Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.108

version 1.41.2.1, 2003/06/12 10:43:20 version 1.108, 2006/01/19 18:05:42
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.108  2006/01/19 18:05:42  lievre
      Gnuplot problem appeared...
   This program computes Healthy Life Expectancies from    To be fixed
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.107  2006/01/19 16:20:37  brouard
   interviewed on their health status or degree of disability (in the    Test existence of gnuplot in imach path
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.106  2006/01/19 13:24:36  brouard
   (if any) in individual health status.  Health expectancies are    Some cleaning and links added in html output
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.105  2006/01/05 20:23:19  lievre
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.104  2005/09/30 16:11:43  lievre
   conditional to be observed in state i at the first wave. Therefore    (Module): sump fixed, loop imx fixed, and simplifications.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): If the status is missing at the last wave but we know
   'age' is age and 'sex' is a covariate. If you want to have a more    that the person is alive, then we can code his/her status as -2
   complex model than "constant and age", you should modify the program    (instead of missing=-1 in earlier versions) and his/her
   where the markup *Covariates have to be included here again* invites    contributions to the likelihood is 1 - Prob of dying from last
   you to do it.  More covariates you add, slower the    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   convergence.    the healthy state at last known wave). Version is 0.98
   
   The advantage of this computer programme, compared to a simple    Revision 1.103  2005/09/30 15:54:49  lievre
   multinomial logistic model, is clear when the delay between waves is not    (Module): sump fixed, loop imx fixed, and simplifications.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.102  2004/09/15 17:31:30  brouard
   account using an interpolation or extrapolation.      Add the possibility to read data file including tab characters.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.101  2004/09/15 10:38:38  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Fix on curr_time
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.100  2004/07/12 18:29:06  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Add version for Mac OS X. Just define UNIX in Makefile
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.99  2004/06/05 08:57:40  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.98  2004/05/16 15:05:56  brouard
   of the life expectancies. It also computes the prevalence limits.    New version 0.97 . First attempt to estimate force of mortality
      directly from the data i.e. without the need of knowing the health
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    state at each age, but using a Gompertz model: log u =a + b*age .
            Institut national d'études démographiques, Paris.    This is the basic analysis of mortality and should be done before any
   This software have been partly granted by Euro-REVES, a concerted action    other analysis, in order to test if the mortality estimated from the
   from the European Union.    cross-longitudinal survey is different from the mortality estimated
   It is copyrighted identically to a GNU software product, ie programme and    from other sources like vital statistic data.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    The same imach parameter file can be used but the option for mle should be -3.
   **********************************************************************/  
      Agnès, who wrote this part of the code, tried to keep most of the
 #include <math.h>    former routines in order to include the new code within the former code.
 #include <stdio.h>  
 #include <stdlib.h>    The output is very simple: only an estimate of the intercept and of
 #include <unistd.h>    the slope with 95% confident intervals.
   
 #define MAXLINE 256    Current limitations:
 #define GNUPLOTPROGRAM "wgnuplot"    A) Even if you enter covariates, i.e. with the
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define FILENAMELENGTH 80    B) There is no computation of Life Expectancy nor Life Table.
 /*#define DEBUG*/  
     Revision 1.97  2004/02/20 13:25:42  lievre
 /*#define windows*/    Version 0.96d. Population forecasting command line is (temporarily)
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    suppressed.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.96  2003/07/15 15:38:55  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    rewritten within the same printf. Workaround: many printfs.
   
 #define NINTERVMAX 8    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Repository):
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Repository): Using imachwizard code to output a more meaningful covariance
 #define NCOVMAX 8 /* Maximum number of covariates */    matrix (cov(a12,c31) instead of numbers.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.94  2003/06/27 13:00:02  brouard
 #define AGESUP 130    Just cleaning
 #define AGEBASE 40  
     Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 int erreur; /* Error number */    exist so I changed back to asctime which exists.
 int nvar;    (Module): Version 0.96b
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.92  2003/06/25 16:30:45  brouard
 int nlstate=2; /* Number of live states */    (Module): On windows (cygwin) function asctime_r doesn't
 int ndeath=1; /* Number of dead states */    exist so I changed back to asctime which exists.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 int *wav; /* Number of waves for this individuual 0 is possible */    (Repository): Elapsed time after each iteration is now output. It
 int maxwav; /* Maxim number of waves */    helps to forecast when convergence will be reached. Elapsed time
 int jmin, jmax; /* min, max spacing between 2 waves */    is stamped in powell.  We created a new html file for the graphs
 int mle, weightopt;    concerning matrix of covariance. It has extension -cov.htm.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.90  2003/06/24 12:34:15  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Some bugs corrected for windows. Also, when
 double **oldm, **newm, **savm; /* Working pointers to matrices */    mle=-1 a template is output in file "or"mypar.txt with the design
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    of the covariance matrix to be input.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.89  2003/06/24 12:30:52  brouard
 FILE *ficreseij;    (Module): Some bugs corrected for windows. Also, when
   char filerese[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
  FILE  *ficresvij;    of the covariance matrix to be input.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.88  2003/06/23 17:54:56  brouard
   char fileresvpl[FILENAMELENGTH];    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 #define NR_END 1    Revision 1.87  2003/06/18 12:26:01  brouard
 #define FREE_ARG char*    Version 0.96
 #define FTOL 1.0e-10  
     Revision 1.86  2003/06/17 20:04:08  brouard
 #define NRANSI    (Module): Change position of html and gnuplot routines and added
 #define ITMAX 200    routine fileappend.
   
 #define TOL 2.0e-4    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 #define CGOLD 0.3819660    current date of interview. It may happen when the death was just
 #define ZEPS 1.0e-10    prior to the death. In this case, dh was negative and likelihood
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 #define GOLD 1.618034    interview.
 #define GLIMIT 100.0    (Repository): Because some people have very long ID (first column)
 #define TINY 1.0e-20    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 static double maxarg1,maxarg2;    truncation)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Repository): No more line truncation errors.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.84  2003/06/13 21:44:43  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Repository): Replace "freqsummary" at a correct
 #define rint(a) floor(a+0.5)    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 static double sqrarg;    parcimony.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.83  2003/06/10 13:39:11  lievre
 int imx;    *** empty log message ***
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  */
   /*
 int m,nb;     Interpolated Markov Chain
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Short summary of the programme:
 double **pmmij, ***probs, ***mobaverage;    
 double dateintmean=0;    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double *weight;    first survey ("cross") where individuals from different ages are
 int **s; /* Status */    interviewed on their health status or degree of disability (in the
 double *agedc, **covar, idx;    case of a health survey which is our main interest) -2- at least a
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    computed from the time spent in each health state according to a
 double ftolhess; /* Tolerance for computing hessian */    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /**************** split *************************/    simplest model is the multinomial logistic model where pij is the
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
    char *s;                             /* pointer */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    int  l1, l2;                         /* length counters */    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
    l1 = strlen( path );                 /* length of path */    where the markup *Covariates have to be included here again* invites
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    you to do it.  More covariates you add, slower the
 #ifdef windows    convergence.
    s = strrchr( path, '\\' );           /* find last / */  
 #else    The advantage of this computer programme, compared to a simple
    s = strrchr( path, '/' );            /* find last / */    multinomial logistic model, is clear when the delay between waves is not
 #endif    identical for each individual. Also, if a individual missed an
    if ( s == NULL ) {                   /* no directory, so use current */    intermediate interview, the information is lost, but taken into
 #if     defined(__bsd__)                /* get current working directory */    account using an interpolation or extrapolation.  
       extern char       *getwd( );  
     hPijx is the probability to be observed in state i at age x+h
       if ( getwd( dirc ) == NULL ) {    conditional to the observed state i at age x. The delay 'h' can be
 #else    split into an exact number (nh*stepm) of unobserved intermediate
       extern char       *getcwd( );    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    matrix is simply the matrix product of nh*stepm elementary matrices
 #endif    and the contribution of each individual to the likelihood is simply
          return( GLOCK_ERROR_GETCWD );    hPijx.
       }  
       strcpy( name, path );             /* we've got it */    Also this programme outputs the covariance matrix of the parameters but also
    } else {                             /* strip direcotry from path */    of the life expectancies. It also computes the stable prevalence. 
       s++;                              /* after this, the filename */    
       l2 = strlen( s );                 /* length of filename */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );             Institut national d'études démographiques, Paris.
       strcpy( name, s );                /* save file name */    This software have been partly granted by Euro-REVES, a concerted action
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    from the European Union.
       dirc[l1-l2] = 0;                  /* add zero */    It is copyrighted identically to a GNU software product, ie programme and
    }    software can be distributed freely for non commercial use. Latest version
    l1 = strlen( dirc );                 /* length of directory */    can be accessed at http://euroreves.ined.fr/imach .
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #else    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    
 #endif    **********************************************************************/
    s = strrchr( name, '.' );            /* find last / */  /*
    s++;    main
    strcpy(ext,s);                       /* save extension */    read parameterfile
    l1= strlen( name);    read datafile
    l2= strlen( s)+1;    concatwav
    strncpy( finame, name, l1-l2);    freqsummary
    finame[l1-l2]= 0;    if (mle >= 1)
    return( 0 );                         /* we're done */      mlikeli
 }    print results files
     if mle==1 
        computes hessian
 /******************************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 void replace(char *s, char*t)    open gnuplot file
 {    open html file
   int i;    stable prevalence
   int lg=20;     for age prevalim()
   i=0;    h Pij x
   lg=strlen(t);    variance of p varprob
   for(i=0; i<= lg; i++) {    forecasting if prevfcast==1 prevforecast call prevalence()
     (s[i] = t[i]);    health expectancies
     if (t[i]== '\\') s[i]='/';    Variance-covariance of DFLE
   }    prevalence()
 }     movingaverage()
     varevsij() 
 int nbocc(char *s, char occ)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   int i,j=0;    Variance of stable prevalence
   int lg=20;   end
   i=0;  */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  
   }   
   return j;  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 void cutv(char *u,char *v, char*t, char occ)  #include <string.h>
 {  #include <unistd.h>
   int i,lg,j,p=0;  
   i=0;  #include <sys/types.h>
   for(j=0; j<=strlen(t)-1; j++) {  #include <sys/stat.h>
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include <errno.h>
   }  extern int errno;
   
   lg=strlen(t);  /* #include <sys/time.h> */
   for(j=0; j<p; j++) {  #include <time.h>
     (u[j] = t[j]);  #include "timeval.h"
   }  
      u[p]='\0';  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define MAXLINE 256
   }  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /********************** nrerror ********************/  #define FILENAMELENGTH 132
   
 void nrerror(char error_text[])  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   exit(1);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
 /*********************** vector *******************/  #define NINTERVMAX 8
 double *vector(int nl, int nh)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   double *v;  #define NCOVMAX 8 /* Maximum number of covariates */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define MAXN 20000
   if (!v) nrerror("allocation failure in vector");  #define YEARM 12. /* Number of months per year */
   return v-nl+NR_END;  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /************************ free vector ******************/  #ifdef UNIX
 void free_vector(double*v, int nl, int nh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   free((FREE_ARG)(v+nl-NR_END));  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 /************************ivector *******************************/  #define CHARSEPARATOR "\\"
 int *ivector(long nl,long nh)  #define ODIRSEPARATOR '/'
 {  #endif
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /* $Id$ */
   if (!v) nrerror("allocation failure in ivector");  /* $State$ */
   return v-nl+NR_END;  
 }  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 /******************free ivector **************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 void free_ivector(int *v, long nl, long nh)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG)(v+nl-NR_END));  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************* imatrix *******************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int popbased=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int maxwav; /* Maxim number of waves */
   int **m;  int jmin, jmax; /* min, max spacing between 2 waves */
    int gipmx, gsw; /* Global variables on the number of contributions 
   /* allocate pointers to rows */                     to the likelihood and the sum of weights (done by funcone)*/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int mle, weightopt;
   if (!m) nrerror("allocation failure 1 in matrix()");  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m += NR_END;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m -= nrl;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               * wave mi and wave mi+1 is not an exact multiple of stepm. */
    double jmean; /* Mean space between 2 waves */
   /* allocate rows and set pointers to them */  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl] += NR_END;  FILE *ficlog, *ficrespow;
   m[nrl] -= ncl;  int globpr; /* Global variable for printing or not */
    double fretone; /* Only one call to likelihood */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  long ipmx; /* Number of contributions */
    double sw; /* Sum of weights */
   /* return pointer to array of pointers to rows */  char filerespow[FILENAMELENGTH];
   return m;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /****************** free_imatrix *************************/  FILE *ficresprobmorprev;
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE *fichtm, *fichtmcov; /* Html File */
       int **m;  FILE *ficreseij;
       long nch,ncl,nrh,nrl;  char filerese[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  FILE  *ficresvpl;
   free((FREE_ARG) (m+nrl-NR_END));  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /******************* matrix *******************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int  outcmd=0;
   double **m;  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char filelog[FILENAMELENGTH]; /* Log file */
   m += NR_END;  char filerest[FILENAMELENGTH];
   m -= nrl;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  extern int gettimeofday();
   return m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /*************************free matrix ************************/  char strcurr[80], strfor[80];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define NR_END 1
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FREE_ARG char*
   free((FREE_ARG)(m+nrl-NR_END));  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /******************* ma3x *******************************/  #define ITMAX 200 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #define TOL 2.0e-4 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define GOLD 1.618034 
   m -= nrl;  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  static double maxarg1,maxarg2;
   m[nrl] += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] -= ncl;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  static double sqrarg;
   m[nrl][ncl] += NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl][ncl] -= nll;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for (j=ncl+1; j<=nch; j++)  int agegomp= AGEGOMP;
     m[nrl][j]=m[nrl][j-1]+nlay;  
    int imx; 
   for (i=nrl+1; i<=nrh; i++) {  int stepm=1;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /* Stepm, step in month: minimum step interpolation*/
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  int estepm;
   }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return m;  
 }  int m,nb;
   long *num;
 /*************************free ma3x ************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double *ageexmed,*agecens;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double dateintmean=0;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  double *weight;
   int **s; /* Status */
 /***************** f1dim *************************/  double *agedc, **covar, idx;
 extern int ncom;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 extern double *pcom,*xicom;  double *lsurv, *lpop, *tpop;
 extern double (*nrfunc)(double []);  
    double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double f1dim(double x)  double ftolhess; /* Tolerance for computing hessian */
 {  
   int j;  /**************** split *************************/
   double f;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double *xt;  {
      /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   xt=vector(1,ncom);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    */ 
   f=(*nrfunc)(xt);    char  *ss;                            /* pointer */
   free_vector(xt,1,ncom);    int   l1, l2;                         /* length counters */
   return f;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*****************brent *************************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 {      strcpy( name, path );               /* we got the fullname name because no directory */
   int iter;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double a,b,d,etemp;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double fu,fv,fw,fx;      /* get current working directory */
   double ftemp;      /*    extern  char* getcwd ( char *buf , int len);*/
   double p,q,r,tol1,tol2,u,v,w,x,xm;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double e=0.0;        return( GLOCK_ERROR_GETCWD );
        }
   a=(ax < cx ? ax : cx);      /* got dirc from getcwd*/
   b=(ax > cx ? ax : cx);      printf(" DIRC = %s \n",dirc);
   x=w=v=bx;    } else {                              /* strip direcotry from path */
   fw=fv=fx=(*f)(x);      ss++;                               /* after this, the filename */
   for (iter=1;iter<=ITMAX;iter++) {      l2 = strlen( ss );                  /* length of filename */
     xm=0.5*(a+b);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      strcpy( name, ss );         /* save file name */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     printf(".");fflush(stdout);      dirc[l1-l2] = 0;                    /* add zero */
 #ifdef DEBUG      printf(" DIRC2 = %s \n",dirc);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    /* We add a separator at the end of dirc if not exists */
 #endif    l1 = strlen( dirc );                  /* length of directory */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    if( dirc[l1-1] != DIRSEPARATOR ){
       *xmin=x;      dirc[l1] =  DIRSEPARATOR;
       return fx;      dirc[l1+1] = 0; 
     }      printf(" DIRC3 = %s \n",dirc);
     ftemp=fu;    }
     if (fabs(e) > tol1) {    ss = strrchr( name, '.' );            /* find last / */
       r=(x-w)*(fx-fv);    if (ss >0){
       q=(x-v)*(fx-fw);      ss++;
       p=(x-v)*q-(x-w)*r;      strcpy(ext,ss);                     /* save extension */
       q=2.0*(q-r);      l1= strlen( name);
       if (q > 0.0) p = -p;      l2= strlen(ss)+1;
       q=fabs(q);      strncpy( finame, name, l1-l2);
       etemp=e;      finame[l1-l2]= 0;
       e=d;    }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    return( 0 );                          /* we're done */
       else {  }
         d=p/q;  
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  /******************************************/
           d=SIGN(tol1,xm-x);  
       }  void replace_back_to_slash(char *s, char*t)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    int i;
     }    int lg=0;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    i=0;
     fu=(*f)(u);    lg=strlen(t);
     if (fu <= fx) {    for(i=0; i<= lg; i++) {
       if (u >= x) a=x; else b=x;      (s[i] = t[i]);
       SHFT(v,w,x,u)      if (t[i]== '\\') s[i]='/';
         SHFT(fv,fw,fx,fu)    }
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  int nbocc(char *s, char occ)
             v=w;  {
             w=u;    int i,j=0;
             fv=fw;    int lg=20;
             fw=fu;    i=0;
           } else if (fu <= fv || v == x || v == w) {    lg=strlen(s);
             v=u;    for(i=0; i<= lg; i++) {
             fv=fu;    if  (s[i] == occ ) j++;
           }    }
         }    return j;
   }  }
   nrerror("Too many iterations in brent");  
   *xmin=x;  void cutv(char *u,char *v, char*t, char occ)
   return fx;  {
 }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 /****************** mnbrak ***********************/       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    i=0;
             double (*func)(double))    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double ulim,u,r,q, dum;    }
   double fu;  
      lg=strlen(t);
   *fa=(*func)(*ax);    for(j=0; j<p; j++) {
   *fb=(*func)(*bx);      (u[j] = t[j]);
   if (*fb > *fa) {    }
     SHFT(dum,*ax,*bx,dum)       u[p]='\0';
       SHFT(dum,*fb,*fa,dum)  
       }     for(j=0; j<= lg; j++) {
   *cx=(*bx)+GOLD*(*bx-*ax);      if (j>=(p+1))(v[j-p-1] = t[j]);
   *fc=(*func)(*cx);    }
   while (*fb > *fc) {  }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /********************** nrerror ********************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void nrerror(char error_text[])
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    fprintf(stderr,"ERREUR ...\n");
       fu=(*func)(u);    fprintf(stderr,"%s\n",error_text);
     } else if ((*cx-u)*(u-ulim) > 0.0) {    exit(EXIT_FAILURE);
       fu=(*func)(u);  }
       if (fu < *fc) {  /*********************** vector *******************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double *vector(int nl, int nh)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    double *v;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       u=ulim;    if (!v) nrerror("allocation failure in vector");
       fu=(*func)(u);    return v-nl+NR_END;
     } else {  }
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    free((FREE_ARG)(v+nl-NR_END));
       }  }
 }  
   /************************ivector *******************************/
 /*************** linmin ************************/  int *ivector(long nl,long nh)
   {
 int ncom;    int *v;
 double *pcom,*xicom;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 double (*nrfunc)(double []);    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  }
 {  
   double brent(double ax, double bx, double cx,  /******************free ivector **************************/
                double (*f)(double), double tol, double *xmin);  void free_ivector(int *v, long nl, long nh)
   double f1dim(double x);  {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    free((FREE_ARG)(v+nl-NR_END));
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  /************************lvector *******************************/
   double fx,fb,fa;  long *lvector(long nl,long nh)
    {
   ncom=n;    long *v;
   pcom=vector(1,n);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   xicom=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   nrfunc=func;    return v-nl+NR_END;
   for (j=1;j<=n;j++) {  }
     pcom[j]=p[j];  
     xicom[j]=xi[j];  /******************free lvector **************************/
   }  void free_lvector(long *v, long nl, long nh)
   ax=0.0;  {
   xx=1.0;    free((FREE_ARG)(v+nl-NR_END));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  /******************* imatrix *******************************/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 #endif       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (j=1;j<=n;j++) {  { 
     xi[j] *= xmin;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     p[j] += xi[j];    int **m; 
   }    
   free_vector(xicom,1,n);    /* allocate pointers to rows */ 
   free_vector(pcom,1,n);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 /*************** powell ************************/    m -= nrl; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    
             double (*func)(double []))    
 {    /* allocate rows and set pointers to them */ 
   void linmin(double p[], double xi[], int n, double *fret,    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
               double (*func)(double []));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   int i,ibig,j;    m[nrl] += NR_END; 
   double del,t,*pt,*ptt,*xit;    m[nrl] -= ncl; 
   double fp,fptt;    
   double *xits;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   pt=vector(1,n);    
   ptt=vector(1,n);    /* return pointer to array of pointers to rows */ 
   xit=vector(1,n);    return m; 
   xits=vector(1,n);  } 
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /****************** free_imatrix *************************/
   for (*iter=1;;++(*iter)) {  void free_imatrix(m,nrl,nrh,ncl,nch)
     fp=(*fret);        int **m;
     ibig=0;        long nch,ncl,nrh,nrl; 
     del=0.0;       /* free an int matrix allocated by imatrix() */ 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  { 
     for (i=1;i<=n;i++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       printf(" %d %.12f",i, p[i]);    free((FREE_ARG) (m+nrl-NR_END)); 
     printf("\n");  } 
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /******************* matrix *******************************/
       fptt=(*fret);  double **matrix(long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
       printf("fret=%lf \n",*fret);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 #endif    double **m;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (fabs(fptt-(*fret)) > del) {    if (!m) nrerror("allocation failure 1 in matrix()");
         del=fabs(fptt-(*fret));    m += NR_END;
         ibig=i;    m -= nrl;
       }  
 #ifdef DEBUG    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("%d %.12e",i,(*fret));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (j=1;j<=n;j++) {    m[nrl] += NR_END;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m[nrl] -= ncl;
         printf(" x(%d)=%.12e",j,xit[j]);  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for(j=1;j<=n;j++)    return m;
         printf(" p=%.12e",p[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       printf("\n");     */
 #endif  }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /*************************free matrix ************************/
 #ifdef DEBUG  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       int k[2],l;  {
       k[0]=1;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       k[1]=-1;    free((FREE_ARG)(m+nrl-NR_END));
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /******************* ma3x *******************************/
       printf("\n");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    double ***m;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
 #endif    m -= nrl;
   
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       free_vector(xit,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       free_vector(xits,1,n);    m[nrl] += NR_END;
       free_vector(ptt,1,n);    m[nrl] -= ncl;
       free_vector(pt,1,n);  
       return;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for (j=1;j<=n;j++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       ptt[j]=2.0*p[j]-pt[j];    m[nrl][ncl] += NR_END;
       xit[j]=p[j]-pt[j];    m[nrl][ncl] -= nll;
       pt[j]=p[j];    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
     fptt=(*func)(ptt);    
     if (fptt < fp) {    for (i=nrl+1; i<=nrh; i++) {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       if (t < 0.0) {      for (j=ncl+1; j<=nch; j++) 
         linmin(p,xit,n,fret,func);        m[i][j]=m[i][j-1]+nlay;
         for (j=1;j<=n;j++) {    }
           xi[j][ibig]=xi[j][n];    return m; 
           xi[j][n]=xit[j];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #ifdef DEBUG    */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************************free ma3x ************************/
         printf("\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #endif  {
       }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /**** Prevalence limit ****************/  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    /* Caution optionfilefiname is hidden */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcpy(tmpout,optionfilefiname);
      matrix by transitions matrix until convergence is reached */    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   int i, ii,j,k;    return tmpout;
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /*************** function subdirf2 ***********/
   double **newm;  char *subdirf2(char fileres[], char *preop)
   double agefin, delaymax=50 ; /* Max number of years to converge */  {
     
   for (ii=1;ii<=nlstate+ndeath;ii++)    /* Caution optionfilefiname is hidden */
     for (j=1;j<=nlstate+ndeath;j++){    strcpy(tmpout,optionfilefiname);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     strcat(tmpout,fileres);
    cov[1]=1.;    return tmpout;
    }
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /*************** function subdirf3 ***********/
     newm=savm;  char *subdirf3(char fileres[], char *preop, char *preop2)
     /* Covariates have to be included here again */  {
      cov[2]=agefin;    
      /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovn;k++) {    strcpy(tmpout,optionfilefiname);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,"/");
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    strcat(tmpout,preop);
       }    strcat(tmpout,preop2);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcat(tmpout,fileres);
       for (k=1; k<=cptcovprod;k++)    return tmpout;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /***************** f1dim *************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  extern int ncom; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  extern double *pcom,*xicom;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  extern double (*nrfunc)(double []); 
    
     savm=oldm;  double f1dim(double x) 
     oldm=newm;  { 
     maxmax=0.;    int j; 
     for(j=1;j<=nlstate;j++){    double f;
       min=1.;    double *xt; 
       max=0.;   
       for(i=1; i<=nlstate; i++) {    xt=vector(1,ncom); 
         sumnew=0;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    f=(*nrfunc)(xt); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    free_vector(xt,1,ncom); 
         max=FMAX(max,prlim[i][j]);    return f; 
         min=FMIN(min,prlim[i][j]);  } 
       }  
       maxmin=max-min;  /*****************brent *************************/
       maxmax=FMAX(maxmax,maxmin);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
     if(maxmax < ftolpl){    int iter; 
       return prlim;    double a,b,d,etemp;
     }    double fu,fv,fw,fx;
   }    double ftemp;
 }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
 /*************** transition probabilities ***************/   
     a=(ax < cx ? ax : cx); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    b=(ax > cx ? ax : cx); 
 {    x=w=v=bx; 
   double s1, s2;    fw=fv=fx=(*f)(x); 
   /*double t34;*/    for (iter=1;iter<=ITMAX;iter++) { 
   int i,j,j1, nc, ii, jj;      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for(i=1; i<= nlstate; i++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(j=1; j<i;j++){      printf(".");fflush(stdout);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficlog,".");fflush(ficlog);
         /*s2 += param[i][j][nc]*cov[nc];*/  #ifdef DEBUG
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       ps[i][j]=s2;  #endif
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
     for(j=i+1; j<=nlstate+ndeath;j++){        return fx; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      ftemp=fu;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      if (fabs(e) > tol1) { 
       }        r=(x-w)*(fx-fv); 
       ps[i][j]=s2;        q=(x-v)*(fx-fw); 
     }        p=(x-v)*q-(x-w)*r; 
   }        q=2.0*(q-r); 
     /*ps[3][2]=1;*/        if (q > 0.0) p = -p; 
         q=fabs(q); 
   for(i=1; i<= nlstate; i++){        etemp=e; 
      s1=0;        e=d; 
     for(j=1; j<i; j++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       s1+=exp(ps[i][j]);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=i+1; j<=nlstate+ndeath; j++)        else { 
       s1+=exp(ps[i][j]);          d=p/q; 
     ps[i][i]=1./(s1+1.);          u=x+d; 
     for(j=1; j<i; j++)          if (u-a < tol2 || b-u < tol2) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            d=SIGN(tol1,xm-x); 
     for(j=i+1; j<=nlstate+ndeath; j++)        } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } else { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   } /* end i */      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      fu=(*f)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      if (fu <= fx) { 
       ps[ii][jj]=0;        if (u >= x) a=x; else b=x; 
       ps[ii][ii]=1;        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
   }          } else { 
             if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){              v=w; 
     for(jj=1; jj<= nlstate+ndeath; jj++){              w=u; 
      printf("%lf ",ps[ii][jj]);              fv=fw; 
    }              fw=fu; 
     printf("\n ");            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
     printf("\n ");printf("%lf ",cov[2]);*/              fv=fu; 
 /*            } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          } 
   goto end;*/    } 
     return ps;    nrerror("Too many iterations in brent"); 
 }    *xmin=x; 
     return fx; 
 /**************** Product of 2 matrices ******************/  } 
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /****************** mnbrak ***********************/
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */              double (*func)(double)) 
   /* in, b, out are matrice of pointers which should have been initialized  { 
      before: only the contents of out is modified. The function returns    double ulim,u,r,q, dum;
      a pointer to pointers identical to out */    double fu; 
   long i, j, k;   
   for(i=nrl; i<= nrh; i++)    *fa=(*func)(*ax); 
     for(k=ncolol; k<=ncoloh; k++)    *fb=(*func)(*bx); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if (*fb > *fa) { 
         out[i][k] +=in[i][j]*b[j][k];      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
   return out;        } 
 }    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
     while (*fb > *fc) { 
 /************* Higher Matrix Product ***************/      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      duration (i.e. until      if ((*bx-u)*(u-*cx) > 0.0) { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        fu=(*func)(u); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      } else if ((*cx-u)*(u-ulim) > 0.0) { 
      (typically every 2 years instead of every month which is too big).        fu=(*func)(u); 
      Model is determined by parameters x and covariates have to be        if (fu < *fc) { 
      included manually here.          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
      */            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   int i, j, d, h, k;        u=ulim; 
   double **out, cov[NCOVMAX];        fu=(*func)(u); 
   double **newm;      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   /* Hstepm could be zero and should return the unit matrix */        fu=(*func)(u); 
   for (i=1;i<=nlstate+ndeath;i++)      } 
     for (j=1;j<=nlstate+ndeath;j++){      SHFT(*ax,*bx,*cx,u) 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        SHFT(*fa,*fb,*fc,fu) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        } 
     }  } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /*************** linmin ************************/
     for(d=1; d <=hstepm; d++){  
       newm=savm;  int ncom; 
       /* Covariates have to be included here again */  double *pcom,*xicom;
       cov[1]=1.;  double (*nrfunc)(double []); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;   
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for (k=1; k<=cptcovage;k++)  { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double brent(double ax, double bx, double cx, 
       for (k=1; k<=cptcovprod;k++)                 double (*f)(double), double tol, double *xmin); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    int j; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double xx,xmin,bx,ax; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double fx,fb,fa;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));   
       savm=oldm;    ncom=n; 
       oldm=newm;    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
     for(i=1; i<=nlstate+ndeath; i++)    nrfunc=func; 
       for(j=1;j<=nlstate+ndeath;j++) {    for (j=1;j<=n;j++) { 
         po[i][j][h]=newm[i][j];      pcom[j]=p[j]; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      xicom[j]=xi[j]; 
          */    } 
       }    ax=0.0; 
   } /* end h */    xx=1.0; 
   return po;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*************** log-likelihood *************/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double func( double *x)  #endif
 {    for (j=1;j<=n;j++) { 
   int i, ii, j, k, mi, d, kk;      xi[j] *= xmin; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      p[j] += xi[j]; 
   double **out;    } 
   double sw; /* Sum of weights */    free_vector(xicom,1,n); 
   double lli; /* Individual log likelihood */    free_vector(pcom,1,n); 
   long ipmx;  } 
   /*extern weight */  
   /* We are differentiating ll according to initial status */  char *asc_diff_time(long time_sec, char ascdiff[])
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  {
   /*for(i=1;i<imx;i++)    long sec_left, days, hours, minutes;
     printf(" %d\n",s[4][i]);    days = (time_sec) / (60*60*24);
   */    sec_left = (time_sec) % (60*60*24);
   cov[1]=1.;    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   for(k=1; k<=nlstate; k++) ll[k]=0.;    minutes = (sec_left) /60;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    sec_left = (sec_left) % (60);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for(mi=1; mi<= wav[i]-1; mi++){    return ascdiff;
       for (ii=1;ii<=nlstate+ndeath;ii++)  }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  /*************** powell ************************/
         newm=savm;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              double (*func)(double [])) 
         for (kk=1; kk<=cptcovage;kk++) {  { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    void linmin(double p[], double xi[], int n, double *fret, 
         }                double (*func)(double [])); 
            int i,ibig,j; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double del,t,*pt,*ptt,*xit;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double fp,fptt;
         savm=oldm;    double *xits;
         oldm=newm;    int niterf, itmp;
          
            pt=vector(1,n); 
       } /* end mult */    ptt=vector(1,n); 
          xit=vector(1,n); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    xits=vector(1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    *fret=(*func)(p); 
       ipmx +=1;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       sw += weight[i];    for (*iter=1;;++(*iter)) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      fp=(*fret); 
     } /* end of wave */      ibig=0; 
   } /* end of individual */      del=0.0; 
       last_time=curr_time;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      (void) gettimeofday(&curr_time,&tzp);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   return -l;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 }      */
      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 /*********** Maximum Likelihood Estimation ***************/        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      }
 {      printf("\n");
   int i,j, iter;      fprintf(ficlog,"\n");
   double **xi,*delti;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double fret;      if(*iter <=3){
   xi=matrix(1,npar,1,npar);        tm = *localtime(&curr_time.tv_sec);
   for (i=1;i<=npar;i++)        strcpy(strcurr,asctime(&tm));
     for (j=1;j<=npar;j++)  /*       asctime_r(&tm,strcurr); */
       xi[i][j]=(i==j ? 1.0 : 0.0);        forecast_time=curr_time; 
   printf("Powell\n");        itmp = strlen(strcurr);
   powell(p,xi,npar,ftol,&iter,&fret,func);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
 }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
 /**** Computes Hessian and covariance matrix ***/  /*      asctime_r(&tmf,strfor); */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          strcpy(strfor,asctime(&tmf));
 {          itmp = strlen(strfor);
   double  **a,**y,*x,pd;          if(strfor[itmp-1]=='\n')
   double **hess;          strfor[itmp-1]='\0';
   int i, j,jk;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int *indx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   double hessii(double p[], double delta, int theta, double delti[]);      }
   double hessij(double p[], double delti[], int i, int j);      for (i=1;i<=n;i++) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fptt=(*fret); 
   #ifdef DEBUG
   hess=matrix(1,npar,1,npar);        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   printf("\nCalculation of the hessian matrix. Wait...\n");  #endif
   for (i=1;i<=npar;i++){        printf("%d",i);fflush(stdout);
     printf("%d",i);fflush(stdout);        fprintf(ficlog,"%d",i);fflush(ficlog);
     hess[i][i]=hessii(p,ftolhess,i,delti);        linmin(p,xit,n,fret,func); 
     /*printf(" %f ",p[i]);*/        if (fabs(fptt-(*fret)) > del) { 
     /*printf(" %lf ",hess[i][i]);*/          del=fabs(fptt-(*fret)); 
   }          ibig=i; 
          } 
   for (i=1;i<=npar;i++) {  #ifdef DEBUG
     for (j=1;j<=npar;j++)  {        printf("%d %.12e",i,(*fret));
       if (j>i) {        fprintf(ficlog,"%d %.12e",i,(*fret));
         printf(".%d%d",i,j);fflush(stdout);        for (j=1;j<=n;j++) {
         hess[i][j]=hessij(p,delti,i,j);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         hess[j][i]=hess[i][j];              printf(" x(%d)=%.12e",j,xit[j]);
         /*printf(" %lf ",hess[i][j]);*/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
     }        for(j=1;j<=n;j++) {
   }          printf(" p=%.12e",p[j]);
   printf("\n");          fprintf(ficlog," p=%.12e",p[j]);
         }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        printf("\n");
          fprintf(ficlog,"\n");
   a=matrix(1,npar,1,npar);  #endif
   y=matrix(1,npar,1,npar);      } 
   x=vector(1,npar);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   indx=ivector(1,npar);  #ifdef DEBUG
   for (i=1;i<=npar;i++)        int k[2],l;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        k[0]=1;
   ludcmp(a,npar,indx,&pd);        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++) x[i]=0;        for (j=1;j<=n;j++) {
     x[j]=1;          printf(" %.12e",p[j]);
     lubksb(a,npar,indx,x);          fprintf(ficlog," %.12e",p[j]);
     for (i=1;i<=npar;i++){        }
       matcov[i][j]=x[i];        printf("\n");
     }        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   printf("\n#Hessian matrix#\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for (i=1;i<=npar;i++) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (j=1;j<=npar;j++) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       printf("%.3e ",hess[i][j]);          }
     }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     printf("\n");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
   #endif
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        free_vector(xit,1,n); 
   ludcmp(a,npar,indx,&pd);        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   /*  printf("\n#Hessian matrix recomputed#\n");        free_vector(pt,1,n); 
         return; 
   for (j=1;j<=npar;j++) {      } 
     for (i=1;i<=npar;i++) x[i]=0;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     x[j]=1;      for (j=1;j<=n;j++) { 
     lubksb(a,npar,indx,x);        ptt[j]=2.0*p[j]-pt[j]; 
     for (i=1;i<=npar;i++){        xit[j]=p[j]-pt[j]; 
       y[i][j]=x[i];        pt[j]=p[j]; 
       printf("%.3e ",y[i][j]);      } 
     }      fptt=(*func)(ptt); 
     printf("\n");      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   */        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   free_matrix(a,1,npar,1,npar);          for (j=1;j<=n;j++) { 
   free_matrix(y,1,npar,1,npar);            xi[j][ibig]=xi[j][n]; 
   free_vector(x,1,npar);            xi[j][n]=xit[j]; 
   free_ivector(indx,1,npar);          }
   free_matrix(hess,1,npar,1,npar);  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
 /*************** hessian matrix ****************/            fprintf(ficlog," %.12e",xit[j]);
 double hessii( double x[], double delta, int theta, double delti[])          }
 {          printf("\n");
   int i;          fprintf(ficlog,"\n");
   int l=1, lmax=20;  #endif
   double k1,k2;        }
   double p2[NPARMAX+1];      } 
   double res;    } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  } 
   double fx;  
   int k=0,kmax=10;  /**** Prevalence limit (stable prevalence)  ****************/
   double l1;  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   fx=func(x);  {
   for (i=1;i<=npar;i++) p2[i]=x[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for(l=0 ; l <=lmax; l++){       matrix by transitions matrix until convergence is reached */
     l1=pow(10,l);  
     delts=delt;    int i, ii,j,k;
     for(k=1 ; k <kmax; k=k+1){    double min, max, maxmin, maxmax,sumnew=0.;
       delt = delta*(l1*k);    double **matprod2();
       p2[theta]=x[theta] +delt;    double **out, cov[NCOVMAX], **pmij();
       k1=func(p2)-fx;    double **newm;
       p2[theta]=x[theta]-delt;    double agefin, delaymax=50 ; /* Max number of years to converge */
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    for (ii=1;ii<=nlstate+ndeath;ii++)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef DEBUG      }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif     cov[1]=1.;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */   
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         k=kmax;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      /* Covariates have to be included here again */
         k=kmax; l=lmax*10.;       cov[2]=agefin;
       }    
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for (k=1; k<=cptcovn;k++) {
         delts=delt;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
   }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   delti[theta]=delts;        for (k=1; k<=cptcovprod;k++)
   return res;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
 }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 double hessij( double x[], double delti[], int thetai,int thetaj)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int i;  
   int l=1, l1, lmax=20;      savm=oldm;
   double k1,k2,k3,k4,res,fx;      oldm=newm;
   double p2[NPARMAX+1];      maxmax=0.;
   int k;      for(j=1;j<=nlstate;j++){
         min=1.;
   fx=func(x);        max=0.;
   for (k=1; k<=2; k++) {        for(i=1; i<=nlstate; i++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];          sumnew=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     k1=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        maxmin=max-min;
     k2=func(p2)-fx;        maxmax=FMAX(maxmax,maxmin);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      if(maxmax < ftolpl){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        return prlim;
     k3=func(p2)-fx;      }
      }
     p2[thetai]=x[thetai]-delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  /*************** transition probabilities ***************/ 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  {
 #endif    double s1, s2;
   }    /*double t34;*/
   return res;    int i,j,j1, nc, ii, jj;
 }  
       for(i=1; i<= nlstate; i++){
 /************** Inverse of matrix **************/        for(j=1; j<i;j++){
 void ludcmp(double **a, int n, int *indx, double *d)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {            /*s2 += param[i][j][nc]*cov[nc];*/
   int i,imax,j,k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double big,dum,sum,temp;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   double *vv;          }
            ps[i][j]=s2;
   vv=vector(1,n);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   *d=1.0;        }
   for (i=1;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath;j++){
     big=0.0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (j=1;j<=n;j++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          }
     vv[i]=1.0/big;          ps[i][j]=s2;
   }        }
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {      /*ps[3][2]=1;*/
       sum=a[i][j];      
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for(i=1; i<= nlstate; i++){
       a[i][j]=sum;        s1=0;
     }        for(j=1; j<i; j++)
     big=0.0;          s1+=exp(ps[i][j]);
     for (i=j;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath; j++)
       sum=a[i][j];          s1+=exp(ps[i][j]);
       for (k=1;k<j;k++)        ps[i][i]=1./(s1+1.);
         sum -= a[i][k]*a[k][j];        for(j=1; j<i; j++)
       a[i][j]=sum;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(j=i+1; j<=nlstate+ndeath; j++)
         big=dum;          ps[i][j]= exp(ps[i][j])*ps[i][i];
         imax=i;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       }      } /* end i */
     }      
     if (j != imax) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for (k=1;k<=n;k++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
         dum=a[imax][k];          ps[ii][jj]=0;
         a[imax][k]=a[j][k];          ps[ii][ii]=1;
         a[j][k]=dum;        }
       }      }
       *d = -(*d);      
       vv[imax]=vv[j];  
     }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     indx[j]=imax;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*         printf("ddd %lf ",ps[ii][jj]); */
     if (j != n) {  /*       } */
       dum=1.0/(a[j][j]);  /*       printf("\n "); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*        } */
     }  /*        printf("\n ");printf("%lf ",cov[2]); */
   }         /*
   free_vector(vv,1,n);  /* Doesn't work */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
 ;        goto end;*/
 }      return ps;
   }
 void lubksb(double **a, int n, int *indx, double b[])  
 {  /**************** Product of 2 matrices ******************/
   int i,ii=0,ip,j;  
   double sum;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    {
   for (i=1;i<=n;i++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     ip=indx[i];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     sum=b[ip];    /* in, b, out are matrice of pointers which should have been initialized 
     b[ip]=b[i];       before: only the contents of out is modified. The function returns
     if (ii)       a pointer to pointers identical to out */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    long i, j, k;
     else if (sum) ii=i;    for(i=nrl; i<= nrh; i++)
     b[i]=sum;      for(k=ncolol; k<=ncoloh; k++)
   }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=n;i>=1;i--) {          out[i][k] +=in[i][j]*b[j][k];
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    return out;
     b[i]=sum/a[i][i];  }
   }  
 }  
   /************* Higher Matrix Product ***************/
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  /* Some frequencies */  {
      /* Computes the transition matrix starting at age 'age' over 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       'nhstepm*hstepm*stepm' months (i.e. until
   double ***freq; /* Frequencies */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double *pp;       nhstepm*hstepm matrices. 
   double pos, k2, dateintsum=0,k2cpt=0;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   FILE *ficresp;       (typically every 2 years instead of every month which is too big 
   char fileresp[FILENAMELENGTH];       for the memory).
         Model is determined by parameters x and covariates have to be 
   pp=vector(1,nlstate);       included manually here. 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");       */
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int i, j, d, h, k;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double **out, cov[NCOVMAX];
     exit(0);    double **newm;
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* Hstepm could be zero and should return the unit matrix */
   j1=0;    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   j=cptcoveff;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   for(k1=1; k1<=j;k1++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(i1=1; i1<=ncodemax[k1];i1++){    for(h=1; h <=nhstepm; h++){
       j1++;      for(d=1; d <=hstepm; d++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        newm=savm;
         scanf("%d", i);*/        /* Covariates have to be included here again */
       for (i=-1; i<=nlstate+ndeath; i++)          cov[1]=1.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             freq[i][jk][m]=0;        for (k=1; k<=cptcovage;k++)
                cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       dateintsum=0;        for (k=1; k<=cptcovprod;k++)
       k2cpt=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (i=1; i<=imx; i++) {  
         bool=1;  
         if  (cptcovn>0) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           for (z1=1; z1<=cptcoveff; z1++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
               bool=0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         }        savm=oldm;
         if (bool==1) {        oldm=newm;
           for(m=firstpass; m<=lastpass; m++){      }
             k2=anint[m][i]+(mint[m][i]/12.);      for(i=1; i<=nlstate+ndeath; i++)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(j=1;j<=nlstate+ndeath;j++) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;          po[i][j][h]=newm[i][j];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
               if (m<lastpass) {           */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    } /* end h */
               }    return po;
                }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;  
                 k2cpt++;  /*************** log-likelihood *************/
               }  double func( double *x)
             }  {
           }    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       }    double **out;
            double sw; /* Sum of weights */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double lli; /* Individual log likelihood */
     int s1, s2;
       if  (cptcovn>0) {    double bbh, survp;
         fprintf(ficresp, "\n#********** Variable ");    long ipmx;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*extern weight */
         fprintf(ficresp, "**********\n#");    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(i=1; i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      printf(" %d\n",s[4][i]);
       fprintf(ficresp, "\n");    */
          cov[1]=1.;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3)    for(k=1; k<=nlstate; k++) ll[k]=0.;
           printf("Total");  
         else    if(mle==1){
           printf("Age %d", i);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pp[jk] += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pos=0; m <=0 ; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];            }
           if(pp[jk]>=1.e-10)          for(d=0; d<dh[mi][i]; d++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            newm=savm;
           else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
         for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             pp[jk] += freq[jk][m][i];            savm=oldm;
         }            oldm=newm;
           } /* end mult */
         for(jk=1,pos=0; jk <=nlstate ; jk++)        
           pos += pp[jk];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for(jk=1; jk <=nlstate ; jk++){          /* But now since version 0.9 we anticipate for bias at large stepm.
           if(pos>=1.e-5)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * (in months) between two waves is not a multiple of stepm, we rounded to 
           else           * the nearest (and in case of equal distance, to the lowest) interval but now
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           if( i <= (int) agemax){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             if(pos>=1.e-5){           * probability in order to take into account the bias as a fraction of the way
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
               probs[i][jk][j1]= pp[jk]/pos;           * -stepm/2 to stepm/2 .
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/           * For stepm=1 the results are the same as for previous versions of Imach.
             }           * For stepm > 1 the results are less biased than in previous versions. 
             else           */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
                  /* bias bh is positive if real duration
         for(jk=-1; jk <=nlstate+ndeath; jk++)           * is higher than the multiple of stepm and negative otherwise.
           for(m=-1; m <=nlstate+ndeath; m++)           */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         if(i <= (int) agemax)          if( s2 > nlstate){ 
           fprintf(ficresp,"\n");            /* i.e. if s2 is a death state and if the date of death is known 
         printf("\n");               then the contribution to the likelihood is the probability to 
       }               die between last step unit time and current  step unit time, 
     }               which is also equal to probability to die before dh 
   }               minus probability to die before dh-stepm . 
   dateintmean=dateintsum/k2cpt;               In version up to 0.92 likelihood was computed
            as if date of death was unknown. Death was treated as any other
   fclose(ficresp);          health state: the date of the interview describes the actual state
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          and not the date of a change in health state. The former idea was
   free_vector(pp,1,nlstate);          to consider that at each interview the state was recorded
            (healthy, disable or death) and IMaCh was corrected; but when we
   /* End of Freq */          introduced the exact date of death then we should have modified
 }          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
 /************ Prevalence ********************/          stepm. It is no more the probability to die between last interview
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          and month of death but the probability to survive from last
 {  /* Some frequencies */          interview up to one month before death multiplied by the
            probability to die within a month. Thanks to Chris
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          Jackson for correcting this bug.  Former versions increased
   double ***freq; /* Frequencies */          mortality artificially. The bad side is that we add another loop
   double *pp;          which slows down the processing. The difference can be up to 10%
   double pos, k2;          lower mortality.
             */
   pp=vector(1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          } else if  (s2==-2) {
   j1=0;            for (j=1,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   j=cptcoveff;            lli= survp;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }
            
  for(k1=1; k1<=j;k1++){          else if  (s2==-4) {
     for(i1=1; i1<=ncodemax[k1];i1++){            for (j=3,survp=0. ; j<=nlstate; j++) 
       j1++;              survp += out[s1][j];
              lli= survp;
       for (i=-1; i<=nlstate+ndeath; i++)            }
         for (jk=-1; jk<=nlstate+ndeath; jk++)            
           for(m=agemin; m <= agemax+3; m++)          else if  (s2==-5) {
             freq[i][jk][m]=0;            for (j=1,survp=0. ; j<=2; j++) 
                    survp += out[s1][j];
       for (i=1; i<=imx; i++) {            lli= survp;
         bool=1;          }
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          else{
               bool=0;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if (bool==1) {          } 
           for(m=firstpass; m<=lastpass; m++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             k2=anint[m][i]+(mint[m][i]/12.);          /*if(lli ==000.0)*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          ipmx +=1;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          sw += weight[i];
               if (m<lastpass)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        } /* end of wave */
               else      } /* end of individual */
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    }  else if(mle==2){
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
               pp[jk] += freq[jk][m][i];          for(d=0; d<=dh[mi][i]; d++){
           }            newm=savm;
           for(jk=1; jk <=nlstate ; jk++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for(m=-1, pos=0; m <=0 ; m++)            for (kk=1; kk<=cptcovage;kk++) {
             pos += freq[jk][m][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm=oldm;
              pp[jk] += freq[jk][m][i];            oldm=newm;
          }          } /* end mult */
                  
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
          for(jk=1; jk <=nlstate ; jk++){                    bbh=(double)bh[mi][i]/(double)stepm; 
            if( i <= (int) agemax){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
              if(pos>=1.e-5){          ipmx +=1;
                probs[i][jk][j1]= pp[jk]/pos;          sw += weight[i];
              }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            }        } /* end of wave */
          }      } /* end of individual */
              }  else if(mle==3){  /* exponential inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
 }  /* End of Freq */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************* Waves Concatenation ***************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Death is a valid wave (if date is known).                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            savm=oldm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            oldm=newm;
      and mw[mi+1][i]. dh depends on stepm.          } /* end mult */
      */        
           s1=s[mw[mi][i]][i];
   int i, mi, m;          s2=s[mw[mi+1][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          bbh=(double)bh[mi][i]/(double)stepm; 
      double sum=0., jmean=0.;*/          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   int j, k=0,jk, ju, jl;          sw += weight[i];
   double sum=0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmin=1e+5;        } /* end of wave */
   jmax=-1;      } /* end of individual */
   jmean=0.;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for(i=1; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     mi=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     m=firstpass;        for(mi=1; mi<= wav[i]-1; mi++){
     while(s[m][i] <= nlstate){          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(s[m][i]>=1)            for (j=1;j<=nlstate+ndeath;j++){
         mw[++mi][i]=m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         break;            }
       else          for(d=0; d<dh[mi][i]; d++){
         m++;            newm=savm;
     }/* end while */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (s[m][i] > nlstate){            for (kk=1; kk<=cptcovage;kk++) {
       mi++;     /* Death is another wave */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       /* if(mi==0)  never been interviewed correctly before death */            }
          /* Only death is a correct wave */          
       mw[mi][i]=m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     wav[i]=mi;            oldm=newm;
     if(mi==0)          } /* end mult */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for(i=1; i<=imx; i++){          if( s2 > nlstate){ 
     for(mi=1; mi<wav[i];mi++){            lli=log(out[s1][s2] - savm[s1][s2]);
       if (stepm <=0)          }else{
         dh[mi][i]=1;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       else{          }
         if (s[mw[mi+1][i]][i] > nlstate) {          ipmx +=1;
           if (agedc[i] < 2*AGESUP) {          sw += weight[i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if(j==0) j=1;  /* Survives at least one month after exam */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           k=k+1;        } /* end of wave */
           if (j >= jmax) jmax=j;      } /* end of individual */
           if (j <= jmin) jmin=j;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           sum=sum+j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         else{            for (j=1;j<=nlstate+ndeath;j++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=k+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;            }
           else if (j <= jmin)jmin=j;          for(d=0; d<dh[mi][i]; d++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            newm=savm;
           sum=sum+j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         jk= j/stepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         jl= j -jk*stepm;            }
         ju= j -(jk+1)*stepm;          
         if(jl <= -ju)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=jk;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         else            savm=oldm;
           dh[mi][i]=jk+1;            oldm=newm;
         if(dh[mi][i]==0)          } /* end mult */
           dh[mi][i]=1; /* At least one step */        
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   jmean=sum/k;          ipmx +=1;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          sw += weight[i];
  }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Tricode ****************************/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 void tricode(int *Tvar, int **nbcode, int imx)        } /* end of wave */
 {      } /* end of individual */
   int Ndum[20],ij=1, k, j, i;    } /* End of if */
   int cptcode=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   cptcoveff=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (k=0; k<19; k++) Ndum[k]=0;    return -l;
   for (k=1; k<=7; k++) ncodemax[k]=0;  }
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /*************** log-likelihood *************/
     for (i=1; i<=imx; i++) {  double funcone( double *x)
       ij=(int)(covar[Tvar[j]][i]);  {
       Ndum[ij]++;    /* Same as likeli but slower because of a lot of printf and if */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int i, ii, j, k, mi, d, kk;
       if (ij > cptcode) cptcode=ij;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
     double lli; /* Individual log likelihood */
     for (i=0; i<=cptcode; i++) {    double llt;
       if(Ndum[i]!=0) ncodemax[j]++;    int s1, s2;
     }    double bbh, survp;
     ij=1;    /*extern weight */
     /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (i=1; i<=ncodemax[j]; i++) {    /*for(i=1;i<imx;i++) 
       for (k=0; k<=19; k++) {      printf(" %d\n",s[4][i]);
         if (Ndum[k] != 0) {    */
           nbcode[Tvar[j]][ij]=k;    cov[1]=1.;
            
           ij++;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
         if (ij > ncodemax[j]) break;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }      for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
  for (k=0; k<19; k++) Ndum[k]=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=ncovmodel-2; i++) {          }
       ij=Tvar[i];        for(d=0; d<dh[mi][i]; d++){
       Ndum[ij]++;          newm=savm;
     }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
  ij=1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for (i=1; i<=10; i++) {          }
    if((Ndum[i]!=0) && (i<=ncovcol)){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Tvaraff[ij]=i;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      ij++;          savm=oldm;
    }          oldm=newm;
  }        } /* end mult */
          
     cptcoveff=ij-1;        s1=s[mw[mi][i]][i];
 }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
 /*********** Health Expectancies ****************/        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
 {          lli=log(out[s1][s2] - savm[s1][s2]);
   /* Health expectancies */        } else if (mle==1){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double age, agelim, hf;        } else if(mle==2){
   double ***p3mat,***varhe;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double **dnewm,**doldm;        } else if(mle==3){  /* exponential inter-extrapolation */
   double *xp;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double **gp, **gm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double ***gradg, ***trgradg;          lli=log(out[s1][s2]); /* Original formula */
   int theta;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        } /* End of if */
   xp=vector(1,npar);        ipmx +=1;
   dnewm=matrix(1,nlstate*2,1,npar);        sw += weight[i];
   doldm=matrix(1,nlstate*2,1,nlstate*2);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficreseij,"# Health expectancies\n");        if(globpr){
   fprintf(ficreseij,"# Age");          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   for(i=1; i<=nlstate;i++)   %10.6f %10.6f %10.6f ", \
     for(j=1; j<=nlstate;j++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       fprintf(ficreseij," %1d-%1d (SE)",i,j);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   fprintf(ficreseij,"\n");          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
   if(estepm < stepm){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     printf ("Problem %d lower than %d\n",estepm, stepm);          }
   }          fprintf(ficresilk," %10.6f\n", -llt);
   else  hstepm=estepm;          }
   /* We compute the life expectancy from trapezoids spaced every estepm months      } /* end of wave */
    * This is mainly to measure the difference between two models: for example    } /* end of individual */
    * if stepm=24 months pijx are given only every 2 years and by summing them    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
    * we are calculating an estimate of the Life Expectancy assuming a linear    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    * progression inbetween and thus overestimating or underestimating according    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    * to the curvature of the survival function. If, for the same date, we    if(globpr==0){ /* First time we count the contributions and weights */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      gipmx=ipmx;
    * to compare the new estimate of Life expectancy with the same linear      gsw=sw;
    * hypothesis. A more precise result, taking into account a more precise    }
    * curvature will be obtained if estepm is as small as stepm. */    return -l;
   }
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  /*************** function likelione ***********/
      nstepm is the number of stepm from age to agelin.  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      Look at hpijx to understand the reason of that which relies in memory size  {
      and note for a fixed period like estepm months */    /* This routine should help understanding what is done with 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       the selection of individuals/waves and
      survival function given by stepm (the optimization length). Unfortunately it       to check the exact contribution to the likelihood.
      means that if the survival funtion is printed only each two years of age and if       Plotting could be done.
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     */
      results. So we changed our mind and took the option of the best precision.    int k;
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
   agelim=AGESUP;      strcat(fileresilk,fileres);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     /* nhstepm age range expressed in number of stepm */        printf("Problem with resultfile: %s\n", fileresilk);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      }
     /* if (stepm >= YEARM) hstepm=1;*/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for(k=1; k<=nlstate; k++) 
     gp=matrix(0,nhstepm,1,nlstate*2);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     gm=matrix(0,nhstepm,1,nlstate*2);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    *fretone=(*funcone)(p);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      if(*globpri !=0){
        fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      fflush(fichtm); 
     } 
     /* Computing Variances of health expectancies */    return;
   }
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /*********** Maximum Likelihood Estimation ***************/
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    {
       cptj=0;    int i,j, iter;
       for(j=1; j<= nlstate; j++){    double **xi;
         for(i=1; i<=nlstate; i++){    double fret;
           cptj=cptj+1;    double fretone; /* Only one call to likelihood */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    /*  char filerespow[FILENAMELENGTH];*/
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    xi=matrix(1,npar,1,npar);
           }    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++)
       }        xi[i][j]=(i==j ? 1.0 : 0.0);
          printf("Powell\n");  fprintf(ficlog,"Powell\n");
          strcpy(filerespow,"pow"); 
       for(i=1; i<=npar; i++)    strcat(filerespow,fileres);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf("Problem with resultfile: %s\n", filerespow);
            fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       cptj=0;    }
       for(j=1; j<= nlstate; j++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         for(i=1;i<=nlstate;i++){    for (i=1;i<=nlstate;i++)
           cptj=cptj+1;      for(j=1;j<=nlstate+ndeath;j++)
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fprintf(ficrespow,"\n");
           }  
         }    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
          fclose(ficrespow);
        printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1; j<= nlstate*2; j++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  }
         }  
   /**** Computes Hessian and covariance matrix ***/
      }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      {
 /* End theta */    double  **a,**y,*x,pd;
     double **hess;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    int i, j,jk;
     int *indx;
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(theta=1; theta <=npar; theta++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         trgradg[h][j][theta]=gradg[h][theta][j];    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
      for(i=1;i<=nlstate*2;i++)    hess=matrix(1,npar,1,npar);
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for(h=0;h<=nhstepm-1;h++){    for (i=1;i<=npar;i++){
       for(k=0;k<=nhstepm-1;k++){      printf("%d",i);fflush(stdout);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      fprintf(ficlog,"%d",i);fflush(ficlog);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);     
         for(i=1;i<=nlstate*2;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           for(j=1;j<=nlstate*2;j++)      
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      /*  printf(" %f ",p[i]);
       }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }    }
     
          for (i=1;i<=npar;i++) {
     /* Computing expectancies */      for (j=1;j<=npar;j++)  {
     for(i=1; i<=nlstate;i++)        if (j>i) { 
       for(j=1; j<=nlstate;j++)          printf(".%d%d",i,j);fflush(stdout);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          hess[i][j]=hessij(p,delti,i,j,func,npar);
                    
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
         }        }
       }
     fprintf(ficreseij,"%3.0f",age );    }
     cptj=0;    printf("\n");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n");
       for(j=1; j<=nlstate;j++){  
         cptj++;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    
     fprintf(ficreseij,"\n");    a=matrix(1,npar,1,npar);
        y=matrix(1,npar,1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate*2);    x=vector(1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    indx=ivector(1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=npar;i++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    ludcmp(a,npar,indx,&pd);
   }  
   free_vector(xp,1,npar);    for (j=1;j<=npar;j++) {
   free_matrix(dnewm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++) x[i]=0;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      x[j]=1;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      lubksb(a,npar,indx,x);
 }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
 /************ Variance ******************/      }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    }
 {  
   /* Variance of health expectancies */    printf("\n#Hessian matrix#\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficlog,"\n#Hessian matrix#\n");
   double **newm;    for (i=1;i<=npar;i++) { 
   double **dnewm,**doldm;      for (j=1;j<=npar;j++) { 
   int i, j, nhstepm, hstepm, h, nstepm ;        printf("%.3e ",hess[i][j]);
   int k, cptcode;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double *xp;      }
   double **gp, **gm;      printf("\n");
   double ***gradg, ***trgradg;      fprintf(ficlog,"\n");
   double ***p3mat;    }
   double age,agelim, hf;  
   int theta;    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
    fprintf(ficresvij,"# Covariances of life expectancies\n");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   fprintf(ficresvij,"# Age");    ludcmp(a,npar,indx,&pd);
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    /*  printf("\n#Hessian matrix recomputed#\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   xp=vector(1,npar);      x[j]=1;
   dnewm=matrix(1,nlstate,1,npar);      lubksb(a,npar,indx,x);
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
   if(estepm < stepm){        printf("%.3e ",y[i][j]);
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
   else  hstepm=estepm;        printf("\n");
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(ficlog,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }
      nhstepm is the number of hstepm from age to agelim    */
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    free_matrix(a,1,npar,1,npar);
      and note for a fixed period like k years */    free_matrix(y,1,npar,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    free_vector(x,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    free_ivector(indx,1,npar);
      means that if the survival funtion is printed only each two years of age and if    free_matrix(hess,1,npar,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  
   */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   agelim = AGESUP;  /*************** hessian matrix ****************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int i;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int l=1, lmax=20;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double k1,k2;
     gp=matrix(0,nhstepm,1,nlstate);    double p2[NPARMAX+1];
     gm=matrix(0,nhstepm,1,nlstate);    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     for(theta=1; theta <=npar; theta++){    double fx;
       for(i=1; i<=npar; i++){ /* Computes gradient */    int k=0,kmax=10;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double l1;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fx=func(x);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
       if (popbased==1) {      l1=pow(10,l);
         for(i=1; i<=nlstate;i++)      delts=delt;
           prlim[i][i]=probs[(int)age][i][ij];      for(k=1 ; k <kmax; k=k+1){
       }        delt = delta*(l1*k);
          p2[theta]=x[theta] +delt;
       for(j=1; j<= nlstate; j++){        k1=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){        p2[theta]=x[theta]-delt;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        k2=func(p2)-fx;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        /*res= (k1-2.0*fx+k2)/delt/delt; */
         }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
      #ifdef DEBUG
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #endif
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       if (popbased==1) {          k=kmax;
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=probs[(int)age][i][ij];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
         }
       for(j=1; j<= nlstate; j++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         for(h=0; h<=nhstepm; h++){          delts=delt;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }    }
       }    delti[theta]=delts;
     return res; 
       for(j=1; j<= nlstate; j++)    
         for(h=0; h<=nhstepm; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     } /* End theta */  {
     int i;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     for(h=0; h<=nhstepm; h++)    double p2[NPARMAX+1];
       for(j=1; j<=nlstate;j++)    int k;
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    fx=func(x);
     for (k=1; k<=2; k++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=1;i<=npar;i++) p2[i]=x[i];
     for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1;j<=nlstate;j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         vareij[i][j][(int)age] =0.;      k1=func(p2)-fx;
     
     for(h=0;h<=nhstepm;h++){      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(k=0;k<=nhstepm;k++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      k2=func(p2)-fx;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    
         for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
           for(j=1;j<=nlstate;j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      k3=func(p2)-fx;
       }    
     }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fprintf(ficresvij,"%.0f ",age );      k4=func(p2)-fx;
     for(i=1; i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(j=1; j<=nlstate;j++){  #ifdef DEBUG
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficresvij,"\n");  #endif
     free_matrix(gp,0,nhstepm,1,nlstate);    }
     free_matrix(gm,0,nhstepm,1,nlstate);    return res;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /************** Inverse of matrix **************/
   } /* End age */  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
   free_vector(xp,1,npar);    int i,imax,j,k; 
   free_matrix(doldm,1,nlstate,1,npar);    double big,dum,sum,temp; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    double *vv; 
    
 }    vv=vector(1,n); 
     *d=1.0; 
 /************ Variance of prevlim ******************/    for (i=1;i<=n;i++) { 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      big=0.0; 
 {      for (j=1;j<=n;j++) 
   /* Variance of prevalence limit */        if ((temp=fabs(a[i][j])) > big) big=temp; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double **newm;      vv[i]=1.0/big; 
   double **dnewm,**doldm;    } 
   int i, j, nhstepm, hstepm;    for (j=1;j<=n;j++) { 
   int k, cptcode;      for (i=1;i<j;i++) { 
   double *xp;        sum=a[i][j]; 
   double *gp, *gm;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double **gradg, **trgradg;        a[i][j]=sum; 
   double age,agelim;      } 
   int theta;      big=0.0; 
          for (i=j;i<=n;i++) { 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        sum=a[i][j]; 
   fprintf(ficresvpl,"# Age");        for (k=1;k<j;k++) 
   for(i=1; i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
       fprintf(ficresvpl," %1d-%1d",i,i);        a[i][j]=sum; 
   fprintf(ficresvpl,"\n");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   xp=vector(1,npar);          imax=i; 
   dnewm=matrix(1,nlstate,1,npar);        } 
   doldm=matrix(1,nlstate,1,nlstate);      } 
        if (j != imax) { 
   hstepm=1*YEARM; /* Every year of age */        for (k=1;k<=n;k++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          dum=a[imax][k]; 
   agelim = AGESUP;          a[imax][k]=a[j][k]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          a[j][k]=dum; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        } 
     if (stepm >= YEARM) hstepm=1;        *d = -(*d); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        vv[imax]=vv[j]; 
     gradg=matrix(1,npar,1,nlstate);      } 
     gp=vector(1,nlstate);      indx[j]=imax; 
     gm=vector(1,nlstate);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
     for(theta=1; theta <=npar; theta++){        dum=1.0/(a[j][j]); 
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } 
       }    } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_vector(vv,1,n);  /* Doesn't work */
       for(i=1;i<=nlstate;i++)  ;
         gp[i] = prlim[i][i];  } 
      
       for(i=1; i<=npar; i++) /* Computes gradient */  void lubksb(double **a, int n, int *indx, double b[]) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,ii=0,ip,j; 
       for(i=1;i<=nlstate;i++)    double sum; 
         gm[i] = prlim[i][i];   
     for (i=1;i<=n;i++) { 
       for(i=1;i<=nlstate;i++)      ip=indx[i]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      sum=b[ip]; 
     } /* End theta */      b[ip]=b[i]; 
       if (ii) 
     trgradg =matrix(1,nlstate,1,npar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     for(j=1; j<=nlstate;j++)      b[i]=sum; 
       for(theta=1; theta <=npar; theta++)    } 
         trgradg[j][theta]=gradg[theta][j];    for (i=n;i>=1;i--) { 
       sum=b[i]; 
     for(i=1;i<=nlstate;i++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       varpl[i][(int)age] =0.;      b[i]=sum/a[i][i]; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    } 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  } 
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     fprintf(ficresvpl,"%.0f ",age );  {  /* Some frequencies */
     for(i=1; i<=nlstate;i++)    
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     fprintf(ficresvpl,"\n");    int first;
     free_vector(gp,1,nlstate);    double ***freq; /* Frequencies */
     free_vector(gm,1,nlstate);    double *pp, **prop;
     free_matrix(gradg,1,npar,1,nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     free_matrix(trgradg,1,nlstate,1,npar);    FILE *ficresp;
   } /* End age */    char fileresp[FILENAMELENGTH];
     
   free_vector(xp,1,npar);    pp=vector(1,nlstate);
   free_matrix(doldm,1,nlstate,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   free_matrix(dnewm,1,nlstate,1,nlstate);    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
 }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
 /************ Variance of one-step probabilities  ******************/      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      exit(0);
 {    }
   int i, j, i1, k1, j1, z1;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   int k=0, cptcode;    j1=0;
   double **dnewm,**doldm;    
   double *xp;    j=cptcoveff;
   double *gp, *gm;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];    first=1;
   int theta;  
   char fileresprob[FILENAMELENGTH];    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   strcpy(fileresprob,"prob");        j1++;
   strcat(fileresprob,fileres);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          scanf("%d", i);*/
     printf("Problem with resultfile: %s\n", fileresprob);        for (i=-5; i<=nlstate+ndeath; i++)  
   }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            for(m=iagemin; m <= iagemax+3; m++)
                freq[i][jk][m]=0;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  
   fprintf(ficresprob,"# Age");      for (i=1; i<=nlstate; i++)  
   for(i=1; i<=nlstate;i++)        for(m=iagemin; m <= iagemax+3; m++)
     for(j=1; j<=(nlstate+ndeath);j++)          prop[i][m]=0;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        
         dateintsum=0;
         k2cpt=0;
   fprintf(ficresprob,"\n");        for (i=1; i<=imx; i++) {
           bool=1;
           if  (cptcovn>0) {
   xp=vector(1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));                bool=0;
            }
   cov[1]=1;          if (bool==1){
   j=cptcoveff;            for(m=firstpass; m<=lastpass; m++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              k2=anint[m][i]+(mint[m][i]/12.);
   j1=0;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   for(k1=1; k1<=1;k1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(i1=1; i1<=ncodemax[k1];i1++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     j1++;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
     if  (cptcovn>0) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficresprob, "\n#********** Variable ");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                }
       fprintf(ficresprob, "**********\n#");                
     }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                      dateintsum=dateintsum+k2;
       for (age=bage; age<=fage; age ++){                  k2cpt++;
         cov[2]=age;                }
         for (k=1; k<=cptcovn;k++) {                /*}*/
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            }
                    }
         }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];         
         for (k=1; k<=cptcovprod;k++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  fprintf(ficresp, "#Local time at start: %s", strstart);
                if  (cptcovn>0) {
         gradg=matrix(1,npar,1,9);          fprintf(ficresp, "\n#********** Variable "); 
         trgradg=matrix(1,9,1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          fprintf(ficresp, "**********\n#");
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        }
            for(i=1; i<=nlstate;i++) 
         for(theta=1; theta <=npar; theta++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           for(i=1; i<=npar; i++)        fprintf(ficresp, "\n");
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        
                  for(i=iagemin; i <= iagemax+3; i++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          if(i==iagemax+3){
                      fprintf(ficlog,"Total");
           k=0;          }else{
           for(i=1; i<= (nlstate+ndeath); i++){            if(first==1){
             for(j=1; j<=(nlstate+ndeath);j++){              first=0;
               k=k+1;              printf("See log file for details...\n");
               gp[k]=pmmij[i][j];            }
             }            fprintf(ficlog,"Age %d", i);
           }          }
                    for(jk=1; jk <=nlstate ; jk++){
           for(i=1; i<=npar; i++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             xp[i] = x[i] - (i==theta ?delti[theta]:0);              pp[jk] += freq[jk][m][i]; 
              }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(jk=1; jk <=nlstate ; jk++){
           k=0;            for(m=-1, pos=0; m <=0 ; m++)
           for(i=1; i<=(nlstate+ndeath); i++){              pos += freq[jk][m][i];
             for(j=1; j<=(nlstate+ndeath);j++){            if(pp[jk]>=1.e-10){
               k=k+1;              if(first==1){
               gm[k]=pmmij[i][j];              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }              }
           }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                  }else{
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              if(first==1)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          }
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];          for(jk=1; jk <=nlstate ; jk++){
                    for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              pp[jk] += freq[jk][m][i];
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          }       
                  for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);            pos += pp[jk];
                    posprop += prop[jk][i];
         k=0;          }
         for(i=1; i<=(nlstate+ndeath); i++){          for(jk=1; jk <=nlstate ; jk++){
           for(j=1; j<=(nlstate+ndeath);j++){            if(pos>=1.e-5){
             k=k+1;              if(first==1)
             gm[k]=pmmij[i][j];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }            }else{
                    if(first==1)
      /*printf("\n%d ",(int)age);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            }
      }*/            if( i <= iagemax){
               if(pos>=1.e-5){
         fprintf(ficresprob,"\n%d ",(int)age);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));              }
                else
       }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     }            }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for(m=-1; m <=nlstate+ndeath; m++)
   }              if(freq[jk][m][i] !=0 ) {
   free_vector(xp,1,npar);              if(first==1)
   fclose(ficresprob);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 }              }
           if(i <= iagemax)
 /******************* Printing html file ***********/            fprintf(ficresp,"\n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          if(first==1)
  int lastpass, int stepm, int weightopt, char model[],\            printf("Others in log...\n");
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          fprintf(ficlog,"\n");
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        }
  char version[], int popforecast, int estepm ){      }
   int jj1, k1, i1, cpt;    }
   FILE *fichtm;    dateintmean=dateintsum/k2cpt; 
   /*char optionfilehtm[FILENAMELENGTH];*/   
     fclose(ficresp);
   strcpy(optionfilehtm,optionfile);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   strcat(optionfilehtm,".htm");    free_vector(pp,1,nlstate);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     printf("Problem with %s \n",optionfilehtm), exit(0);    /* End of Freq */
   }  }
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  /************ Prevalence ********************/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 \n  {  
 Total number of observations=%d <br>\n    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n       in each health status at the date of interview (if between dateprev1 and dateprev2).
 <hr  size=\"2\" color=\"#EC5E5E\">       We still use firstpass and lastpass as another selection.
  <ul><li>Outputs files<br>\n    */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n   
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    double ***freq; /* Frequencies */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    double *pp, **prop;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    double pos,posprop; 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    double  y2; /* in fractional years */
     int iagemin, iagemax;
  fprintf(fichtm,"\n  
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    iagemin= (int) agemin;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    iagemax= (int) agemax;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    /*pp=vector(1,nlstate);*/
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
  if(popforecast==1) fprintf(fichtm,"\n    
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    j=cptcoveff;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         <br>",fileres,fileres,fileres,fileres);    
  else    for(k1=1; k1<=j;k1++){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      for(i1=1; i1<=ncodemax[k1];i1++){
 fprintf(fichtm," <li>Graphs</li><p>");        j1++;
         
  m=cptcoveff;        for (i=1; i<=nlstate; i++)  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
  jj1=0;       
  for(k1=1; k1<=m;k1++){        for (i=1; i<=imx; i++) { /* Each individual */
    for(i1=1; i1<=ncodemax[k1];i1++){          bool=1;
        jj1++;          if  (cptcovn>0) {
        if (cptcovn > 0) {            for (z1=1; z1<=cptcoveff; z1++) 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
          for (cpt=1; cpt<=cptcoveff;cpt++)                bool=0;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          } 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          if (bool==1) { 
        }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        for(cpt=1; cpt<nlstate;cpt++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
        }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     for(cpt=1; cpt<=nlstate;cpt++) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 interval) in state (%d): v%s%d%d.gif <br>                  prop[s[m][i]][iagemax+3] += weight[i]; 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  } 
      }              }
      for(cpt=1; cpt<=nlstate;cpt++) {            } /* end selection of waves */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }
      }        for(i=iagemin; i <= iagemax+3; i++){  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          
 health expectancies in states (1) and (2): e%s%d.gif<br>          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            posprop += prop[jk][i]; 
 fprintf(fichtm,"\n</body>");          } 
    }  
    }          for(jk=1; jk <=nlstate ; jk++){     
 fclose(fichtm);            if( i <=  iagemax){ 
 }              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
 /******************* Gnuplot file **************/              } 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            } 
           }/* end jk */ 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        }/* end i */ 
       } /* end i1 */
   strcpy(optionfilegnuplot,optionfilefiname);    } /* end k1 */
   strcat(optionfilegnuplot,".gp.txt");    
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     printf("Problem with file %s",optionfilegnuplot);    /*free_vector(pp,1,nlstate);*/
   }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);  /************* Waves Concatenation ***************/
 #endif  
 m=pow(2,cptcoveff);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
  /* 1eme*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   for (cpt=1; cpt<= nlstate ; cpt ++) {       Death is a valid wave (if date is known).
    for (k1=1; k1<= m ; k1 ++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);       and mw[mi+1][i]. dh depends on stepm.
        */
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int i, mi, m;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 }       double sum=0., jmean=0.;*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    int first;
     for (i=1; i<= nlstate ; i ++) {    int j, k=0,jk, ju, jl;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double sum=0.;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    first=0;
 }    jmin=1e+5;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    jmax=-1;
      for (i=1; i<= nlstate ; i ++) {    jmean=0.;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=imx; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      mi=0;
 }        m=firstpass;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          mw[++mi][i]=m;
    }        if(m >=lastpass)
   }          break;
   /*2 eme*/        else
           m++;
   for (k1=1; k1<= m ; k1 ++) {      }/* end while */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      if (s[m][i] > nlstate){
            mi++;     /* Death is another wave */
     for (i=1; i<= nlstate+1 ; i ++) {        /* if(mi==0)  never been interviewed correctly before death */
       k=2*i;           /* Only death is a correct wave */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        mw[mi][i]=m;
       for (j=1; j<= nlstate+1 ; j ++) {      }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      wav[i]=mi;
 }        if(mi==0){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        nbwarn++;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        if(first==0){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for (j=1; j<= nlstate+1 ; j ++) {          first=1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");        if(first==1){
 }            fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       fprintf(ficgp,"\" t\"\" w l 0,");        }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      } /* end mi==0 */
       for (j=1; j<= nlstate+1 ; j ++) {    } /* End individuals */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=imx; i++){
 }        for(mi=1; mi<wav[i];mi++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        if (stepm <=0)
       else fprintf(ficgp,"\" t\"\" w l 0,");          dh[mi][i]=1;
     }        else{
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   /*3eme*/              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   for (k1=1; k1<= m ; k1 ++) {                nberr++;
     for (cpt=1; cpt<= nlstate ; cpt ++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=2+nlstate*(2*cpt-2);                j=1; /* Temporary Dangerous patch */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              k=k+1;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              if (j >= jmax) jmax=j;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              if (j <= jmin) jmin=j;
               sum=sum+j;
 */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       for (i=1; i< nlstate ; i ++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            }
           }
       }          else{
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     }  
              k=k+1;
   /* CV preval stat */            if (j >= jmax) jmax=j;
     for (k1=1; k1<= m ; k1 ++) {            else if (j <= jmin)jmin=j;
     for (cpt=1; cpt<nlstate ; cpt ++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       k=3;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            if(j<0){
               nberr++;
       for (i=1; i< nlstate ; i ++)              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficgp,"+$%d",k+i+1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            }
                  sum=sum+j;
       l=3+(nlstate+ndeath)*cpt;          }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          jk= j/stepm;
       for (i=1; i< nlstate ; i ++) {          jl= j -jk*stepm;
         l=3+(nlstate+ndeath)*cpt;          ju= j -(jk+1)*stepm;
         fprintf(ficgp,"+$%d",l+i+1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       }            if(jl==0){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                dh[mi][i]=jk;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              bh[mi][i]=0;
     }            }else{ /* We want a negative bias in order to only have interpolation ie
   }                      * at the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
   /* proba elementaires */              bh[mi][i]=ju;
    for(i=1,jk=1; i <=nlstate; i++){            }
     for(k=1; k <=(nlstate+ndeath); k++){          }else{
       if (k != i) {            if(jl <= -ju){
         for(j=1; j <=ncovmodel; j++){              dh[mi][i]=jk;
                      bh[mi][i]=jl;       /* bias is positive if real duration
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                                   * is higher than the multiple of stepm and negative otherwise.
           jk++;                                   */
           fprintf(ficgp,"\n");            }
         }            else{
       }              dh[mi][i]=jk+1;
     }              bh[mi][i]=ju;
     }            }
             if(dh[mi][i]==0){
     for(jk=1; jk <=m; jk++) {              dh[mi][i]=1; /* At least one step */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              bh[mi][i]=ju; /* At least one step */
    i=1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
    for(k2=1; k2<=nlstate; k2++) {            }
      k3=i;          } /* end if mle */
      for(k=1; k<=(nlstate+ndeath); k++) {        }
        if (k != k2){      } /* end wave */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    }
 ij=1;    jmean=sum/k;
         for(j=3; j <=ncovmodel; j++) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   }
             ij++;  
           }  /*********** Tricode ****************************/
           else  void tricode(int *Tvar, int **nbcode, int imx)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {
         }    
           fprintf(ficgp,")/(1");    int Ndum[20],ij=1, k, j, i, maxncov=19;
            int cptcode=0;
         for(k1=1; k1 <=nlstate; k1++){      cptcoveff=0; 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   
 ij=1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
           for(j=3; j <=ncovmodel; j++){    for (k=1; k<=7; k++) ncodemax[k]=0;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             ij++;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
           }                                 modality*/ 
           else        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        Ndum[ij]++; /*store the modality */
           }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           fprintf(ficgp,")");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         }                                         Tvar[j]. If V=sex and male is 0 and 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);                                         female is 1, then  cptcode=1.*/
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      }
         i=i+ncovmodel;  
        }      for (i=0; i<=cptcode; i++) {
      }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
    }      }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
    }      ij=1; 
          for (i=1; i<=ncodemax[j]; i++) {
   fclose(ficgp);        for (k=0; k<= maxncov; k++) {
 }  /* end gnuplot */          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 /*************** Moving average **************/            
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            ij++;
           }
   int i, cpt, cptcod;          if (ij > ncodemax[j]) break; 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        }  
       for (i=1; i<=nlstate;i++)      } 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    }  
           mobaverage[(int)agedeb][i][cptcod]=0.;  
       for (k=0; k< maxncov; k++) Ndum[k]=0;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){   for (i=1; i<=ncovmodel-2; i++) { 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           for (cpt=0;cpt<=4;cpt++){     ij=Tvar[i];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];     Ndum[ij]++;
           }   }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }   ij=1;
       }   for (i=1; i<= maxncov; i++) {
     }     if((Ndum[i]!=0) && (i<=ncovcol)){
           Tvaraff[ij]=i; /*For printing */
 }       ij++;
      }
    }
 /************** Forecasting ******************/   
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){   cptcoveff=ij-1; /*Number of simple covariates*/
    }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;  /*********** Health Expectancies ****************/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];  {
     /* Health expectancies */
  agelim=AGESUP;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    double age, agelim, hf;
     double ***p3mat,***varhe;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double **dnewm,**doldm;
      double *xp;
      double **gp, **gm;
   strcpy(fileresf,"f");    double ***gradg, ***trgradg;
   strcat(fileresf,fileres);    int theta;
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
     fprintf(ficreseij,"# Local time at start: %s", strstart);
   if (mobilav==1) {    fprintf(ficreseij,"# Health expectancies\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficreseij,"# Age");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficreseij,"\n");
   if (stepm<=12) stepsize=1;  
      if(estepm < stepm){
   agelim=AGESUP;      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   hstepm=1;    else  hstepm=estepm;   
   hstepm=hstepm/stepm;    /* We compute the life expectancy from trapezoids spaced every estepm months
   yp1=modf(dateintmean,&yp);     * This is mainly to measure the difference between two models: for example
   anprojmean=yp;     * if stepm=24 months pijx are given only every 2 years and by summing them
   yp2=modf((yp1*12),&yp);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   mprojmean=yp;     * progression in between and thus overestimating or underestimating according
   yp1=modf((yp2*30.5),&yp);     * to the curvature of the survival function. If, for the same date, we 
   jprojmean=yp;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   if(jprojmean==0) jprojmean=1;     * to compare the new estimate of Life expectancy with the same linear 
   if(mprojmean==0) jprojmean=1;     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
      /* For example we decided to compute the life expectancy with the smallest unit */
   for(cptcov=1;cptcov<=i2;cptcov++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       nhstepm is the number of hstepm from age to agelim 
       k=k+1;       nstepm is the number of stepm from age to agelin. 
       fprintf(ficresf,"\n#******");       Look at hpijx to understand the reason of that which relies in memory size
       for(j=1;j<=cptcoveff;j++) {       and note for a fixed period like estepm months */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficresf,"******\n");       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficresf,"# StartingAge FinalAge");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       results. So we changed our mind and took the option of the best precision.
          */
          hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");    agelim=AGESUP;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           nhstepm = nhstepm/hstepm;      /* if (stepm >= YEARM) hstepm=1;*/
                nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        gp=matrix(0,nhstepm,1,nlstate*nlstate);
              gm=matrix(0,nhstepm,1,nlstate*nlstate);
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
             }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
             for(j=1; j<=nlstate+ndeath;j++) {   
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                    hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      /* Computing  Variances of health expectancies */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       for(theta=1; theta <=npar; theta++){
                 }        for(i=1; i<=npar; i++){ 
                          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               }        }
               if (h==(int)(calagedate+12*cpt)){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 fprintf(ficresf," %.3f", kk1);    
                                cptj=0;
               }        for(j=1; j<= nlstate; j++){
             }          for(i=1; i<=nlstate; i++){
           }            cptj=cptj+1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       }            }
     }          }
   }        }
               
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       
         for(i=1; i<=npar; i++) 
   fclose(ficresf);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /************** Forecasting ******************/        
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        cptj=0;
          for(j=1; j<= nlstate; j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          for(i=1;i<=nlstate;i++){
   int *popage;            cptj=cptj+1;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   char filerespop[FILENAMELENGTH];            }
           }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<= nlstate*nlstate; j++)
   agelim=AGESUP;          for(h=0; h<=nhstepm-1; h++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       } 
       
    /* End theta */
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);       for(h=0; h<=nhstepm-1; h++)
   }        for(j=1; j<=nlstate*nlstate;j++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       
   
   if (mobilav==1) {       for(i=1;i<=nlstate*nlstate;i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1;j<=nlstate*nlstate;j++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);          varhe[i][j][(int)age] =0.;
   }  
        printf("%d|",(int)age);fflush(stdout);
   stepsize=(int) (stepm+YEARM-1)/YEARM;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   if (stepm<=12) stepsize=1;       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   agelim=AGESUP;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   hstepm=1;          for(i=1;i<=nlstate*nlstate;i++)
   hstepm=hstepm/stepm;            for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   if (popforecast==1) {        }
     if((ficpop=fopen(popfile,"r"))==NULL) {      }
       printf("Problem with population file : %s\n",popfile);exit(0);      /* Computing expectancies */
     }      for(i=1; i<=nlstate;i++)
     popage=ivector(0,AGESUP);        for(j=1; j<=nlstate;j++)
     popeffectif=vector(0,AGESUP);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     popcount=vector(0,AGESUP);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                
     i=1;    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
              }
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      fprintf(ficreseij,"%3.0f",age );
   }      cptj=0;
       for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){        for(j=1; j<=nlstate;j++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          cptj++;
       k=k+1;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       fprintf(ficrespop,"\n#******");        }
       for(j=1;j<=cptcoveff;j++) {      fprintf(ficreseij,"\n");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
       }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficrespop,"******\n");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficrespop,"# Age");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          }
       for (cpt=0; cpt<=0;cpt++) {    printf("\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficlog,"\n");
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_vector(xp,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           nhstepm = nhstepm/hstepm;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
              free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /************ Variance ******************/
          void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           for (h=0; h<=nhstepm; h++){  {
             if (h==(int) (calagedate+YEARM*cpt)) {    /* Variance of health expectancies */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
             }    /* double **newm;*/
             for(j=1; j<=nlstate+ndeath;j++) {    double **dnewm,**doldm;
               kk1=0.;kk2=0;    double **dnewmp,**doldmp;
               for(i=1; i<=nlstate;i++) {                  int i, j, nhstepm, hstepm, h, nstepm ;
                 if (mobilav==1)    int k, cptcode;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double *xp;
                 else {    double **gp, **gm;  /* for var eij */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double ***gradg, ***trgradg; /*for var eij */
                 }    double **gradgp, **trgradgp; /* for var p point j */
               }    double *gpp, *gmp; /* for var p point j */
               if (h==(int)(calagedate+12*cpt)){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    double ***p3mat;
                   /*fprintf(ficrespop," %.3f", kk1);    double age,agelim, hf;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    double ***mobaverage;
               }    int theta;
             }    char digit[4];
             for(i=1; i<=nlstate;i++){    char digitp[25];
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){    char fileresprobmorprev[FILENAMELENGTH];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }    if(popbased==1){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      if(mobilav!=0)
             }        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    else 
           }      strcpy(digitp,"-stablbased-");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   /******/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    strcpy(fileresprobmorprev,"prmorprev"); 
           nhstepm = nhstepm/hstepm;    sprintf(digit,"%-d",ij);
              /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           oldm=oldms;savm=savms;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcat(fileresprobmorprev,fileres);
           for (h=0; h<=nhstepm; h++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             if (h==(int) (calagedate+YEARM*cpt)) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             }    }
             for(j=1; j<=nlstate+ndeath;j++) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               kk1=0.;kk2=0;   
               for(i=1; i<=nlstate;i++) {                  fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
               }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           }      fprintf(ficresprobmorprev," p.%-d SE",j);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
         }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       }    }  
    }    fprintf(ficresprobmorprev,"\n");
   }    fprintf(ficgp,"\n# Routine varevsij");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   if (popforecast==1) {  /*   } */
     free_ivector(popage,0,AGESUP);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(popeffectif,0,AGESUP);   fprintf(ficresvij, "#Local time at start: %s", strstart);
     free_vector(popcount,0,AGESUP);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   }    fprintf(ficresvij,"# Age");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=nlstate;j++)
   fclose(ficrespop);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 }    fprintf(ficresvij,"\n");
   
 /***********************************************/    xp=vector(1,npar);
 /**************** Main Program *****************/    dnewm=matrix(1,nlstate,1,npar);
 /***********************************************/    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 int main(int argc, char *argv[])    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 {  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    gpp=vector(nlstate+1,nlstate+ndeath);
   double agedeb, agefin,hf;    gmp=vector(nlstate+1,nlstate+ndeath);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   double fret;    if(estepm < stepm){
   double **xi,tmp,delta;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   double dum; /* Dummy variable */    else  hstepm=estepm;   
   double ***p3mat;    /* For example we decided to compute the life expectancy with the smallest unit */
   int *indx;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   char line[MAXLINE], linepar[MAXLINE];       nhstepm is the number of hstepm from age to agelim 
   char title[MAXLINE];       nstepm is the number of stepm from age to agelin. 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];       Look at hpijx to understand the reason of that which relies in memory size
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];       and note for a fixed period like k years */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   char filerest[FILENAMELENGTH];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   char fileregp[FILENAMELENGTH];       results. So we changed our mind and took the option of the best precision.
   char popfile[FILENAMELENGTH];    */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   int firstobs=1, lastobs=10;    agelim = AGESUP;
   int sdeb, sfin; /* Status at beginning and end */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int c,  h , cpt,l;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   int ju,jl, mi;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   int mobilav=0,popforecast=0;      gp=matrix(0,nhstepm,1,nlstate);
   int hstepm, nhstepm;      gm=matrix(0,nhstepm,1,nlstate);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
   
   double bage, fage, age, agelim, agebase;      for(theta=1; theta <=npar; theta++){
   double ftolpl=FTOL;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   double **prlim;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double *severity;        }
   double ***param; /* Matrix of parameters */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double  *p;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */        if (popbased==1) {
   double *delti; /* Scale */          if(mobilav ==0){
   double ***eij, ***vareij;            for(i=1; i<=nlstate;i++)
   double **varpl; /* Variances of prevalence limits by age */              prlim[i][i]=probs[(int)age][i][ij];
   double *epj, vepp;          }else{ /* mobilav */ 
   double kk1, kk2;            for(i=1; i<=nlstate;i++)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
         }
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";    
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   char z[1]="c", occ;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 #include <sys/time.h>          }
 #include <time.h>        }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   /* long total_usecs;           as a weighted average of prlim.
   struct timeval start_time, end_time;        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   getcwd(pathcd, size);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   printf("\n%s",version);        /* end probability of death */
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     scanf("%s",pathtot);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   else{        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     strcpy(pathtot,argv[1]);   
   }        if (popbased==1) {
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          if(mobilav ==0){
   /*cygwin_split_path(pathtot,path,optionfile);            for(i=1; i<=nlstate;i++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              prlim[i][i]=probs[(int)age][i][ij];
   /* cutv(path,optionfile,pathtot,'\\');*/          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              prlim[i][i]=mobaverage[(int)age][i][ij];
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          }
   chdir(path);        }
   replace(pathc,path);  
         for(j=1; j<= nlstate; j++){
 /*-------- arguments in the command line --------*/          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   strcpy(fileres,"r");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   strcat(fileres, optionfilefiname);          }
   strcat(fileres,".txt");    /* Other files have txt extension */        }
         /* This for computing probability of death (h=1 means
   /*---------arguments file --------*/           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        */
     printf("Problem with optionfile %s\n",optionfile);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     goto end;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   strcpy(filereso,"o");        /* end probability of death */
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {        for(j=1; j<= nlstate; j++) /* vareij */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          for(h=0; h<=nhstepm; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     ungetc(c,ficpar);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     fgets(line, MAXLINE, ficpar);        }
     puts(line);  
     fputs(line,ficparo);      } /* End theta */
   }  
   ungetc(c,ficpar);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      for(h=0; h<=nhstepm; h++) /* veij */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(j=1; j<=nlstate;j++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          for(theta=1; theta <=npar; theta++)
 while((c=getc(ficpar))=='#' && c!= EOF){            trgradg[h][j][theta]=gradg[h][theta][j];
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     puts(line);        for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);          trgradgp[j][theta]=gradgp[theta][j];
   }    
   ungetc(c,ficpar);  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          for(i=1;i<=nlstate;i++)
   covar=matrix(0,NCOVMAX,1,n);        for(j=1;j<=nlstate;j++)
   cptcovn=0;          vareij[i][j][(int)age] =0.;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
       for(h=0;h<=nhstepm;h++){
   ncovmodel=2+cptcovn;        for(k=0;k<=nhstepm;k++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   /* Read guess parameters */          for(i=1;i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */            for(j=1;j<=nlstate;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    
     fputs(line,ficparo);      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   ungetc(c,ficpar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     for(i=1; i <=nlstate; i++)          varppt[j][i]=doldmp[j][i];
     for(j=1; j <=nlstate+ndeath-1; j++){      /* end ppptj */
       fscanf(ficpar,"%1d%1d",&i1,&j1);      /*  x centered again */
       fprintf(ficparo,"%1d%1d",i1,j1);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       printf("%1d%1d",i,j);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       for(k=1; k<=ncovmodel;k++){   
         fscanf(ficpar," %lf",&param[i][j][k]);      if (popbased==1) {
         printf(" %lf",param[i][j][k]);        if(mobilav ==0){
         fprintf(ficparo," %lf",param[i][j][k]);          for(i=1; i<=nlstate;i++)
       }            prlim[i][i]=probs[(int)age][i][ij];
       fscanf(ficpar,"\n");        }else{ /* mobilav */ 
       printf("\n");          for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
     }        }
        }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;               
       /* This for computing probability of death (h=1 means
   p=param[1][1];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
   /* Reads comments: lines beginning with '#' */      */
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     ungetc(c,ficpar);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     fgets(line, MAXLINE, ficpar);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     puts(line);      }    
     fputs(line,ficparo);      /* end probability of death */
   }  
   ungetc(c,ficpar);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        for(i=1; i<=nlstate;i++){
   for(i=1; i <=nlstate; i++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);      } 
       printf("%1d%1d",i,j);      fprintf(ficresprobmorprev,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){      fprintf(ficresvij,"%.0f ",age );
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(i=1; i<=nlstate;i++)
         printf(" %le",delti3[i][j][k]);        for(j=1; j<=nlstate;j++){
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       }        }
       fscanf(ficpar,"\n");      fprintf(ficresvij,"\n");
       printf("\n");      free_matrix(gp,0,nhstepm,1,nlstate);
       fprintf(ficparo,"\n");      free_matrix(gm,0,nhstepm,1,nlstate);
     }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   delti=delti3[1][1];      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
   /* Reads comments: lines beginning with '#' */    free_vector(gpp,nlstate+1,nlstate+ndeath);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(gmp,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     puts(line);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     fputs(line,ficparo);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   ungetc(c,ficpar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   matcov=matrix(1,npar,1,npar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   for(i=1; i <=npar; i++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fscanf(ficpar,"%s",&str);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     printf("%s",str);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficparo,"%s",str);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     for(j=1; j <=i; j++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fscanf(ficpar," %le",&matcov[i][j]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       printf(" %.5le",matcov[i][j]);  */
       fprintf(ficparo," %.5le",matcov[i][j]);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fscanf(ficpar,"\n");  
     printf("\n");    free_vector(xp,1,npar);
     fprintf(ficparo,"\n");    free_matrix(doldm,1,nlstate,1,nlstate);
   }    free_matrix(dnewm,1,nlstate,1,npar);
   for(i=1; i <=npar; i++)    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(j=i+1;j<=npar;j++)    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       matcov[i][j]=matcov[j][i];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("\n");    fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
     /*-------- Rewriting paramater file ----------*/  }  /* end varevsij */
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  /************ Variance of prevlim ******************/
      strcat(rfileres,".");    /* */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  {
     if((ficres =fopen(rfileres,"w"))==NULL) {    /* Variance of prevalence limit */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     }    double **newm;
     fprintf(ficres,"#%s\n",version);    double **dnewm,**doldm;
        int i, j, nhstepm, hstepm;
     /*-------- data file ----------*/    int k, cptcode;
     if((fic=fopen(datafile,"r"))==NULL)    {    double *xp;
       printf("Problem with datafile: %s\n", datafile);goto end;    double *gp, *gm;
     }    double **gradg, **trgradg;
     double age,agelim;
     n= lastobs;    int theta;
     severity = vector(1,maxwav);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     outcome=imatrix(1,maxwav+1,1,n);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     num=ivector(1,n);    fprintf(ficresvpl,"# Age");
     moisnais=vector(1,n);    for(i=1; i<=nlstate;i++)
     annais=vector(1,n);        fprintf(ficresvpl," %1d-%1d",i,i);
     moisdc=vector(1,n);    fprintf(ficresvpl,"\n");
     andc=vector(1,n);  
     agedc=vector(1,n);    xp=vector(1,npar);
     cod=ivector(1,n);    dnewm=matrix(1,nlstate,1,npar);
     weight=vector(1,n);    doldm=matrix(1,nlstate,1,nlstate);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    hstepm=1*YEARM; /* Every year of age */
     anint=matrix(1,maxwav,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     s=imatrix(1,maxwav+1,1,n);    agelim = AGESUP;
     adl=imatrix(1,maxwav+1,1,n);        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     tab=ivector(1,NCOVMAX);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     ncodemax=ivector(1,8);      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     i=1;      gradg=matrix(1,npar,1,nlstate);
     while (fgets(line, MAXLINE, fic) != NULL)    {      gp=vector(1,nlstate);
       if ((i >= firstobs) && (i <=lastobs)) {      gm=vector(1,nlstate);
          
         for (j=maxwav;j>=1;j--){      for(theta=1; theta <=npar; theta++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        for(i=1; i<=npar; i++){ /* Computes gradient */
           strcpy(line,stra);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }        for(i=1;i<=nlstate;i++)
                  gp[i] = prlim[i][i];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){        for(i=1;i<=nlstate;i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         }      } /* End theta */
         num[i]=atol(stra);  
              trgradg =matrix(1,nlstate,1,npar);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
         i=i+1;          trgradg[j][theta]=gradg[theta][j];
       }  
     }      for(i=1;i<=nlstate;i++)
     /* printf("ii=%d", ij);        varpl[i][(int)age] =0.;
        scanf("%d",i);*/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   imx=i-1; /* Number of individuals */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   /* for (i=1; i<=imx; i++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      fprintf(ficresvpl,"%.0f ",age );
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      for(i=1; i<=nlstate;i++)
     }*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
    /*  for (i=1; i<=imx; i++){      fprintf(ficresvpl,"\n");
      if (s[4][i]==9)  s[4][i]=-1;      free_vector(gp,1,nlstate);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      free_vector(gm,1,nlstate);
        free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   /* Calculation of the number of parameter from char model*/    } /* End age */
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    free_vector(xp,1,npar);
   Tvaraff=ivector(1,15);    free_matrix(doldm,1,nlstate,1,npar);
   Tvard=imatrix(1,15,1,2);    free_matrix(dnewm,1,nlstate,1,nlstate);
   Tage=ivector(1,15);        
      }
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;  /************ Variance of one-step probabilities  ******************/
     j=nbocc(model,'+');  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     j1=nbocc(model,'*');  {
     cptcovn=j+1;    int i, j=0,  i1, k1, l1, t, tj;
     cptcovprod=j1;    int k2, l2, j1,  z1;
        int k=0,l, cptcode;
     strcpy(modelsav,model);    int first=1, first1;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       printf("Error. Non available option model=%s ",model);    double **dnewm,**doldm;
       goto end;    double *xp;
     }    double *gp, *gm;
        double **gradg, **trgradg;
     for(i=(j+1); i>=1;i--){    double **mu;
       cutv(stra,strb,modelsav,'+');    double age,agelim, cov[NCOVMAX];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    int theta;
       /*scanf("%d",i);*/    char fileresprob[FILENAMELENGTH];
       if (strchr(strb,'*')) {    char fileresprobcov[FILENAMELENGTH];
         cutv(strd,strc,strb,'*');    char fileresprobcor[FILENAMELENGTH];
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;    double ***varpij;
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);    strcpy(fileresprob,"prob"); 
           cptcovage++;    strcat(fileresprob,fileres);
             Tage[cptcovage]=i;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
             /*printf("stre=%s ", stre);*/      printf("Problem with resultfile: %s\n", fileresprob);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         else if (strcmp(strd,"age")==0) {    }
           cptcovprod--;    strcpy(fileresprobcov,"probcov"); 
           cutv(strb,stre,strc,'V');    strcat(fileresprobcov,fileres);
           Tvar[i]=atoi(stre);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           cptcovage++;      printf("Problem with resultfile: %s\n", fileresprobcov);
           Tage[cptcovage]=i;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         }    }
         else {    strcpy(fileresprobcor,"probcor"); 
           cutv(strb,stre,strc,'V');    strcat(fileresprobcor,fileres);
           Tvar[i]=ncovcol+k1;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           cutv(strb,strc,strd,'V');      printf("Problem with resultfile: %s\n", fileresprobcor);
           Tprod[k1]=i;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           Tvard[k1][1]=atoi(strc);    }
           Tvard[k1][2]=atoi(stre);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           for (k=1; k<=lastobs;k++)    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           k1++;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           k2=k2+2;    fprintf(ficresprob, "#Local time at start: %s", strstart);
         }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       }    fprintf(ficresprob,"# Age");
       else {    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
        /*  scanf("%d",i);*/    fprintf(ficresprobcov,"# Age");
       cutv(strd,strc,strb,'V');    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
       Tvar[i]=atoi(strc);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       }    fprintf(ficresprobcov,"# Age");
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=(nlstate+ndeath);j++){
 }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   printf("cptcovprod=%d ", cptcovprod);      }  
   scanf("%d ",i);*/   /* fprintf(ficresprob,"\n");
     fclose(fic);    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
     /*  if(mle==1){*/   */
     if (weightopt != 1) { /* Maximisation without weights*/   xp=vector(1,npar);
       for(i=1;i<=n;i++) weight[i]=1.0;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     /*-calculation of age at interview from date of interview and age at death -*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     agev=matrix(1,maxwav,1,imx);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     for (i=1; i<=imx; i++) {    fprintf(ficgp,"\n# Routine varprob");
       for(m=2; (m<= maxwav); m++) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(fichtm,"\n");
          anint[m][i]=9999;  
          s[m][i]=-1;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
        }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    file %s<br>\n",optionfilehtmcov);
       }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     }  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     for (i=1; i<=imx; i++)  {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       for(m=1; (m<= maxwav); m++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         if(s[m][i] >0){  standard deviations wide on each axis. <br>\
           if (s[m][i] >= nlstate+1) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
             if(agedc[i]>0)   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
               if(moisdc[i]!=99 && andc[i]!=9999)  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    cov[1]=1;
            else {    tj=cptcoveff;
               if (andc[i]!=9999){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    j1=0;
               agev[m][i]=-1;    for(t=1; t<=tj;t++){
               }      for(i1=1; i1<=ncodemax[t];i1++){ 
             }        j1++;
           }        if  (cptcovn>0) {
           else if(s[m][i] !=9){ /* Should no more exist */          fprintf(ficresprob, "\n#********** Variable "); 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             if(mint[m][i]==99 || anint[m][i]==9999)          fprintf(ficresprob, "**********\n#\n");
               agev[m][i]=1;          fprintf(ficresprobcov, "\n#********** Variable "); 
             else if(agev[m][i] <agemin){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               agemin=agev[m][i];          fprintf(ficresprobcov, "**********\n#\n");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          
             }          fprintf(ficgp, "\n#********** Variable "); 
             else if(agev[m][i] >agemax){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               agemax=agev[m][i];          fprintf(ficgp, "**********\n#\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          
             }          
             /*agev[m][i]=anint[m][i]-annais[i];*/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
             /*   agev[m][i] = age[i]+2*m;*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           else { /* =9 */          
             agev[m][i]=1;          fprintf(ficresprobcor, "\n#********** Variable ");    
             s[m][i]=-1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficresprobcor, "**********\n#");    
         }        }
         else /*= 0 Unknown */        
           agev[m][i]=1;        for (age=bage; age<=fage; age ++){ 
       }          cov[2]=age;
              for (k=1; k<=cptcovn;k++) {
     }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     for (i=1; i<=imx; i++)  {          }
       for(m=1; (m<= maxwav); m++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if (s[m][i] > (nlstate+ndeath)) {          for (k=1; k<=cptcovprod;k++)
           printf("Error: Wrong value in nlstate or ndeath\n");              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           goto end;          
         }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }          gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      
           for(theta=1; theta <=npar; theta++){
     free_vector(severity,1,maxwav);            for(i=1; i<=npar; i++)
     free_imatrix(outcome,1,maxwav+1,1,n);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     free_vector(moisnais,1,n);            
     free_vector(annais,1,n);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     /* free_matrix(mint,1,maxwav,1,n);            
        free_matrix(anint,1,maxwav,1,n);*/            k=0;
     free_vector(moisdc,1,n);            for(i=1; i<= (nlstate); i++){
     free_vector(andc,1,n);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                    gp[k]=pmmij[i][j];
     wav=ivector(1,imx);              }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            
                for(i=1; i<=npar; i++)
     /* Concatenates waves */              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
       Tcode=ivector(1,100);            for(i=1; i<=(nlstate); i++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);              for(j=1; j<=(nlstate+ndeath);j++){
       ncodemax[1]=1;                k=k+1;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                gm[k]=pmmij[i][j];
                    }
    codtab=imatrix(1,100,1,10);            }
    h=0;       
    m=pow(2,cptcoveff);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
    for(k=1;k<=cptcoveff; k++){          }
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            for(theta=1; theta <=npar; theta++)
            h++;              trgradg[j][theta]=gradg[theta][j];
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
          }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
        }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
      }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
    }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
       for(k=1; k <=cptcovn; k++){          
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          k=0;
       }          for(i=1; i<=(nlstate); i++){
       printf("\n");            for(j=1; j<=(nlstate+ndeath);j++){
       }              k=k+1;
       scanf("%d",i);*/              mu[k][(int) age]=pmmij[i][j];
                }
    /* Calculates basic frequencies. Computes observed prevalence at single age          }
        and prints on file fileres'p'. */          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                  varpij[i][j][(int)age] = doldm[i][j];
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /*printf("\n%d ",(int)age);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }*/
        
     /* For Powell, parameters are in a vector p[] starting at p[1]          fprintf(ficresprob,"\n%d ",(int)age);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          fprintf(ficresprobcov,"\n%d ",(int)age);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          fprintf(ficresprobcor,"\n%d ",(int)age);
   
     if(mle==1){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     /*--------- results files --------------*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          }
            i=0;
           for (k=1; k<=(nlstate);k++){
    jk=1;            for (l=1; l<=(nlstate+ndeath);l++){ 
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              i=i++;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
    for(i=1,jk=1; i <=nlstate; i++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
      for(k=1; k <=(nlstate+ndeath); k++){              for (j=1; j<=i;j++){
        if (k != i)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
          {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
            printf("%d%d ",i,k);              }
            fprintf(ficres,"%1d%1d ",i,k);            }
            for(j=1; j <=ncovmodel; j++){          }/* end of loop for state */
              printf("%f ",p[jk]);        } /* end of loop for age */
              fprintf(ficres,"%f ",p[jk]);  
              jk++;        /* Confidence intervalle of pij  */
            }        /*
            printf("\n");          fprintf(ficgp,"\nset noparametric;unset label");
            fprintf(ficres,"\n");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
          }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
    }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  if(mle==1){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     /* Computing hessian and covariance matrix */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     ftolhess=ftol; /* Usually correct */        */
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        first1=1;
     printf("# Scales (for hessian or gradient estimation)\n");        for (k2=1; k2<=(nlstate);k2++){
      for(i=1,jk=1; i <=nlstate; i++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       for(j=1; j <=nlstate+ndeath; j++){            if(l2==k2) continue;
         if (j!=i) {            j=(k2-1)*(nlstate+ndeath)+l2;
           fprintf(ficres,"%1d%1d",i,j);            for (k1=1; k1<=(nlstate);k1++){
           printf("%1d%1d",i,j);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           for(k=1; k<=ncovmodel;k++){                if(l1==k1) continue;
             printf(" %.5e",delti[jk]);                i=(k1-1)*(nlstate+ndeath)+l1;
             fprintf(ficres," %.5e",delti[jk]);                if(i<=j) continue;
             jk++;                for (age=bage; age<=fage; age ++){ 
           }                  if ((int)age %5==0){
           printf("\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficres,"\n");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    mu1=mu[i][(int) age]/stepm*YEARM ;
      }                    mu2=mu[j][(int) age]/stepm*YEARM;
                        c12=cv12/sqrt(v1*v2);
     k=1;                    /* Computing eigen value of matrix of covariance */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     for(i=1;i<=npar;i++){                    /* Eigen vectors */
       /*  if (k>nlstate) k=1;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       i1=(i-1)/(ncovmodel*nlstate)+1;                    /*v21=sqrt(1.-v11*v11); *//* error */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                    v21=(lc1-v1)/cv12*v11;
       printf("%s%d%d",alph[k],i1,tab[i]);*/                    v12=-v21;
       fprintf(ficres,"%3d",i);                    v22=v11;
       printf("%3d",i);                    tnalp=v21/v11;
       for(j=1; j<=i;j++){                    if(first1==1){
         fprintf(ficres," %.5e",matcov[i][j]);                      first1=0;
         printf(" %.5e",matcov[i][j]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    }
       fprintf(ficres,"\n");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       printf("\n");                    /*printf(fignu*/
       k++;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                        if(first==1){
     while((c=getc(ficpar))=='#' && c!= EOF){                      first=0;
       ungetc(c,ficpar);                      fprintf(ficgp,"\nset parametric;unset label");
       fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       puts(line);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fputs(line,ficparo);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     ungetc(c,ficpar);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     estepm=0;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     if (estepm==0 || estepm < stepm) estepm=stepm;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     if (fage <= 2) {                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       bage = ageminpar;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fage = agemaxpar;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                          fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                    }else{
                        first=0;
     while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     ungetc(c,ficpar);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     puts(line);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fputs(line,ficparo);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   ungetc(c,ficpar);                    }/* if first */
                    } /* age mod 5 */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                } /* end loop age */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                first=1;
                    } /*l12 */
   while((c=getc(ficpar))=='#' && c!= EOF){            } /* k12 */
     ungetc(c,ficpar);          } /*l1 */
     fgets(line, MAXLINE, ficpar);        }/* k1 */
     puts(line);      } /* loop covariates */
     fputs(line,ficparo);    }
   }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   ungetc(c,ficpar);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_vector(xp,1,npar);
     fclose(ficresprob);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    fclose(ficresprobcov);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    fclose(ficresprobcor);
     fflush(ficgp);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fflush(fichtmcov);
   fprintf(ficparo,"pop_based=%d\n",popbased);    }
   fprintf(ficres,"pop_based=%d\n",popbased);    
    
   while((c=getc(ficpar))=='#' && c!= EOF){  /******************* Printing html file ***********/
     ungetc(c,ficpar);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     fgets(line, MAXLINE, ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
     puts(line);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     fputs(line,ficparo);                    int popforecast, int estepm ,\
   }                    double jprev1, double mprev1,double anprev1, \
   ungetc(c,ficpar);                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 while((c=getc(ficpar))=='#' && c!= EOF){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     ungetc(c,ficpar);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     fgets(line, MAXLINE, ficpar);     fprintf(fichtm,"\
     puts(line);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     fputs(line,ficparo);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   }     fprintf(fichtm,"\
   ungetc(c,ficpar);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);     fprintf(fichtm,"\
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   - Life expectancies by age and initial health status (estepm=%2d months): \
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 /*------------ gnuplot -------------*/  
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 /*------------ free_vector  -------------*/  
  chdir(path);   jj1=0;
     for(k1=1; k1<=m;k1++){
  free_ivector(wav,1,imx);     for(i1=1; i1<=ncodemax[k1];i1++){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       jj1++;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         if (cptcovn > 0) {
  free_ivector(num,1,n);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  free_vector(agedc,1,n);         for (cpt=1; cpt<=cptcoveff;cpt++) 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  fclose(ficparo);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  fclose(ficres);       }
        /* Pij */
 /*--------- index.htm --------*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   /*--------------- Prevalence limit --------------*/  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           /* Stable prevalence in each health state */
   strcpy(filerespl,"pl");         for(cpt=1; cpt<nlstate;cpt++){
   strcat(filerespl,fileres);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;         }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   fprintf(ficrespl,"#Prevalence limit\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   fprintf(ficrespl,"#Age ");       }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     } /* end i1 */
   fprintf(ficrespl,"\n");   }/* End k1 */
     fprintf(fichtm,"</ul>");
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fprintf(fichtm,"\
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   agebase=ageminpar;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   agelim=agemaxpar;   fprintf(fichtm,"\
   ftolpl=1.e-10;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   i1=cptcoveff;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   if (cptcovn < 1){i1=1;}  
    fprintf(fichtm,"\
   for(cptcov=1;cptcov<=i1;cptcov++){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
         k=k+1;   fprintf(fichtm,"\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         fprintf(ficrespl,"\n#******");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficrespl,"******\n");           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           fprintf(fichtm,"\
         for (age=agebase; age<=agelim; age++){   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)  /*  if(popforecast==1) fprintf(fichtm,"\n */
           fprintf(ficrespl," %.5f", prlim[i][i]);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           fprintf(ficrespl,"\n");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         }  /*      <br>",fileres,fileres,fileres,fileres); */
       }  /*  else  */
     }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fclose(ficrespl);   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   /*------------- h Pij x at various ages ------------*/  
     m=cptcoveff;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   printf("Computing pij: result on file '%s' \n", filerespij);     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;       if (cptcovn > 0) {
   /*if (stepm<=24) stepsize=2;*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   agelim=AGESUP;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   hstepm=stepsize*YEARM; /* Every year of age */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       }
         for(cpt=1; cpt<=nlstate;cpt++) {
   k=0;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   for(cptcov=1;cptcov<=i1;cptcov++){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       k=k+1;       }
         fprintf(ficrespij,"\n#****** ");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         for(j=1;j<=cptcoveff;j++)  health expectancies in states (1) and (2): %s%d.png<br>\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         fprintf(ficrespij,"******\n");     } /* end i1 */
           }/* End k1 */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   fprintf(fichtm,"</ul>");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   fflush(fichtm);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  /******************* Gnuplot file **************/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)    char dirfileres[132],optfileres[132];
             for(j=1; j<=nlstate+ndeath;j++)    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
               fprintf(ficrespij," %1d-%1d",i,j);    int ng;
           fprintf(ficrespij,"\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
            for (h=0; h<=nhstepm; h++){  /*     printf("Problem with file %s",optionfilegnuplot); */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
             for(i=1; i<=nlstate;i++)  /*   } */
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /*#ifdef windows */
             fprintf(ficrespij,"\n");    fprintf(ficgp,"cd \"%s\" \n",pathc);
              }      /*#endif */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    m=pow(2,cptcoveff);
           fprintf(ficrespij,"\n");  
         }    strcpy(dirfileres,optionfilefiname);
     }    strcpy(optfileres,"vpl");
   }   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   fclose(ficrespij);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   /*---------- Forecasting ------------------*/  set ter png small\n\
   if((stepm == 1) && (strcmp(model,".")==0)){  set size 0.65,0.65\n\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }       for (i=1; i<= nlstate ; i ++) {
   else{         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     erreur=108;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       }
   }       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*---------- Health expectancies and variances ------------*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
   strcpy(filerest,"t");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   strcat(filerest,fileres);       for (i=1; i<= nlstate ; i ++) {
   if((ficrest=fopen(filerest,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
   strcpy(filerese,"e");    /*2 eme*/
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {    for (k1=1; k1<= m ; k1 ++) { 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      
       for (i=1; i<= nlstate+1 ; i ++) {
  strcpy(fileresv,"v");        k=2*i;
   strcat(fileresv,fileres);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        for (j=1; j<= nlstate+1 ; j ++) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }   
   calagedate=-1;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   k=0;        for (j=1; j<= nlstate+1 ; j ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
       k=k+1;        }   
       fprintf(ficrest,"\n#****** ");        fprintf(ficgp,"\" t\"\" w l 0,");
       for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficrest,"******\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficreseij,"\n#****** ");        }   
       for(j=1;j<=cptcoveff;j++)        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        else fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficreseij,"******\n");      }
     }
       fprintf(ficresvij,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    /*3eme*/
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficresvij,"******\n");    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        k=2+nlstate*(2*cpt-2);
       oldm=oldms;savm=savms;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          fprintf(ficgp,"set ter png small\n\
    set size 0.65,0.65\n\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       oldm=oldms;savm=savms;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
              fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          
       fprintf(ficrest,"\n");        */
         for (i=1; i< nlstate ; i ++) {
       epj=vector(1,nlstate+1);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
       for(age=bage; age <=fage ;age++){          
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        } 
         if (popbased==1) {      }
           for(i=1; i<=nlstate;i++)    }
             prlim[i][i]=probs[(int)age][i][k];    
         }    /* CV preval stable (period) */
            for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficrest," %4.0f",age);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        k=3;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  set ter png small\nset size 0.65,0.65\n\
           }  unset log y\n\
           epj[nlstate+1] +=epj[j];  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         }        
         for (i=1; i< nlstate ; i ++)
         for(i=1, vepp=0.;i <=nlstate;i++)          fprintf(ficgp,"+$%d",k+i+1);
           for(j=1;j <=nlstate;j++)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
             vepp += vareij[i][j][(int)age];        
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        l=3+(nlstate+ndeath)*cpt;
         for(j=1;j <=nlstate;j++){        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        for (i=1; i< nlstate ; i ++) {
         }          l=3+(nlstate+ndeath)*cpt;
         fprintf(ficrest,"\n");          fprintf(ficgp,"+$%d",l+i+1);
       }        }
     }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   }      } 
 free_matrix(mint,1,maxwav,1,n);    }  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    
     free_vector(weight,1,n);    /* proba elementaires */
   fclose(ficreseij);    for(i=1,jk=1; i <=nlstate; i++){
   fclose(ficresvij);      for(k=1; k <=(nlstate+ndeath); k++){
   fclose(ficrest);        if (k != i) {
   fclose(ficpar);          for(j=1; j <=ncovmodel; j++){
   free_vector(epj,1,nlstate+1);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
              jk++; 
   /*------- Variance limit prevalence------*/              fprintf(ficgp,"\n");
           }
   strcpy(fileresvpl,"vpl");        }
   strcat(fileresvpl,fileres);      }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {     }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   }       for(jk=1; jk <=m; jk++) {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
   k=0;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){         else
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           fprintf(ficgp,"\nset title \"Probability\"\n");
       k=k+1;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       fprintf(ficresvpl,"\n#****** ");         i=1;
       for(j=1;j<=cptcoveff;j++)         for(k2=1; k2<=nlstate; k2++) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           k3=i;
       fprintf(ficresvpl,"******\n");           for(k=1; k<=(nlstate+ndeath); k++) {
                   if (k != k2){
       varpl=matrix(1,nlstate,(int) bage, (int) fage);               if(ng==2)
       oldm=oldms;savm=savms;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);               else
     }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
  }               ij=1;
                for(j=3; j <=ncovmodel; j++) {
   fclose(ficresvpl);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   /*---------- End : free ----------------*/                   ij++;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                 }
                   else
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);               }
                 fprintf(ficgp,")/(1");
                 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);               for(k1=1; k1 <=nlstate; k1++){   
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                 ij=1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                 for(j=3; j <=ncovmodel; j++){
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   free_matrix(matcov,1,npar,1,npar);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   free_vector(delti,1,npar);                     ij++;
   free_matrix(agev,1,maxwav,1,imx);                   }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   if(erreur >0)                 }
     printf("End of Imach with error or warning %d\n",erreur);                 fprintf(ficgp,")");
   else   printf("End of Imach\n");               }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/               i=i+ncovmodel;
   /*printf("Total time was %d uSec.\n", total_usecs);*/             }
   /*------ End -----------*/           } /* end k */
          } /* end k2 */
        } /* end jk */
  end:     } /* end ng */
   /* chdir(pathcd);*/     fflush(ficgp); 
  /*system("wgnuplot graph.plt");*/  }  /* end gnuplot */
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  /*************** Moving average **************/
  strcpy(plotcmd,GNUPLOTPROGRAM);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    int i, cpt, cptcod;
  system(plotcmd);    int modcovmax =1;
     int mobilavrange, mob;
  /*#ifdef windows*/    double age;
   while (z[0] != 'q') {  
     /* chdir(path); */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                             a covariate has 2 modalities */
     scanf("%s",z);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     else if (z[0] == 'g') system(plotcmd);      if(mobilav==1) mobilavrange=5; /* default */
     else if (z[0] == 'q') exit(0);      else mobilavrange=mobilav;
   }      for (age=bage; age<=fage; age++)
   /*#endif */        for (i=1; i<=nlstate;i++)
 }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.108


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>