bx-*ax)*(*fb-*fc); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      q=(*bx-*cx)*(*fb-*fa); 
   } /* end i */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      if ((*bx-u)*(u-*cx) > 0.0) { 
       ps[ii][jj]=0;        fu=(*func)(u); 
       ps[ii][ii]=1;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     }        fu=(*func)(u); 
   }        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            } 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      printf("%lf ",ps[ii][jj]);        u=ulim; 
    }        fu=(*func)(u); 
     printf("\n ");      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
     printf("\n ");printf("%lf ",cov[2]);*/        fu=(*func)(u); 
 /*      } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      SHFT(*ax,*bx,*cx,u) 
   goto end;*/        SHFT(*fa,*fb,*fc,fu) 
     return ps;        } 
 }  } 
   
 /**************** Product of 2 matrices ******************/  /*************** linmin ************************/
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  int ncom; 
 {  double *pcom,*xicom;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  double (*nrfunc)(double []); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   
   /* in, b, out are matrice of pointers which should have been initialized  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
      before: only the contents of out is modified. The function returns  { 
      a pointer to pointers identical to out */    double brent(double ax, double bx, double cx, 
   long i, j, k;                 double (*f)(double), double tol, double *xmin); 
   for(i=nrl; i<= nrh; i++)    double f1dim(double x); 
     for(k=ncolol; k<=ncoloh; k++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)                double *fc, double (*func)(double)); 
         out[i][k] +=in[i][j]*b[j][k];    int j; 
     double xx,xmin,bx,ax; 
   return out;    double fx,fb,fa;
 }   
     ncom=n; 
     pcom=vector(1,n); 
 /************* Higher Matrix Product ***************/    xicom=vector(1,n); 
     nrfunc=func; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for (j=1;j<=n;j++) { 
 {      pcom[j]=p[j]; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      xicom[j]=xi[j]; 
      duration (i.e. until    } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    ax=0.0; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    xx=1.0; 
      (typically every 2 years instead of every month which is too big).    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      Model is determined by parameters x and covariates have to be    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
      included manually here.  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   int i, j, d, h, k;    for (j=1;j<=n;j++) { 
   double **out, cov[NCOVMAX];      xi[j] *= xmin; 
   double **newm;      p[j] += xi[j]; 
     } 
   /* Hstepm could be zero and should return the unit matrix */    free_vector(xicom,1,n); 
   for (i=1;i<=nlstate+ndeath;i++)    free_vector(pcom,1,n); 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    long sec_left, days, hours, minutes;
   for(h=1; h <=nhstepm; h++){    days = (time_sec) / (60*60*24);
     for(d=1; d <=hstepm; d++){    sec_left = (time_sec) % (60*60*24);
       newm=savm;    hours = (sec_left) / (60*60) ;
       /* Covariates have to be included here again */    sec_left = (sec_left) %(60*60);
       cov[1]=1.;    minutes = (sec_left) /60;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    sec_left = (sec_left) % (60);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       for (k=1; k<=cptcovage;k++)    return ascdiff;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    void linmin(double p[], double xi[], int n, double *fret, 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,                double (*func)(double [])); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    int i,ibig,j; 
       savm=oldm;    double del,t,*pt,*ptt,*xit;
       oldm=newm;    double fp,fptt;
     }    double *xits;
     for(i=1; i<=nlstate+ndeath; i++)    int niterf, itmp;
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];    pt=vector(1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    ptt=vector(1,n); 
          */    xit=vector(1,n); 
       }    xits=vector(1,n); 
   } /* end h */    *fret=(*func)(p); 
   return po;    for (j=1;j<=n;j++) pt[j]=p[j]; 
 }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
       ibig=0; 
 /*************** log-likelihood *************/      del=0.0; 
 double func( double *x)      last_time=curr_time;
 {      (void) gettimeofday(&curr_time,&tzp);
   int i, ii, j, k, mi, d, kk;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   double **out;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double sw; /* Sum of weights */      */
   double lli; /* Individual log likelihood */     for (i=1;i<=n;i++) {
   long ipmx;        printf(" %d %.12f",i, p[i]);
   /*extern weight */        fprintf(ficlog," %d %.12lf",i, p[i]);
   /* We are differentiating ll according to initial status */        fprintf(ficrespow," %.12lf", p[i]);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      }
   /*for(i=1;i<imx;i++)      printf("\n");
     printf(" %d\n",s[4][i]);      fprintf(ficlog,"\n");
   */      fprintf(ficrespow,"\n");fflush(ficrespow);
   cov[1]=1.;      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        strcpy(strcurr,asctime(&tmf));
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*       asctime_r(&tm,strcurr); */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        forecast_time=curr_time;
     for(mi=1; mi<= wav[i]-1; mi++){        itmp = strlen(strcurr);
       for (ii=1;ii<=nlstate+ndeath;ii++)        if(strcurr[itmp-1]=='\n')
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          strcurr[itmp-1]='\0';
       for(d=0; d<dh[mi][i]; d++){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         newm=savm;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(niterf=10;niterf<=30;niterf+=10){
         for (kk=1; kk<=cptcovage;kk++) {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          tmf = *localtime(&forecast_time.tv_sec);
         }  /*      asctime_r(&tmf,strfor); */
                  strcpy(strfor,asctime(&tmf));
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          itmp = strlen(strfor);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          if(strfor[itmp-1]=='\n')
         savm=oldm;          strfor[itmp-1]='\0';
         oldm=newm;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                  fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                }
       } /* end mult */      }
            for (i=1;i<=n;i++) { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        fptt=(*fret); 
       ipmx +=1;  #ifdef DEBUG
       sw += weight[i];        printf("fret=%lf \n",*fret);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fprintf(ficlog,"fret=%lf \n",*fret);
     } /* end of wave */  #endif
   } /* end of individual */        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        linmin(p,xit,n,fret,func); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        if (fabs(fptt-(*fret)) > del) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          del=fabs(fptt-(*fret)); 
   return -l;          ibig=i; 
 }        } 
   #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
 /*********** Maximum Likelihood Estimation ***************/        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 {          printf(" x(%d)=%.12e",j,xit[j]);
   int i,j, iter;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double **xi,*delti;        }
   double fret;        for(j=1;j<=n;j++) {
   xi=matrix(1,npar,1,npar);          printf(" p=%.12e",p[j]);
   for (i=1;i<=npar;i++)          fprintf(ficlog," p=%.12e",p[j]);
     for (j=1;j<=npar;j++)        }
       xi[i][j]=(i==j ? 1.0 : 0.0);        printf("\n");
   printf("Powell\n");        fprintf(ficlog,"\n");
   powell(p,xi,npar,ftol,&iter,&fret,func);  #endif
       } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  #ifdef DEBUG
         int k[2],l;
 }        k[0]=1;
         k[1]=-1;
 /**** Computes Hessian and covariance matrix ***/        printf("Max: %.12e",(*func)(p));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   double  **a,**y,*x,pd;          printf(" %.12e",p[j]);
   double **hess;          fprintf(ficlog," %.12e",p[j]);
   int i, j,jk;        }
   int *indx;        printf("\n");
         fprintf(ficlog,"\n");
   double hessii(double p[], double delta, int theta, double delti[]);        for(l=0;l<=1;l++) {
   double hessij(double p[], double delti[], int i, int j);          for (j=1;j<=n;j++) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   void ludcmp(double **a, int npar, int *indx, double *d) ;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   hess=matrix(1,npar,1,npar);          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   printf("\nCalculation of the hessian matrix. Wait...\n");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++){        }
     printf("%d",i);fflush(stdout);  #endif
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/        free_vector(xit,1,n); 
   }        free_vector(xits,1,n); 
          free_vector(ptt,1,n); 
   for (i=1;i<=npar;i++) {        free_vector(pt,1,n); 
     for (j=1;j<=npar;j++)  {        return; 
       if (j>i) {      } 
         printf(".%d%d",i,j);fflush(stdout);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         hess[i][j]=hessij(p,delti,i,j);      for (j=1;j<=n;j++) { 
         hess[j][i]=hess[i][j];            ptt[j]=2.0*p[j]-pt[j]; 
         /*printf(" %lf ",hess[i][j]);*/        xit[j]=p[j]-pt[j]; 
       }        pt[j]=p[j]; 
     }      } 
   }      fptt=(*func)(ptt); 
   printf("\n");      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
   a=matrix(1,npar,1,npar);          for (j=1;j<=n;j++) { 
   y=matrix(1,npar,1,npar);            xi[j][ibig]=xi[j][n]; 
   x=vector(1,npar);            xi[j][n]=xit[j]; 
   indx=ivector(1,npar);          }
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   for (j=1;j<=npar;j++) {            printf(" %.12e",xit[j]);
     for (i=1;i<=npar;i++) x[i]=0;            fprintf(ficlog," %.12e",xit[j]);
     x[j]=1;          }
     lubksb(a,npar,indx,x);          printf("\n");
     for (i=1;i<=npar;i++){          fprintf(ficlog,"\n");
       matcov[i][j]=x[i];  #endif
     }        }
   }      } 
     } 
   printf("\n#Hessian matrix#\n");  } 
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /**** Prevalence limit (stable prevalence)  ****************/
       printf("%.3e ",hess[i][j]);  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     printf("\n");  {
   }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)    int i, ii,j,k;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double min, max, maxmin, maxmax,sumnew=0.;
   ludcmp(a,npar,indx,&pd);    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
   /*  printf("\n#Hessian matrix recomputed#\n");    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    for (ii=1;ii<=nlstate+ndeath;ii++)
     x[j]=1;      for (j=1;j<=nlstate+ndeath;j++){
     lubksb(a,npar,indx,x);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++){      }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);     cov[1]=1.;
     }   
     printf("\n");   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   */      newm=savm;
       /* Covariates have to be included here again */
   free_matrix(a,1,npar,1,npar);       cov[2]=agefin;
   free_matrix(y,1,npar,1,npar);    
   free_vector(x,1,npar);        for (k=1; k<=cptcovn;k++) {
   free_ivector(indx,1,npar);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_matrix(hess,1,npar,1,npar);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int i;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   int l=1, lmax=20;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double k1,k2;  
   double p2[NPARMAX+1];      savm=oldm;
   double res;      oldm=newm;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      maxmax=0.;
   double fx;      for(j=1;j<=nlstate;j++){
   int k=0,kmax=10;        min=1.;
   double l1;        max=0.;
         for(i=1; i<=nlstate; i++) {
   fx=func(x);          sumnew=0;
   for (i=1;i<=npar;i++) p2[i]=x[i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for(l=0 ; l <=lmax; l++){          prlim[i][j]= newm[i][j]/(1-sumnew);
     l1=pow(10,l);          max=FMAX(max,prlim[i][j]);
     delts=delt;          min=FMIN(min,prlim[i][j]);
     for(k=1 ; k <kmax; k=k+1){        }
       delt = delta*(l1*k);        maxmin=max-min;
       p2[theta]=x[theta] +delt;        maxmax=FMAX(maxmax,maxmin);
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;      if(maxmax < ftolpl){
       k2=func(p2)-fx;        return prlim;
       /*res= (k1-2.0*fx+k2)/delt/delt; */      }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    }
        }
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*************** transition probabilities ***************/ 
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  {
         k=kmax;    double s1, s2;
       }    /*double t34;*/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    int i,j,j1, nc, ii, jj;
         k=kmax; l=lmax*10.;  
       }      for(i=1; i<= nlstate; i++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for(j=1; j<i;j++){
         delts=delt;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }            /*s2 += param[i][j][nc]*cov[nc];*/
     }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   delti[theta]=delts;          }
   return res;          ps[i][j]=s2;
    /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 }        }
         for(j=i+1; j<=nlstate+ndeath;j++){
 double hessij( double x[], double delti[], int thetai,int thetaj)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int i;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   int l=1, l1, lmax=20;          }
   double k1,k2,k3,k4,res,fx;          ps[i][j]=s2;
   double p2[NPARMAX+1];        }
   int k;      }
       /*ps[3][2]=1;*/
   fx=func(x);      
   for (k=1; k<=2; k++) {      for(i=1; i<= nlstate; i++){
     for (i=1;i<=npar;i++) p2[i]=x[i];        s1=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=1; j<i; j++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          s1+=exp(ps[i][j]);
     k1=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath; j++)
            s1+=exp(ps[i][j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        ps[i][i]=1./(s1+1.);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(j=1; j<i; j++)
     k2=func(p2)-fx;          ps[i][j]= exp(ps[i][j])*ps[i][i];
          for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     k3=func(p2)-fx;      } /* end i */
        
     p2[thetai]=x[thetai]-delti[thetai]/k;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(jj=1; jj<= nlstate+ndeath; jj++){
     k4=func(p2)-fx;          ps[ii][jj]=0;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          ps[ii][ii]=1;
 #ifdef DEBUG        }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      }
 #endif      
   }  
   return res;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
 /************** Inverse of matrix **************/  /*       } */
 void ludcmp(double **a, int n, int *indx, double *d)  /*       printf("\n "); */
 {  /*        } */
   int i,imax,j,k;  /*        printf("\n ");printf("%lf ",cov[2]); */
   double big,dum,sum,temp;         /*
   double *vv;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
          goto end;*/
   vv=vector(1,n);      return ps;
   *d=1.0;  }
   for (i=1;i<=n;i++) {  
     big=0.0;  /**************** Product of 2 matrices ******************/
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  {
     vv[i]=1.0/big;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (j=1;j<=n;j++) {    /* in, b, out are matrice of pointers which should have been initialized 
     for (i=1;i<j;i++) {       before: only the contents of out is modified. The function returns
       sum=a[i][j];       a pointer to pointers identical to out */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    long i, j, k;
       a[i][j]=sum;    for(i=nrl; i<= nrh; i++)
     }      for(k=ncolol; k<=ncoloh; k++)
     big=0.0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for (i=j;i<=n;i++) {          out[i][k] +=in[i][j]*b[j][k];
       sum=a[i][j];  
       for (k=1;k<j;k++)    return out;
         sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  /************* Higher Matrix Product ***************/
         imax=i;  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
     if (j != imax) {    /* Computes the transition matrix starting at age 'age' over 
       for (k=1;k<=n;k++) {       'nhstepm*hstepm*stepm' months (i.e. until
         dum=a[imax][k];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         a[imax][k]=a[j][k];       nhstepm*hstepm matrices. 
         a[j][k]=dum;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       }       (typically every 2 years instead of every month which is too big 
       *d = -(*d);       for the memory).
       vv[imax]=vv[j];       Model is determined by parameters x and covariates have to be 
     }       included manually here. 
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;       */
     if (j != n) {  
       dum=1.0/(a[j][j]);    int i, j, d, h, k;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double **out, cov[NCOVMAX];
     }    double **newm;
   }  
   free_vector(vv,1,n);  /* Doesn't work */    /* Hstepm could be zero and should return the unit matrix */
 ;    for (i=1;i<=nlstate+ndeath;i++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 void lubksb(double **a, int n, int *indx, double b[])        po[i][j][0]=(i==j ? 1.0 : 0.0);
 {      }
   int i,ii=0,ip,j;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double sum;    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   for (i=1;i<=n;i++) {        newm=savm;
     ip=indx[i];        /* Covariates have to be included here again */
     sum=b[ip];        cov[1]=1.;
     b[ip]=b[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     if (ii)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovage;k++)
     else if (sum) ii=i;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     b[i]=sum;        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=n;i>=1;i--) {  
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     b[i]=sum/a[i][i];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
 /************ Frequencies ********************/        oldm=newm;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      }
 {  /* Some frequencies */      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          po[i][j][h]=newm[i][j];
   double ***freq; /* Frequencies */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   double *pp;           */
   double pos, k2, dateintsum=0,k2cpt=0;        }
   FILE *ficresp;    } /* end h */
   char fileresp[FILENAMELENGTH];    return po;
    }
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");  /*************** log-likelihood *************/
   strcat(fileresp,fileres);  double func( double *x)
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    int i, ii, j, k, mi, d, kk;
     exit(0);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   }    double **out;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double sw; /* Sum of weights */
   j1=0;    double lli; /* Individual log likelihood */
      int s1, s2;
   j=cptcoveff;    double bbh, survp;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    long ipmx;
      /*extern weight */
   for(k1=1; k1<=j;k1++){    /* We are differentiating ll according to initial status */
     for(i1=1; i1<=ncodemax[k1];i1++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       j1++;    /*for(i=1;i<imx;i++) 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      printf(" %d\n",s[4][i]);
         scanf("%d", i);*/    */
       for (i=-1; i<=nlstate+ndeath; i++)      cov[1]=1.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
             freq[i][jk][m]=0;  
          if(mle==1){
       dateintsum=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       k2cpt=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (i=1; i<=imx; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
         bool=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if  (cptcovn>0) {            for (j=1;j<=nlstate+ndeath;j++){
           for (z1=1; z1<=cptcoveff; z1++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               bool=0;            }
         }          for(d=0; d<dh[mi][i]; d++){
         if (bool==1) {            newm=savm;
           for(m=firstpass; m<=lastpass; m++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             k2=anint[m][i]+(mint[m][i]/12.);            for (kk=1; kk<=cptcovage;kk++) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if(agev[m][i]==0) agev[m][i]=agemax+1;            }
               if(agev[m][i]==1) agev[m][i]=agemax+2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if (m<lastpass) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            savm=oldm;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            oldm=newm;
               }          } /* end mult */
                      
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                 dateintsum=dateintsum+k2;          /* But now since version 0.9 we anticipate for bias and large stepm.
                 k2cpt++;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
               }           * (in months) between two waves is not a multiple of stepm, we rounded to 
             }           * the nearest (and in case of equal distance, to the lowest) interval but now
           }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
                   * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
       if  (cptcovn>0) {           * For stepm > 1 the results are less biased than in previous versions. 
         fprintf(ficresp, "\n#********** Variable ");           */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          s1=s[mw[mi][i]][i];
         fprintf(ficresp, "**********\n#");          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1; i<=nlstate;i++)          /* bias is positive if real duration
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficresp, "\n");           */
                /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(i=(int)agemin; i <= (int)agemax+3; i++){          if( s2 > nlstate){ 
         if(i==(int)agemax+3)            /* i.e. if s2 is a death state and if the date of death is known then the contribution
           printf("Total");               to the likelihood is the probability to die between last step unit time and current 
         else               step unit time, which is also the differences between probability to die before dh 
           printf("Age %d", i);               and probability to die before dh-stepm . 
         for(jk=1; jk <=nlstate ; jk++){               In version up to 0.92 likelihood was computed
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          as if date of death was unknown. Death was treated as any other
             pp[jk] += freq[jk][m][i];          health state: the date of the interview describes the actual state
         }          and not the date of a change in health state. The former idea was
         for(jk=1; jk <=nlstate ; jk++){          to consider that at each interview the state was recorded
           for(m=-1, pos=0; m <=0 ; m++)          (healthy, disable or death) and IMaCh was corrected; but when we
             pos += freq[jk][m][i];          introduced the exact date of death then we should have modified
           if(pp[jk]>=1.e-10)          the contribution of an exact death to the likelihood. This new
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          contribution is smaller and very dependent of the step unit
           else          stepm. It is no more the probability to die between last interview
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
         for(jk=1; jk <=nlstate ; jk++){          Jackson for correcting this bug.  Former versions increased
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          mortality artificially. The bad side is that we add another loop
             pp[jk] += freq[jk][m][i];          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
             */
         for(jk=1,pos=0; jk <=nlstate ; jk++)            lli=log(out[s1][s2] - savm[s1][s2]);
           pos += pp[jk];          }else{
         for(jk=1; jk <=nlstate ; jk++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           if(pos>=1.e-5)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          } 
           else          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /*if(lli ==000.0)*/
           if( i <= (int) agemax){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             if(pos>=1.e-5){          ipmx +=1;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          sw += weight[i];
               probs[i][jk][j1]= pp[jk]/pos;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        } /* end of wave */
             }      } /* end of individual */
             else    }  else if(mle==2){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=-1; jk <=nlstate+ndeath; jk++)            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(i <= (int) agemax)            }
           fprintf(ficresp,"\n");          for(d=0; d<=dh[mi][i]; d++){
         printf("\n");            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   dateintmean=dateintsum/k2cpt;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fclose(ficresp);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            savm=oldm;
   free_vector(pp,1,nlstate);            oldm=newm;
            } /* end mult */
   /* End of Freq */        
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************ Prevalence ********************/          bbh=(double)bh[mi][i]/(double)stepm; 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {  /* Some frequencies */          ipmx +=1;
            sw += weight[i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***freq; /* Frequencies */        } /* end of wave */
   double *pp;      } /* end of individual */
   double pos, k2;    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   pp=vector(1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            for (j=1;j<=nlstate+ndeath;j++){
   j1=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   j=cptcoveff;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
  for(k1=1; k1<=j;k1++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i1=1; i1<=ncodemax[k1];i1++){            for (kk=1; kk<=cptcovage;kk++) {
       j1++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
       for (i=-1; i<=nlstate+ndeath; i++)              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (jk=-1; jk<=nlstate+ndeath; jk++)                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=agemin; m <= agemax+3; m++)            savm=oldm;
             freq[i][jk][m]=0;            oldm=newm;
                } /* end mult */
       for (i=1; i<=imx; i++) {        
         bool=1;          s1=s[mw[mi][i]][i];
         if  (cptcovn>0) {          s2=s[mw[mi+1][i]][i];
           for (z1=1; z1<=cptcoveff; z1++)          bbh=(double)bh[mi][i]/(double)stepm; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               bool=0;          ipmx +=1;
         }          sw += weight[i];
         if (bool==1) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=firstpass; m<=lastpass; m++){        } /* end of wave */
             k2=anint[m][i]+(mint[m][i]/12.);      } /* end of individual */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if (m<lastpass)        for(mi=1; mi<= wav[i]-1; mi++){
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
               else            for (j=1;j<=nlstate+ndeath;j++){
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }            }
           }          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(i=(int)agemin; i <= (int)agemax+3; i++){            for (kk=1; kk<=cptcovage;kk++) {
           for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
               pp[jk] += freq[jk][m][i];          
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             for(m=-1, pos=0; m <=0 ; m++)            savm=oldm;
             pos += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
                
          for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s2=s[mw[mi+1][i]][i];
              pp[jk] += freq[jk][m][i];          if( s2 > nlstate){ 
          }            lli=log(out[s1][s2] - savm[s1][s2]);
                    }else{
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
          for(jk=1; jk <=nlstate ; jk++){                    ipmx +=1;
            if( i <= (int) agemax){          sw += weight[i];
              if(pos>=1.e-5){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                probs[i][jk][j1]= pp[jk]/pos;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
              }        } /* end of wave */
            }      } /* end of individual */
          }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);            }
            for(d=0; d<dh[mi][i]; d++){
 }  /* End of Freq */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************* Waves Concatenation ***************/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            }
 {          
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Death is a valid wave (if date is known).                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            savm=oldm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            oldm=newm;
      and mw[mi+1][i]. dh depends on stepm.          } /* end mult */
      */        
           s1=s[mw[mi][i]][i];
   int i, mi, m;          s2=s[mw[mi+1][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      double sum=0., jmean=0.;*/          ipmx +=1;
           sw += weight[i];
   int j, k=0,jk, ju, jl;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double sum=0.;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   jmin=1e+5;        } /* end of wave */
   jmax=-1;      } /* end of individual */
   jmean=0.;    } /* End of if */
   for(i=1; i<=imx; i++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     mi=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     m=firstpass;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     while(s[m][i] <= nlstate){    return -l;
       if(s[m][i]>=1)  }
         mw[++mi][i]=m;  
       if(m >=lastpass)  /*************** log-likelihood *************/
         break;  double funcone( double *x)
       else  {
         m++;    /* Same as likeli but slower because of a lot of printf and if */
     }/* end while */    int i, ii, j, k, mi, d, kk;
     if (s[m][i] > nlstate){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       mi++;     /* Death is another wave */    double **out;
       /* if(mi==0)  never been interviewed correctly before death */    double lli; /* Individual log likelihood */
          /* Only death is a correct wave */    double llt;
       mw[mi][i]=m;    int s1, s2;
     }    double bbh, survp;
     /*extern weight */
     wav[i]=mi;    /* We are differentiating ll according to initial status */
     if(mi==0)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
     */
   for(i=1; i<=imx; i++){    cov[1]=1.;
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         dh[mi][i]=1;  
       else{    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (s[mw[mi+1][i]][i] > nlstate) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (agedc[i] < 2*AGESUP) {      for(mi=1; mi<= wav[i]-1; mi++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for (ii=1;ii<=nlstate+ndeath;ii++)
           if(j==0) j=1;  /* Survives at least one month after exam */          for (j=1;j<=nlstate+ndeath;j++){
           k=k+1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j <= jmin) jmin=j;          }
           sum=sum+j;        for(d=0; d<dh[mi][i]; d++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          newm=savm;
           }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
         else{            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          }
           k=k+1;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j >= jmax) jmax=j;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           else if (j <= jmin)jmin=j;          savm=oldm;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          oldm=newm;
           sum=sum+j;        } /* end mult */
         }        
         jk= j/stepm;        s1=s[mw[mi][i]][i];
         jl= j -jk*stepm;        s2=s[mw[mi+1][i]][i];
         ju= j -(jk+1)*stepm;        bbh=(double)bh[mi][i]/(double)stepm; 
         if(jl <= -ju)        /* bias is positive if real duration
           dh[mi][i]=jk;         * is higher than the multiple of stepm and negative otherwise.
         else         */
           dh[mi][i]=jk+1;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         if(dh[mi][i]==0)          lli=log(out[s1][s2] - savm[s1][s2]);
           dh[mi][i]=1; /* At least one step */        } else if (mle==1){
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }        } else if(mle==2){
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   jmean=sum/k;        } else if(mle==3){  /* exponential inter-extrapolation */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
  }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 /*********** Tricode ****************************/          lli=log(out[s1][s2]); /* Original formula */
 void tricode(int *Tvar, int **nbcode, int imx)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 {          lli=log(out[s1][s2]); /* Original formula */
   int Ndum[20],ij=1, k, j, i;        } /* End of if */
   int cptcode=0;        ipmx +=1;
   cptcoveff=0;        sw += weight[i];
          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=0; k<19; k++) Ndum[k]=0;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for (k=1; k<=7; k++) ncodemax[k]=0;        if(globpr){
           fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {   %10.6f %10.6f %10.6f ", \
     for (i=1; i<=imx; i++) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       ij=(int)(covar[Tvar[j]][i]);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       Ndum[ij]++;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            llt +=ll[k]*gipmx/gsw;
       if (ij > cptcode) cptcode=ij;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     }          }
           fprintf(ficresilk," %10.6f\n", -llt);
     for (i=0; i<=cptcode; i++) {        }
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of wave */
     }    } /* end of individual */
     ij=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for (i=1; i<=ncodemax[j]; i++) {    if(globpr==0){ /* First time we count the contributions and weights */
       for (k=0; k<=19; k++) {      gipmx=ipmx;
         if (Ndum[k] != 0) {      gsw=sw;
           nbcode[Tvar[j]][ij]=k;    }
              return -l;
           ij++;  }
         }  
         if (ij > ncodemax[j]) break;  
       }    /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }    {
     /* This routine should help understanding what is done with 
  for (k=0; k<19; k++) Ndum[k]=0;       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
  for (i=1; i<=ncovmodel-2; i++) {       Plotting could be done.
       ij=Tvar[i];     */
       Ndum[ij]++;    int k;
     }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
  ij=1;      strcpy(fileresilk,"ilk"); 
  for (i=1; i<=10; i++) {      strcat(fileresilk,fileres);
    if((Ndum[i]!=0) && (i<=ncovcol)){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      Tvaraff[ij]=i;        printf("Problem with resultfile: %s\n", fileresilk);
      ij++;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    }      }
  }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
        fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     cptcoveff=ij-1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 }      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 /*********** Health Expectancies ****************/      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
     *fretone=(*funcone)(p);
 {    if(*globpri !=0){
   /* Health expectancies */      fclose(ficresilk);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double age, agelim, hf;      fflush(fichtm); 
   double ***p3mat,***varhe;    } 
   double **dnewm,**doldm;    return;
   double *xp;  }
   double **gp, **gm;  
   double ***gradg, ***trgradg;  
   int theta;  /*********** Maximum Likelihood Estimation ***************/
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate*2,1,npar);    int i,j, iter;
   doldm=matrix(1,nlstate*2,1,nlstate*2);    double **xi;
      double fret;
   fprintf(ficreseij,"# Health expectancies\n");    double fretone; /* Only one call to likelihood */
   fprintf(ficreseij,"# Age");    /*  char filerespow[FILENAMELENGTH];*/
   for(i=1; i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      for (j=1;j<=npar;j++)
   fprintf(ficreseij,"\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   if(estepm < stepm){    strcpy(filerespow,"pow"); 
     printf ("Problem %d lower than %d\n",estepm, stepm);    strcat(filerespow,fileres);
   }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   else  hstepm=estepm;        printf("Problem with resultfile: %s\n", filerespow);
   /* We compute the life expectancy from trapezoids spaced every estepm months      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
    * This is mainly to measure the difference between two models: for example    }
    * if stepm=24 months pijx are given only every 2 years and by summing them    fprintf(ficrespow,"# Powell\n# iter -2*LL");
    * we are calculating an estimate of the Life Expectancy assuming a linear    for (i=1;i<=nlstate;i++)
    * progression inbetween and thus overestimating or underestimating according      for(j=1;j<=nlstate+ndeath;j++)
    * to the curvature of the survival function. If, for the same date, we        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    fprintf(ficrespow,"\n");
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise    powell(p,xi,npar,ftol,&iter,&fret,func);
    * curvature will be obtained if estepm is as small as stepm. */  
     fclose(ficrespow);
   /* For example we decided to compute the life expectancy with the smallest unit */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      nhstepm is the number of hstepm from age to agelim    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  }
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /**** Computes Hessian and covariance matrix ***/
      survival function given by stepm (the optimization length). Unfortunately it  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      means that if the survival funtion is printed only each two years of age and if  {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double  **a,**y,*x,pd;
      results. So we changed our mind and took the option of the best precision.    double **hess;
   */    int i, j,jk;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int *indx;
   
   agelim=AGESUP;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     /* nhstepm age range expressed in number of stepm */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double gompertz(double p[]);
     /* if (stepm >= YEARM) hstepm=1;*/    hess=matrix(1,npar,1,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nCalculation of the hessian matrix. Wait...\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     gp=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++){
     gm=matrix(0,nhstepm,1,nlstate*2);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored     
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        
        /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
     
     /* Computing Variances of health expectancies */    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
      for(theta=1; theta <=npar; theta++){        if (j>i) { 
       for(i=1; i<=npar; i++){          printf(".%d%d",i,j);fflush(stdout);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j,func,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            
            hess[j][i]=hess[i][j];    
       cptj=0;          /*printf(" %lf ",hess[i][j]);*/
       for(j=1; j<= nlstate; j++){        }
         for(i=1; i<=nlstate; i++){      }
           cptj=cptj+1;    }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    printf("\n");
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fprintf(ficlog,"\n");
           }  
         }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
          
          a=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++)    y=matrix(1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    x=vector(1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      indx=ivector(1,npar);
          for (i=1;i<=npar;i++)
       cptj=0;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(j=1; j<= nlstate; j++){    ludcmp(a,npar,indx,&pd);
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    for (j=1;j<=npar;j++) {
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for (i=1;i<=npar;i++) x[i]=0;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      x[j]=1;
           }      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
            }
        }
   
       for(j=1; j<= nlstate*2; j++)    printf("\n#Hessian matrix#\n");
         for(h=0; h<=nhstepm-1; h++){    fprintf(ficlog,"\n#Hessian matrix#\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (i=1;i<=npar;i++) { 
         }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
      }        fprintf(ficlog,"%.3e ",hess[i][j]);
          }
 /* End theta */      printf("\n");
       fprintf(ficlog,"\n");
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    }
   
      for(h=0; h<=nhstepm-1; h++)    /* Recompute Inverse */
       for(j=1; j<=nlstate*2;j++)    for (i=1;i<=npar;i++)
         for(theta=1; theta <=npar; theta++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         trgradg[h][j][theta]=gradg[h][theta][j];    ludcmp(a,npar,indx,&pd);
   
     /*  printf("\n#Hessian matrix recomputed#\n");
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    for (j=1;j<=npar;j++) {
         varhe[i][j][(int)age] =0.;      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     for(h=0;h<=nhstepm-1;h++){      lubksb(a,npar,indx,x);
       for(k=0;k<=nhstepm-1;k++){      for (i=1;i<=npar;i++){ 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        y[i][j]=x[i];
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        printf("%.3e ",y[i][j]);
         for(i=1;i<=nlstate*2;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
           for(j=1;j<=nlstate*2;j++)      }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      printf("\n");
       }      fprintf(ficlog,"\n");
     }    }
     */
        
     /* Computing expectancies */    free_matrix(a,1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
       for(j=1; j<=nlstate;j++)    free_vector(x,1,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    free_ivector(indx,1,npar);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    free_matrix(hess,1,npar,1,npar);
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   }
         }  
   /*************** hessian matrix ****************/
     fprintf(ficreseij,"%3.0f",age );  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     cptj=0;  {
     for(i=1; i<=nlstate;i++)    int i;
       for(j=1; j<=nlstate;j++){    int l=1, lmax=20;
         cptj++;    double k1,k2;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double p2[NPARMAX+1];
       }    double res;
     fprintf(ficreseij,"\n");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
        double fx;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    int k=0,kmax=10;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    double l1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    fx=func(x);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) p2[i]=x[i];
   }    for(l=0 ; l <=lmax; l++){
   free_vector(xp,1,npar);      l1=pow(10,l);
   free_matrix(dnewm,1,nlstate*2,1,npar);      delts=delt;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      for(k=1 ; k <kmax; k=k+1){
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        delt = delta*(l1*k);
 }        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
 /************ Variance ******************/        p2[theta]=x[theta]-delt;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        k2=func(p2)-fx;
 {        /*res= (k1-2.0*fx+k2)/delt/delt; */
   /* Variance of health expectancies */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   double **newm;  #ifdef DEBUG
   double **dnewm,**doldm;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int i, j, nhstepm, hstepm, h, nstepm ;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int k, cptcode;  #endif
   double *xp;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double **gp, **gm;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double ***gradg, ***trgradg;          k=kmax;
   double ***p3mat;        }
   double age,agelim, hf;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int theta;          k=kmax; l=lmax*10.;
         }
    fprintf(ficresvij,"# Covariances of life expectancies\n");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   fprintf(ficresvij,"# Age");          delts=delt;
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    }
   fprintf(ficresvij,"\n");    delti[theta]=delts;
     return res; 
   xp=vector(1,npar);    
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  
    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   if(estepm < stepm){  {
     printf ("Problem %d lower than %d\n",estepm, stepm);    int i;
   }    int l=1, l1, lmax=20;
   else  hstepm=estepm;      double k1,k2,k3,k4,res,fx;
   /* For example we decided to compute the life expectancy with the smallest unit */    double p2[NPARMAX+1];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int k;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    fx=func(x);
      Look at hpijx to understand the reason of that which relies in memory size    for (k=1; k<=2; k++) {
      and note for a fixed period like k years */      for (i=1;i<=npar;i++) p2[i]=x[i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      p2[thetai]=x[thetai]+delti[thetai]/k;
      survival function given by stepm (the optimization length). Unfortunately it      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      means that if the survival funtion is printed only each two years of age and if      k1=func(p2)-fx;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    
      results. So we changed our mind and took the option of the best precision.      p2[thetai]=x[thetai]+delti[thetai]/k;
   */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      k2=func(p2)-fx;
   agelim = AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      p2[thetai]=x[thetai]-delti[thetai]/k;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      k3=func(p2)-fx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
     gp=matrix(0,nhstepm,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gm=matrix(0,nhstepm,1,nlstate);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(theta=1; theta <=npar; theta++){  #ifdef DEBUG
       for(i=1; i<=npar; i++){ /* Computes gradient */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }  #endif
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    return res;
   }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /************** Inverse of matrix **************/
           prlim[i][i]=probs[(int)age][i][ij];  void ludcmp(double **a, int n, int *indx, double *d) 
       }  { 
      int i,imax,j,k; 
       for(j=1; j<= nlstate; j++){    double big,dum,sum,temp; 
         for(h=0; h<=nhstepm; h++){    double *vv; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)   
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    vv=vector(1,n); 
         }    *d=1.0; 
       }    for (i=1;i<=n;i++) { 
          big=0.0; 
       for(i=1; i<=npar; i++) /* Computes gradient */      for (j=1;j<=n;j++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      vv[i]=1.0/big; 
      } 
       if (popbased==1) {    for (j=1;j<=n;j++) { 
         for(i=1; i<=nlstate;i++)      for (i=1;i<j;i++) { 
           prlim[i][i]=probs[(int)age][i][ij];        sum=a[i][j]; 
       }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       for(j=1; j<= nlstate; j++){      } 
         for(h=0; h<=nhstepm; h++){      big=0.0; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for (i=j;i<=n;i++) { 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        sum=a[i][j]; 
         }        for (k=1;k<j;k++) 
       }          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       for(j=1; j<= nlstate; j++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         for(h=0; h<=nhstepm; h++){          big=dum; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          imax=i; 
         }        } 
     } /* End theta */      } 
       if (j != imax) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
     for(h=0; h<=nhstepm; h++)          a[imax][k]=a[j][k]; 
       for(j=1; j<=nlstate;j++)          a[j][k]=dum; 
         for(theta=1; theta <=npar; theta++)        } 
           trgradg[h][j][theta]=gradg[h][theta][j];        *d = -(*d); 
         vv[imax]=vv[j]; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      } 
     for(i=1;i<=nlstate;i++)      indx[j]=imax; 
       for(j=1;j<=nlstate;j++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
         vareij[i][j][(int)age] =0.;      if (j != n) { 
         dum=1.0/(a[j][j]); 
     for(h=0;h<=nhstepm;h++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(k=0;k<=nhstepm;k++){      } 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    } 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_vector(vv,1,n);  /* Doesn't work */
         for(i=1;i<=nlstate;i++)  ;
           for(j=1;j<=nlstate;j++)  } 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
     }  { 
     int i,ii=0,ip,j; 
     fprintf(ficresvij,"%.0f ",age );    double sum; 
     for(i=1; i<=nlstate;i++)   
       for(j=1; j<=nlstate;j++){    for (i=1;i<=n;i++) { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      ip=indx[i]; 
       }      sum=b[ip]; 
     fprintf(ficresvij,"\n");      b[ip]=b[i]; 
     free_matrix(gp,0,nhstepm,1,nlstate);      if (ii) 
     free_matrix(gm,0,nhstepm,1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      else if (sum) ii=i; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      b[i]=sum; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
   } /* End age */    for (i=n;i>=1;i--) { 
        sum=b[i]; 
   free_vector(xp,1,npar);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   free_matrix(doldm,1,nlstate,1,npar);      b[i]=sum/a[i][i]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    } 
   } 
 }  
   /************ Frequencies ********************/
 /************ Variance of prevlim ******************/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  {  /* Some frequencies */
 {    
   /* Variance of prevalence limit */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int first;
   double **newm;    double ***freq; /* Frequencies */
   double **dnewm,**doldm;    double *pp, **prop;
   int i, j, nhstepm, hstepm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   int k, cptcode;    FILE *ficresp;
   double *xp;    char fileresp[FILENAMELENGTH];
   double *gp, *gm;    
   double **gradg, **trgradg;    pp=vector(1,nlstate);
   double age,agelim;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   int theta;    strcpy(fileresp,"p");
        strcat(fileresp,fileres);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
   fprintf(ficresvpl,"# Age");      printf("Problem with prevalence resultfile: %s\n", fileresp);
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficresvpl," %1d-%1d",i,i);      exit(0);
   fprintf(ficresvpl,"\n");    }
     freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   xp=vector(1,npar);    j1=0;
   dnewm=matrix(1,nlstate,1,npar);    
   doldm=matrix(1,nlstate,1,nlstate);    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    first=1;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for(k1=1; k1<=j;k1++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(i1=1; i1<=ncodemax[k1];i1++){
     if (stepm >= YEARM) hstepm=1;        j1++;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     gradg=matrix(1,npar,1,nlstate);          scanf("%d", i);*/
     gp=vector(1,nlstate);        for (i=-1; i<=nlstate+ndeath; i++)  
     gm=vector(1,nlstate);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
     for(theta=1; theta <=npar; theta++){              freq[i][jk][m]=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1; i<=nlstate; i++)  
       }        for(m=iagemin; m <= iagemax+3; m++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          prop[i][m]=0;
       for(i=1;i<=nlstate;i++)        
         gp[i] = prlim[i][i];        dateintsum=0;
            k2cpt=0;
       for(i=1; i<=npar; i++) /* Computes gradient */        for (i=1; i<=imx; i++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          bool=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if  (cptcovn>0) {
       for(i=1;i<=nlstate;i++)            for (z1=1; z1<=cptcoveff; z1++) 
         gm[i] = prlim[i][i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
       for(i=1;i<=nlstate;i++)          }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          if (bool==1){
     } /* End theta */            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
     trgradg =matrix(1,nlstate,1,npar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(j=1; j<=nlstate;j++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(theta=1; theta <=npar; theta++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         trgradg[j][theta]=gradg[theta][j];                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for(i=1;i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       varpl[i][(int)age] =0.;                }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for(i=1;i<=nlstate;i++)                  dateintsum=dateintsum+k2;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */                  k2cpt++;
                 }
     fprintf(ficresvpl,"%.0f ",age );                /*}*/
     for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          }
     fprintf(ficresvpl,"\n");        }
     free_vector(gp,1,nlstate);         
     free_vector(gm,1,nlstate);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);        if  (cptcovn>0) {
   } /* End age */          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   free_vector(xp,1,npar);          fprintf(ficresp, "**********\n#");
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 }        fprintf(ficresp, "\n");
         
 /************ Variance of one-step probabilities  ******************/        for(i=iagemin; i <= iagemax+3; i++){
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          if(i==iagemax+3){
 {            fprintf(ficlog,"Total");
   int i, j, i1, k1, j1, z1;          }else{
   int k=0, cptcode;            if(first==1){
   double **dnewm,**doldm;              first=0;
   double *xp;              printf("See log file for details...\n");
   double *gp, *gm;            }
   double **gradg, **trgradg;            fprintf(ficlog,"Age %d", i);
   double age,agelim, cov[NCOVMAX];          }
   int theta;          for(jk=1; jk <=nlstate ; jk++){
   char fileresprob[FILENAMELENGTH];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
   strcpy(fileresprob,"prob");          }
   strcat(fileresprob,fileres);          for(jk=1; jk <=nlstate ; jk++){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            for(m=-1, pos=0; m <=0 ; m++)
     printf("Problem with resultfile: %s\n", fileresprob);              pos += freq[jk][m][i];
   }            if(pp[jk]>=1.e-10){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              if(first==1){
                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");              }
   fprintf(ficresprob,"# Age");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   for(i=1; i<=nlstate;i++)            }else{
     for(j=1; j<=(nlstate+ndeath);j++)              if(first==1)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   fprintf(ficresprob,"\n");          }
   
           for(jk=1; jk <=nlstate ; jk++){
   xp=vector(1,npar);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              pp[jk] += freq[jk][m][i];
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          }       
            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   cov[1]=1;            pos += pp[jk];
   j=cptcoveff;            posprop += prop[jk][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }
   j1=0;          for(jk=1; jk <=nlstate ; jk++){
   for(k1=1; k1<=1;k1++){            if(pos>=1.e-5){
     for(i1=1; i1<=ncodemax[k1];i1++){              if(first==1)
     j1++;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     if  (cptcovn>0) {            }else{
       fprintf(ficresprob, "\n#********** Variable ");              if(first==1)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresprob, "**********\n#");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
                if( i <= iagemax){
       for (age=bage; age<=fage; age ++){              if(pos>=1.e-5){
         cov[2]=age;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         for (k=1; k<=cptcovn;k++) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                        }
         }              else
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for (k=1; k<=cptcovprod;k++)            }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          }
                  
         gradg=matrix(1,npar,1,9);          for(jk=-1; jk <=nlstate+ndeath; jk++)
         trgradg=matrix(1,9,1,npar);            for(m=-1; m <=nlstate+ndeath; m++)
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              if(freq[jk][m][i] !=0 ) {
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1)
                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         for(theta=1; theta <=npar; theta++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           for(i=1; i<=npar; i++)              }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          if(i <= iagemax)
                      fprintf(ficresp,"\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          if(first==1)
                      printf("Others in log...\n");
           k=0;          fprintf(ficlog,"\n");
           for(i=1; i<= (nlstate+ndeath); i++){        }
             for(j=1; j<=(nlstate+ndeath);j++){      }
               k=k+1;    }
               gp[k]=pmmij[i][j];    dateintmean=dateintsum/k2cpt; 
             }   
           }    fclose(ficresp);
              free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
           for(i=1; i<=npar; i++)    free_vector(pp,1,nlstate);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        /* End of Freq */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  }
           k=0;  
           for(i=1; i<=(nlstate+ndeath); i++){  /************ Prevalence ********************/
             for(j=1; j<=(nlstate+ndeath);j++){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
               k=k+1;  {  
               gm[k]=pmmij[i][j];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             }       in each health status at the date of interview (if between dateprev1 and dateprev2).
           }       We still use firstpass and lastpass as another selection.
          */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)   
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         }    double ***freq; /* Frequencies */
     double *pp, **prop;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double pos,posprop; 
           for(theta=1; theta <=npar; theta++)    double  y2; /* in fractional years */
             trgradg[j][theta]=gradg[theta][j];    int iagemin, iagemax;
          
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    iagemin= (int) agemin;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    iagemax= (int) agemax;
            /*pp=vector(1,nlstate);*/
         pmij(pmmij,cov,ncovmodel,x,nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
            /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         k=0;    j1=0;
         for(i=1; i<=(nlstate+ndeath); i++){    
           for(j=1; j<=(nlstate+ndeath);j++){    j=cptcoveff;
             k=k+1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             gm[k]=pmmij[i][j];    
           }    for(k1=1; k1<=j;k1++){
         }      for(i1=1; i1<=ncodemax[k1];i1++){
              j1++;
      /*printf("\n%d ",(int)age);        
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        for (i=1; i<=nlstate; i++)  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(m=iagemin; m <= iagemax+3; m++)
      }*/            prop[i][m]=0.0;
        
         fprintf(ficresprob,"\n%d ",(int)age);        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          if  (cptcovn>0) {
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
     }          } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          if (bool==1) { 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   free_vector(xp,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fclose(ficresprob);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
 }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
 /******************* Printing html file ***********/                  prop[s[m][i]][iagemax+3] += weight[i]; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                } 
  int lastpass, int stepm, int weightopt, char model[],\              }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \            } /* end selection of waves */
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          }
  char version[], int popforecast, int estepm ){        }
   int jj1, k1, i1, cpt;        for(i=iagemin; i <= iagemax+3; i++){  
   FILE *fichtm;          
   /*char optionfilehtm[FILENAMELENGTH];*/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   strcpy(optionfilehtm,optionfile);          } 
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(jk=1; jk <=nlstate ; jk++){     
     printf("Problem with %s \n",optionfilehtm), exit(0);            if( i <=  iagemax){ 
   }              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              } 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            } 
 \n          }/* end jk */ 
 Total number of observations=%d <br>\n        }/* end i */ 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      } /* end i1 */
 <hr  size=\"2\" color=\"#EC5E5E\">    } /* end k1 */
  <ul><li>Outputs files<br>\n    
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    /*free_vector(pp,1,nlstate);*/
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  }  /* End of prevalence */
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  /************* Waves Concatenation ***************/
   
  fprintf(fichtm,"\n  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  {
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n       Death is a valid wave (if date is known).
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
  if(popforecast==1) fprintf(fichtm,"\n       */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    int i, mi, m;
         <br>",fileres,fileres,fileres,fileres);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  else       double sum=0., jmean=0.;*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    int first;
 fprintf(fichtm," <li>Graphs</li><p>");    int j, k=0,jk, ju, jl;
     double sum=0.;
  m=cptcoveff;    first=0;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    jmin=1e+5;
     jmax=-1;
  jj1=0;    jmean=0.;
  for(k1=1; k1<=m;k1++){    for(i=1; i<=imx; i++){
    for(i1=1; i1<=ncodemax[k1];i1++){      mi=0;
        jj1++;      m=firstpass;
        if (cptcovn > 0) {      while(s[m][i] <= nlstate){
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        if(s[m][i]>=1)
          for (cpt=1; cpt<=cptcoveff;cpt++)          mw[++mi][i]=m;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        if(m >=lastpass)
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          break;
        }        else
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          m++;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }/* end while */
        for(cpt=1; cpt<nlstate;cpt++){      if (s[m][i] > nlstate){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        mi++;     /* Death is another wave */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        /* if(mi==0)  never been interviewed correctly before death */
        }           /* Only death is a correct wave */
     for(cpt=1; cpt<=nlstate;cpt++) {        mw[mi][i]=m;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      }
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        wav[i]=mi;
      }      if(mi==0){
      for(cpt=1; cpt<=nlstate;cpt++) {        nbwarn++;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        if(first==0){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
      }          first=1;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        }
 health expectancies in states (1) and (2): e%s%d.gif<br>        if(first==1){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 fprintf(fichtm,"\n</body>");        }
    }      } /* end mi==0 */
    }    } /* End individuals */
 fclose(fichtm);  
 }    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
 /******************* Gnuplot file **************/        if (stepm <=0)
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          dh[mi][i]=1;
         else{
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
   strcpy(optionfilegnuplot,optionfilefiname);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   strcat(optionfilegnuplot,".gp.txt");              if(j==0) j=1;  /* Survives at least one month after exam */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              else if(j<0){
     printf("Problem with file %s",optionfilegnuplot);                nberr++;
   }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
 #ifdef windows                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficgp,"cd \"%s\" \n",pathc);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #endif                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 m=pow(2,cptcoveff);              }
                k=k+1;
  /* 1eme*/              if (j >= jmax) jmax=j;
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if (j <= jmin) jmin=j;
    for (k1=1; k1<= m ; k1 ++) {              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
 for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            k=k+1;
     for (i=1; i<= nlstate ; i ++) {            if (j >= jmax) jmax=j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            else if (j <= jmin)jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            if(j<0){
      for (i=1; i<= nlstate ; i ++) {              nberr++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }              }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            sum=sum+j;
           }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          jk= j/stepm;
    }          jl= j -jk*stepm;
   }          ju= j -(jk+1)*stepm;
   /*2 eme*/          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              bh[mi][i]=0;
                }else{ /* We want a negative bias in order to only have interpolation ie
     for (i=1; i<= nlstate+1 ; i ++) {                    * at the price of an extra matrix product in likelihood */
       k=2*i;              dh[mi][i]=jk+1;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=ju;
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(jl <= -ju){
 }                dh[mi][i]=jk;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              bh[mi][i]=jl;       /* bias is positive if real duration
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                                   * is higher than the multiple of stepm and negative otherwise.
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                                   */
       for (j=1; j<= nlstate+1 ; j ++) {            }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            else{
         else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=jk+1;
 }                bh[mi][i]=ju;
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(dh[mi][i]==0){
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=1; /* At least one step */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=ju; /* At least one step */
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 }              }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          } /* end if mle */
       else fprintf(ficgp,"\" t\"\" w l 0,");        }
     }      } /* end wave */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    }
   }    jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   /*3eme*/    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {  /*********** Tricode ****************************/
       k=2+nlstate*(2*cpt-2);  void tricode(int *Tvar, int **nbcode, int imx)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    int Ndum[20],ij=1, k, j, i, maxncov=19;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    int cptcode=0;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    cptcoveff=0; 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");   
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
 */  
       for (i=1; i< nlstate ; i ++) {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
       }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        Ndum[ij]++; /*store the modality */
     }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                           Tvar[j]. If V=sex and male is 0 and 
   /* CV preval stat */                                         female is 1, then  cptcode=1.*/
     for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;      for (i=0; i<=cptcode; i++) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);      ij=1; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      for (i=1; i<=ncodemax[j]; i++) {
              for (k=0; k<= maxncov; k++) {
       l=3+(nlstate+ndeath)*cpt;          if (Ndum[k] != 0) {
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            nbcode[Tvar[j]][ij]=k; 
       for (i=1; i< nlstate ; i ++) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         l=3+(nlstate+ndeath)*cpt;            
         fprintf(ficgp,"+$%d",l+i+1);            ij++;
       }          }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            if (ij > ncodemax[j]) break; 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }  
     }      } 
   }      }  
    
   /* proba elementaires */   for (k=0; k< maxncov; k++) Ndum[k]=0;
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){   for (i=1; i<=ncovmodel-2; i++) { 
       if (k != i) {     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         for(j=1; j <=ncovmodel; j++){     ij=Tvar[i];
             Ndum[ij]++;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);   }
           jk++;  
           fprintf(ficgp,"\n");   ij=1;
         }   for (i=1; i<= maxncov; i++) {
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
     }       Tvaraff[ij]=i; /*For printing */
     }       ij++;
      }
     for(jk=1; jk <=m; jk++) {   }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);   
    i=1;   cptcoveff=ij-1; /*Number of simple covariates*/
    for(k2=1; k2<=nlstate; k2++) {  }
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {  /*********** Health Expectancies ****************/
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 ij=1;  
         for(j=3; j <=ncovmodel; j++) {  {
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* Health expectancies */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
             ij++;    double age, agelim, hf;
           }    double ***p3mat,***varhe;
           else    double **dnewm,**doldm;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double *xp;
         }    double **gp, **gm;
           fprintf(ficgp,")/(1");    double ***gradg, ***trgradg;
            int theta;
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 ij=1;    xp=vector(1,npar);
           for(j=3; j <=ncovmodel; j++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    
             ij++;    fprintf(ficreseij,"# Health expectancies\n");
           }    fprintf(ficreseij,"# Age");
           else    for(i=1; i<=nlstate;i++)
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for(j=1; j<=nlstate;j++)
           }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
           fprintf(ficgp,")");    fprintf(ficreseij,"\n");
         }  
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    if(estepm < stepm){
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      printf ("Problem %d lower than %d\n",estepm, stepm);
         i=i+ncovmodel;    }
        }    else  hstepm=estepm;   
      }    /* We compute the life expectancy from trapezoids spaced every estepm months
    }     * This is mainly to measure the difference between two models: for example
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);     * if stepm=24 months pijx are given only every 2 years and by summing them
    }     * we are calculating an estimate of the Life Expectancy assuming a linear 
         * progression in between and thus overestimating or underestimating according
   fclose(ficgp);     * to the curvature of the survival function. If, for the same date, we 
 }  /* end gnuplot */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
 /*************** Moving average **************/     * curvature will be obtained if estepm is as small as stepm. */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
     /* For example we decided to compute the life expectancy with the smallest unit */
   int i, cpt, cptcod;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)       nhstepm is the number of hstepm from age to agelim 
       for (i=1; i<=nlstate;i++)       nstepm is the number of stepm from age to agelin. 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)       Look at hpijx to understand the reason of that which relies in memory size
           mobaverage[(int)agedeb][i][cptcod]=0.;       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       survival function given by stepm (the optimization length). Unfortunately it
       for (i=1; i<=nlstate;i++){       means that if the survival funtion is printed only each two years of age and if
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           for (cpt=0;cpt<=4;cpt++){       results. So we changed our mind and took the option of the best precision.
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }    agelim=AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      /* nhstepm age range expressed in number of stepm */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 /************** Forecasting ******************/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        gp=matrix(0,nhstepm,1,nlstate*nlstate);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double *popeffectif,*popcount;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   double ***p3mat;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   char fileresf[FILENAMELENGTH];   
   
  agelim=AGESUP;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
       /* Computing  Variances of health expectancies */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
         for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
   strcpy(fileresf,"f");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   strcat(fileresf,fileres);        }
   if((ficresf=fopen(fileresf,"w"))==NULL) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with forecast resultfile: %s\n", fileresf);    
   }        cptj=0;
   printf("Computing forecasting: result on file '%s' \n", fileresf);        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   if (mobilav==1) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
     movingaverage(agedeb, fage, ageminpar, mobaverage);          }
   }        }
        
   stepsize=(int) (stepm+YEARM-1)/YEARM;       
   if (stepm<=12) stepsize=1;        for(i=1; i<=npar; i++) 
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   agelim=AGESUP;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          
   hstepm=1;        cptj=0;
   hstepm=hstepm/stepm;        for(j=1; j<= nlstate; j++){
   yp1=modf(dateintmean,&yp);          for(i=1;i<=nlstate;i++){
   anprojmean=yp;            cptj=cptj+1;
   yp2=modf((yp1*12),&yp);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   jprojmean=yp;            }
   if(jprojmean==0) jprojmean=1;          }
   if(mprojmean==0) jprojmean=1;        }
          for(j=1; j<= nlstate*nlstate; j++)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   for(cptcov=1;cptcov<=i2;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       } 
       k=k+1;     
       fprintf(ficresf,"\n#******");  /* End theta */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }  
       fprintf(ficresf,"******\n");       for(h=0; h<=nhstepm-1; h++)
       fprintf(ficresf,"# StartingAge FinalAge");        for(j=1; j<=nlstate*nlstate;j++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          for(theta=1; theta <=npar; theta++)
                  trgradg[h][j][theta]=gradg[h][theta][j];
             
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");       for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          for(j=1;j<=nlstate*nlstate;j++)
           varhe[i][j][(int)age] =0.;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       printf("%d|",(int)age);fflush(stdout);
           nhstepm = nhstepm/hstepm;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                 for(h=0;h<=nhstepm-1;h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(k=0;k<=nhstepm-1;k++){
           oldm=oldms;savm=savms;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                  for(i=1;i<=nlstate*nlstate;i++)
           for (h=0; h<=nhstepm; h++){            for(j=1;j<=nlstate*nlstate;j++)
             if (h==(int) (calagedate+YEARM*cpt)) {              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        }
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {      /* Computing expectancies */
               kk1=0.;kk2=0;      for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<=nlstate;j++)
                 if (mobilav==1)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                 else {            
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                 }  
                          }
               }  
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficreseij,"%3.0f",age );
                 fprintf(ficresf," %.3f", kk1);      cptj=0;
                              for(i=1; i<=nlstate;i++)
               }        for(j=1; j<=nlstate;j++){
             }          cptj++;
           }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }      fprintf(ficreseij,"\n");
       }     
     }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
              free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresf);    }
 }    printf("\n");
 /************** Forecasting ******************/    fprintf(ficlog,"\n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
      free_vector(xp,1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   int *popage;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double *popeffectif,*popcount;  }
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Variance of health expectancies */
   agelim=AGESUP;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    /* double **newm;*/
      double **dnewm,**doldm;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
      int k, cptcode;
   strcpy(filerespop,"pop");    double *xp;
   strcat(filerespop,fileres);    double **gp, **gm;  /* for var eij */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double ***gradg, ***trgradg; /*for var eij */
     printf("Problem with forecast resultfile: %s\n", filerespop);    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double age,agelim, hf;
     double ***mobaverage;
   if (mobilav==1) {    int theta;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    char digit[4];
     movingaverage(agedeb, fage, ageminpar, mobaverage);    char digitp[25];
   }  
     char fileresprobmorprev[FILENAMELENGTH];
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    if(popbased==1){
        if(mobilav!=0)
   agelim=AGESUP;        strcpy(digitp,"-populbased-mobilav-");
        else strcpy(digitp,"-populbased-nomobil-");
   hstepm=1;    }
   hstepm=hstepm/stepm;    else 
        strcpy(digitp,"-stablbased-");
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    if (mobilav!=0) {
       printf("Problem with population file : %s\n",popfile);exit(0);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     popage=ivector(0,AGESUP);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     popeffectif=vector(0,AGESUP);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     popcount=vector(0,AGESUP);      }
        }
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    strcpy(fileresprobmorprev,"prmorprev"); 
        sprintf(digit,"%-d",ij);
     imx=i;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   for(cptcov=1;cptcov<=i2;cptcov++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       k=k+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficrespop,"\n#******");    }
       for(j=1;j<=cptcoveff;j++) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficrespop,"******\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficrespop,"# Age");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      fprintf(ficresprobmorprev," p.%-d SE",j);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      for(i=1; i<=nlstate;i++)
              fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for (cpt=0; cpt<=0;cpt++) {    }  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficresprobmorprev,"\n");
            fprintf(ficgp,"\n# Routine varevsij");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           nhstepm = nhstepm/hstepm;  /*   } */
              varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresvij,"# Age");
            for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){      for(j=1; j<=nlstate;j++)
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresvij,"\n");
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    xp=vector(1,npar);
               kk1=0.;kk2=0;    dnewm=matrix(1,nlstate,1,npar);
               for(i=1; i<=nlstate;i++) {                  doldm=matrix(1,nlstate,1,nlstate);
                 if (mobilav==1)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                 }    gpp=vector(nlstate+1,nlstate+ndeath);
               }    gmp=vector(nlstate+1,nlstate+ndeath);
               if (h==(int)(calagedate+12*cpt)){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    
                   /*fprintf(ficrespop," %.3f", kk1);    if(estepm < stepm){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
               }    }
             }    else  hstepm=estepm;   
             for(i=1; i<=nlstate;i++){    /* For example we decided to compute the life expectancy with the smallest unit */
               kk1=0.;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 for(j=1; j<=nlstate;j++){       nhstepm is the number of hstepm from age to agelim 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       nstepm is the number of stepm from age to agelin. 
                 }       Look at hpijx to understand the reason of that which relies in memory size
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       and note for a fixed period like k years */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)       means that if the survival funtion is printed every two years of age and if
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           }       results. So we changed our mind and took the option of the best precision.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /******/      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      gp=matrix(0,nhstepm,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      gm=matrix(0,nhstepm,1,nlstate);
           nhstepm = nhstepm/hstepm;  
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(theta=1; theta <=npar; theta++){
           oldm=oldms;savm=savms;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             }  
             for(j=1; j<=nlstate+ndeath;j++) {        if (popbased==1) {
               kk1=0.;kk2=0;          if(mobilav ==0){
               for(i=1; i<=nlstate;i++) {                          for(i=1; i<=nlstate;i++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  prlim[i][i]=probs[(int)age][i][ij];
               }          }else{ /* mobilav */ 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }    
       }        for(j=1; j<= nlstate; j++){
    }          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
         }
   if (popforecast==1) {        /* This for computing probability of death (h=1 means
     free_ivector(popage,0,AGESUP);           computed over hstepm matrices product = hstepm*stepm months) 
     free_vector(popeffectif,0,AGESUP);           as a weighted average of prlim.
     free_vector(popcount,0,AGESUP);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   fclose(ficrespop);        }    
 }        /* end probability of death */
   
 /***********************************************/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 /**************** Main Program *****************/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 /***********************************************/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 int main(int argc, char *argv[])   
 {        if (popbased==1) {
           if(mobilav ==0){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            for(i=1; i<=nlstate;i++)
   double agedeb, agefin,hf;              prlim[i][i]=probs[(int)age][i][ij];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   double fret;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double **xi,tmp,delta;          }
         }
   double dum; /* Dummy variable */  
   double ***p3mat;        for(j=1; j<= nlstate; j++){
   int *indx;          for(h=0; h<=nhstepm; h++){
   char line[MAXLINE], linepar[MAXLINE];            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   char title[MAXLINE];              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          }
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        }
          /* This for computing probability of death (h=1 means
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   char filerest[FILENAMELENGTH];        */
   char fileregp[FILENAMELENGTH];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char popfile[FILENAMELENGTH];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   int firstobs=1, lastobs=10;        }    
   int sdeb, sfin; /* Status at beginning and end */        /* end probability of death */
   int c,  h , cpt,l;  
   int ju,jl, mi;        for(j=1; j<= nlstate; j++) /* vareij */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for(h=0; h<=nhstepm; h++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int mobilav=0,popforecast=0;          }
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;  
   double **prlim;      } /* End theta */
   double *severity;  
   double ***param; /* Matrix of parameters */      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   double  *p;  
   double **matcov; /* Matrix of covariance */      for(h=0; h<=nhstepm; h++) /* veij */
   double ***delti3; /* Scale */        for(j=1; j<=nlstate;j++)
   double *delti; /* Scale */          for(theta=1; theta <=npar; theta++)
   double ***eij, ***vareij;            trgradg[h][j][theta]=gradg[h][theta][j];
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   double kk1, kk2;        for(theta=1; theta <=npar; theta++)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          trgradgp[j][theta]=gradgp[theta][j];
      
   
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   char z[1]="c", occ;  
 #include <sys/time.h>      for(h=0;h<=nhstepm;h++){
 #include <time.h>        for(k=0;k<=nhstepm;k++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   /* long total_usecs;          for(i=1;i<=nlstate;i++)
   struct timeval start_time, end_time;            for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }
   getcwd(pathcd, size);      }
     
   printf("\n%s",version);      /* pptj */
   if(argc <=1){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     printf("\nEnter the parameter file name: ");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     scanf("%s",pathtot);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   else{          varppt[j][i]=doldmp[j][i];
     strcpy(pathtot,argv[1]);      /* end ppptj */
   }      /*  x centered again */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   /*cygwin_split_path(pathtot,path,optionfile);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/   
   /* cutv(path,optionfile,pathtot,'\\');*/      if (popbased==1) {
         if(mobilav ==0){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          for(i=1; i<=nlstate;i++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            prlim[i][i]=probs[(int)age][i][ij];
   chdir(path);        }else{ /* mobilav */ 
   replace(pathc,path);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
 /*-------- arguments in the command line --------*/        }
       }
   strcpy(fileres,"r");               
   strcat(fileres, optionfilefiname);      /* This for computing probability of death (h=1 means
   strcat(fileres,".txt");    /* Other files have txt extension */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   /*---------arguments file --------*/      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     printf("Problem with optionfile %s\n",optionfile);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     goto end;      }    
   }      /* end probability of death */
   
   strcpy(filereso,"o");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   strcat(filereso,fileres);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if((ficparo=fopen(filereso,"w"))==NULL) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        for(i=1; i<=nlstate;i++){
   }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   /* Reads comments: lines beginning with '#' */      } 
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresprobmorprev,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvij,"%.0f ",age );
     puts(line);      for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        for(j=1; j<=nlstate;j++){
   }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   ungetc(c,ficpar);        }
       fprintf(ficresvij,"\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      free_matrix(gp,0,nhstepm,1,nlstate);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      free_matrix(gm,0,nhstepm,1,nlstate);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     ungetc(c,ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    } /* End age */
     puts(line);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
        /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   cptcovn=0;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   ncovmodel=2+cptcovn;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /* Read guess parameters */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /* Reads comments: lines beginning with '#' */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   while((c=getc(ficpar))=='#' && c!= EOF){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     ungetc(c,ficpar);  */
     fgets(line, MAXLINE, ficpar);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     puts(line);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fputs(line,ficparo);  
   }    free_vector(xp,1,npar);
   ungetc(c,ficpar);    free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(i=1; i <=nlstate; i++)    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficparo,"%1d%1d",i1,j1);    fclose(ficresprobmorprev);
       printf("%1d%1d",i,j);    fflush(ficgp);
       for(k=1; k<=ncovmodel;k++){    fflush(fichtm); 
         fscanf(ficpar," %lf",&param[i][j][k]);  }  /* end varevsij */
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);  /************ Variance of prevlim ******************/
       }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
       fscanf(ficpar,"\n");  {
       printf("\n");    /* Variance of prevalence limit */
       fprintf(ficparo,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     }    double **newm;
      double **dnewm,**doldm;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int i, j, nhstepm, hstepm;
     int k, cptcode;
   p=param[1][1];    double *xp;
      double *gp, *gm;
   /* Reads comments: lines beginning with '#' */    double **gradg, **trgradg;
   while((c=getc(ficpar))=='#' && c!= EOF){    double age,agelim;
     ungetc(c,ficpar);    int theta;
     fgets(line, MAXLINE, ficpar);     
     puts(line);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fputs(line,ficparo);    fprintf(ficresvpl,"# Age");
   }    for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    xp=vector(1,npar);
   for(i=1; i <=nlstate; i++){    dnewm=matrix(1,nlstate,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    doldm=matrix(1,nlstate,1,nlstate);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       printf("%1d%1d",i,j);    hstepm=1*YEARM; /* Every year of age */
       fprintf(ficparo,"%1d%1d",i1,j1);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       for(k=1; k<=ncovmodel;k++){    agelim = AGESUP;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         printf(" %le",delti3[i][j][k]);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficparo," %le",delti3[i][j][k]);      if (stepm >= YEARM) hstepm=1;
       }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fscanf(ficpar,"\n");      gradg=matrix(1,npar,1,nlstate);
       printf("\n");      gp=vector(1,nlstate);
       fprintf(ficparo,"\n");      gm=vector(1,nlstate);
     }  
   }      for(theta=1; theta <=npar; theta++){
   delti=delti3[1][1];        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);          gp[i] = prlim[i][i];
     puts(line);      
     fputs(line,ficparo);        for(i=1; i<=npar; i++) /* Computes gradient */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   matcov=matrix(1,npar,1,npar);          gm[i] = prlim[i][i];
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);        for(i=1;i<=nlstate;i++)
     printf("%s",str);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     fprintf(ficparo,"%s",str);      } /* End theta */
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);      trgradg =matrix(1,nlstate,1,npar);
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);      for(j=1; j<=nlstate;j++)
     }        for(theta=1; theta <=npar; theta++)
     fscanf(ficpar,"\n");          trgradg[j][theta]=gradg[theta][j];
     printf("\n");  
     fprintf(ficparo,"\n");      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
   for(i=1; i <=npar; i++)      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     for(j=i+1;j<=npar;j++)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       matcov[i][j]=matcov[j][i];      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   printf("\n");  
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
     /*-------- Rewriting paramater file ----------*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
      strcpy(rfileres,"r");    /* "Rparameterfile */      fprintf(ficresvpl,"\n");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      free_vector(gp,1,nlstate);
      strcat(rfileres,".");    /* */      free_vector(gm,1,nlstate);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      free_matrix(gradg,1,npar,1,nlstate);
     if((ficres =fopen(rfileres,"w"))==NULL) {      free_matrix(trgradg,1,nlstate,1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    } /* End age */
     }  
     fprintf(ficres,"#%s\n",version);    free_vector(xp,1,npar);
        free_matrix(doldm,1,nlstate,1,npar);
     /*-------- data file ----------*/    free_matrix(dnewm,1,nlstate,1,nlstate);
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;  }
     }  
   /************ Variance of one-step probabilities  ******************/
     n= lastobs;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     severity = vector(1,maxwav);  {
     outcome=imatrix(1,maxwav+1,1,n);    int i, j=0,  i1, k1, l1, t, tj;
     num=ivector(1,n);    int k2, l2, j1,  z1;
     moisnais=vector(1,n);    int k=0,l, cptcode;
     annais=vector(1,n);    int first=1, first1;
     moisdc=vector(1,n);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     andc=vector(1,n);    double **dnewm,**doldm;
     agedc=vector(1,n);    double *xp;
     cod=ivector(1,n);    double *gp, *gm;
     weight=vector(1,n);    double **gradg, **trgradg;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double **mu;
     mint=matrix(1,maxwav,1,n);    double age,agelim, cov[NCOVMAX];
     anint=matrix(1,maxwav,1,n);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     s=imatrix(1,maxwav+1,1,n);    int theta;
     adl=imatrix(1,maxwav+1,1,n);        char fileresprob[FILENAMELENGTH];
     tab=ivector(1,NCOVMAX);    char fileresprobcov[FILENAMELENGTH];
     ncodemax=ivector(1,8);    char fileresprobcor[FILENAMELENGTH];
   
     i=1;    double ***varpij;
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {    strcpy(fileresprob,"prob"); 
            strcat(fileresprob,fileres);
         for (j=maxwav;j>=1;j--){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      printf("Problem with resultfile: %s\n", fileresprob);
           strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    strcpy(fileresprobcov,"probcov"); 
         }    strcat(fileresprobcov,fileres);
            if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with resultfile: %s\n", fileresprobcov);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    strcpy(fileresprobcor,"probcor"); 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with resultfile: %s\n", fileresprobcor);
         for (j=ncovcol;j>=1;j--){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
         }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         num[i]=atol(stra);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         i=i+1;    
       }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     }    fprintf(ficresprob,"# Age");
     /* printf("ii=%d", ij);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
        scanf("%d",i);*/    fprintf(ficresprobcov,"# Age");
   imx=i-1; /* Number of individuals */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    for(i=1; i<=nlstate;i++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      for(j=1; j<=(nlstate+ndeath);j++){
     }*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
    /*  for (i=1; i<=imx; i++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
      if (s[4][i]==9)  s[4][i]=-1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      }  
     /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
   /* Calculation of the number of parameter from char model*/    fprintf(ficresprobcor,"\n");
   Tvar=ivector(1,15);   */
   Tprod=ivector(1,15);   xp=vector(1,npar);
   Tvaraff=ivector(1,15);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   Tvard=imatrix(1,15,1,2);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   Tage=ivector(1,15);          mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   if (strlen(model) >1){    first=1;
     j=0, j1=0, k1=1, k2=1;    fprintf(ficgp,"\n# Routine varprob");
     j=nbocc(model,'+');    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     j1=nbocc(model,'*');    fprintf(fichtm,"\n");
     cptcovn=j+1;  
     cptcovprod=j1;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
        fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     strcpy(modelsav,model);    file %s<br>\n",optionfilehtmcov);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       printf("Error. Non available option model=%s ",model);  and drawn. It helps understanding how is the covariance between two incidences.\
       goto end;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
      It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     for(i=(j+1); i>=1;i--){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       cutv(stra,strb,modelsav,'+');  standard deviations wide on each axis. <br>\
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       /*scanf("%d",i);*/  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');    cov[1]=1;
         if (strcmp(strc,"age")==0) {    tj=cptcoveff;
           cptcovprod--;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           cutv(strb,stre,strd,'V');    j1=0;
           Tvar[i]=atoi(stre);    for(t=1; t<=tj;t++){
           cptcovage++;      for(i1=1; i1<=ncodemax[t];i1++){ 
             Tage[cptcovage]=i;        j1++;
             /*printf("stre=%s ", stre);*/        if  (cptcovn>0) {
         }          fprintf(ficresprob, "\n#********** Variable "); 
         else if (strcmp(strd,"age")==0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cptcovprod--;          fprintf(ficresprob, "**********\n#\n");
           cutv(strb,stre,strc,'V');          fprintf(ficresprobcov, "\n#********** Variable "); 
           Tvar[i]=atoi(stre);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cptcovage++;          fprintf(ficresprobcov, "**********\n#\n");
           Tage[cptcovage]=i;          
         }          fprintf(ficgp, "\n#********** Variable "); 
         else {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(strb,stre,strc,'V');          fprintf(ficgp, "**********\n#\n");
           Tvar[i]=ncovcol+k1;          
           cutv(strb,strc,strd,'V');          
           Tprod[k1]=i;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           Tvard[k1][1]=atoi(strc);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           Tvard[k1][2]=atoi(stre);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           Tvar[cptcovn+k2]=Tvard[k1][1];          
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (k=1; k<=lastobs;k++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          fprintf(ficresprobcor, "**********\n#");    
           k1++;        }
           k2=k2+2;        
         }        for (age=bage; age<=fage; age ++){ 
       }          cov[2]=age;
       else {          for (k=1; k<=cptcovn;k++) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
        /*  scanf("%d",i);*/          }
       cutv(strd,strc,strb,'V');          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       Tvar[i]=atoi(strc);          for (k=1; k<=cptcovprod;k++)
       }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       strcpy(modelsav,stra);            
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         scanf("%d",i);*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }          gp=vector(1,(nlstate)*(nlstate+ndeath));
 }          gm=vector(1,(nlstate)*(nlstate+ndeath));
        
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          for(theta=1; theta <=npar; theta++){
   printf("cptcovprod=%d ", cptcovprod);            for(i=1; i<=npar; i++)
   scanf("%d ",i);*/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     fclose(fic);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
     /*  if(mle==1){*/            
     if (weightopt != 1) { /* Maximisation without weights*/            k=0;
       for(i=1;i<=n;i++) weight[i]=1.0;            for(i=1; i<= (nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
     /*-calculation of age at interview from date of interview and age at death -*/                k=k+1;
     agev=matrix(1,maxwav,1,imx);                gp[k]=pmmij[i][j];
               }
     for (i=1; i<=imx; i++) {            }
       for(m=2; (m<= maxwav); m++) {            
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for(i=1; i<=npar; i++)
          anint[m][i]=9999;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
          s[m][i]=-1;      
        }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            k=0;
       }            for(i=1; i<=(nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
     for (i=1; i<=imx; i++)  {                gm[k]=pmmij[i][j];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              }
       for(m=1; (m<= maxwav); m++){            }
         if(s[m][i] >0){       
           if (s[m][i] >= nlstate+1) {            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
             if(agedc[i]>0)              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
               if(moisdc[i]!=99 && andc[i]!=9999)          }
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
            else {            for(theta=1; theta <=npar; theta++)
               if (andc[i]!=9999){              trgradg[j][theta]=gradg[theta][j];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          
               agev[m][i]=-1;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
               }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           else if(s[m][i] !=9){ /* Should no more exist */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;          pmij(pmmij,cov,ncovmodel,x,nlstate);
             else if(agev[m][i] <agemin){          
               agemin=agev[m][i];          k=0;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          for(i=1; i<=(nlstate); i++){
             }            for(j=1; j<=(nlstate+ndeath);j++){
             else if(agev[m][i] >agemax){              k=k+1;
               agemax=agev[m][i];              mu[k][(int) age]=pmmij[i][j];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            }
             }          }
             /*agev[m][i]=anint[m][i]-annais[i];*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             /*   agev[m][i] = age[i]+2*m;*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           }              varpij[i][j][(int)age] = doldm[i][j];
           else { /* =9 */  
             agev[m][i]=1;          /*printf("\n%d ",(int)age);
             s[m][i]=-1;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         else /*= 0 Unknown */            }*/
           agev[m][i]=1;  
       }          fprintf(ficresprob,"\n%d ",(int)age);
              fprintf(ficresprobcov,"\n%d ",(int)age);
     }          fprintf(ficresprobcor,"\n%d ",(int)age);
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         if (s[m][i] > (nlstate+ndeath)) {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           printf("Error: Wrong value in nlstate or ndeath\n");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           goto end;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       }          }
     }          i=0;
           for (k=1; k<=(nlstate);k++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
     free_vector(severity,1,maxwav);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     free_imatrix(outcome,1,maxwav+1,1,n);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     free_vector(moisnais,1,n);              for (j=1; j<=i;j++){
     free_vector(annais,1,n);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     /* free_matrix(mint,1,maxwav,1,n);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
        free_matrix(anint,1,maxwav,1,n);*/              }
     free_vector(moisdc,1,n);            }
     free_vector(andc,1,n);          }/* end of loop for state */
         } /* end of loop for age */
      
     wav=ivector(1,imx);        /* Confidence intervalle of pij  */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        /*
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,"\nset noparametric;unset label");
              fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     /* Concatenates waves */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       Tcode=ivector(1,100);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        */
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
              first1=1;
    codtab=imatrix(1,100,1,10);        for (k2=1; k2<=(nlstate);k2++){
    h=0;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
    m=pow(2,cptcoveff);            if(l2==k2) continue;
              j=(k2-1)*(nlstate+ndeath)+l2;
    for(k=1;k<=cptcoveff; k++){            for (k1=1; k1<=(nlstate);k1++){
      for(i=1; i <=(m/pow(2,k));i++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
        for(j=1; j <= ncodemax[k]; j++){                if(l1==k1) continue;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                i=(k1-1)*(nlstate+ndeath)+l1;
            h++;                if(i<=j) continue;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                for (age=bage; age<=fage; age ++){ 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                  if ((int)age %5==0){
          }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
        }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
      }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
    }                    mu1=mu[i][(int) age]/stepm*YEARM ;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                    mu2=mu[j][(int) age]/stepm*YEARM;
       codtab[1][2]=1;codtab[2][2]=2; */                    c12=cv12/sqrt(v1*v2);
    /* for(i=1; i <=m ;i++){                    /* Computing eigen value of matrix of covariance */
       for(k=1; k <=cptcovn; k++){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }                    /* Eigen vectors */
       printf("\n");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       }                    /*v21=sqrt(1.-v11*v11); *//* error */
       scanf("%d",i);*/                    v21=(lc1-v1)/cv12*v11;
                        v12=-v21;
    /* Calculates basic frequencies. Computes observed prevalence at single age                    v22=v11;
        and prints on file fileres'p'. */                    tnalp=v21/v11;
                     if(first1==1){
                          first1=0;
                          printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /*printf(fignu*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                          if(first==1){
     /* For Powell, parameters are in a vector p[] starting at p[1]                      first=0;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                      fprintf(ficgp,"\nset parametric;unset label");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     if(mle==1){                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                  subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     /*--------- results files --------------*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    jk=1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    for(i=1,jk=1; i <=nlstate; i++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
      for(k=1; k <=(nlstate+ndeath); k++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
        if (k != i)                    }else{
          {                      first=0;
            printf("%d%d ",i,k);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
            fprintf(ficres,"%1d%1d ",i,k);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
            for(j=1; j <=ncovmodel; j++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
              printf("%f ",p[jk]);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
              fprintf(ficres,"%f ",p[jk]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
              jk++;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
            }                    }/* if first */
            printf("\n");                  } /* age mod 5 */
            fprintf(ficres,"\n");                } /* end loop age */
          }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      }                first=1;
    }              } /*l12 */
  if(mle==1){            } /* k12 */
     /* Computing hessian and covariance matrix */          } /*l1 */
     ftolhess=ftol; /* Usually correct */        }/* k1 */
     hesscov(matcov, p, npar, delti, ftolhess, func);      } /* loop covariates */
  }    }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     printf("# Scales (for hessian or gradient estimation)\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      for(i=1,jk=1; i <=nlstate; i++){    free_vector(xp,1,npar);
       for(j=1; j <=nlstate+ndeath; j++){    fclose(ficresprob);
         if (j!=i) {    fclose(ficresprobcov);
           fprintf(ficres,"%1d%1d",i,j);    fclose(ficresprobcor);
           printf("%1d%1d",i,j);    fflush(ficgp);
           for(k=1; k<=ncovmodel;k++){    fflush(fichtmcov);
             printf(" %.5e",delti[jk]);  }
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;  
           }  /******************* Printing html file ***********/
           printf("\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           fprintf(ficres,"\n");                    int lastpass, int stepm, int weightopt, char model[],\
         }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       }                    int popforecast, int estepm ,\
      }                    double jprev1, double mprev1,double anprev1, \
                        double jprev2, double mprev2,double anprev2){
     k=1;    int jj1, k1, i1, cpt;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     for(i=1;i<=npar;i++){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       /*  if (k>nlstate) k=1;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       i1=(i-1)/(ncovmodel*nlstate)+1;     fprintf(fichtm,"\
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       printf("%s%d%d",alph[k],i1,tab[i]);*/             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       fprintf(ficres,"%3d",i);     fprintf(fichtm,"\
       printf("%3d",i);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       for(j=1; j<=i;j++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         fprintf(ficres," %.5e",matcov[i][j]);     fprintf(fichtm,"\
         printf(" %.5e",matcov[i][j]);   - Life expectancies by age and initial health status (estepm=%2d months): \
       }     <a href=\"%s\">%s</a> <br>\n</li>",
       fprintf(ficres,"\n");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       printf("\n");  
       k++;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     }  
       m=cptcoveff;
     while((c=getc(ficpar))=='#' && c!= EOF){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);   jj1=0;
       puts(line);   for(k1=1; k1<=m;k1++){
       fputs(line,ficparo);     for(i1=1; i1<=ncodemax[k1];i1++){
     }       jj1++;
     ungetc(c,ficpar);       if (cptcovn > 0) {
     estepm=0;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     if (estepm==0 || estepm < stepm) estepm=stepm;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     if (fage <= 2) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       bage = ageminpar;       }
       fage = agemaxpar;       /* Pij */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
      <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");       /* Quasi-incidences */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
    <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     while((c=getc(ficpar))=='#' && c!= EOF){         /* Stable prevalence in each health state */
     ungetc(c,ficpar);         for(cpt=1; cpt<nlstate;cpt++){
     fgets(line, MAXLINE, ficpar);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     puts(line);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     fputs(line,ficparo);         }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
   ungetc(c,ficpar);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     } /* end i1 */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   }/* End k1 */
         fprintf(fichtm,"</ul>");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"\
     puts(line);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     fputs(line,ficparo);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   }  
   ungetc(c,ficpar);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    dateprev2=anprev2+mprev2/12.+jprev2/365.;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);   fprintf(fichtm,"\
   fprintf(ficparo,"pop_based=%d\n",popbased);     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficres,"pop_based=%d\n",popbased);             subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     fprintf(fichtm,"\
   while((c=getc(ficpar))=='#' && c!= EOF){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     ungetc(c,ficpar);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"\
     puts(line);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     fputs(line,ficparo);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   }   fprintf(fichtm,"\
   ungetc(c,ficpar);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*  if(popforecast==1) fprintf(fichtm,"\n */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
 while((c=getc(ficpar))=='#' && c!= EOF){  /*  else  */
     ungetc(c,ficpar);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fgets(line, MAXLINE, ficpar);   fflush(fichtm);
     puts(line);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     fputs(line,ficparo);  
   }   m=cptcoveff;
   ungetc(c,ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   jj1=0;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   for(k1=1; k1<=m;k1++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 /*------------ gnuplot -------------*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 /*------------ free_vector  -------------*/       }
  chdir(path);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
  free_ivector(wav,1,imx);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         }
  free_ivector(num,1,n);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
  free_vector(agedc,1,n);  health expectancies in states (1) and (2): %s%d.png<br>\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
  fclose(ficparo);     } /* end i1 */
  fclose(ficres);   }/* End k1 */
    fprintf(fichtm,"</ul>");
 /*--------- index.htm --------*/   fflush(fichtm);
   }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  
   /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   /*--------------- Prevalence limit --------------*/  
      char dirfileres[132],optfileres[132];
   strcpy(filerespl,"pl");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   strcat(filerespl,fileres);    int ng;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  /*     printf("Problem with file %s",optionfilegnuplot); */
   }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  /*   } */
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    /*#ifdef windows */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fprintf(ficrespl,"\n");      /*#endif */
      m=pow(2,cptcoveff);
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(dirfileres,optionfilefiname);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(optfileres,"vpl");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   /* 1eme*/
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (cpt=1; cpt<= nlstate ; cpt ++) {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     for (k1=1; k1<= m ; k1 ++) {
   k=0;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   agebase=ageminpar;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   agelim=agemaxpar;       fprintf(ficgp,"set xlabel \"Age\" \n\
   ftolpl=1.e-10;  set ylabel \"Probability\" \n\
   i1=cptcoveff;  set ter png small\n\
   if (cptcovn < 1){i1=1;}  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       for (i=1; i<= nlstate ; i ++) {
         k=k+1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrespl,"\n#******");       }
         for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficrespl,"******\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                 else fprintf(ficgp," \%%*lf (\%%*lf)");
         for (age=agebase; age<=agelim; age++){       } 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           fprintf(ficrespl,"%.0f",age );       for (i=1; i<= nlstate ; i ++) {
           for(i=1; i<=nlstate;i++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespl," %.5f", prlim[i][i]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficrespl,"\n");       }  
         }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       }     }
     }    }
   fclose(ficrespl);    /*2 eme*/
     
   /*------------- h Pij x at various ages ------------*/    for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      for (i=1; i<= nlstate+1 ; i ++) {
   }        k=2*i;
   printf("Computing pij: result on file '%s' \n", filerespij);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /*if (stepm<=24) stepsize=2;*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   agelim=AGESUP;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   hstepm=stepsize*YEARM; /* Every year of age */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
   k=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }   
       k=k+1;        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficrespij,"\n#****** ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrespij,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
                }   
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        else fprintf(ficgp,"\" t\"\" w l 0,");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*3eme*/
           fprintf(ficrespij,"# Age");    
           for(i=1; i<=nlstate;i++)    for (k1=1; k1<= m ; k1 ++) { 
             for(j=1; j<=nlstate+ndeath;j++)      for (cpt=1; cpt<= nlstate ; cpt ++) {
               fprintf(ficrespij," %1d-%1d",i,j);        k=2+nlstate*(2*cpt-2);
           fprintf(ficrespij,"\n");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
            for (h=0; h<=nhstepm; h++){        fprintf(ficgp,"set ter png small\n\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  set size 0.65,0.65\n\
             for(i=1; i<=nlstate;i++)  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
               for(j=1; j<=nlstate+ndeath;j++)        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficrespij,"\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
              }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficrespij,"\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         }          
     }        */
   }        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          
         } 
   fclose(ficrespij);      }
     }
     
   /*---------- Forecasting ------------------*/    /* CV preval stable (period) */
   if((stepm == 1) && (strcmp(model,".")==0)){    for (k1=1; k1<= m ; k1 ++) { 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        k=3;
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   else{        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     erreur=108;  set ter png small\nset size 0.65,0.65\n\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  unset log y\n\
   }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
         for (i=1; i< nlstate ; i ++)
   /*---------- Health expectancies and variances ------------*/          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   strcpy(filerest,"t");        
   strcat(filerest,fileres);        l=3+(nlstate+ndeath)*cpt;
   if((ficrest=fopen(filerest,"w"))==NULL) {        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for (i=1; i< nlstate ; i ++) {
   }          l=3+(nlstate+ndeath)*cpt;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   strcpy(filerese,"e");      } 
   strcat(filerese,fileres);    }  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /* proba elementaires */
   }    for(i=1,jk=1; i <=nlstate; i++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
  strcpy(fileresv,"v");          for(j=1; j <=ncovmodel; j++){
   strcat(fileresv,fileres);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            jk++; 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            fprintf(ficgp,"\n");
   }          }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
   calagedate=-1;      }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     }
   
   k=0;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   for(cptcov=1;cptcov<=i1;cptcov++){       for(jk=1; jk <=m; jk++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
       k=k+1;         if (ng==2)
       fprintf(ficrest,"\n#****** ");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       for(j=1;j<=cptcoveff;j++)         else
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           fprintf(ficgp,"\nset title \"Probability\"\n");
       fprintf(ficrest,"******\n");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
       fprintf(ficreseij,"\n#****** ");         for(k2=1; k2<=nlstate; k2++) {
       for(j=1;j<=cptcoveff;j++)           k3=i;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           for(k=1; k<=(nlstate+ndeath); k++) {
       fprintf(ficreseij,"******\n");             if (k != k2){
                if(ng==2)
       fprintf(ficresvij,"\n#****** ");                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       for(j=1;j<=cptcoveff;j++)               else
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       fprintf(ficresvij,"******\n");               ij=1;
                for(j=3; j <=ncovmodel; j++) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       oldm=oldms;savm=savms;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                     ij++;
                   }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                 else
       oldm=oldms;savm=savms;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);               }
                   fprintf(ficgp,")/(1");
                
                 for(k1=1; k1 <=nlstate; k1++){   
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                 ij=1;
       fprintf(ficrest,"\n");                 for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       epj=vector(1,nlstate+1);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       for(age=bage; age <=fage ;age++){                     ij++;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                   }
         if (popbased==1) {                   else
           for(i=1; i<=nlstate;i++)                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
             prlim[i][i]=probs[(int)age][i][k];                 }
         }                 fprintf(ficgp,")");
                       }
         fprintf(ficrest," %4.0f",age);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {               i=i+ncovmodel;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];             }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/           } /* end k */
           }         } /* end k2 */
           epj[nlstate+1] +=epj[j];       } /* end jk */
         }     } /* end ng */
      fflush(ficgp); 
         for(i=1, vepp=0.;i <=nlstate;i++)  }  /* end gnuplot */
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  /*************** Moving average **************/
         for(j=1;j <=nlstate;j++){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    int i, cpt, cptcod;
         fprintf(ficrest,"\n");    int modcovmax =1;
       }    int mobilavrange, mob;
     }    double age;
   }  
 free_matrix(mint,1,maxwav,1,n);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                             a covariate has 2 modalities */
     free_vector(weight,1,n);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   fclose(ficreseij);  
   fclose(ficresvij);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   fclose(ficrest);      if(mobilav==1) mobilavrange=5; /* default */
   fclose(ficpar);      else mobilavrange=mobilav;
   free_vector(epj,1,nlstate+1);      for (age=bage; age<=fage; age++)
          for (i=1; i<=nlstate;i++)
   /*------- Variance limit prevalence------*/            for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   strcpy(fileresvpl,"vpl");      /* We keep the original values on the extreme ages bage, fage and for 
   strcat(fileresvpl,fileres);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {         we use a 5 terms etc. until the borders are no more concerned. 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      */ 
     exit(0);      for (mob=3;mob <=mobilavrange;mob=mob+2){
   }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
   k=0;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   for(cptcov=1;cptcov<=i1;cptcov++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       k=k+1;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       fprintf(ficresvpl,"\n#****** ");                }
       for(j=1;j<=cptcoveff;j++)              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficresvpl,"******\n");          }
              }/* end age */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      }/* end mob */
       oldm=oldms;savm=savms;    }else return -1;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    return 0;
     }  }/* End movingaverage */
  }  
   
   fclose(ficresvpl);  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   /*---------- End : free ----------------*/    /* proj1, year, month, day of starting projection 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       agemin, agemax range of age
         dateprev1 dateprev2 range of dates during which prevalence is computed
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       anproj2 year of en of projection (same day and month as proj1).
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    */
      int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      int *popage;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double agec; /* generic age */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double *popeffectif,*popcount;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    double ***p3mat;
      double ***mobaverage;
   free_matrix(matcov,1,npar,1,npar);    char fileresf[FILENAMELENGTH];
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);    agelim=AGESUP;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
   if(erreur >0)    strcpy(fileresf,"f"); 
     printf("End of Imach with error or warning %d\n",erreur);    strcat(fileresf,fileres);
   else   printf("End of Imach\n");    if((ficresf=fopen(fileresf,"w"))==NULL) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      printf("Problem with forecast resultfile: %s\n", fileresf);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    }
   /*printf("Total time was %d uSec.\n", total_usecs);*/    printf("Computing forecasting: result on file '%s' \n", fileresf);
   /*------ End -----------*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
  end:  
   /* chdir(pathcd);*/    if (mobilav!=0) {
  /*system("wgnuplot graph.plt");*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  /*system("cd ../gp37mgw");*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  strcpy(plotcmd,GNUPLOTPROGRAM);      }
  strcat(plotcmd," ");    }
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
  /*#ifdef windows*/    if(estepm < stepm){
   while (z[0] != 'q') {      printf ("Problem %d lower than %d\n",estepm, stepm);
     /* chdir(path); */    }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    else  hstepm=estepm;   
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    hstepm=hstepm/stepm; 
     else if (z[0] == 'e') system(optionfilehtm);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     else if (z[0] == 'g') system(plotcmd);                                 fractional in yp1 */
     else if (z[0] == 'q') exit(0);    anprojmean=yp;
   }    yp2=modf((yp1*12),&yp);
   /*#endif */    mprojmean=yp;
 }    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.100


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>