Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.105

version 1.41.2.1, 2003/06/12 10:43:20 version 1.105, 2006/01/05 20:23:19
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.105  2006/01/05 20:23:19  lievre
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.104  2005/09/30 16:11:43  lievre
   first survey ("cross") where individuals from different ages are    (Module): sump fixed, loop imx fixed, and simplifications.
   interviewed on their health status or degree of disability (in the    (Module): If the status is missing at the last wave but we know
   case of a health survey which is our main interest) -2- at least a    that the person is alive, then we can code his/her status as -2
   second wave of interviews ("longitudinal") which measure each change    (instead of missing=-1 in earlier versions) and his/her
   (if any) in individual health status.  Health expectancies are    contributions to the likelihood is 1 - Prob of dying from last
   computed from the time spent in each health state according to a    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   model. More health states you consider, more time is necessary to reach the    the healthy state at last known wave). Version is 0.98
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.103  2005/09/30 15:54:49  lievre
   probability to be observed in state j at the second wave    (Module): sump fixed, loop imx fixed, and simplifications.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.102  2004/09/15 17:31:30  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Add the possibility to read data file including tab characters.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.101  2004/09/15 10:38:38  brouard
   you to do it.  More covariates you add, slower the    Fix on curr_time
   convergence.  
     Revision 1.100  2004/07/12 18:29:06  brouard
   The advantage of this computer programme, compared to a simple    Add version for Mac OS X. Just define UNIX in Makefile
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.99  2004/06/05 08:57:40  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.98  2004/05/16 15:05:56  brouard
   hPijx is the probability to be observed in state i at age x+h    New version 0.97 . First attempt to estimate force of mortality
   conditional to the observed state i at age x. The delay 'h' can be    directly from the data i.e. without the need of knowing the health
   split into an exact number (nh*stepm) of unobserved intermediate    state at each age, but using a Gompertz model: log u =a + b*age .
   states. This elementary transition (by month or quarter trimester,    This is the basic analysis of mortality and should be done before any
   semester or year) is model as a multinomial logistic.  The hPx    other analysis, in order to test if the mortality estimated from the
   matrix is simply the matrix product of nh*stepm elementary matrices    cross-longitudinal survey is different from the mortality estimated
   and the contribution of each individual to the likelihood is simply    from other sources like vital statistic data.
   hPijx.  
     The same imach parameter file can be used but the option for mle should be -3.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Agnès, who wrote this part of the code, tried to keep most of the
      former routines in order to include the new code within the former code.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    The output is very simple: only an estimate of the intercept and of
   This software have been partly granted by Euro-REVES, a concerted action    the slope with 95% confident intervals.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Current limitations:
   software can be distributed freely for non commercial use. Latest version    A) Even if you enter covariates, i.e. with the
   can be accessed at http://euroreves.ined.fr/imach .    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   **********************************************************************/    B) There is no computation of Life Expectancy nor Life Table.
    
 #include <math.h>    Revision 1.97  2004/02/20 13:25:42  lievre
 #include <stdio.h>    Version 0.96d. Population forecasting command line is (temporarily)
 #include <stdlib.h>    suppressed.
 #include <unistd.h>  
     Revision 1.96  2003/07/15 15:38:55  brouard
 #define MAXLINE 256    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define GNUPLOTPROGRAM "wgnuplot"    rewritten within the same printf. Workaround: many printfs.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.95  2003/07/08 07:54:34  brouard
 /*#define DEBUG*/    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 /*#define windows*/    matrix (cov(a12,c31) instead of numbers.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define NINTERVMAX 8    exist so I changed back to asctime which exists.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Version 0.96b
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.92  2003/06/25 16:30:45  brouard
 #define MAXN 20000    (Module): On windows (cygwin) function asctime_r doesn't
 #define YEARM 12. /* Number of months per year */    exist so I changed back to asctime which exists.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 int erreur; /* Error number */    helps to forecast when convergence will be reached. Elapsed time
 int nvar;    is stamped in powell.  We created a new html file for the graphs
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    concerning matrix of covariance. It has extension -cov.htm.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.90  2003/06/24 12:34:15  brouard
 int ndeath=1; /* Number of dead states */    (Module): Some bugs corrected for windows. Also, when
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    mle=-1 a template is output in file "or"mypar.txt with the design
 int popbased=0;    of the covariance matrix to be input.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.89  2003/06/24 12:30:52  brouard
 int maxwav; /* Maxim number of waves */    (Module): Some bugs corrected for windows. Also, when
 int jmin, jmax; /* min, max spacing between 2 waves */    mle=-1 a template is output in file "or"mypar.txt with the design
 int mle, weightopt;    of the covariance matrix to be input.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.88  2003/06/23 17:54:56  brouard
 double jmean; /* Mean space between 2 waves */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.87  2003/06/18 12:26:01  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Version 0.96
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.86  2003/06/17 20:04:08  brouard
   char filerese[FILENAMELENGTH];    (Module): Change position of html and gnuplot routines and added
  FILE  *ficresvij;    routine fileappend.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.85  2003/06/17 13:12:43  brouard
   char fileresvpl[FILENAMELENGTH];    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 #define NR_END 1    prior to the death. In this case, dh was negative and likelihood
 #define FREE_ARG char*    was wrong (infinity). We still send an "Error" but patch by
 #define FTOL 1.0e-10    assuming that the date of death was just one stepm after the
     interview.
 #define NRANSI    (Repository): Because some people have very long ID (first column)
 #define ITMAX 200    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define TOL 2.0e-4    truncation)
     (Repository): No more line truncation errors.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.84  2003/06/13 21:44:43  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 #define GOLD 1.618034    many times. Probs is memory consuming and must be used with
 #define GLIMIT 100.0    parcimony.
 #define TINY 1.0e-20    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 static double maxarg1,maxarg2;    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    *** empty log message ***
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.82  2003/06/05 15:57:20  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Add log in  imach.c and  fullversion number is now printed.
 #define rint(a) floor(a+0.5)  
   */
 static double sqrarg;  /*
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)     Interpolated Markov Chain
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Short summary of the programme:
 int imx;    
 int stepm;    This program computes Healthy Life Expectancies from
 /* Stepm, step in month: minimum step interpolation*/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 int estepm;    interviewed on their health status or degree of disability (in the
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 int m,nb;    (if any) in individual health status.  Health expectancies are
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    computed from the time spent in each health state according to a
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    model. More health states you consider, more time is necessary to reach the
 double **pmmij, ***probs, ***mobaverage;    Maximum Likelihood of the parameters involved in the model.  The
 double dateintmean=0;    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 double *weight;    conditional to be observed in state i at the first wave. Therefore
 int **s; /* Status */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double *agedc, **covar, idx;    'age' is age and 'sex' is a covariate. If you want to have a more
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    you to do it.  More covariates you add, slower the
 double ftolhess; /* Tolerance for computing hessian */    convergence.
   
 /**************** split *************************/    The advantage of this computer programme, compared to a simple
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
    char *s;                             /* pointer */    intermediate interview, the information is lost, but taken into
    int  l1, l2;                         /* length counters */    account using an interpolation or extrapolation.  
   
    l1 = strlen( path );                 /* length of path */    hPijx is the probability to be observed in state i at age x+h
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    conditional to the observed state i at age x. The delay 'h' can be
 #ifdef windows    split into an exact number (nh*stepm) of unobserved intermediate
    s = strrchr( path, '\\' );           /* find last / */    states. This elementary transition (by month, quarter,
 #else    semester or year) is modelled as a multinomial logistic.  The hPx
    s = strrchr( path, '/' );            /* find last / */    matrix is simply the matrix product of nh*stepm elementary matrices
 #endif    and the contribution of each individual to the likelihood is simply
    if ( s == NULL ) {                   /* no directory, so use current */    hPijx.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
       if ( getwd( dirc ) == NULL ) {    
 #else    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       extern char       *getcwd( );             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    from the European Union.
 #endif    It is copyrighted identically to a GNU software product, ie programme and
          return( GLOCK_ERROR_GETCWD );    software can be distributed freely for non commercial use. Latest version
       }    can be accessed at http://euroreves.ined.fr/imach .
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       s++;                              /* after this, the filename */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       l2 = strlen( s );                 /* length of filename */    
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    **********************************************************************/
       strcpy( name, s );                /* save file name */  /*
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    main
       dirc[l1-l2] = 0;                  /* add zero */    read parameterfile
    }    read datafile
    l1 = strlen( dirc );                 /* length of directory */    concatwav
 #ifdef windows    freqsummary
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    if (mle >= 1)
 #else      mlikeli
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    print results files
 #endif    if mle==1 
    s = strrchr( name, '.' );            /* find last / */       computes hessian
    s++;    read end of parameter file: agemin, agemax, bage, fage, estepm
    strcpy(ext,s);                       /* save extension */        begin-prev-date,...
    l1= strlen( name);    open gnuplot file
    l2= strlen( s)+1;    open html file
    strncpy( finame, name, l1-l2);    stable prevalence
    finame[l1-l2]= 0;     for age prevalim()
    return( 0 );                         /* we're done */    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /******************************************/    Variance-covariance of DFLE
     prevalence()
 void replace(char *s, char*t)     movingaverage()
 {    varevsij() 
   int i;    if popbased==1 varevsij(,popbased)
   int lg=20;    total life expectancies
   i=0;    Variance of stable prevalence
   lg=strlen(t);   end
   for(i=0; i<= lg; i++) {  */
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  
   }  
 }   
   #include <math.h>
 int nbocc(char *s, char occ)  #include <stdio.h>
 {  #include <stdlib.h>
   int i,j=0;  #include <unistd.h>
   int lg=20;  
   i=0;  /* #include <sys/time.h> */
   lg=strlen(s);  #include <time.h>
   for(i=0; i<= lg; i++) {  #include "timeval.h"
   if  (s[i] == occ ) j++;  
   }  /* #include <libintl.h> */
   return j;  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 void cutv(char *u,char *v, char*t, char occ)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int i,lg,j,p=0;  #define FILENAMELENGTH 132
   i=0;  /*#define DEBUG*/
   for(j=0; j<=strlen(t)-1; j++) {  /*#define windows*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   lg=strlen(t);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for(j=0; j<p; j++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     (u[j] = t[j]);  
   }  #define NINTERVMAX 8
      u[p]='\0';  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    for(j=0; j<= lg; j++) {  #define NCOVMAX 8 /* Maximum number of covariates */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define MAXN 20000
   }  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
 /********************** nrerror ********************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 void nrerror(char error_text[])  #define DIRSEPARATOR '/'
 {  #define ODIRSEPARATOR '\\'
   fprintf(stderr,"ERREUR ...\n");  #else
   fprintf(stderr,"%s\n",error_text);  #define DIRSEPARATOR '\\'
   exit(1);  #define ODIRSEPARATOR '/'
 }  #endif
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  /* $Id$ */
 {  /* $State$ */
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";
   if (!v) nrerror("allocation failure in vector");  char fullversion[]="$Revision$ $Date$"; 
   return v-nl+NR_END;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /************************ free vector ******************/  int npar=NPARMAX;
 void free_vector(double*v, int nl, int nh)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   free((FREE_ARG)(v+nl-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /************************ivector *******************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 int *ivector(long nl,long nh)  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   int *v;  int gipmx, gsw; /* Global variables on the number of contributions 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));                     to the likelihood and the sum of weights (done by funcone)*/
   if (!v) nrerror("allocation failure in ivector");  int mle, weightopt;
   return v-nl+NR_END;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /******************free ivector **************************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 void free_ivector(int *v, long nl, long nh)  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   free((FREE_ARG)(v+nl-NR_END));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /******************* imatrix *******************************/  int globpr; /* Global variable for printing or not */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double fretone; /* Only one call to likelihood */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char filerespow[FILENAMELENGTH];
   int **m;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
   /* allocate pointers to rows */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  FILE *ficresprobmorprev;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *fichtm, *fichtmcov; /* Html File */
   m += NR_END;  FILE *ficreseij;
   m -= nrl;  char filerese[FILENAMELENGTH];
    FILE  *ficresvij;
    char fileresv[FILENAMELENGTH];
   /* allocate rows and set pointers to them */  FILE  *ficresvpl;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char fileresvpl[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char title[MAXLINE];
   m[nrl] += NR_END;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl] -= ncl;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
    char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char command[FILENAMELENGTH];
    int  outcmd=0;
   /* return pointer to array of pointers to rows */  
   return m;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /****************** free_imatrix *************************/  char filerest[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  char fileregp[FILENAMELENGTH];
       int **m;  char popfile[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG) (m+nrl-NR_END));  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /******************* matrix *******************************/  long time_value;
 double **matrix(long nrl, long nrh, long ncl, long nch)  extern long time();
 {  char strcurr[80], strfor[80];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  #define NR_END 1
   #define FREE_ARG char*
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FTOL 1.0e-10
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define NRANSI 
   m -= nrl;  #define ITMAX 200 
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define TOL 2.0e-4 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define CGOLD 0.3819660 
   m[nrl] -= ncl;  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(m+nrl-NR_END));    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double ***m;  int agegomp= AGEGOMP;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int imx; 
   if (!m) nrerror("allocation failure 1 in matrix()");  int stepm=1;
   m += NR_END;  /* Stepm, step in month: minimum step interpolation*/
   m -= nrl;  
   int estepm;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int m,nb;
   m[nrl] -= ncl;  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double *ageexmed,*agecens;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  double dateintmean=0;
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  double *weight;
   for (j=ncl+1; j<=nch; j++)  int **s; /* Status */
     m[nrl][j]=m[nrl][j-1]+nlay;  double *agedc, **covar, idx;
    int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (i=nrl+1; i<=nrh; i++) {  double *lsurv, *lpop, *tpop;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       m[i][j]=m[i][j-1]+nlay;  double ftolhess; /* Tolerance for computing hessian */
   }  
   return m;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /*************************free ma3x ************************/    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    char  *ss;                            /* pointer */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int   l1, l2;                         /* length counters */
   free((FREE_ARG)(m+nrl-NR_END));  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /***************** f1dim *************************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 extern int ncom;    if ( ss == NULL ) {                   /* no directory, so use current */
 extern double *pcom,*xicom;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 extern double (*nrfunc)(double []);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
        /* get current working directory */
 double f1dim(double x)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int j;        return( GLOCK_ERROR_GETCWD );
   double f;      }
   double *xt;      strcpy( name, path );               /* we've got it */
      } else {                              /* strip direcotry from path */
   xt=vector(1,ncom);      ss++;                               /* after this, the filename */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      l2 = strlen( ss );                  /* length of filename */
   f=(*nrfunc)(xt);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free_vector(xt,1,ncom);      strcpy( name, ss );         /* save file name */
   return f;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
     }
 /*****************brent *************************/    l1 = strlen( dirc );                  /* length of directory */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    /*#ifdef windows
 {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   int iter;  #else
   double a,b,d,etemp;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   double fu,fv,fw,fx;  #endif
   double ftemp;    */
   double p,q,r,tol1,tol2,u,v,w,x,xm;    ss = strrchr( name, '.' );            /* find last / */
   double e=0.0;    if (ss >0){
        ss++;
   a=(ax < cx ? ax : cx);      strcpy(ext,ss);                     /* save extension */
   b=(ax > cx ? ax : cx);      l1= strlen( name);
   x=w=v=bx;      l2= strlen(ss)+1;
   fw=fv=fx=(*f)(x);      strncpy( finame, name, l1-l2);
   for (iter=1;iter<=ITMAX;iter++) {      finame[l1-l2]= 0;
     xm=0.5*(a+b);    }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    return( 0 );                          /* we're done */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /******************************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  void replace_back_to_slash(char *s, char*t)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    int i;
       return fx;    int lg=0;
     }    i=0;
     ftemp=fu;    lg=strlen(t);
     if (fabs(e) > tol1) {    for(i=0; i<= lg; i++) {
       r=(x-w)*(fx-fv);      (s[i] = t[i]);
       q=(x-v)*(fx-fw);      if (t[i]== '\\') s[i]='/';
       p=(x-v)*q-(x-w)*r;    }
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  int nbocc(char *s, char occ)
       etemp=e;  {
       e=d;    int i,j=0;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    int lg=20;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    i=0;
       else {    lg=strlen(s);
         d=p/q;    for(i=0; i<= lg; i++) {
         u=x+d;    if  (s[i] == occ ) j++;
         if (u-a < tol2 || b-u < tol2)    }
           d=SIGN(tol1,xm-x);    return j;
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  void cutv(char *u,char *v, char*t, char occ)
     }  {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     fu=(*f)(u);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     if (fu <= fx) {       gives u="abcedf" and v="ghi2j" */
       if (u >= x) a=x; else b=x;    int i,lg,j,p=0;
       SHFT(v,w,x,u)    i=0;
         SHFT(fv,fw,fx,fu)    for(j=0; j<=strlen(t)-1; j++) {
         } else {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
           if (u < x) a=u; else b=u;    }
           if (fu <= fw || w == x) {  
             v=w;    lg=strlen(t);
             w=u;    for(j=0; j<p; j++) {
             fv=fw;      (u[j] = t[j]);
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {       u[p]='\0';
             v=u;  
             fv=fu;     for(j=0; j<= lg; j++) {
           }      if (j>=(p+1))(v[j-p-1] = t[j]);
         }    }
   }  }
   nrerror("Too many iterations in brent");  
   *xmin=x;  /********************** nrerror ********************/
   return fx;  
 }  void nrerror(char error_text[])
   {
 /****************** mnbrak ***********************/    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    exit(EXIT_FAILURE);
             double (*func)(double))  }
 {  /*********************** vector *******************/
   double ulim,u,r,q, dum;  double *vector(int nl, int nh)
   double fu;  {
      double *v;
   *fa=(*func)(*ax);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   *fb=(*func)(*bx);    if (!v) nrerror("allocation failure in vector");
   if (*fb > *fa) {    return v-nl+NR_END;
     SHFT(dum,*ax,*bx,dum)  }
       SHFT(dum,*fb,*fa,dum)  
       }  /************************ free vector ******************/
   *cx=(*bx)+GOLD*(*bx-*ax);  void free_vector(double*v, int nl, int nh)
   *fc=(*func)(*cx);  {
   while (*fb > *fc) {    free((FREE_ARG)(v+nl-NR_END));
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /************************ivector *******************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int *ivector(long nl,long nh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    int *v;
       fu=(*func)(u);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);    return v-nl+NR_END;
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /******************free ivector **************************/
           }  void free_ivector(int *v, long nl, long nh)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /************************lvector *******************************/
       fu=(*func)(u);  long *lvector(long nl,long nh)
     }  {
     SHFT(*ax,*bx,*cx,u)    long *v;
       SHFT(*fa,*fb,*fc,fu)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       }    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /*************** linmin ************************/  
   /******************free lvector **************************/
 int ncom;  void free_lvector(long *v, long nl, long nh)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    free((FREE_ARG)(v+nl-NR_END));
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /******************* imatrix *******************************/
   double brent(double ax, double bx, double cx,  int **imatrix(long nrl, long nrh, long ncl, long nch) 
                double (*f)(double), double tol, double *xmin);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double f1dim(double x);  { 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
               double *fc, double (*func)(double));    int **m; 
   int j;    
   double xx,xmin,bx,ax;    /* allocate pointers to rows */ 
   double fx,fb,fa;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      if (!m) nrerror("allocation failure 1 in matrix()"); 
   ncom=n;    m += NR_END; 
   pcom=vector(1,n);    m -= nrl; 
   xicom=vector(1,n);    
   nrfunc=func;    
   for (j=1;j<=n;j++) {    /* allocate rows and set pointers to them */ 
     pcom[j]=p[j];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     xicom[j]=xi[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   }    m[nrl] += NR_END; 
   ax=0.0;    m[nrl] -= ncl; 
   xx=1.0;    
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    
 #ifdef DEBUG    /* return pointer to array of pointers to rows */ 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return m; 
 #endif  } 
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /****************** free_imatrix *************************/
     p[j] += xi[j];  void free_imatrix(m,nrl,nrh,ncl,nch)
   }        int **m;
   free_vector(xicom,1,n);        long nch,ncl,nrh,nrl; 
   free_vector(pcom,1,n);       /* free an int matrix allocated by imatrix() */ 
 }  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 /*************** powell ************************/    free((FREE_ARG) (m+nrl-NR_END)); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  } 
             double (*func)(double []))  
 {  /******************* matrix *******************************/
   void linmin(double p[], double xi[], int n, double *fret,  double **matrix(long nrl, long nrh, long ncl, long nch)
               double (*func)(double []));  {
   int i,ibig,j;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double del,t,*pt,*ptt,*xit;    double **m;
   double fp,fptt;  
   double *xits;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   pt=vector(1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
   ptt=vector(1,n);    m += NR_END;
   xit=vector(1,n);    m -= nrl;
   xits=vector(1,n);  
   *fret=(*func)(p);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) pt[j]=p[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (*iter=1;;++(*iter)) {    m[nrl] += NR_END;
     fp=(*fret);    m[nrl] -= ncl;
     ibig=0;  
     del=0.0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return m;
     for (i=1;i<=n;i++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       printf(" %d %.12f",i, p[i]);     */
     printf("\n");  }
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /*************************free matrix ************************/
       fptt=(*fret);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
       printf("fret=%lf \n",*fret);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /******************* ma3x *******************************/
         del=fabs(fptt-(*fret));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         ibig=i;  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #ifdef DEBUG    double ***m;
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!m) nrerror("allocation failure 1 in matrix()");
         printf(" x(%d)=%.12e",j,xit[j]);    m += NR_END;
       }    m -= nrl;
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       int k[2],l;  
       k[0]=1;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       k[1]=-1;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       printf("Max: %.12e",(*func)(p));    m[nrl][ncl] += NR_END;
       for (j=1;j<=n;j++)    m[nrl][ncl] -= nll;
         printf(" %.12e",p[j]);    for (j=ncl+1; j<=nch; j++) 
       printf("\n");      m[nrl][j]=m[nrl][j-1]+nlay;
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      for (j=ncl+1; j<=nch; j++) 
         }        m[i][j]=m[i][j-1]+nlay;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
       }    return m; 
 #endif    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /*************************free ma3x ************************/
       free_vector(pt,1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       return;  {
     }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    /* Caution optionfilefiname is hidden */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcpy(tmpout,optionfilefiname);
       if (t < 0.0) {    strcat(tmpout,"/"); /* Add to the right */
         linmin(p,xit,n,fret,func);    strcat(tmpout,fileres);
         for (j=1;j<=n;j++) {    return tmpout;
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  /*************** function subdirf2 ***********/
 #ifdef DEBUG  char *subdirf2(char fileres[], char *preop)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++)    
           printf(" %.12e",xit[j]);    /* Caution optionfilefiname is hidden */
         printf("\n");    strcpy(tmpout,optionfilefiname);
 #endif    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
   }    return tmpout;
 }  }
   
 /**** Prevalence limit ****************/  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* Caution optionfilefiname is hidden */
      matrix by transitions matrix until convergence is reached */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   int i, ii,j,k;    strcat(tmpout,preop);
   double min, max, maxmin, maxmax,sumnew=0.;    strcat(tmpout,preop2);
   double **matprod2();    strcat(tmpout,fileres);
   double **out, cov[NCOVMAX], **pmij();    return tmpout;
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /***************** f1dim *************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  extern int ncom; 
     for (j=1;j<=nlstate+ndeath;j++){  extern double *pcom,*xicom;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  extern double (*nrfunc)(double []); 
     }   
   double f1dim(double x) 
    cov[1]=1.;  { 
      int j; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double f;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double *xt; 
     newm=savm;   
     /* Covariates have to be included here again */    xt=vector(1,ncom); 
      cov[2]=agefin;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      f=(*nrfunc)(xt); 
       for (k=1; k<=cptcovn;k++) {    free_vector(xt,1,ncom); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    return f; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  } 
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*****************brent *************************/
       for (k=1; k<=cptcovprod;k++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  { 
     int iter; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double a,b,d,etemp;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double fu,fv,fw,fx;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    double ftemp;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
     savm=oldm;   
     oldm=newm;    a=(ax < cx ? ax : cx); 
     maxmax=0.;    b=(ax > cx ? ax : cx); 
     for(j=1;j<=nlstate;j++){    x=w=v=bx; 
       min=1.;    fw=fv=fx=(*f)(x); 
       max=0.;    for (iter=1;iter<=ITMAX;iter++) { 
       for(i=1; i<=nlstate; i++) {      xm=0.5*(a+b); 
         sumnew=0;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         prlim[i][j]= newm[i][j]/(1-sumnew);      printf(".");fflush(stdout);
         max=FMAX(max,prlim[i][j]);      fprintf(ficlog,".");fflush(ficlog);
         min=FMIN(min,prlim[i][j]);  #ifdef DEBUG
       }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       maxmin=max-min;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       maxmax=FMAX(maxmax,maxmin);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
     if(maxmax < ftolpl){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       return prlim;        *xmin=x; 
     }        return fx; 
   }      } 
 }      ftemp=fu;
       if (fabs(e) > tol1) { 
 /*************** transition probabilities ***************/        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        p=(x-v)*q-(x-w)*r; 
 {        q=2.0*(q-r); 
   double s1, s2;        if (q > 0.0) p = -p; 
   /*double t34;*/        q=fabs(q); 
   int i,j,j1, nc, ii, jj;        etemp=e; 
         e=d; 
     for(i=1; i<= nlstate; i++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(j=1; j<i;j++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        else { 
         /*s2 += param[i][j][nc]*cov[nc];*/          d=p/q; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          u=x+d; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          if (u-a < tol2 || b-u < tol2) 
       }            d=SIGN(tol1,xm-x); 
       ps[i][j]=s2;        } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      } else { 
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=i+1; j<=nlstate+ndeath;j++){      } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      fu=(*f)(u); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      if (fu <= fx) { 
       }        if (u >= x) a=x; else b=x; 
       ps[i][j]=s2;        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
   }          } else { 
     /*ps[3][2]=1;*/            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   for(i=1; i<= nlstate; i++){              v=w; 
      s1=0;              w=u; 
     for(j=1; j<i; j++)              fv=fw; 
       s1+=exp(ps[i][j]);              fw=fu; 
     for(j=i+1; j<=nlstate+ndeath; j++)            } else if (fu <= fv || v == x || v == w) { 
       s1+=exp(ps[i][j]);              v=u; 
     ps[i][i]=1./(s1+1.);              fv=fu; 
     for(j=1; j<i; j++)            } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          } 
     for(j=i+1; j<=nlstate+ndeath; j++)    } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    nrerror("Too many iterations in brent"); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    *xmin=x; 
   } /* end i */    return fx; 
   } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /****************** mnbrak ***********************/
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
   }  { 
     double ulim,u,r,q, dum;
     double fu; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){   
     for(jj=1; jj<= nlstate+ndeath; jj++){    *fa=(*func)(*ax); 
      printf("%lf ",ps[ii][jj]);    *fb=(*func)(*bx); 
    }    if (*fb > *fa) { 
     printf("\n ");      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
     printf("\n ");printf("%lf ",cov[2]);*/        } 
 /*    *cx=(*bx)+GOLD*(*bx-*ax); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    *fc=(*func)(*cx); 
   goto end;*/    while (*fb > *fc) { 
     return ps;      r=(*bx-*ax)*(*fb-*fc); 
 }      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 /**************** Product of 2 matrices ******************/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      if ((*bx-u)*(u-*cx) > 0.0) { 
 {        fu=(*func)(u); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      } else if ((*cx-u)*(u-ulim) > 0.0) { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        fu=(*func)(u); 
   /* in, b, out are matrice of pointers which should have been initialized        if (fu < *fc) { 
      before: only the contents of out is modified. The function returns          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      a pointer to pointers identical to out */            SHFT(*fb,*fc,fu,(*func)(u)) 
   long i, j, k;            } 
   for(i=nrl; i<= nrh; i++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for(k=ncolol; k<=ncoloh; k++)        u=ulim; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        fu=(*func)(u); 
         out[i][k] +=in[i][j]*b[j][k];      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   return out;        fu=(*func)(u); 
 }      } 
       SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
 /************* Higher Matrix Product ***************/        } 
   } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /*************** linmin ************************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  int ncom; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  double *pcom,*xicom;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  double (*nrfunc)(double []); 
      (typically every 2 years instead of every month which is too big).   
      Model is determined by parameters x and covariates have to be  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
      included manually here.  { 
     double brent(double ax, double bx, double cx, 
      */                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   int i, j, d, h, k;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double **out, cov[NCOVMAX];                double *fc, double (*func)(double)); 
   double **newm;    int j; 
     double xx,xmin,bx,ax; 
   /* Hstepm could be zero and should return the unit matrix */    double fx,fb,fa;
   for (i=1;i<=nlstate+ndeath;i++)   
     for (j=1;j<=nlstate+ndeath;j++){    ncom=n; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    pcom=vector(1,n); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    xicom=vector(1,n); 
     }    nrfunc=func; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (j=1;j<=n;j++) { 
   for(h=1; h <=nhstepm; h++){      pcom[j]=p[j]; 
     for(d=1; d <=hstepm; d++){      xicom[j]=xi[j]; 
       newm=savm;    } 
       /* Covariates have to be included here again */    ax=0.0; 
       cov[1]=1.;    xx=1.0; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       for (k=1; k<=cptcovage;k++)  #ifdef DEBUG
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (k=1; k<=cptcovprod;k++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
     for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      p[j] += xi[j]; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    free_vector(xicom,1,n); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    free_vector(pcom,1,n); 
       savm=oldm;  } 
       oldm=newm;  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    long sec_left, days, hours, minutes;
         po[i][j][h]=newm[i][j];    days = (time_sec) / (60*60*24);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    sec_left = (time_sec) % (60*60*24);
          */    hours = (sec_left) / (60*60) ;
       }    sec_left = (sec_left) %(60*60);
   } /* end h */    minutes = (sec_left) /60;
   return po;    sec_left = (sec_left) % (60);
 }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   }
 /*************** log-likelihood *************/  
 double func( double *x)  /*************** powell ************************/
 {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   int i, ii, j, k, mi, d, kk;              double (*func)(double [])) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  { 
   double **out;    void linmin(double p[], double xi[], int n, double *fret, 
   double sw; /* Sum of weights */                double (*func)(double [])); 
   double lli; /* Individual log likelihood */    int i,ibig,j; 
   long ipmx;    double del,t,*pt,*ptt,*xit;
   /*extern weight */    double fp,fptt;
   /* We are differentiating ll according to initial status */    double *xits;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    int niterf, itmp;
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    pt=vector(1,n); 
   */    ptt=vector(1,n); 
   cov[1]=1.;    xit=vector(1,n); 
     xits=vector(1,n); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    *fret=(*func)(p); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for (*iter=1;;++(*iter)) { 
     for(mi=1; mi<= wav[i]-1; mi++){      fp=(*fret); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      ibig=0; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      del=0.0; 
       for(d=0; d<dh[mi][i]; d++){      last_time=curr_time;
         newm=savm;      (void) gettimeofday(&curr_time,&tzp);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         for (kk=1; kk<=cptcovage;kk++) {      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
         }      */
             for (i=1;i<=n;i++) {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        printf(" %d %.12f",i, p[i]);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog," %d %.12lf",i, p[i]);
         savm=oldm;        fprintf(ficrespow," %.12lf", p[i]);
         oldm=newm;      }
              printf("\n");
              fprintf(ficlog,"\n");
       } /* end mult */      fprintf(ficrespow,"\n");fflush(ficrespow);
            if(*iter <=3){
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        tm = *localtime(&curr_time.tv_sec);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        strcpy(strcurr,asctime(&tm));
       ipmx +=1;  /*       asctime_r(&tm,strcurr); */
       sw += weight[i];        forecast_time=curr_time; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        itmp = strlen(strcurr);
     } /* end of wave */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   } /* end of individual */          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for(niterf=10;niterf<=30;niterf+=10){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   return -l;          tmf = *localtime(&forecast_time.tv_sec);
 }  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
 /*********** Maximum Likelihood Estimation ***************/          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int i,j, iter;        }
   double **xi,*delti;      }
   double fret;      for (i=1;i<=n;i++) { 
   xi=matrix(1,npar,1,npar);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (i=1;i<=npar;i++)        fptt=(*fret); 
     for (j=1;j<=npar;j++)  #ifdef DEBUG
       xi[i][j]=(i==j ? 1.0 : 0.0);        printf("fret=%lf \n",*fret);
   printf("Powell\n");        fprintf(ficlog,"fret=%lf \n",*fret);
   powell(p,xi,npar,ftol,&iter,&fret,func);  #endif
         printf("%d",i);fflush(stdout);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fprintf(ficlog,"%d",i);fflush(ficlog);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 }          del=fabs(fptt-(*fret)); 
           ibig=i; 
 /**** Computes Hessian and covariance matrix ***/        } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  #ifdef DEBUG
 {        printf("%d %.12e",i,(*fret));
   double  **a,**y,*x,pd;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double **hess;        for (j=1;j<=n;j++) {
   int i, j,jk;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int *indx;          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double hessii(double p[], double delta, int theta, double delti[]);        }
   double hessij(double p[], double delti[], int i, int j);        for(j=1;j<=n;j++) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;          printf(" p=%.12e",p[j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          fprintf(ficlog," p=%.12e",p[j]);
         }
   hess=matrix(1,npar,1,npar);        printf("\n");
         fprintf(ficlog,"\n");
   printf("\nCalculation of the hessian matrix. Wait...\n");  #endif
   for (i=1;i<=npar;i++){      } 
     printf("%d",i);fflush(stdout);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     hess[i][i]=hessii(p,ftolhess,i,delti);  #ifdef DEBUG
     /*printf(" %f ",p[i]);*/        int k[2],l;
     /*printf(" %lf ",hess[i][i]);*/        k[0]=1;
   }        k[1]=-1;
          printf("Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (j=1;j<=npar;j++)  {        for (j=1;j<=n;j++) {
       if (j>i) {          printf(" %.12e",p[j]);
         printf(".%d%d",i,j);fflush(stdout);          fprintf(ficlog," %.12e",p[j]);
         hess[i][j]=hessij(p,delti,i,j);        }
         hess[j][i]=hess[i][j];            printf("\n");
         /*printf(" %lf ",hess[i][j]);*/        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   printf("\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          }
            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   a=matrix(1,npar,1,npar);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   y=matrix(1,npar,1,npar);        }
   x=vector(1,npar);  #endif
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        free_vector(xit,1,n); 
   ludcmp(a,npar,indx,&pd);        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   for (j=1;j<=npar;j++) {        free_vector(pt,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        return; 
     x[j]=1;      } 
     lubksb(a,npar,indx,x);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (i=1;i<=npar;i++){      for (j=1;j<=n;j++) { 
       matcov[i][j]=x[i];        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
       } 
   printf("\n#Hessian matrix#\n");      fptt=(*func)(ptt); 
   for (i=1;i<=npar;i++) {      if (fptt < fp) { 
     for (j=1;j<=npar;j++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       printf("%.3e ",hess[i][j]);        if (t < 0.0) { 
     }          linmin(p,xit,n,fret,func); 
     printf("\n");          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   /* Recompute Inverse */          }
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   /*  printf("\n#Hessian matrix recomputed#\n");            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   for (j=1;j<=npar;j++) {          }
     for (i=1;i<=npar;i++) x[i]=0;          printf("\n");
     x[j]=1;          fprintf(ficlog,"\n");
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];      } 
       printf("%.3e ",y[i][j]);    } 
     }  } 
     printf("\n");  
   }  /**** Prevalence limit (stable prevalence)  ****************/
   */  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   free_matrix(a,1,npar,1,npar);  {
   free_matrix(y,1,npar,1,npar);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   free_vector(x,1,npar);       matrix by transitions matrix until convergence is reached */
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 }    double **out, cov[NCOVMAX], **pmij();
     double **newm;
 /*************** hessian matrix ****************/    double agefin, delaymax=50 ; /* Max number of years to converge */
 double hessii( double x[], double delta, int theta, double delti[])  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   int i;      for (j=1;j<=nlstate+ndeath;j++){
   int l=1, lmax=20;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double k1,k2;      }
   double p2[NPARMAX+1];  
   double res;     cov[1]=1.;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;   
   double fx;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int k=0,kmax=10;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double l1;      newm=savm;
       /* Covariates have to be included here again */
   fx=func(x);       cov[2]=agefin;
   for (i=1;i<=npar;i++) p2[i]=x[i];    
   for(l=0 ; l <=lmax; l++){        for (k=1; k<=cptcovn;k++) {
     l1=pow(10,l);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     delts=delt;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for(k=1 ; k <kmax; k=k+1){        }
       delt = delta*(l1*k);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       p2[theta]=x[theta] +delt;        for (k=1; k<=cptcovprod;k++)
       k1=func(p2)-fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*res= (k1-2.0*fx+k2)/delt/delt; */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
            out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      savm=oldm;
 #endif      oldm=newm;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      maxmax=0.;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for(j=1;j<=nlstate;j++){
         k=kmax;        min=1.;
       }        max=0.;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for(i=1; i<=nlstate; i++) {
         k=kmax; l=lmax*10.;          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          prlim[i][j]= newm[i][j]/(1-sumnew);
         delts=delt;          max=FMAX(max,prlim[i][j]);
       }          min=FMIN(min,prlim[i][j]);
     }        }
   }        maxmin=max-min;
   delti[theta]=delts;        maxmax=FMAX(maxmax,maxmin);
   return res;      }
        if(maxmax < ftolpl){
 }        return prlim;
       }
 double hessij( double x[], double delti[], int thetai,int thetaj)    }
 {  }
   int i;  
   int l=1, l1, lmax=20;  /*************** transition probabilities ***************/ 
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   int k;  {
     double s1, s2;
   fx=func(x);    /*double t34;*/
   for (k=1; k<=2; k++) {    int i,j,j1, nc, ii, jj;
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;      for(i=1; i<= nlstate; i++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=1; j<i;j++){
     k1=func(p2)-fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
     p2[thetai]=x[thetai]+delti[thetai]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     k2=func(p2)-fx;          }
            ps[i][j]=s2;
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k3=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath;j++){
            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     p2[thetai]=x[thetai]-delti[thetai]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     k4=func(p2)-fx;          }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          ps[i][j]=s2;
 #ifdef DEBUG        }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      }
 #endif      /*ps[3][2]=1;*/
   }      
   return res;      for(i=1; i<= nlstate; i++){
 }        s1=0;
         for(j=1; j<i; j++)
 /************** Inverse of matrix **************/          s1+=exp(ps[i][j]);
 void ludcmp(double **a, int n, int *indx, double *d)        for(j=i+1; j<=nlstate+ndeath; j++)
 {          s1+=exp(ps[i][j]);
   int i,imax,j,k;        ps[i][i]=1./(s1+1.);
   double big,dum,sum,temp;        for(j=1; j<i; j++)
   double *vv;          ps[i][j]= exp(ps[i][j])*ps[i][i];
          for(j=i+1; j<=nlstate+ndeath; j++)
   vv=vector(1,n);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   *d=1.0;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for (i=1;i<=n;i++) {      } /* end i */
     big=0.0;      
     for (j=1;j<=n;j++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(jj=1; jj<= nlstate+ndeath; jj++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          ps[ii][jj]=0;
     vv[i]=1.0/big;          ps[ii][ii]=1;
   }        }
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {      
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       a[i][j]=sum;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     }  /*         printf("ddd %lf ",ps[ii][jj]); */
     big=0.0;  /*       } */
     for (i=j;i<=n;i++) {  /*       printf("\n "); */
       sum=a[i][j];  /*        } */
       for (k=1;k<j;k++)  /*        printf("\n ");printf("%lf ",cov[2]); */
         sum -= a[i][k]*a[k][j];         /*
       a[i][j]=sum;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       if ( (dum=vv[i]*fabs(sum)) >= big) {        goto end;*/
         big=dum;      return ps;
         imax=i;  }
       }  
     }  /**************** Product of 2 matrices ******************/
     if (j != imax) {  
       for (k=1;k<=n;k++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         dum=a[imax][k];  {
         a[imax][k]=a[j][k];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         a[j][k]=dum;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       }    /* in, b, out are matrice of pointers which should have been initialized 
       *d = -(*d);       before: only the contents of out is modified. The function returns
       vv[imax]=vv[j];       a pointer to pointers identical to out */
     }    long i, j, k;
     indx[j]=imax;    for(i=nrl; i<= nrh; i++)
     if (a[j][j] == 0.0) a[j][j]=TINY;      for(k=ncolol; k<=ncoloh; k++)
     if (j != n) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       dum=1.0/(a[j][j]);          out[i][k] +=in[i][j]*b[j][k];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }    return out;
   }  }
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  
 }  /************* Higher Matrix Product ***************/
   
 void lubksb(double **a, int n, int *indx, double b[])  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   int i,ii=0,ip,j;    /* Computes the transition matrix starting at age 'age' over 
   double sum;       'nhstepm*hstepm*stepm' months (i.e. until
         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for (i=1;i<=n;i++) {       nhstepm*hstepm matrices. 
     ip=indx[i];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     sum=b[ip];       (typically every 2 years instead of every month which is too big 
     b[ip]=b[i];       for the memory).
     if (ii)       Model is determined by parameters x and covariates have to be 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       included manually here. 
     else if (sum) ii=i;  
     b[i]=sum;       */
   }  
   for (i=n;i>=1;i--) {    int i, j, d, h, k;
     sum=b[i];    double **out, cov[NCOVMAX];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    double **newm;
     b[i]=sum/a[i][i];  
   }    /* Hstepm could be zero and should return the unit matrix */
 }    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
 /************ Frequencies ********************/        oldm[i][j]=(i==j ? 1.0 : 0.0);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        po[i][j][0]=(i==j ? 1.0 : 0.0);
 {  /* Some frequencies */      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    for(h=1; h <=nhstepm; h++){
   double ***freq; /* Frequencies */      for(d=1; d <=hstepm; d++){
   double *pp;        newm=savm;
   double pos, k2, dateintsum=0,k2cpt=0;        /* Covariates have to be included here again */
   FILE *ficresp;        cov[1]=1.;
   char fileresp[FILENAMELENGTH];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   pp=vector(1,nlstate);        for (k=1; k<=cptcovage;k++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   strcpy(fileresp,"p");        for (k=1; k<=cptcovprod;k++)
   strcat(fileresp,fileres);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   j1=0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          savm=oldm;
   j=cptcoveff;        oldm=newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
        for(i=1; i<=nlstate+ndeath; i++)
   for(k1=1; k1<=j;k1++){        for(j=1;j<=nlstate+ndeath;j++) {
     for(i1=1; i1<=ncodemax[k1];i1++){          po[i][j][h]=newm[i][j];
       j1++;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           */
         scanf("%d", i);*/        }
       for (i=-1; i<=nlstate+ndeath; i++)      } /* end h */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      return po;
           for(m=agemin; m <= agemax+3; m++)  }
             freq[i][jk][m]=0;  
        
       dateintsum=0;  /*************** log-likelihood *************/
       k2cpt=0;  double func( double *x)
       for (i=1; i<=imx; i++) {  {
         bool=1;    int i, ii, j, k, mi, d, kk;
         if  (cptcovn>0) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for (z1=1; z1<=cptcoveff; z1++)    double **out;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double sw; /* Sum of weights */
               bool=0;    double lli; /* Individual log likelihood */
         }    int s1, s2;
         if (bool==1) {    double bbh, survp;
           for(m=firstpass; m<=lastpass; m++){    long ipmx;
             k2=anint[m][i]+(mint[m][i]/12.);    /*extern weight */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* We are differentiating ll according to initial status */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /*for(i=1;i<imx;i++) 
               if (m<lastpass) {      printf(" %d\n",s[4][i]);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    cov[1]=1.;
               }  
                  for(k=1; k<=nlstate; k++) ll[k]=0.;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;    if(mle==1){
                 k2cpt++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }
           for(d=0; d<dh[mi][i]; d++){
       if  (cptcovn>0) {            newm=savm;
         fprintf(ficresp, "\n#********** Variable ");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficresp, "**********\n#");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresp, "\n");            savm=oldm;
                  oldm=newm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){          } /* end mult */
         if(i==(int)agemax+3)        
           printf("Total");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         else          /* But now since version 0.9 we anticipate for bias at large stepm.
           printf("Age %d", i);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for(jk=1; jk <=nlstate ; jk++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
             pp[jk] += freq[jk][m][i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         for(jk=1; jk <=nlstate ; jk++){           * probability in order to take into account the bias as a fraction of the way
           for(m=-1, pos=0; m <=0 ; m++)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             pos += freq[jk][m][i];           * -stepm/2 to stepm/2 .
           if(pp[jk]>=1.e-10)           * For stepm=1 the results are the same as for previous versions of Imach.
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * For stepm > 1 the results are less biased than in previous versions. 
           else           */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=1; jk <=nlstate ; jk++){          /* bias bh is positive if real duration
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * is higher than the multiple of stepm and negative otherwise.
             pp[jk] += freq[jk][m][i];           */
         }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
         for(jk=1,pos=0; jk <=nlstate ; jk++)            /* i.e. if s2 is a death state and if the date of death is known 
           pos += pp[jk];               then the contribution to the likelihood is the probability to 
         for(jk=1; jk <=nlstate ; jk++){               die between last step unit time and current  step unit time, 
           if(pos>=1.e-5)               which is also equal to probability to die before dh 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);               minus probability to die before dh-stepm . 
           else               In version up to 0.92 likelihood was computed
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          as if date of death was unknown. Death was treated as any other
           if( i <= (int) agemax){          health state: the date of the interview describes the actual state
             if(pos>=1.e-5){          and not the date of a change in health state. The former idea was
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          to consider that at each interview the state was recorded
               probs[i][jk][j1]= pp[jk]/pos;          (healthy, disable or death) and IMaCh was corrected; but when we
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          introduced the exact date of death then we should have modified
             }          the contribution of an exact death to the likelihood. This new
             else          contribution is smaller and very dependent of the step unit
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          stepm. It is no more the probability to die between last interview
           }          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
                  probability to die within a month. Thanks to Chris
         for(jk=-1; jk <=nlstate+ndeath; jk++)          Jackson for correcting this bug.  Former versions increased
           for(m=-1; m <=nlstate+ndeath; m++)          mortality artificially. The bad side is that we add another loop
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          which slows down the processing. The difference can be up to 10%
         if(i <= (int) agemax)          lower mortality.
           fprintf(ficresp,"\n");            */
         printf("\n");            lli=log(out[s1][s2] - savm[s1][s2]);
       }  
     }  
   }          } else if  (s2==-2) {
   dateintmean=dateintsum/k2cpt;            for (j=1,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   fclose(ficresp);            lli= survp;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }
   free_vector(pp,1,nlstate);          
            else if  (s2==-4) {
   /* End of Freq */            for (j=3,survp=0. ; j<=nlstate; j++) 
 }              survp += out[s1][j];
             lli= survp;
 /************ Prevalence ********************/          }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          
 {  /* Some frequencies */          else if  (s2==-5) {
              for (j=1,survp=0. ; j<=2; j++) 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              survp += out[s1][j];
   double ***freq; /* Frequencies */            lli= survp;
   double *pp;          }
   double pos, k2;  
   
   pp=vector(1,nlstate);          else{
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          } 
   j1=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
   j=cptcoveff;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ipmx +=1;
            sw += weight[i];
  for(k1=1; k1<=j;k1++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i1=1; i1<=ncodemax[k1];i1++){        } /* end of wave */
       j1++;      } /* end of individual */
      }  else if(mle==2){
       for (i=-1; i<=nlstate+ndeath; i++)        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=agemin; m <= agemax+3; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             freq[i][jk][m]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)          for(d=0; d<=dh[mi][i]; d++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            newm=savm;
               bool=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         if (bool==1) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if ((k2>=dateprev1) && (k2<=dateprev2)) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==0) agev[m][i]=agemax+1;            savm=oldm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            oldm=newm;
               if (m<lastpass)          } /* end mult */
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        
               else          s1=s[mw[mi][i]][i];
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          s2=s[mw[mi+1][i]][i];
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          bbh=(double)bh[mi][i]/(double)stepm; 
             }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           }          ipmx +=1;
         }          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(i=(int)agemin; i <= (int)agemax+3; i++){        } /* end of wave */
           for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }  else if(mle==3){  /* exponential inter-extrapolation */
               pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
             for(m=-1, pos=0; m <=0 ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             pos += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
          for(jk=1; jk <=nlstate ; jk++){            }
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for(d=0; d<dh[mi][i]; d++){
              pp[jk] += freq[jk][m][i];            newm=savm;
          }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                      for (kk=1; kk<=cptcovage;kk++) {
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
          for(jk=1; jk <=nlstate ; jk++){                      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
            if( i <= (int) agemax){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              if(pos>=1.e-5){            savm=oldm;
                probs[i][jk][j1]= pp[jk]/pos;            oldm=newm;
              }          } /* end mult */
            }        
          }          s1=s[mw[mi][i]][i];
                    s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }          ipmx +=1;
           sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        } /* end of wave */
   free_vector(pp,1,nlstate);      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
 }  /* End of Freq */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************* Waves Concatenation ***************/        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      Death is a valid wave (if date is known).            }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for(d=0; d<dh[mi][i]; d++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            newm=savm;
      and mw[mi+1][i]. dh depends on stepm.            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, mi, m;            }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          
      double sum=0., jmean=0.;*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int j, k=0,jk, ju, jl;            savm=oldm;
   double sum=0.;            oldm=newm;
   jmin=1e+5;          } /* end mult */
   jmax=-1;        
   jmean=0.;          s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     mi=0;          if( s2 > nlstate){ 
     m=firstpass;            lli=log(out[s1][s2] - savm[s1][s2]);
     while(s[m][i] <= nlstate){          }else{
       if(s[m][i]>=1)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         mw[++mi][i]=m;          }
       if(m >=lastpass)          ipmx +=1;
         break;          sw += weight[i];
       else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         m++;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }/* end while */        } /* end of wave */
     if (s[m][i] > nlstate){      } /* end of individual */
       mi++;     /* Death is another wave */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       /* if(mi==0)  never been interviewed correctly before death */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          /* Only death is a correct wave */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       mw[mi][i]=m;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     wav[i]=mi;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(mi==0)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            }
   }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   for(i=1; i<=imx; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(mi=1; mi<wav[i];mi++){            for (kk=1; kk<=cptcovage;kk++) {
       if (stepm <=0)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         dh[mi][i]=1;            }
       else{          
         if (s[mw[mi+1][i]][i] > nlstate) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (agedc[i] < 2*AGESUP) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            savm=oldm;
           if(j==0) j=1;  /* Survives at least one month after exam */            oldm=newm;
           k=k+1;          } /* end mult */
           if (j >= jmax) jmax=j;        
           if (j <= jmin) jmin=j;          s1=s[mw[mi][i]][i];
           sum=sum+j;          s2=s[mw[mi+1][i]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }          ipmx +=1;
         }          sw += weight[i];
         else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           k=k+1;        } /* end of wave */
           if (j >= jmax) jmax=j;      } /* end of individual */
           else if (j <= jmin)jmin=j;    } /* End of if */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           sum=sum+j;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         jk= j/stepm;    return -l;
         jl= j -jk*stepm;  }
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)  /*************** log-likelihood *************/
           dh[mi][i]=jk;  double funcone( double *x)
         else  {
           dh[mi][i]=jk+1;    /* Same as likeli but slower because of a lot of printf and if */
         if(dh[mi][i]==0)    int i, ii, j, k, mi, d, kk;
           dh[mi][i]=1; /* At least one step */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       }    double **out;
     }    double lli; /* Individual log likelihood */
   }    double llt;
   jmean=sum/k;    int s1, s2;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double bbh, survp;
  }    /*extern weight */
 /*********** Tricode ****************************/    /* We are differentiating ll according to initial status */
 void tricode(int *Tvar, int **nbcode, int imx)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {    /*for(i=1;i<imx;i++) 
   int Ndum[20],ij=1, k, j, i;      printf(" %d\n",s[4][i]);
   int cptcode=0;    */
   cptcoveff=0;    cov[1]=1.;
    
   for (k=0; k<19; k++) Ndum[k]=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (k=1; k<=7; k++) ncodemax[k]=0;  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1; i<=imx; i++) {      for(mi=1; mi<= wav[i]-1; mi++){
       ij=(int)(covar[Tvar[j]][i]);        for (ii=1;ii<=nlstate+ndeath;ii++)
       Ndum[ij]++;          for (j=1;j<=nlstate+ndeath;j++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }          }
         for(d=0; d<dh[mi][i]; d++){
     for (i=0; i<=cptcode; i++) {          newm=savm;
       if(Ndum[i]!=0) ncodemax[j]++;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }          for (kk=1; kk<=cptcovage;kk++) {
     ij=1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=ncodemax[j]; i++) {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=0; k<=19; k++) {          savm=oldm;
         if (Ndum[k] != 0) {          oldm=newm;
           nbcode[Tvar[j]][ij]=k;        } /* end mult */
                  
           ij++;        s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
         if (ij > ncodemax[j]) break;        bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias is positive if real duration
     }         * is higher than the multiple of stepm and negative otherwise.
   }           */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
  for (k=0; k<19; k++) Ndum[k]=0;          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if (mle==1){
  for (i=1; i<=ncovmodel-2; i++) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       ij=Tvar[i];        } else if(mle==2){
       Ndum[ij]++;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
  ij=1;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
  for (i=1; i<=10; i++) {          lli=log(out[s1][s2]); /* Original formula */
    if((Ndum[i]!=0) && (i<=ncovcol)){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      Tvaraff[ij]=i;          lli=log(out[s1][s2]); /* Original formula */
      ij++;        } /* End of if */
    }        ipmx +=1;
  }        sw += weight[i];
          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     cptcoveff=ij-1;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 }        if(globpr){
           fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 /*********** Health Expectancies ****************/   %10.6f %10.6f %10.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 {            llt +=ll[k]*gipmx/gsw;
   /* Health expectancies */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          }
   double age, agelim, hf;          fprintf(ficresilk," %10.6f\n", -llt);
   double ***p3mat,***varhe;        }
   double **dnewm,**doldm;      } /* end of wave */
   double *xp;    } /* end of individual */
   double **gp, **gm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double ***gradg, ***trgradg;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int theta;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      gipmx=ipmx;
   xp=vector(1,npar);      gsw=sw;
   dnewm=matrix(1,nlstate*2,1,npar);    }
   doldm=matrix(1,nlstate*2,1,nlstate*2);    return -l;
    }
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  /*************** function likelione ***********/
     for(j=1; j<=nlstate;j++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  {
   fprintf(ficreseij,"\n");    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   if(estepm < stepm){       to check the exact contribution to the likelihood.
     printf ("Problem %d lower than %d\n",estepm, stepm);       Plotting could be done.
   }     */
   else  hstepm=estepm;      int k;
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    if(*globpri !=0){ /* Just counts and sums, no printings */
    * if stepm=24 months pijx are given only every 2 years and by summing them      strcpy(fileresilk,"ilk"); 
    * we are calculating an estimate of the Life Expectancy assuming a linear      strcat(fileresilk,fileres);
    * progression inbetween and thus overestimating or underestimating according      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    * to the curvature of the survival function. If, for the same date, we        printf("Problem with resultfile: %s\n", fileresilk);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    * to compare the new estimate of Life expectancy with the same linear      }
    * hypothesis. A more precise result, taking into account a more precise      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
    * curvature will be obtained if estepm is as small as stepm. */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /* For example we decided to compute the life expectancy with the smallest unit */      for(k=1; k<=nlstate; k++) 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      nhstepm is the number of hstepm from age to agelim      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      nstepm is the number of stepm from age to agelin.    }
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */    *fretone=(*funcone)(p);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    if(*globpri !=0){
      survival function given by stepm (the optimization length). Unfortunately it      fclose(ficresilk);
      means that if the survival funtion is printed only each two years of age and if      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      fflush(fichtm); 
      results. So we changed our mind and took the option of the best precision.    } 
   */    return;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  }
   
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*********** Maximum Likelihood Estimation ***************/
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  {
     /* if (stepm >= YEARM) hstepm=1;*/    int i,j, iter;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double **xi;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fret;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    double fretone; /* Only one call to likelihood */
     gp=matrix(0,nhstepm,1,nlstate*2);    /*  char filerespow[FILENAMELENGTH];*/
     gm=matrix(0,nhstepm,1,nlstate*2);    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (j=1;j<=npar;j++)
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        xi[i][j]=(i==j ? 1.0 : 0.0);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
      strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     /* Computing Variances of health expectancies */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
      for(theta=1; theta <=npar; theta++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(i=1; i<=npar; i++){    for (i=1;i<=nlstate;i++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for(j=1;j<=nlstate+ndeath;j++)
       }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficrespow,"\n");
    
       cptj=0;    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){    fclose(ficrespow);
           cptj=cptj+1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           }  
         }  }
       }  
        /**** Computes Hessian and covariance matrix ***/
        void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(i=1; i<=npar; i++)  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double  **a,**y,*x,pd;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **hess;
          int i, j,jk;
       cptj=0;    int *indx;
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           cptj=cptj+1;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    void ludcmp(double **a, int npar, int *indx, double *d) ;
           }    double gompertz(double p[]);
         }    hess=matrix(1,npar,1,npar);
       }  
          printf("\nCalculation of the hessian matrix. Wait...\n");
        fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       for(j=1; j<= nlstate*2; j++)      printf("%d",i);fflush(stdout);
         for(h=0; h<=nhstepm-1; h++){      fprintf(ficlog,"%d",i);fflush(ficlog);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];     
         }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
      }      /*  printf(" %f ",p[i]);
              printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 /* End theta */    }
     
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
      for(h=0; h<=nhstepm-1; h++)        if (j>i) { 
       for(j=1; j<=nlstate*2;j++)          printf(".%d%d",i,j);fflush(stdout);
         for(theta=1; theta <=npar; theta++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         trgradg[h][j][theta]=gradg[h][theta][j];          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
           hess[j][i]=hess[i][j];    
      for(i=1;i<=nlstate*2;i++)          /*printf(" %lf ",hess[i][j]);*/
       for(j=1;j<=nlstate*2;j++)        }
         varhe[i][j][(int)age] =0.;      }
     }
     for(h=0;h<=nhstepm-1;h++){    printf("\n");
       for(k=0;k<=nhstepm-1;k++){    fprintf(ficlog,"\n");
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(i=1;i<=nlstate*2;i++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           for(j=1;j<=nlstate*2;j++)    
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
     }    x=vector(1,npar);
     indx=ivector(1,npar);
          for (i=1;i<=npar;i++)
     /* Computing expectancies */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     for(i=1; i<=nlstate;i++)    ludcmp(a,npar,indx,&pd);
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for (j=1;j<=npar;j++) {
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      for (i=1;i<=npar;i++) x[i]=0;
                x[j]=1;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         }        matcov[i][j]=x[i];
       }
     fprintf(ficreseij,"%3.0f",age );    }
     cptj=0;  
     for(i=1; i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
       for(j=1; j<=nlstate;j++){    fprintf(ficlog,"\n#Hessian matrix#\n");
         cptj++;    for (i=1;i<=npar;i++) { 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      for (j=1;j<=npar;j++) { 
       }        printf("%.3e ",hess[i][j]);
     fprintf(ficreseij,"\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
          }
     free_matrix(gm,0,nhstepm,1,nlstate*2);      printf("\n");
     free_matrix(gp,0,nhstepm,1,nlstate*2);      fprintf(ficlog,"\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Recompute Inverse */
   }    for (i=1;i<=npar;i++)
   free_vector(xp,1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   free_matrix(dnewm,1,nlstate*2,1,npar);    ludcmp(a,npar,indx,&pd);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    /*  printf("\n#Hessian matrix recomputed#\n");
 }  
     for (j=1;j<=npar;j++) {
 /************ Variance ******************/      for (i=1;i<=npar;i++) x[i]=0;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      x[j]=1;
 {      lubksb(a,npar,indx,x);
   /* Variance of health expectancies */      for (i=1;i<=npar;i++){ 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        y[i][j]=x[i];
   double **newm;        printf("%.3e ",y[i][j]);
   double **dnewm,**doldm;        fprintf(ficlog,"%.3e ",y[i][j]);
   int i, j, nhstepm, hstepm, h, nstepm ;      }
   int k, cptcode;      printf("\n");
   double *xp;      fprintf(ficlog,"\n");
   double **gp, **gm;    }
   double ***gradg, ***trgradg;    */
   double ***p3mat;  
   double age,agelim, hf;    free_matrix(a,1,npar,1,npar);
   int theta;    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
    fprintf(ficresvij,"# Covariances of life expectancies\n");    free_ivector(indx,1,npar);
   fprintf(ficresvij,"# Age");    free_matrix(hess,1,npar,1,npar);
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  }
   fprintf(ficresvij,"\n");  
   /*************** hessian matrix ****************/
   xp=vector(1,npar);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   dnewm=matrix(1,nlstate,1,npar);  {
   doldm=matrix(1,nlstate,1,nlstate);    int i;
      int l=1, lmax=20;
   if(estepm < stepm){    double k1,k2;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double p2[NPARMAX+1];
   }    double res;
   else  hstepm=estepm;      double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   /* For example we decided to compute the life expectancy with the smallest unit */    double fx;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int k=0,kmax=10;
      nhstepm is the number of hstepm from age to agelim    double l1;
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    fx=func(x);
      and note for a fixed period like k years */    for (i=1;i<=npar;i++) p2[i]=x[i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for(l=0 ; l <=lmax; l++){
      survival function given by stepm (the optimization length). Unfortunately it      l1=pow(10,l);
      means that if the survival funtion is printed only each two years of age and if      delts=delt;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for(k=1 ; k <kmax; k=k+1){
      results. So we changed our mind and took the option of the best precision.        delt = delta*(l1*k);
   */        p2[theta]=x[theta] +delt;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        k1=func(p2)-fx;
   agelim = AGESUP;        p2[theta]=x[theta]-delt;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        k2=func(p2)-fx;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /*res= (k1-2.0*fx+k2)/delt/delt; */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  #ifdef DEBUG
     gp=matrix(0,nhstepm,1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     gm=matrix(0,nhstepm,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
     for(theta=1; theta <=npar; theta++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(i=1; i<=npar; i++){ /* Computes gradient */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          k=kmax;
       }        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          k=kmax; l=lmax*10.;
         }
       if (popbased==1) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         for(i=1; i<=nlstate;i++)          delts=delt;
           prlim[i][i]=probs[(int)age][i][ij];        }
       }      }
      }
       for(j=1; j<= nlstate; j++){    delti[theta]=delts;
         for(h=0; h<=nhstepm; h++){    return res; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  
       }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      {
       for(i=1; i<=npar; i++) /* Computes gradient */    int i;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int l=1, l1, lmax=20;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double k1,k2,k3,k4,res,fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double p2[NPARMAX+1];
      int k;
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    fx=func(x);
           prlim[i][i]=probs[(int)age][i][ij];    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<= nlstate; j++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(h=0; h<=nhstepm; h++){      k1=func(p2)-fx;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k2=func(p2)-fx;
     
       for(j=1; j<= nlstate; j++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         for(h=0; h<=nhstepm; h++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      k3=func(p2)-fx;
         }    
     } /* End theta */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(h=0; h<=nhstepm; h++)  #ifdef DEBUG
       for(j=1; j<=nlstate;j++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           trgradg[h][j][theta]=gradg[h][theta][j];  #endif
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    return res;
     for(i=1;i<=nlstate;i++)  }
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     for(h=0;h<=nhstepm;h++){  { 
       for(k=0;k<=nhstepm;k++){    int i,imax,j,k; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double big,dum,sum,temp; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    double *vv; 
         for(i=1;i<=nlstate;i++)   
           for(j=1;j<=nlstate;j++)    vv=vector(1,n); 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    *d=1.0; 
       }    for (i=1;i<=n;i++) { 
     }      big=0.0; 
       for (j=1;j<=n;j++) 
     fprintf(ficresvij,"%.0f ",age );        if ((temp=fabs(a[i][j])) > big) big=temp; 
     for(i=1; i<=nlstate;i++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(j=1; j<=nlstate;j++){      vv[i]=1.0/big; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    } 
       }    for (j=1;j<=n;j++) { 
     fprintf(ficresvij,"\n");      for (i=1;i<j;i++) { 
     free_matrix(gp,0,nhstepm,1,nlstate);        sum=a[i][j]; 
     free_matrix(gm,0,nhstepm,1,nlstate);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        a[i][j]=sum; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      big=0.0; 
   } /* End age */      for (i=j;i<=n;i++) { 
          sum=a[i][j]; 
   free_vector(xp,1,npar);        for (k=1;k<j;k++) 
   free_matrix(doldm,1,nlstate,1,npar);          sum -= a[i][k]*a[k][j]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
 }          big=dum; 
           imax=i; 
 /************ Variance of prevlim ******************/        } 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      } 
 {      if (j != imax) { 
   /* Variance of prevalence limit */        for (k=1;k<=n;k++) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          dum=a[imax][k]; 
   double **newm;          a[imax][k]=a[j][k]; 
   double **dnewm,**doldm;          a[j][k]=dum; 
   int i, j, nhstepm, hstepm;        } 
   int k, cptcode;        *d = -(*d); 
   double *xp;        vv[imax]=vv[j]; 
   double *gp, *gm;      } 
   double **gradg, **trgradg;      indx[j]=imax; 
   double age,agelim;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int theta;      if (j != n) { 
            dum=1.0/(a[j][j]); 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   fprintf(ficresvpl,"# Age");      } 
   for(i=1; i<=nlstate;i++)    } 
       fprintf(ficresvpl," %1d-%1d",i,i);    free_vector(vv,1,n);  /* Doesn't work */
   fprintf(ficresvpl,"\n");  ;
   } 
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  void lubksb(double **a, int n, int *indx, double b[]) 
   doldm=matrix(1,nlstate,1,nlstate);  { 
      int i,ii=0,ip,j; 
   hstepm=1*YEARM; /* Every year of age */    double sum; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */   
   agelim = AGESUP;    for (i=1;i<=n;i++) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      ip=indx[i]; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      sum=b[ip]; 
     if (stepm >= YEARM) hstepm=1;      b[ip]=b[i]; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      if (ii) 
     gradg=matrix(1,npar,1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     gp=vector(1,nlstate);      else if (sum) ii=i; 
     gm=vector(1,nlstate);      b[i]=sum; 
     } 
     for(theta=1; theta <=npar; theta++){    for (i=n;i>=1;i--) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */      sum=b[i]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       }      b[i]=sum/a[i][i]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    } 
       for(i=1;i<=nlstate;i++)  } 
         gp[i] = prlim[i][i];  
      /************ Frequencies ********************/
       for(i=1; i<=npar; i++) /* Computes gradient */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {  /* Some frequencies */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    
       for(i=1;i<=nlstate;i++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         gm[i] = prlim[i][i];    int first;
     double ***freq; /* Frequencies */
       for(i=1;i<=nlstate;i++)    double *pp, **prop;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     } /* End theta */    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
     trgradg =matrix(1,nlstate,1,npar);    
     pp=vector(1,nlstate);
     for(j=1; j<=nlstate;j++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(theta=1; theta <=npar; theta++)    strcpy(fileresp,"p");
         trgradg[j][theta]=gradg[theta][j];    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
     for(i=1;i<=nlstate;i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
       varpl[i][(int)age] =0.;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      exit(0);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    }
     for(i=1;i<=nlstate;i++)    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    j1=0;
     
     fprintf(ficresvpl,"%.0f ",age );    j=cptcoveff;
     for(i=1; i<=nlstate;i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    first=1;
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    for(k1=1; k1<=j;k1++){
     free_matrix(gradg,1,npar,1,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
     free_matrix(trgradg,1,nlstate,1,npar);        j1++;
   } /* End age */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
   free_vector(xp,1,npar);        for (i=-5; i<=nlstate+ndeath; i++)  
   free_matrix(doldm,1,nlstate,1,npar);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   free_matrix(dnewm,1,nlstate,1,nlstate);            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
 }  
       for (i=1; i<=nlstate; i++)  
 /************ Variance of one-step probabilities  ******************/        for(m=iagemin; m <= iagemax+3; m++)
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          prop[i][m]=0;
 {        
   int i, j, i1, k1, j1, z1;        dateintsum=0;
   int k=0, cptcode;        k2cpt=0;
   double **dnewm,**doldm;        for (i=1; i<=imx; i++) {
   double *xp;          bool=1;
   double *gp, *gm;          if  (cptcovn>0) {
   double **gradg, **trgradg;            for (z1=1; z1<=cptcoveff; z1++) 
   double age,agelim, cov[NCOVMAX];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   int theta;                bool=0;
   char fileresprob[FILENAMELENGTH];          }
           if (bool==1){
   strcpy(fileresprob,"prob");            for(m=firstpass; m<=lastpass; m++){
   strcat(fileresprob,fileres);              k2=anint[m][i]+(mint[m][i]/12.);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     printf("Problem with resultfile: %s\n", fileresprob);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                  if (m<lastpass) {
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresprob,"# Age");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   for(i=1; i<=nlstate;i++)                }
     for(j=1; j<=(nlstate+ndeath);j++)                
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
                   k2cpt++;
   fprintf(ficresprob,"\n");                }
                 /*}*/
             }
   xp=vector(1,npar);          }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   cov[1]=1;  fprintf(ficresp, "#Local time at start: %s", strstart);
   j=cptcoveff;        if  (cptcovn>0) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          fprintf(ficresp, "\n#********** Variable "); 
   j1=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(k1=1; k1<=1;k1++){          fprintf(ficresp, "**********\n#");
     for(i1=1; i1<=ncodemax[k1];i1++){        }
     j1++;        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if  (cptcovn>0) {        fprintf(ficresp, "\n");
       fprintf(ficresprob, "\n#********** Variable ");        
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=iagemin; i <= iagemax+3; i++){
       fprintf(ficresprob, "**********\n#");          if(i==iagemax+3){
     }            fprintf(ficlog,"Total");
              }else{
       for (age=bage; age<=fage; age ++){            if(first==1){
         cov[2]=age;              first=0;
         for (k=1; k<=cptcovn;k++) {              printf("See log file for details...\n");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            }
                      fprintf(ficlog,"Age %d", i);
         }          }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for(jk=1; jk <=nlstate ; jk++){
         for (k=1; k<=cptcovprod;k++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              pp[jk] += freq[jk][m][i]; 
                  }
         gradg=matrix(1,npar,1,9);          for(jk=1; jk <=nlstate ; jk++){
         trgradg=matrix(1,9,1,npar);            for(m=-1, pos=0; m <=0 ; m++)
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              pos += freq[jk][m][i];
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            if(pp[jk]>=1.e-10){
                  if(first==1){
         for(theta=1; theta <=npar; theta++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(i=1; i<=npar; i++)              }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                      }else{
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              if(first==1)
                          printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           k=0;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1; i<= (nlstate+ndeath); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){          }
               k=k+1;  
               gp[k]=pmmij[i][j];          for(jk=1; jk <=nlstate ; jk++){
             }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           }              pp[jk] += freq[jk][m][i];
                    }       
           for(i=1; i<=npar; i++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            pos += pp[jk];
                posprop += prop[jk][i];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          }
           k=0;          for(jk=1; jk <=nlstate ; jk++){
           for(i=1; i<=(nlstate+ndeath); i++){            if(pos>=1.e-5){
             for(j=1; j<=(nlstate+ndeath);j++){              if(first==1)
               k=k+1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               gm[k]=pmmij[i][j];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }            }else{
           }              if(first==1)
                      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              }
         }            if( i <= iagemax){
               if(pos>=1.e-5){
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           for(theta=1; theta <=npar; theta++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
             trgradg[j][theta]=gradg[theta][j];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                      }
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              else
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                    }
         pmij(pmmij,cov,ncovmodel,x,nlstate);          }
                  
         k=0;          for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(i=1; i<=(nlstate+ndeath); i++){            for(m=-1; m <=nlstate+ndeath; m++)
           for(j=1; j<=(nlstate+ndeath);j++){              if(freq[jk][m][i] !=0 ) {
             k=k+1;              if(first==1)
             gm[k]=pmmij[i][j];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         }              }
                if(i <= iagemax)
      /*printf("\n%d ",(int)age);            fprintf(ficresp,"\n");
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          if(first==1)
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            printf("Others in log...\n");
      }*/          fprintf(ficlog,"\n");
         }
         fprintf(ficresprob,"\n%d ",(int)age);      }
     }
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    dateintmean=dateintsum/k2cpt; 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));   
      fclose(ficresp);
       }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     }    free_vector(pp,1,nlstate);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    /* End of Freq */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }  /************ Prevalence ********************/
   free_vector(xp,1,npar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   fclose(ficresprob);  {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
 /******************* Printing html file ***********/    */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \   
  int lastpass, int stepm, int weightopt, char model[],\    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    double ***freq; /* Frequencies */
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    double *pp, **prop;
  char version[], int popforecast, int estepm ){    double pos,posprop; 
   int jj1, k1, i1, cpt;    double  y2; /* in fractional years */
   FILE *fichtm;    int iagemin, iagemax;
   /*char optionfilehtm[FILENAMELENGTH];*/  
     iagemin= (int) agemin;
   strcpy(optionfilehtm,optionfile);    iagemax= (int) agemax;
   strcat(optionfilehtm,".htm");    /*pp=vector(1,nlstate);*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     printf("Problem with %s \n",optionfilehtm), exit(0);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
     
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    j=cptcoveff;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 \n    
 Total number of observations=%d <br>\n    for(k1=1; k1<=j;k1++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
 <hr  size=\"2\" color=\"#EC5E5E\">        j1++;
  <ul><li>Outputs files<br>\n        
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        for (i=1; i<=nlstate; i++)  
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          for(m=iagemin; m <= iagemax+3; m++)
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            prop[i][m]=0.0;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n       
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          bool=1;
           if  (cptcovn>0) {
  fprintf(fichtm,"\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                bool=0;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          } 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          if (bool==1) { 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  if(popforecast==1) fprintf(fichtm,"\n              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         <br>",fileres,fileres,fileres,fileres);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  else                if (s[m][i]>0 && s[m][i]<=nlstate) { 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 fprintf(fichtm," <li>Graphs</li><p>");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
  m=cptcoveff;                } 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              }
             } /* end selection of waves */
  jj1=0;          }
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){        for(i=iagemin; i <= iagemax+3; i++){  
        jj1++;          
        if (cptcovn > 0) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            posprop += prop[jk][i]; 
          for (cpt=1; cpt<=cptcoveff;cpt++)          } 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for(jk=1; jk <=nlstate ; jk++){     
        }            if( i <=  iagemax){ 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              if(posprop>=1.e-5){ 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    probs[i][jk][j1]= prop[jk][i]/posprop;
        for(cpt=1; cpt<nlstate;cpt++){              } 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            } 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }/* end jk */ 
        }        }/* end i */ 
     for(cpt=1; cpt<=nlstate;cpt++) {      } /* end i1 */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    } /* end k1 */
 interval) in state (%d): v%s%d%d.gif <br>    
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      }    /*free_vector(pp,1,nlstate);*/
      for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  }  /* End of prevalence */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }  /************* Waves Concatenation ***************/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.gif<br>  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  {
 fprintf(fichtm,"\n</body>");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
    }       Death is a valid wave (if date is known).
    }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 fclose(fichtm);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 }       and mw[mi+1][i]. dh depends on stepm.
        */
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       double sum=0., jmean=0.;*/
     int first;
   strcpy(optionfilegnuplot,optionfilefiname);    int j, k=0,jk, ju, jl;
   strcat(optionfilegnuplot,".gp.txt");    double sum=0.;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    first=0;
     printf("Problem with file %s",optionfilegnuplot);    jmin=1e+5;
   }    jmax=-1;
     jmean=0.;
 #ifdef windows    for(i=1; i<=imx; i++){
     fprintf(ficgp,"cd \"%s\" \n",pathc);      mi=0;
 #endif      m=firstpass;
 m=pow(2,cptcoveff);      while(s[m][i] <= nlstate){
          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
  /* 1eme*/          mw[++mi][i]=m;
   for (cpt=1; cpt<= nlstate ; cpt ++) {        if(m >=lastpass)
    for (k1=1; k1<= m ; k1 ++) {          break;
         else
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          m++;
       }/* end while */
 for (i=1; i<= nlstate ; i ++) {      if (s[m][i] > nlstate){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        mi++;     /* Death is another wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /* if(mi==0)  never been interviewed correctly before death */
 }           /* Only death is a correct wave */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        mw[mi][i]=m;
     for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      wav[i]=mi;
 }      if(mi==0){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        nbwarn++;
      for (i=1; i<= nlstate ; i ++) {        if(first==0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          first=1;
 }          }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        if(first==1){
           fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
    }      } /* end mi==0 */
   }    } /* End individuals */
   /*2 eme*/  
     for(i=1; i<=imx; i++){
   for (k1=1; k1<= m ; k1 ++) {      for(mi=1; mi<wav[i];mi++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        if (stepm <=0)
              dh[mi][i]=1;
     for (i=1; i<= nlstate+1 ; i ++) {        else{
       k=2*i;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            if (agedc[i] < 2*AGESUP) {
       for (j=1; j<= nlstate+1 ; j ++) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if(j==0) j=1;  /* Survives at least one month after exam */
   else fprintf(ficgp," \%%*lf (\%%*lf)");              else if(j<0){
 }                  nberr++;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                j=1; /* Temporary Dangerous patch */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for (j=1; j<= nlstate+1 ; j ++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                k=k+1;
       fprintf(ficgp,"\" t\"\" w l 0,");              if (j >= jmax) jmax=j;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              if (j <= jmin) jmin=j;
       for (j=1; j<= nlstate+1 ; j ++) {              sum=sum+j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }              }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }
       else fprintf(ficgp,"\" t\"\" w l 0,");          else{
     }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   }  
              k=k+1;
   /*3eme*/            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
   for (k1=1; k1<= m ; k1 ++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for (cpt=1; cpt<= nlstate ; cpt ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       k=2+nlstate*(2*cpt-2);            if(j<0){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              nberr++;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            sum=sum+j;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          jk= j/stepm;
           jl= j -jk*stepm;
 */          ju= j -(jk+1)*stepm;
       for (i=1; i< nlstate ; i ++) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            if(jl==0){
               dh[mi][i]=jk;
       }              bh[mi][i]=0;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            }else{ /* We want a negative bias in order to only have interpolation ie
     }                    * at the price of an extra matrix product in likelihood */
     }              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   /* CV preval stat */            }
     for (k1=1; k1<= m ; k1 ++) {          }else{
     for (cpt=1; cpt<nlstate ; cpt ++) {            if(jl <= -ju){
       k=3;              dh[mi][i]=jk;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
       for (i=1; i< nlstate ; i ++)                                   */
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            else{
                    dh[mi][i]=jk+1;
       l=3+(nlstate+ndeath)*cpt;              bh[mi][i]=ju;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {            if(dh[mi][i]==0){
         l=3+(nlstate+ndeath)*cpt;              dh[mi][i]=1; /* At least one step */
         fprintf(ficgp,"+$%d",l+i+1);              bh[mi][i]=ju; /* At least one step */
       }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          } /* end if mle */
     }        }
   }        } /* end wave */
      }
   /* proba elementaires */    jmean=sum/k;
    for(i=1,jk=1; i <=nlstate; i++){    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       if (k != i) {   }
         for(j=1; j <=ncovmodel; j++){  
          /*********** Tricode ****************************/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  void tricode(int *Tvar, int **nbcode, int imx)
           jk++;  {
           fprintf(ficgp,"\n");    
         }    int Ndum[20],ij=1, k, j, i, maxncov=19;
       }    int cptcode=0;
     }    cptcoveff=0; 
     }   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     for(jk=1; jk <=m; jk++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
    i=1;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
    for(k2=1; k2<=nlstate; k2++) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
      k3=i;                                 modality*/ 
      for(k=1; k<=(nlstate+ndeath); k++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
        if (k != k2){        Ndum[ij]++; /*store the modality */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 ij=1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         for(j=3; j <=ncovmodel; j++) {                                         Tvar[j]. If V=sex and male is 0 and 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                                         female is 1, then  cptcode=1.*/
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
             ij++;  
           }      for (i=0; i<=cptcode; i++) {
           else        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      }
         }  
           fprintf(ficgp,")/(1");      ij=1; 
              for (i=1; i<=ncodemax[j]; i++) {
         for(k1=1; k1 <=nlstate; k1++){          for (k=0; k<= maxncov; k++) {
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          if (Ndum[k] != 0) {
 ij=1;            nbcode[Tvar[j]][ij]=k; 
           for(j=3; j <=ncovmodel; j++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            ij++;
             ij++;          }
           }          if (ij > ncodemax[j]) break; 
           else        }  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      } 
           }    }  
           fprintf(ficgp,")");  
         }   for (k=0; k< maxncov; k++) Ndum[k]=0;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   for (i=1; i<=ncovmodel-2; i++) { 
         i=i+ncovmodel;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
        }     ij=Tvar[i];
      }     Ndum[ij]++;
    }   }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
    }   ij=1;
       for (i=1; i<= maxncov; i++) {
   fclose(ficgp);     if((Ndum[i]!=0) && (i<=ncovcol)){
 }  /* end gnuplot */       Tvaraff[ij]=i; /*For printing */
        ij++;
      }
 /*************** Moving average **************/   }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){   
    cptcoveff=ij-1; /*Number of simple covariates*/
   int i, cpt, cptcod;  }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)  /*********** Health Expectancies ****************/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  {
       for (i=1; i<=nlstate;i++){    /* Health expectancies */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
           for (cpt=0;cpt<=4;cpt++){    double age, agelim, hf;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double ***p3mat,***varhe;
           }    double **dnewm,**doldm;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double *xp;
         }    double **gp, **gm;
       }    double ***gradg, ***trgradg;
     }    int theta;
      
 }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
 /************** Forecasting ******************/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    
      fprintf(ficreseij,"# Local time at start: %s", strstart);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficreseij,"# Health expectancies\n");
   int *popage;    fprintf(ficreseij,"# Age");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    for(i=1; i<=nlstate;i++)
   double *popeffectif,*popcount;      for(j=1; j<=nlstate;j++)
   double ***p3mat;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   char fileresf[FILENAMELENGTH];    fprintf(ficreseij,"\n");
   
  agelim=AGESUP;    if(estepm < stepm){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   strcpy(fileresf,"f");     * if stepm=24 months pijx are given only every 2 years and by summing them
   strcat(fileresf,fileres);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   if((ficresf=fopen(fileresf,"w"))==NULL) {     * progression in between and thus overestimating or underestimating according
     printf("Problem with forecast resultfile: %s\n", fileresf);     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   printf("Computing forecasting: result on file '%s' \n", fileresf);     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     * curvature will be obtained if estepm is as small as stepm. */
   
   if (mobilav==1) {    /* For example we decided to compute the life expectancy with the smallest unit */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     movingaverage(agedeb, fage, ageminpar, mobaverage);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   stepsize=(int) (stepm+YEARM-1)/YEARM;       and note for a fixed period like estepm months */
   if (stepm<=12) stepsize=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   agelim=AGESUP;       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   hstepm=1;       results. So we changed our mind and took the option of the best precision.
   hstepm=hstepm/stepm;    */
   yp1=modf(dateintmean,&yp);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    agelim=AGESUP;
   mprojmean=yp;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   yp1=modf((yp2*30.5),&yp);      /* nhstepm age range expressed in number of stepm */
   jprojmean=yp;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   if(jprojmean==0) jprojmean=1;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if(mprojmean==0) jprojmean=1;      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       k=k+1;  
       fprintf(ficresf,"\n#******");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for(j=1;j<=cptcoveff;j++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       }   
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
            /* Computing  Variances of health expectancies */
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {       for(theta=1; theta <=npar; theta++){
         fprintf(ficresf,"\n");        for(i=1; i<=npar; i++){ 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;        cptj=0;
                  for(j=1; j<= nlstate; j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1; i<=nlstate; i++){
           oldm=oldms;savm=savms;            cptj=cptj+1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                      gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        }
             }       
             for(j=1; j<=nlstate+ndeath;j++) {       
               kk1=0.;kk2=0;        for(i=1; i<=npar; i++) 
               for(i=1; i<=nlstate;i++) {                        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                 if (mobilav==1)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        
                 else {        cptj=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=1; j<= nlstate; j++){
                 }          for(i=1;i<=nlstate;i++){
                            cptj=cptj+1;
               }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                                    }
               }          }
             }        }
           }        for(j=1; j<= nlstate*nlstate; j++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(h=0; h<=nhstepm-1; h++){
         }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       }          }
     }       } 
   }     
          /* End theta */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   fclose(ficresf);  
 }       for(h=0; h<=nhstepm-1; h++)
 /************** Forecasting ******************/        for(j=1; j<=nlstate*nlstate;j++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       for(i=1;i<=nlstate*nlstate;i++)
   double *popeffectif,*popcount;        for(j=1;j<=nlstate*nlstate;j++)
   double ***p3mat,***tabpop,***tabpopprev;          varhe[i][j][(int)age] =0.;
   char filerespop[FILENAMELENGTH];  
        printf("%d|",(int)age);fflush(stdout);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for(h=0;h<=nhstepm-1;h++){
   agelim=AGESUP;        for(k=0;k<=nhstepm-1;k++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(i=1;i<=nlstate*nlstate;i++)
              for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcpy(filerespop,"pop");        }
   strcat(filerespop,fileres);      }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      /* Computing expectancies */
     printf("Problem with forecast resultfile: %s\n", filerespop);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            
   /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;        for(j=1; j<=nlstate;j++){
            cptj++;
   agelim=AGESUP;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
          }
   hstepm=1;      fprintf(ficreseij,"\n");
   hstepm=hstepm/stepm;     
        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   if (popforecast==1) {      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     if((ficpop=fopen(popfile,"r"))==NULL) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       printf("Problem with population file : %s\n",popfile);exit(0);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     popage=ivector(0,AGESUP);    }
     popeffectif=vector(0,AGESUP);    printf("\n");
     popcount=vector(0,AGESUP);    fprintf(ficlog,"\n");
      
     i=1;      free_vector(xp,1,npar);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     imx=i;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  }
   }  
   /************ Variance ******************/
   for(cptcov=1;cptcov<=i2;cptcov++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  {
       k=k+1;    /* Variance of health expectancies */
       fprintf(ficrespop,"\n#******");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       for(j=1;j<=cptcoveff;j++) {    /* double **newm;*/
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **dnewm,**doldm;
       }    double **dnewmp,**doldmp;
       fprintf(ficrespop,"******\n");    int i, j, nhstepm, hstepm, h, nstepm ;
       fprintf(ficrespop,"# Age");    int k, cptcode;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double *xp;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    double **gp, **gm;  /* for var eij */
          double ***gradg, ***trgradg; /*for var eij */
       for (cpt=0; cpt<=0;cpt++) {    double **gradgp, **trgradgp; /* for var p point j */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double *gpp, *gmp; /* for var p point j */
            double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double ***p3mat;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double age,agelim, hf;
           nhstepm = nhstepm/hstepm;    double ***mobaverage;
              int theta;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char digit[4];
           oldm=oldms;savm=savms;    char digitp[25];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            char fileresprobmorprev[FILENAMELENGTH];
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    if(popbased==1){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      if(mobilav!=0)
             }        strcpy(digitp,"-populbased-mobilav-");
             for(j=1; j<=nlstate+ndeath;j++) {      else strcpy(digitp,"-populbased-nomobil-");
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                  else 
                 if (mobilav==1)      strcpy(digitp,"-stablbased-");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    if (mobilav!=0) {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
               }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               if (h==(int)(calagedate+12*cpt)){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      }
                   /*fprintf(ficrespop," %.3f", kk1);    }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }    strcpy(fileresprobmorprev,"prmorprev"); 
             }    sprintf(digit,"%-d",ij);
             for(i=1; i<=nlstate;i++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
               kk1=0.;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                 for(j=1; j<=nlstate;j++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    strcat(fileresprobmorprev,fileres);
                 }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);   
           }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /******/      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresprobmorprev,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficgp,"\n# Routine varevsij");
           nhstepm = nhstepm/hstepm;   fprintf(fichtm, "#Local time at start: %s", strstart);
              fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           oldm=oldms;savm=savms;  /*   } */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for (h=0; h<=nhstepm; h++){   fprintf(ficresvij, "#Local time at start: %s", strstart);
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresvij,"# Age");
             }    for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {      for(j=1; j<=nlstate;j++)
               kk1=0.;kk2=0;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
               for(i=1; i<=nlstate;i++) {                  fprintf(ficresvij,"\n");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }    xp=vector(1,npar);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    dnewm=matrix(1,nlstate,1,npar);
             }    doldm=matrix(1,nlstate,1,nlstate);
           }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }  
       }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
    }    gpp=vector(nlstate+1,nlstate+ndeath);
   }    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     if(estepm < stepm){
   if (popforecast==1) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     free_ivector(popage,0,AGESUP);    }
     free_vector(popeffectif,0,AGESUP);    else  hstepm=estepm;   
     free_vector(popcount,0,AGESUP);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       nhstepm is the number of hstepm from age to agelim 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       nstepm is the number of stepm from age to agelin. 
   fclose(ficrespop);       Look at hpijx to understand the reason of that which relies in memory size
 }       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 /***********************************************/       survival function given by stepm (the optimization length). Unfortunately it
 /**************** Main Program *****************/       means that if the survival funtion is printed every two years of age and if
 /***********************************************/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
 int main(int argc, char *argv[])    */
 {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double agedeb, agefin,hf;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double fret;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   double **xi,tmp,delta;      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   double dum; /* Dummy variable */  
   double ***p3mat;  
   int *indx;      for(theta=1; theta <=npar; theta++){
   char line[MAXLINE], linepar[MAXLINE];        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   char title[MAXLINE];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        }
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
         if (popbased==1) {
   char filerest[FILENAMELENGTH];          if(mobilav ==0){
   char fileregp[FILENAMELENGTH];            for(i=1; i<=nlstate;i++)
   char popfile[FILENAMELENGTH];              prlim[i][i]=probs[(int)age][i][ij];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          }else{ /* mobilav */ 
   int firstobs=1, lastobs=10;            for(i=1; i<=nlstate;i++)
   int sdeb, sfin; /* Status at beginning and end */              prlim[i][i]=mobaverage[(int)age][i][ij];
   int c,  h , cpt,l;          }
   int ju,jl, mi;        }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(j=1; j<= nlstate; j++){
   int mobilav=0,popforecast=0;          for(h=0; h<=nhstepm; h++){
   int hstepm, nhstepm;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;        /* This for computing probability of death (h=1 means
   double **prlim;           computed over hstepm matrices product = hstepm*stepm months) 
   double *severity;           as a weighted average of prlim.
   double ***param; /* Matrix of parameters */        */
   double  *p;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double **matcov; /* Matrix of covariance */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   double ***delti3; /* Scale */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   double *delti; /* Scale */        }    
   double ***eij, ***vareij;        /* end probability of death */
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   double kk1, kk2;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";        if (popbased==1) {
   char *alph[]={"a","a","b","c","d","e"}, str[4];          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   char z[1]="c", occ;          }else{ /* mobilav */ 
 #include <sys/time.h>            for(i=1; i<=nlstate;i++)
 #include <time.h>              prlim[i][i]=mobaverage[(int)age][i][ij];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          }
          }
   /* long total_usecs;  
   struct timeval start_time, end_time;        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   getcwd(pathcd, size);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   printf("\n%s",version);        }
   if(argc <=1){        /* This for computing probability of death (h=1 means
     printf("\nEnter the parameter file name: ");           computed over hstepm matrices product = hstepm*stepm months) 
     scanf("%s",pathtot);           as a weighted average of prlim.
   }        */
   else{        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     strcpy(pathtot,argv[1]);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        }    
   /*cygwin_split_path(pathtot,path,optionfile);        /* end probability of death */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          }
   chdir(path);  
   replace(pathc,path);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 /*-------- arguments in the command line --------*/        }
   
   strcpy(fileres,"r");      } /* End theta */
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   /*---------arguments file --------*/      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          for(theta=1; theta <=npar; theta++)
     printf("Problem with optionfile %s\n",optionfile);            trgradg[h][j][theta]=gradg[h][theta][j];
     goto end;  
   }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   strcpy(filereso,"o");          trgradgp[j][theta]=gradgp[theta][j];
   strcat(filereso,fileres);    
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   /* Reads comments: lines beginning with '#' */          vareij[i][j][(int)age] =0.;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(h=0;h<=nhstepm;h++){
     fgets(line, MAXLINE, ficpar);        for(k=0;k<=nhstepm;k++){
     puts(line);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     fputs(line,ficparo);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   }          for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    
 while((c=getc(ficpar))=='#' && c!= EOF){      /* pptj */
     ungetc(c,ficpar);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     fgets(line, MAXLINE, ficpar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     puts(line);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     fputs(line,ficparo);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   }          varppt[j][i]=doldmp[j][i];
   ungetc(c,ficpar);      /* end ppptj */
        /*  x centered again */
          hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   covar=matrix(0,NCOVMAX,1,n);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   cptcovn=0;   
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      if (popbased==1) {
         if(mobilav ==0){
   ncovmodel=2+cptcovn;          for(i=1; i<=nlstate;i++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   /* Read guess parameters */          for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */            prlim[i][i]=mobaverage[(int)age][i][ij];
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);               
     puts(line);      /* This for computing probability of death (h=1 means
     fputs(line,ficparo);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   }         as a weighted average of prlim.
   ungetc(c,ficpar);      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     for(i=1; i <=nlstate; i++)          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     for(j=1; j <=nlstate+ndeath-1; j++){      }    
       fscanf(ficpar,"%1d%1d",&i1,&j1);      /* end probability of death */
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(k=1; k<=ncovmodel;k++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fscanf(ficpar," %lf",&param[i][j][k]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         printf(" %lf",param[i][j][k]);        for(i=1; i<=nlstate;i++){
         fprintf(ficparo," %lf",param[i][j][k]);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       }        }
       fscanf(ficpar,"\n");      } 
       printf("\n");      fprintf(ficresprobmorprev,"\n");
       fprintf(ficparo,"\n");  
     }      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   p=param[1][1];        }
        fprintf(ficresvij,"\n");
   /* Reads comments: lines beginning with '#' */      free_matrix(gp,0,nhstepm,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_matrix(gm,0,nhstepm,1,nlstate);
     ungetc(c,ficpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     puts(line);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   for(i=1; i <=nlstate; i++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       printf("%1d%1d",i,j);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficparo,"%1d%1d",i1,j1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         printf(" %le",delti3[i][j][k]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fscanf(ficpar,"\n");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       printf("\n");  */
       fprintf(ficparo,"\n");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }  
   delti=delti3[1][1];    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
   /* Reads comments: lines beginning with '#' */    free_matrix(dnewm,1,nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     puts(line);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficparo);    fclose(ficresprobmorprev);
   }    fflush(ficgp);
   ungetc(c,ficpar);    fflush(fichtm); 
    }  /* end varevsij */
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){  /************ Variance of prevlim ******************/
     fscanf(ficpar,"%s",&str);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     printf("%s",str);  {
     fprintf(ficparo,"%s",str);    /* Variance of prevalence limit */
     for(j=1; j <=i; j++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       fscanf(ficpar," %le",&matcov[i][j]);    double **newm;
       printf(" %.5le",matcov[i][j]);    double **dnewm,**doldm;
       fprintf(ficparo," %.5le",matcov[i][j]);    int i, j, nhstepm, hstepm;
     }    int k, cptcode;
     fscanf(ficpar,"\n");    double *xp;
     printf("\n");    double *gp, *gm;
     fprintf(ficparo,"\n");    double **gradg, **trgradg;
   }    double age,agelim;
   for(i=1; i <=npar; i++)    int theta;
     for(j=i+1;j<=npar;j++)    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
       matcov[i][j]=matcov[j][i];    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
        fprintf(ficresvpl,"# Age");
   printf("\n");    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */    xp=vector(1,npar);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    dnewm=matrix(1,nlstate,1,npar);
      strcat(rfileres,".");    /* */    doldm=matrix(1,nlstate,1,nlstate);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    
     if((ficres =fopen(rfileres,"w"))==NULL) {    hstepm=1*YEARM; /* Every year of age */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     }    agelim = AGESUP;
     fprintf(ficres,"#%s\n",version);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     /*-------- data file ----------*/      if (stepm >= YEARM) hstepm=1;
     if((fic=fopen(datafile,"r"))==NULL)    {      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       printf("Problem with datafile: %s\n", datafile);goto end;      gradg=matrix(1,npar,1,nlstate);
     }      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
     n= lastobs;  
     severity = vector(1,maxwav);      for(theta=1; theta <=npar; theta++){
     outcome=imatrix(1,maxwav+1,1,n);        for(i=1; i<=npar; i++){ /* Computes gradient */
     num=ivector(1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     moisnais=vector(1,n);        }
     annais=vector(1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     moisdc=vector(1,n);        for(i=1;i<=nlstate;i++)
     andc=vector(1,n);          gp[i] = prlim[i][i];
     agedc=vector(1,n);      
     cod=ivector(1,n);        for(i=1; i<=npar; i++) /* Computes gradient */
     weight=vector(1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     mint=matrix(1,maxwav,1,n);        for(i=1;i<=nlstate;i++)
     anint=matrix(1,maxwav,1,n);          gm[i] = prlim[i][i];
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);            for(i=1;i<=nlstate;i++)
     tab=ivector(1,NCOVMAX);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     ncodemax=ivector(1,8);      } /* End theta */
   
     i=1;      trgradg =matrix(1,nlstate,1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {      for(j=1; j<=nlstate;j++)
                for(theta=1; theta <=npar; theta++)
         for (j=maxwav;j>=1;j--){          trgradg[j][theta]=gradg[theta][j];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);      for(i=1;i<=nlstate;i++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        varpl[i][(int)age] =0.;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
              for(i=1;i<=nlstate;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
       fprintf(ficresvpl,"%.0f ",age );
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      free_vector(gp,1,nlstate);
         for (j=ncovcol;j>=1;j--){      free_vector(gm,1,nlstate);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      free_matrix(gradg,1,npar,1,nlstate);
         }      free_matrix(trgradg,1,nlstate,1,npar);
         num[i]=atol(stra);    } /* End age */
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    free_vector(xp,1,npar);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
         i=i+1;  
       }  }
     }  
     /* printf("ii=%d", ij);  /************ Variance of one-step probabilities  ******************/
        scanf("%d",i);*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   imx=i-1; /* Number of individuals */  {
     int i, j=0,  i1, k1, l1, t, tj;
   /* for (i=1; i<=imx; i++){    int k2, l2, j1,  z1;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    int k=0,l, cptcode;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int first=1, first1;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     }*/    double **dnewm,**doldm;
    /*  for (i=1; i<=imx; i++){    double *xp;
      if (s[4][i]==9)  s[4][i]=-1;    double *gp, *gm;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    double **gradg, **trgradg;
      double **mu;
      double age,agelim, cov[NCOVMAX];
   /* Calculation of the number of parameter from char model*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   Tvar=ivector(1,15);    int theta;
   Tprod=ivector(1,15);    char fileresprob[FILENAMELENGTH];
   Tvaraff=ivector(1,15);    char fileresprobcov[FILENAMELENGTH];
   Tvard=imatrix(1,15,1,2);    char fileresprobcor[FILENAMELENGTH];
   Tage=ivector(1,15);        
        double ***varpij;
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;    strcpy(fileresprob,"prob"); 
     j=nbocc(model,'+');    strcat(fileresprob,fileres);
     j1=nbocc(model,'*');    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     cptcovn=j+1;      printf("Problem with resultfile: %s\n", fileresprob);
     cptcovprod=j1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        }
     strcpy(modelsav,model);    strcpy(fileresprobcov,"probcov"); 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    strcat(fileresprobcov,fileres);
       printf("Error. Non available option model=%s ",model);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       goto end;      printf("Problem with resultfile: %s\n", fileresprobcov);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
     for(i=(j+1); i>=1;i--){    strcpy(fileresprobcor,"probcor"); 
       cutv(stra,strb,modelsav,'+');    strcat(fileresprobcor,fileres);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      printf("Problem with resultfile: %s\n", fileresprobcor);
       /*scanf("%d",i);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       if (strchr(strb,'*')) {    }
         cutv(strd,strc,strb,'*');    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         if (strcmp(strc,"age")==0) {    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           cptcovprod--;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           cutv(strb,stre,strd,'V');    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           Tvar[i]=atoi(stre);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           cptcovage++;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             Tage[cptcovage]=i;    fprintf(ficresprob, "#Local time at start: %s", strstart);
             /*printf("stre=%s ", stre);*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         }    fprintf(ficresprob,"# Age");
         else if (strcmp(strd,"age")==0) {    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
           cptcovprod--;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           cutv(strb,stre,strc,'V');    fprintf(ficresprobcov,"# Age");
           Tvar[i]=atoi(stre);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
           cptcovage++;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           Tage[cptcovage]=i;    fprintf(ficresprobcov,"# Age");
         }  
         else {  
           cutv(strb,stre,strc,'V');    for(i=1; i<=nlstate;i++)
           Tvar[i]=ncovcol+k1;      for(j=1; j<=(nlstate+ndeath);j++){
           cutv(strb,strc,strd,'V');        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           Tprod[k1]=i;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           Tvard[k1][1]=atoi(strc);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           Tvard[k1][2]=atoi(stre);      }  
           Tvar[cptcovn+k2]=Tvard[k1][1];   /* fprintf(ficresprob,"\n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fprintf(ficresprobcov,"\n");
           for (k=1; k<=lastobs;k++)    fprintf(ficresprobcor,"\n");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   */
           k1++;   xp=vector(1,npar);
           k2=k2+2;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       else {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    first=1;
        /*  scanf("%d",i);*/    fprintf(ficgp,"\n# Routine varprob");
       cutv(strd,strc,strb,'V');    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       Tvar[i]=atoi(strc);    fprintf(fichtm,"\n");
       }  
       strcpy(modelsav,stra);      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         scanf("%d",i);*/    file %s<br>\n",optionfilehtmcov);
     }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 }  and drawn. It helps understanding how is the covariance between two incidences.\
     They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   printf("cptcovprod=%d ", cptcovprod);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   scanf("%d ",i);*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     fclose(fic);  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     /*  if(mle==1){*/   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     if (weightopt != 1) { /* Maximisation without weights*/  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }    cov[1]=1;
     /*-calculation of age at interview from date of interview and age at death -*/    tj=cptcoveff;
     agev=matrix(1,maxwav,1,imx);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for (i=1; i<=imx; i++) {    for(t=1; t<=tj;t++){
       for(m=2; (m<= maxwav); m++) {      for(i1=1; i1<=ncodemax[t];i1++){ 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        j1++;
          anint[m][i]=9999;        if  (cptcovn>0) {
          s[m][i]=-1;          fprintf(ficresprob, "\n#********** Variable "); 
        }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          fprintf(ficresprob, "**********\n#\n");
       }          fprintf(ficresprobcov, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
     for (i=1; i<=imx; i++)  {          
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficgp, "\n#********** Variable "); 
       for(m=1; (m<= maxwav); m++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if(s[m][i] >0){          fprintf(ficgp, "**********\n#\n");
           if (s[m][i] >= nlstate+1) {          
             if(agedc[i]>0)          
               if(moisdc[i]!=99 && andc[i]!=9999)          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                 agev[m][i]=agedc[i];          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            else {          
               if (andc[i]!=9999){          fprintf(ficresprobcor, "\n#********** Variable ");    
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               agev[m][i]=-1;          fprintf(ficresprobcor, "**********\n#");    
               }        }
             }        
           }        for (age=bage; age<=fage; age ++){ 
           else if(s[m][i] !=9){ /* Should no more exist */          cov[2]=age;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for (k=1; k<=cptcovn;k++) {
             if(mint[m][i]==99 || anint[m][i]==9999)            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               agemin=agev[m][i];          for (k=1; k<=cptcovprod;k++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             }          
             else if(agev[m][i] >agemax){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
               agemax=agev[m][i];          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
             }          gm=vector(1,(nlstate)*(nlstate+ndeath));
             /*agev[m][i]=anint[m][i]-annais[i];*/      
             /*   agev[m][i] = age[i]+2*m;*/          for(theta=1; theta <=npar; theta++){
           }            for(i=1; i<=npar; i++)
           else { /* =9 */              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             agev[m][i]=1;            
             s[m][i]=-1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           }            
         }            k=0;
         else /*= 0 Unknown */            for(i=1; i<= (nlstate); i++){
           agev[m][i]=1;              for(j=1; j<=(nlstate+ndeath);j++){
       }                k=k+1;
                    gp[k]=pmmij[i][j];
     }              }
     for (i=1; i<=imx; i++)  {            }
       for(m=1; (m<= maxwav); m++){            
         if (s[m][i] > (nlstate+ndeath)) {            for(i=1; i<=npar; i++)
           printf("Error: Wrong value in nlstate or ndeath\n");                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           goto end;      
         }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       }            k=0;
     }            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                k=k+1;
                 gm[k]=pmmij[i][j];
     free_vector(severity,1,maxwav);              }
     free_imatrix(outcome,1,maxwav+1,1,n);            }
     free_vector(moisnais,1,n);       
     free_vector(annais,1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     /* free_matrix(mint,1,maxwav,1,n);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
        free_matrix(anint,1,maxwav,1,n);*/          }
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
                  trgradg[j][theta]=gradg[theta][j];
     wav=ivector(1,imx);          
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
              free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     /* Concatenates waves */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
       Tcode=ivector(1,100);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          
       ncodemax[1]=1;          k=0;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          for(i=1; i<=(nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
    codtab=imatrix(1,100,1,10);              k=k+1;
    h=0;              mu[k][(int) age]=pmmij[i][j];
    m=pow(2,cptcoveff);            }
            }
    for(k=1;k<=cptcoveff; k++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
      for(i=1; i <=(m/pow(2,k));i++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
        for(j=1; j <= ncodemax[k]; j++){              varpij[i][j][(int)age] = doldm[i][j];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;          /*printf("\n%d ",(int)age);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
          }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        }            }*/
      }  
    }          fprintf(ficresprob,"\n%d ",(int)age);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          fprintf(ficresprobcov,"\n%d ",(int)age);
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficresprobcor,"\n%d ",(int)age);
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       printf("\n");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       scanf("%d",i);*/          }
              i=0;
    /* Calculates basic frequencies. Computes observed prevalence at single age          for (k=1; k<=(nlstate);k++){
        and prints on file fileres'p'. */            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
                  fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                  fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              for (j=1; j<=i;j++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }
                }/* end of loop for state */
     /* For Powell, parameters are in a vector p[] starting at p[1]        } /* end of loop for age */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        /* Confidence intervalle of pij  */
         /*
     if(mle==1){          fprintf(ficgp,"\nset noparametric;unset label");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     /*--------- results files --------------*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
            fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        first1=1;
    for(i=1,jk=1; i <=nlstate; i++){        for (k2=1; k2<=(nlstate);k2++){
      for(k=1; k <=(nlstate+ndeath); k++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
        if (k != i)            if(l2==k2) continue;
          {            j=(k2-1)*(nlstate+ndeath)+l2;
            printf("%d%d ",i,k);            for (k1=1; k1<=(nlstate);k1++){
            fprintf(ficres,"%1d%1d ",i,k);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
            for(j=1; j <=ncovmodel; j++){                if(l1==k1) continue;
              printf("%f ",p[jk]);                i=(k1-1)*(nlstate+ndeath)+l1;
              fprintf(ficres,"%f ",p[jk]);                if(i<=j) continue;
              jk++;                for (age=bage; age<=fage; age ++){ 
            }                  if ((int)age %5==0){
            printf("\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
            fprintf(ficres,"\n");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
          }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
      }                    mu1=mu[i][(int) age]/stepm*YEARM ;
    }                    mu2=mu[j][(int) age]/stepm*YEARM;
  if(mle==1){                    c12=cv12/sqrt(v1*v2);
     /* Computing hessian and covariance matrix */                    /* Computing eigen value of matrix of covariance */
     ftolhess=ftol; /* Usually correct */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     hesscov(matcov, p, npar, delti, ftolhess, func);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
  }                    /* Eigen vectors */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     printf("# Scales (for hessian or gradient estimation)\n");                    /*v21=sqrt(1.-v11*v11); *//* error */
      for(i=1,jk=1; i <=nlstate; i++){                    v21=(lc1-v1)/cv12*v11;
       for(j=1; j <=nlstate+ndeath; j++){                    v12=-v21;
         if (j!=i) {                    v22=v11;
           fprintf(ficres,"%1d%1d",i,j);                    tnalp=v21/v11;
           printf("%1d%1d",i,j);                    if(first1==1){
           for(k=1; k<=ncovmodel;k++){                      first1=0;
             printf(" %.5e",delti[jk]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             fprintf(ficres," %.5e",delti[jk]);                    }
             jk++;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           }                    /*printf(fignu*/
           printf("\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           fprintf(ficres,"\n");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         }                    if(first==1){
       }                      first=0;
      }                      fprintf(ficgp,"\nset parametric;unset label");
                          fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     k=1;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     for(i=1;i<=npar;i++){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       /*  if (k>nlstate) k=1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       i1=(i-1)/(ncovmodel*nlstate)+1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       printf("%s%d%d",alph[k],i1,tab[i]);*/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       fprintf(ficres,"%3d",i);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       printf("%3d",i);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(j=1; j<=i;j++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         fprintf(ficres," %.5e",matcov[i][j]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         printf(" %.5e",matcov[i][j]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficres,"\n");                    }else{
       printf("\n");                      first=0;
       k++;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                          fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       ungetc(c,ficpar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fgets(line, MAXLINE, ficpar);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       puts(line);                    }/* if first */
       fputs(line,ficparo);                  } /* age mod 5 */
     }                } /* end loop age */
     ungetc(c,ficpar);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     estepm=0;                first=1;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              } /*l12 */
     if (estepm==0 || estepm < stepm) estepm=stepm;            } /* k12 */
     if (fage <= 2) {          } /*l1 */
       bage = ageminpar;        }/* k1 */
       fage = agemaxpar;      } /* loop covariates */
     }    }
        free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    free_vector(xp,1,npar);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fclose(ficresprob);
      fclose(ficresprobcov);
     while((c=getc(ficpar))=='#' && c!= EOF){    fclose(ficresprobcor);
     ungetc(c,ficpar);    fflush(ficgp);
     fgets(line, MAXLINE, ficpar);    fflush(fichtmcov);
     puts(line);  }
     fputs(line,ficparo);  
   }  
   ungetc(c,ficpar);  /******************* Printing html file ***********/
    void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                    int lastpass, int stepm, int weightopt, char model[],\
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    int popforecast, int estepm ,\
                          double jprev1, double mprev1,double anprev1, \
   while((c=getc(ficpar))=='#' && c!= EOF){                    double jprev2, double mprev2,double anprev2){
     ungetc(c,ficpar);    int jj1, k1, i1, cpt;
     fgets(line, MAXLINE, ficpar);  
     puts(line);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     fputs(line,ficparo);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   ungetc(c,ficpar);     fprintf(fichtm,"\
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
    dateprev1=anprev1+mprev1/12.+jprev1/365.;     fprintf(fichtm,"\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   fscanf(ficpar,"pop_based=%d\n",&popbased);     fprintf(fichtm,"\
   fprintf(ficparo,"pop_based=%d\n",popbased);     - Life expectancies by age and initial health status (estepm=%2d months): \
   fprintf(ficres,"pop_based=%d\n",popbased);       <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     fgets(line, MAXLINE, ficpar);  
     puts(line);   m=cptcoveff;
     fputs(line,ficparo);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
   ungetc(c,ficpar);   jj1=0;
    for(k1=1; k1<=m;k1++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);     for(i1=1; i1<=ncodemax[k1];i1++){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       jj1++;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
 while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     ungetc(c,ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fgets(line, MAXLINE, ficpar);       }
     puts(line);       /* Pij */
     fputs(line,ficparo);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   ungetc(c,ficpar);       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 /*------------ gnuplot -------------*/         }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);       for(cpt=1; cpt<=nlstate;cpt++) {
            fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
 /*------------ free_vector  -------------*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
  chdir(path);       }
       } /* end i1 */
  free_ivector(wav,1,imx);   }/* End k1 */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   fprintf(fichtm,"</ul>");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);   fprintf(fichtm,"\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  \n<br><li><h4> Result files (second order: variances)</h4>\n\
  fclose(ficparo);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  fclose(ficres);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 /*--------- index.htm --------*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    
   /*--------------- Prevalence limit --------------*/   fprintf(fichtm,"\
     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   strcpy(filerespl,"pl");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   strcat(filerespl,fileres);   fprintf(fichtm,"\
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   }   fprintf(fichtm,"\
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficrespl,"#Prevalence limit\n");           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   fprintf(ficrespl,"#Age ");   fprintf(fichtm,"\
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   fprintf(ficrespl,"\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    
   prlim=matrix(1,nlstate,1,nlstate);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*      <br>",fileres,fileres,fileres,fileres); */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*  else  */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   k=0;   fflush(fichtm);
   agebase=ageminpar;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   agelim=agemaxpar;  
   ftolpl=1.e-10;   m=cptcoveff;
   i1=cptcoveff;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   if (cptcovn < 1){i1=1;}  
    jj1=0;
   for(cptcov=1;cptcov<=i1;cptcov++){   for(k1=1; k1<=m;k1++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     for(i1=1; i1<=ncodemax[k1];i1++){
         k=k+1;       jj1++;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       if (cptcovn > 0) {
         fprintf(ficrespl,"\n#******");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         for(j=1;j<=cptcoveff;j++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         fprintf(ficrespl,"******\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               }
         for (age=agebase; age<=agelim; age++){       for(cpt=1; cpt<=nlstate;cpt++) {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
           fprintf(ficrespl,"%.0f",age );  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
           for(i=1; i<=nlstate;i++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           fprintf(ficrespl," %.5f", prlim[i][i]);       }
           fprintf(ficrespl,"\n");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         }  health expectancies in states (1) and (2): %s%d.png<br>\
       }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     }     } /* end i1 */
   fclose(ficrespl);   }/* End k1 */
    fprintf(fichtm,"</ul>");
   /*------------- h Pij x at various ages ------------*/   fflush(fichtm);
    }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  /******************* Gnuplot file **************/
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    char dirfileres[132],optfileres[132];
      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int ng;
   /*if (stepm<=24) stepsize=2;*/  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   agelim=AGESUP;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   hstepm=stepsize*YEARM; /* Every year of age */  /*   } */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
      /*#ifdef windows */
   k=0;    fprintf(ficgp,"cd \"%s\" \n",pathc);
   for(cptcov=1;cptcov<=i1;cptcov++){      /*#endif */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    m=pow(2,cptcoveff);
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");    strcpy(dirfileres,optionfilefiname);
         for(j=1;j<=cptcoveff;j++)    strcpy(optfileres,"vpl");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   /* 1eme*/
         fprintf(ficrespij,"******\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
             for (k1=1; k1<= m ; k1 ++) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       fprintf(ficgp,"set xlabel \"Age\" \n\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  set ylabel \"Probability\" \n\
           oldm=oldms;savm=savms;  set ter png small\n\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    set size 0.65,0.65\n\
           fprintf(ficrespij,"# Age");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)       for (i=1; i<= nlstate ; i ++) {
               fprintf(ficrespij," %1d-%1d",i,j);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespij,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
            for (h=0; h<=nhstepm; h++){       }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
             for(i=1; i<=nlstate;i++)       for (i=1; i<= nlstate ; i ++) {
               for(j=1; j<=nlstate+ndeath;j++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
             fprintf(ficrespij,"\n");       } 
              }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for (i=1; i<= nlstate ; i ++) {
           fprintf(ficrespij,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         }         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }  
   }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    }
     /*2 eme*/
   fclose(ficrespij);    
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   /*---------- Forecasting ------------------*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if((stepm == 1) && (strcmp(model,".")==0)){      
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      for (i=1; i<= nlstate+1 ; i ++) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        k=2*i;
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   else{        for (j=1; j<= nlstate+1 ; j ++) {
     erreur=108;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }   
          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   /*---------- Health expectancies and variances ------------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   strcpy(filerest,"t");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcat(filerest,fileres);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((ficrest=fopen(filerest,"w"))==NULL) {        }   
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficgp,"\" t\"\" w l 0,");
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(filerese,"e");        }   
   strcat(filerese,fileres);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   if((ficreseij=fopen(filerese,"w"))==NULL) {        else fprintf(ficgp,"\" t\"\" w l 0,");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      }
   }    }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    
     /*3eme*/
  strcpy(fileresv,"v");    
   strcat(fileresv,fileres);    for (k1=1; k1<= m ; k1 ++) { 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      for (cpt=1; cpt<= nlstate ; cpt ++) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        k=2+nlstate*(2*cpt-2);
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficgp,"set ter png small\n\
   calagedate=-1;  set size 0.65,0.65\n\
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   k=0;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       k=k+1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fprintf(ficrest,"\n#****** ");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       for(j=1;j<=cptcoveff;j++)          
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        */
       fprintf(ficrest,"******\n");        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
       fprintf(ficreseij,"\n#****** ");          
       for(j=1;j<=cptcoveff;j++)        } 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficreseij,"******\n");    }
     
       fprintf(ficresvij,"\n#****** ");    /* CV preval stable (period) */
       for(j=1;j<=cptcoveff;j++)    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (cpt=1; cpt<=nlstate ; cpt ++) {
       fprintf(ficresvij,"******\n");        k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       oldm=oldms;savm=savms;  set ter png small\nset size 0.65,0.65\n\
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    unset log y\n\
    plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        
       oldm=oldms;savm=savms;        for (i=1; i< nlstate ; i ++)
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          fprintf(ficgp,"+$%d",k+i+1);
            fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
          l=3+(nlstate+ndeath)*cpt;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        for (i=1; i< nlstate ; i ++) {
       fprintf(ficrest,"\n");          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
       epj=vector(1,nlstate+1);        }
       for(age=bage; age <=fage ;age++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      } 
         if (popbased==1) {    }  
           for(i=1; i<=nlstate;i++)    
             prlim[i][i]=probs[(int)age][i][k];    /* proba elementaires */
         }    for(i=1,jk=1; i <=nlstate; i++){
              for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficrest," %4.0f",age);        if (k != i) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for(j=1; j <=ncovmodel; j++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            jk++; 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            fprintf(ficgp,"\n");
           }          }
           epj[nlstate+1] +=epj[j];        }
         }      }
      }
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
             vepp += vareij[i][j][(int)age];       for(jk=1; jk <=m; jk++) {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
         for(j=1;j <=nlstate;j++){         if (ng==2)
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
         }         else
         fprintf(ficrest,"\n");           fprintf(ficgp,"\nset title \"Probability\"\n");
       }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     }         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
 free_matrix(mint,1,maxwav,1,n);           k3=i;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);           for(k=1; k<=(nlstate+ndeath); k++) {
     free_vector(weight,1,n);             if (k != k2){
   fclose(ficreseij);               if(ng==2)
   fclose(ficresvij);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   fclose(ficrest);               else
   fclose(ficpar);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   free_vector(epj,1,nlstate+1);               ij=1;
                 for(j=3; j <=ncovmodel; j++) {
   /*------- Variance limit prevalence------*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   strcpy(fileresvpl,"vpl");                   ij++;
   strcat(fileresvpl,fileres);                 }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                 else
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     exit(0);               }
   }               fprintf(ficgp,")/(1");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);               
                for(k1=1; k1 <=nlstate; k1++){   
   k=0;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   for(cptcov=1;cptcov<=i1;cptcov++){                 ij=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                 for(j=3; j <=ncovmodel; j++){
       k=k+1;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       fprintf(ficresvpl,"\n#****** ");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       for(j=1;j<=cptcoveff;j++)                     ij++;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   }
       fprintf(ficresvpl,"******\n");                   else
                           fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                 }
       oldm=oldms;savm=savms;                 fprintf(ficgp,")");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);               }
     }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
   fclose(ficresvpl);             }
            } /* end k */
   /*---------- End : free ----------------*/         } /* end k2 */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       } /* end jk */
       } /* end ng */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     fflush(ficgp); 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  }  /* end gnuplot */
    
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  /*************** Moving average **************/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    int i, cpt, cptcod;
      int modcovmax =1;
   free_matrix(matcov,1,npar,1,npar);    int mobilavrange, mob;
   free_vector(delti,1,npar);    double age;
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
   if(erreur >0)    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     printf("End of Imach with error or warning %d\n",erreur);  
   else   printf("End of Imach\n");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      for (age=bage; age<=fage; age++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/        for (i=1; i<=nlstate;i++)
   /*------ End -----------*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
  end:         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   /* chdir(pathcd);*/         we use a 5 terms etc. until the borders are no more concerned. 
  /*system("wgnuplot graph.plt");*/      */ 
  /*system("../gp37mgw/wgnuplot graph.plt");*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
  /*system("cd ../gp37mgw");*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          for (i=1; i<=nlstate;i++){
  strcpy(plotcmd,GNUPLOTPROGRAM);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
  strcat(plotcmd," ");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
  strcat(plotcmd,optionfilegnuplot);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
  system(plotcmd);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
  /*#ifdef windows*/                }
   while (z[0] != 'q') {              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     /* chdir(path); */            }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          }
     scanf("%s",z);        }/* end age */
     if (z[0] == 'c') system("./imach");      }/* end mob */
     else if (z[0] == 'e') system(optionfilehtm);    }else return -1;
     else if (z[0] == 'g') system(plotcmd);    return 0;
     else if (z[0] == 'q') exit(0);  }/* End movingaverage */
   }  
   /*#endif */  
 }  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   lx     qx    dx    Lx     Tx     e(x)<br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.105


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>