Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.119

version 1.41.2.1, 2003/06/12 10:43:20 version 1.119, 2006/03/15 17:42:26
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.119  2006/03/15 17:42:26  brouard
      (Module): Bug if status = -2, the loglikelihood was
   This program computes Healthy Life Expectancies from    computed as likelihood omitting the logarithm. Version O.98e
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.118  2006/03/14 18:20:07  brouard
   interviewed on their health status or degree of disability (in the    (Module): varevsij Comments added explaining the second
   case of a health survey which is our main interest) -2- at least a    table of variances if popbased=1 .
   second wave of interviews ("longitudinal") which measure each change    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (if any) in individual health status.  Health expectancies are    (Module): Function pstamp added
   computed from the time spent in each health state according to a    (Module): Version 0.98d
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.117  2006/03/14 17:16:22  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): varevsij Comments added explaining the second
   probability to be observed in state j at the second wave    table of variances if popbased=1 .
   conditional to be observed in state i at the first wave. Therefore    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Function pstamp added
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Version 0.98d
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.116  2006/03/06 10:29:27  brouard
   you to do it.  More covariates you add, slower the    (Module): Variance-covariance wrong links and
   convergence.    varian-covariance of ej. is needed (Saito).
   
   The advantage of this computer programme, compared to a simple    Revision 1.115  2006/02/27 12:17:45  brouard
   multinomial logistic model, is clear when the delay between waves is not    (Module): One freematrix added in mlikeli! 0.98c
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.114  2006/02/26 12:57:58  brouard
   account using an interpolation or extrapolation.      (Module): Some improvements in processing parameter
     filename with strsep.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.113  2006/02/24 14:20:24  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Memory leaks checks with valgrind and:
   states. This elementary transition (by month or quarter trimester,    datafile was not closed, some imatrix were not freed and on matrix
   semester or year) is model as a multinomial logistic.  The hPx    allocation too.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.112  2006/01/30 09:55:26  brouard
   hPijx.    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.111  2006/01/25 20:38:18  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Lots of cleaning and bugs added (Gompertz)
      (Module): Comments can be added in data file. Missing date values
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    can be a simple dot '.'.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.110  2006/01/25 00:51:50  brouard
   from the European Union.    (Module): Lots of cleaning and bugs added (Gompertz)
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.109  2006/01/24 19:37:15  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Comments (lines starting with a #) are allowed in data.
   **********************************************************************/  
      Revision 1.108  2006/01/19 18:05:42  lievre
 #include <math.h>    Gnuplot problem appeared...
 #include <stdio.h>    To be fixed
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    Revision 1.106  2006/01/19 13:24:36  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Some cleaning and links added in html output
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.104  2005/09/30 16:11:43  lievre
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    that the person is alive, then we can code his/her status as -2
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 #define NINTERVMAX 8    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    the healthy state at last known wave). Version is 0.98
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.103  2005/09/30 15:54:49  lievre
 #define MAXN 20000    (Module): sump fixed, loop imx fixed, and simplifications.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.102  2004/09/15 17:31:30  brouard
 #define AGEBASE 40    Add the possibility to read data file including tab characters.
   
     Revision 1.101  2004/09/15 10:38:38  brouard
 int erreur; /* Error number */    Fix on curr_time
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.100  2004/07/12 18:29:06  brouard
 int npar=NPARMAX;    Add version for Mac OS X. Just define UNIX in Makefile
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.99  2004/06/05 08:57:40  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    *** empty log message ***
 int popbased=0;  
     Revision 1.98  2004/05/16 15:05:56  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    New version 0.97 . First attempt to estimate force of mortality
 int maxwav; /* Maxim number of waves */    directly from the data i.e. without the need of knowing the health
 int jmin, jmax; /* min, max spacing between 2 waves */    state at each age, but using a Gompertz model: log u =a + b*age .
 int mle, weightopt;    This is the basic analysis of mortality and should be done before any
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    other analysis, in order to test if the mortality estimated from the
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    cross-longitudinal survey is different from the mortality estimated
 double jmean; /* Mean space between 2 waves */    from other sources like vital statistic data.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    The same imach parameter file can be used but the option for mle should be -3.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Agnès, who wrote this part of the code, tried to keep most of the
 FILE *ficreseij;    former routines in order to include the new code within the former code.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    The output is very simple: only an estimate of the intercept and of
   char fileresv[FILENAMELENGTH];    the slope with 95% confident intervals.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Current limitations:
     A) Even if you enter covariates, i.e. with the
 #define NR_END 1    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define FREE_ARG char*    B) There is no computation of Life Expectancy nor Life Table.
 #define FTOL 1.0e-10  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define NRANSI    Version 0.96d. Population forecasting command line is (temporarily)
 #define ITMAX 200    suppressed.
   
 #define TOL 2.0e-4    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define CGOLD 0.3819660    rewritten within the same printf. Workaround: many printfs.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 #define GOLD 1.618034    (Repository): Using imachwizard code to output a more meaningful covariance
 #define GLIMIT 100.0    matrix (cov(a12,c31) instead of numbers.
 #define TINY 1.0e-20  
     Revision 1.94  2003/06/27 13:00:02  brouard
 static double maxarg1,maxarg2;    Just cleaning
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    exist so I changed back to asctime which exists.
 #define rint(a) floor(a+0.5)    (Module): Version 0.96b
   
 static double sqrarg;    Revision 1.92  2003/06/25 16:30:45  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): On windows (cygwin) function asctime_r doesn't
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    exist so I changed back to asctime which exists.
   
 int imx;    Revision 1.91  2003/06/25 15:30:29  brouard
 int stepm;    * imach.c (Repository): Duplicated warning errors corrected.
 /* Stepm, step in month: minimum step interpolation*/    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 int estepm;    is stamped in powell.  We created a new html file for the graphs
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    concerning matrix of covariance. It has extension -cov.htm.
   
 int m,nb;    Revision 1.90  2003/06/24 12:34:15  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Some bugs corrected for windows. Also, when
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    mle=-1 a template is output in file "or"mypar.txt with the design
 double **pmmij, ***probs, ***mobaverage;    of the covariance matrix to be input.
 double dateintmean=0;  
     Revision 1.89  2003/06/24 12:30:52  brouard
 double *weight;    (Module): Some bugs corrected for windows. Also, when
 int **s; /* Status */    mle=-1 a template is output in file "or"mypar.txt with the design
 double *agedc, **covar, idx;    of the covariance matrix to be input.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.88  2003/06/23 17:54:56  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.87  2003/06/18 12:26:01  brouard
 /**************** split *************************/    Version 0.96
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.86  2003/06/17 20:04:08  brouard
    char *s;                             /* pointer */    (Module): Change position of html and gnuplot routines and added
    int  l1, l2;                         /* length counters */    routine fileappend.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.85  2003/06/17 13:12:43  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    * imach.c (Repository): Check when date of death was earlier that
 #ifdef windows    current date of interview. It may happen when the death was just
    s = strrchr( path, '\\' );           /* find last / */    prior to the death. In this case, dh was negative and likelihood
 #else    was wrong (infinity). We still send an "Error" but patch by
    s = strrchr( path, '/' );            /* find last / */    assuming that the date of death was just one stepm after the
 #endif    interview.
    if ( s == NULL ) {                   /* no directory, so use current */    (Repository): Because some people have very long ID (first column)
 #if     defined(__bsd__)                /* get current working directory */    we changed int to long in num[] and we added a new lvector for
       extern char       *getwd( );    memory allocation. But we also truncated to 8 characters (left
     truncation)
       if ( getwd( dirc ) == NULL ) {    (Repository): No more line truncation errors.
 #else  
       extern char       *getcwd( );    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    place. It differs from routine "prevalence" which may be called
 #endif    many times. Probs is memory consuming and must be used with
          return( GLOCK_ERROR_GETCWD );    parcimony.
       }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.83  2003/06/10 13:39:11  lievre
       s++;                              /* after this, the filename */    *** empty log message ***
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.82  2003/06/05 15:57:20  brouard
       strcpy( name, s );                /* save file name */    Add log in  imach.c and  fullversion number is now printed.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  */
    }  /*
    l1 = strlen( dirc );                 /* length of directory */     Interpolated Markov Chain
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Short summary of the programme:
 #else    
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    This program computes Healthy Life Expectancies from
 #endif    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    s = strrchr( name, '.' );            /* find last / */    first survey ("cross") where individuals from different ages are
    s++;    interviewed on their health status or degree of disability (in the
    strcpy(ext,s);                       /* save extension */    case of a health survey which is our main interest) -2- at least a
    l1= strlen( name);    second wave of interviews ("longitudinal") which measure each change
    l2= strlen( s)+1;    (if any) in individual health status.  Health expectancies are
    strncpy( finame, name, l1-l2);    computed from the time spent in each health state according to a
    finame[l1-l2]= 0;    model. More health states you consider, more time is necessary to reach the
    return( 0 );                         /* we're done */    Maximum Likelihood of the parameters involved in the model.  The
 }    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /******************************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 void replace(char *s, char*t)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   int i;    you to do it.  More covariates you add, slower the
   int lg=20;    convergence.
   i=0;  
   lg=strlen(t);    The advantage of this computer programme, compared to a simple
   for(i=0; i<= lg; i++) {    multinomial logistic model, is clear when the delay between waves is not
     (s[i] = t[i]);    identical for each individual. Also, if a individual missed an
     if (t[i]== '\\') s[i]='/';    intermediate interview, the information is lost, but taken into
   }    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
 int nbocc(char *s, char occ)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   int i,j=0;    states. This elementary transition (by month, quarter,
   int lg=20;    semester or year) is modelled as a multinomial logistic.  The hPx
   i=0;    matrix is simply the matrix product of nh*stepm elementary matrices
   lg=strlen(s);    and the contribution of each individual to the likelihood is simply
   for(i=0; i<= lg; i++) {    hPijx.
   if  (s[i] == occ ) j++;  
   }    Also this programme outputs the covariance matrix of the parameters but also
   return j;    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 void cutv(char *u,char *v, char*t, char occ)             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   int i,lg,j,p=0;    from the European Union.
   i=0;    It is copyrighted identically to a GNU software product, ie programme and
   for(j=0; j<=strlen(t)-1; j++) {    software can be distributed freely for non commercial use. Latest version
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    can be accessed at http://euroreves.ined.fr/imach .
   }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   lg=strlen(t);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for(j=0; j<p; j++) {    
     (u[j] = t[j]);    **********************************************************************/
   }  /*
      u[p]='\0';    main
     read parameterfile
    for(j=0; j<= lg; j++) {    read datafile
     if (j>=(p+1))(v[j-p-1] = t[j]);    concatwav
   }    freqsummary
 }    if (mle >= 1)
       mlikeli
 /********************** nrerror ********************/    print results files
     if mle==1 
 void nrerror(char error_text[])       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   fprintf(stderr,"ERREUR ...\n");        begin-prev-date,...
   fprintf(stderr,"%s\n",error_text);    open gnuplot file
   exit(1);    open html file
 }    period (stable) prevalence
 /*********************** vector *******************/     for age prevalim()
 double *vector(int nl, int nh)    h Pij x
 {    variance of p varprob
   double *v;    forecasting if prevfcast==1 prevforecast call prevalence()
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    health expectancies
   if (!v) nrerror("allocation failure in vector");    Variance-covariance of DFLE
   return v-nl+NR_END;    prevalence()
 }     movingaverage()
     varevsij() 
 /************************ free vector ******************/    if popbased==1 varevsij(,popbased)
 void free_vector(double*v, int nl, int nh)    total life expectancies
 {    Variance of period (stable) prevalence
   free((FREE_ARG)(v+nl-NR_END));   end
 }  */
   
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  
 {   
   int *v;  #include <math.h>
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #include <stdio.h>
   if (!v) nrerror("allocation failure in ivector");  #include <stdlib.h>
   return v-nl+NR_END;  #include <string.h>
 }  #include <unistd.h>
   
 /******************free ivector **************************/  #include <limits.h>
 void free_ivector(int *v, long nl, long nh)  #include <sys/types.h>
 {  #include <sys/stat.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <errno.h>
 }  extern int errno;
   
 /******************* imatrix *******************************/  /* #include <sys/time.h> */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include <time.h>
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include "timeval.h"
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  /* #include <libintl.h> */
   int **m;  /* #define _(String) gettext (String) */
    
   /* allocate pointers to rows */  #define MAXLINE 256
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define GNUPLOTPROGRAM "gnuplot"
   m += NR_END;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m -= nrl;  #define FILENAMELENGTH 132
    
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   /* allocate rows and set pointers to them */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m[nrl] += NR_END;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m[nrl] -= ncl;  
    #define NINTERVMAX 8
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   /* return pointer to array of pointers to rows */  #define NCOVMAX 8 /* Maximum number of covariates */
   return m;  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 /****************** free_imatrix *************************/  #define AGEBASE 40
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
       int **m;  #ifdef UNIX
       long nch,ncl,nrh,nrl;  #define DIRSEPARATOR '/'
      /* free an int matrix allocated by imatrix() */  #define CHARSEPARATOR "/"
 {  #define ODIRSEPARATOR '\\'
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #else
   free((FREE_ARG) (m+nrl-NR_END));  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /******************* matrix *******************************/  #endif
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  /* $Id$ */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /* $State$ */
   double **m;  
   char version[]="Imach version 0.98e, March 2006, INED-EUROREVES-Institut de longevite ";
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char fullversion[]="$Revision$ $Date$"; 
   if (!m) nrerror("allocation failure 1 in matrix()");  char strstart[80];
   m += NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   m -= nrl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int npar=NPARMAX;
   m[nrl] += NR_END;  int nlstate=2; /* Number of live states */
   m[nrl] -= ncl;  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int popbased=0;
   return m;  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /*************************free matrix ************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG)(m+nrl-NR_END));  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /******************* ma3x *******************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double ***m;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficlog, *ficrespow;
   if (!m) nrerror("allocation failure 1 in matrix()");  int globpr; /* Global variable for printing or not */
   m += NR_END;  double fretone; /* Only one call to likelihood */
   m -= nrl;  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filerespow[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl] += NR_END;  FILE *ficresilk;
   m[nrl] -= ncl;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char filerese[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  FILE *ficresstdeij;
   m[nrl][ncl] += NR_END;  char fileresstde[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  FILE *ficrescveij;
   for (j=ncl+1; j<=nch; j++)  char filerescve[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  FILE  *ficresvij;
    char fileresv[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  FILE  *ficresvpl;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char fileresvpl[FILENAMELENGTH];
     for (j=ncl+1; j<=nch; j++)  char title[MAXLINE];
       m[i][j]=m[i][j-1]+nlay;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   return m;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char filelog[FILENAMELENGTH]; /* Log file */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char filerest[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /***************** f1dim *************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 extern int ncom;  
 extern double *pcom,*xicom;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 extern double (*nrfunc)(double []);  struct timezone tzp;
    extern int gettimeofday();
 double f1dim(double x)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   int j;  extern long time();
   double f;  char strcurr[80], strfor[80];
   double *xt;  
    char *endptr;
   xt=vector(1,ncom);  long lval;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define NR_END 1
   free_vector(xt,1,ncom);  #define FREE_ARG char*
   return f;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /*****************brent *************************/  #define ITMAX 200 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  #define TOL 2.0e-4 
   int iter;  
   double a,b,d,etemp;  #define CGOLD 0.3819660 
   double fu,fv,fw,fx;  #define ZEPS 1.0e-10 
   double ftemp;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  #define GOLD 1.618034 
    #define GLIMIT 100.0 
   a=(ax < cx ? ax : cx);  #define TINY 1.0e-20 
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  static double maxarg1,maxarg2;
   fw=fv=fx=(*f)(x);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for (iter=1;iter<=ITMAX;iter++) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     xm=0.5*(a+b);    
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define rint(a) floor(a+0.5)
     printf(".");fflush(stdout);  
 #ifdef DEBUG  static double sqrarg;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #endif  int agegomp= AGEGOMP;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  int imx; 
       return fx;  int stepm=1;
     }  /* Stepm, step in month: minimum step interpolation*/
     ftemp=fu;  
     if (fabs(e) > tol1) {  int estepm;
       r=(x-w)*(fx-fv);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  int m,nb;
       q=2.0*(q-r);  long *num;
       if (q > 0.0) p = -p;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       q=fabs(q);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       etemp=e;  double **pmmij, ***probs;
       e=d;  double *ageexmed,*agecens;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  double dateintmean=0;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  double *weight;
         d=p/q;  int **s; /* Status */
         u=x+d;  double *agedc, **covar, idx;
         if (u-a < tol2 || b-u < tol2)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
           d=SIGN(tol1,xm-x);  double *lsurv, *lpop, *tpop;
       }  
     } else {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double ftolhess; /* Tolerance for computing hessian */
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /**************** split *************************/
     fu=(*f)(u);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       SHFT(v,w,x,u)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         SHFT(fv,fw,fx,fu)    */ 
         } else {    char  *ss;                            /* pointer */
           if (u < x) a=u; else b=u;    int   l1, l2;                         /* length counters */
           if (fu <= fw || w == x) {  
             v=w;    l1 = strlen(path );                   /* length of path */
             w=u;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
             fv=fw;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
             fw=fu;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
           } else if (fu <= fv || v == x || v == w) {      strcpy( name, path );               /* we got the fullname name because no directory */
             v=u;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
             fv=fu;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
           }      /* get current working directory */
         }      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   nrerror("Too many iterations in brent");        return( GLOCK_ERROR_GETCWD );
   *xmin=x;      }
   return fx;      /* got dirc from getcwd*/
 }      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
 /****************** mnbrak ***********************/      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
             double (*func)(double))      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double ulim,u,r,q, dum;      dirc[l1-l2] = 0;                    /* add zero */
   double fu;      printf(" DIRC2 = %s \n",dirc);
      }
   *fa=(*func)(*ax);    /* We add a separator at the end of dirc if not exists */
   *fb=(*func)(*bx);    l1 = strlen( dirc );                  /* length of directory */
   if (*fb > *fa) {    if( dirc[l1-1] != DIRSEPARATOR ){
     SHFT(dum,*ax,*bx,dum)      dirc[l1] =  DIRSEPARATOR;
       SHFT(dum,*fb,*fa,dum)      dirc[l1+1] = 0; 
       }      printf(" DIRC3 = %s \n",dirc);
   *cx=(*bx)+GOLD*(*bx-*ax);    }
   *fc=(*func)(*cx);    ss = strrchr( name, '.' );            /* find last / */
   while (*fb > *fc) {    if (ss >0){
     r=(*bx-*ax)*(*fb-*fc);      ss++;
     q=(*bx-*cx)*(*fb-*fa);      strcpy(ext,ss);                     /* save extension */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      l1= strlen( name);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      l2= strlen(ss)+1;
     ulim=(*bx)+GLIMIT*(*cx-*bx);      strncpy( finame, name, l1-l2);
     if ((*bx-u)*(u-*cx) > 0.0) {      finame[l1-l2]= 0;
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    return( 0 );                          /* we're done */
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /******************************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  void replace_back_to_slash(char *s, char*t)
       fu=(*func)(u);  {
     } else {    int i;
       u=(*cx)+GOLD*(*cx-*bx);    int lg=0;
       fu=(*func)(u);    i=0;
     }    lg=strlen(t);
     SHFT(*ax,*bx,*cx,u)    for(i=0; i<= lg; i++) {
       SHFT(*fa,*fb,*fc,fu)      (s[i] = t[i]);
       }      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*************** linmin ************************/  
   int nbocc(char *s, char occ)
 int ncom;  {
 double *pcom,*xicom;    int i,j=0;
 double (*nrfunc)(double []);    int lg=20;
      i=0;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   double brent(double ax, double bx, double cx,    if  (s[i] == occ ) j++;
                double (*f)(double), double tol, double *xmin);    }
   double f1dim(double x);    return j;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  void cutv(char *u,char *v, char*t, char occ)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   ncom=n;       gives u="abcedf" and v="ghi2j" */
   pcom=vector(1,n);    int i,lg,j,p=0;
   xicom=vector(1,n);    i=0;
   nrfunc=func;    for(j=0; j<=strlen(t)-1; j++) {
   for (j=1;j<=n;j++) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     pcom[j]=p[j];    }
     xicom[j]=xi[j];  
   }    lg=strlen(t);
   ax=0.0;    for(j=0; j<p; j++) {
   xx=1.0;      (u[j] = t[j]);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);       u[p]='\0';
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);     for(j=0; j<= lg; j++) {
 #endif      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (j=1;j<=n;j++) {    }
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  /********************** nrerror ********************/
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 /*************** powell ************************/    fprintf(stderr,"%s\n",error_text);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    exit(EXIT_FAILURE);
             double (*func)(double []))  }
 {  /*********************** vector *******************/
   void linmin(double p[], double xi[], int n, double *fret,  double *vector(int nl, int nh)
               double (*func)(double []));  {
   int i,ibig,j;    double *v;
   double del,t,*pt,*ptt,*xit;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double fp,fptt;    if (!v) nrerror("allocation failure in vector");
   double *xits;    return v-nl+NR_END;
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  /************************ free vector ******************/
   xits=vector(1,n);  void free_vector(double*v, int nl, int nh)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    free((FREE_ARG)(v+nl-NR_END));
   for (*iter=1;;++(*iter)) {  }
     fp=(*fret);  
     ibig=0;  /************************ivector *******************************/
     del=0.0;  int *ivector(long nl,long nh)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    int *v;
       printf(" %d %.12f",i, p[i]);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     printf("\n");    if (!v) nrerror("allocation failure in ivector");
     for (i=1;i<=n;i++) {    return v-nl+NR_END;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /******************free ivector **************************/
       printf("fret=%lf \n",*fret);  void free_ivector(int *v, long nl, long nh)
 #endif  {
       printf("%d",i);fflush(stdout);    free((FREE_ARG)(v+nl-NR_END));
       linmin(p,xit,n,fret,func);  }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /************************lvector *******************************/
         ibig=i;  long *lvector(long nl,long nh)
       }  {
 #ifdef DEBUG    long *v;
       printf("%d %.12e",i,(*fret));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    return v-nl+NR_END;
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  /******************free lvector **************************/
         printf(" p=%.12e",p[j]);  void free_lvector(long *v, long nl, long nh)
       printf("\n");  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /******************* imatrix *******************************/
       int k[2],l;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       k[0]=1;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       k[1]=-1;  { 
       printf("Max: %.12e",(*func)(p));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for (j=1;j<=n;j++)    int **m; 
         printf(" %.12e",p[j]);    
       printf("\n");    /* allocate pointers to rows */ 
       for(l=0;l<=1;l++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m += NR_END; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m -= nrl; 
         }    
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    
       }    /* allocate rows and set pointers to them */ 
 #endif    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
       free_vector(xit,1,n);    m[nrl] -= ncl; 
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       free_vector(pt,1,n);    
       return;    /* return pointer to array of pointers to rows */ 
     }    return m; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  } 
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /****************** free_imatrix *************************/
       xit[j]=p[j]-pt[j];  void free_imatrix(m,nrl,nrh,ncl,nch)
       pt[j]=p[j];        int **m;
     }        long nch,ncl,nrh,nrl; 
     fptt=(*func)(ptt);       /* free an int matrix allocated by imatrix() */ 
     if (fptt < fp) {  { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       if (t < 0.0) {    free((FREE_ARG) (m+nrl-NR_END)); 
         linmin(p,xit,n,fret,func);  } 
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /******************* matrix *******************************/
           xi[j][n]=xit[j];  double **matrix(long nrl, long nrh, long ncl, long nch)
         }  {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double **m;
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
 #endif    m += NR_END;
       }    m -= nrl;
     }  
   }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /**** Prevalence limit ****************/    m[nrl] -= ncl;
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {    return m;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      matrix by transitions matrix until convergence is reached */     */
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /*************************free matrix ************************/
   double **matprod2();  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double agefin, delaymax=50 ; /* Max number of years to converge */    free((FREE_ARG)(m+nrl-NR_END));
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /******************* ma3x *******************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
    cov[1]=1.;    double ***m;
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    if (!m) nrerror("allocation failure 1 in matrix()");
     newm=savm;    m += NR_END;
     /* Covariates have to be included here again */    m -= nrl;
      cov[2]=agefin;  
      m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovn;k++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl] += NR_END;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m[nrl] -= ncl;
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m[nrl][ncl] += NR_END;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    m[nrl][ncl] -= nll;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    for (j=ncl+1; j<=nch; j++) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      m[nrl][j]=m[nrl][j-1]+nlay;
     
     savm=oldm;    for (i=nrl+1; i<=nrh; i++) {
     oldm=newm;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     maxmax=0.;      for (j=ncl+1; j<=nch; j++) 
     for(j=1;j<=nlstate;j++){        m[i][j]=m[i][j-1]+nlay;
       min=1.;    }
       max=0.;    return m; 
       for(i=1; i<=nlstate; i++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         sumnew=0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    */
         prlim[i][j]= newm[i][j]/(1-sumnew);  }
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       maxmin=max-min;  {
       maxmax=FMAX(maxmax,maxmin);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if(maxmax < ftolpl){    free((FREE_ARG)(m+nrl-NR_END));
       return prlim;  }
     }  
   }  /*************** function subdirf ***********/
 }  char *subdirf(char fileres[])
   {
 /*************** transition probabilities ***************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcat(tmpout,"/"); /* Add to the right */
 {    strcat(tmpout,fileres);
   double s1, s2;    return tmpout;
   /*double t34;*/  }
   int i,j,j1, nc, ii, jj;  
   /*************** function subdirf2 ***********/
     for(i=1; i<= nlstate; i++){  char *subdirf2(char fileres[], char *preop)
     for(j=1; j<i;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    
         /*s2 += param[i][j][nc]*cov[nc];*/    /* Caution optionfilefiname is hidden */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcpy(tmpout,optionfilefiname);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       ps[i][j]=s2;    strcat(tmpout,fileres);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    return tmpout;
     }  }
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*************** function subdirf3 ***********/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char *subdirf3(char fileres[], char *preop, char *preop2)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  {
       }    
       ps[i][j]=s2;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
     /*ps[3][2]=1;*/    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   for(i=1; i<= nlstate; i++){    strcat(tmpout,fileres);
      s1=0;    return tmpout;
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /***************** f1dim *************************/
       s1+=exp(ps[i][j]);  extern int ncom; 
     ps[i][i]=1./(s1+1.);  extern double *pcom,*xicom;
     for(j=1; j<i; j++)  extern double (*nrfunc)(double []); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];   
     for(j=i+1; j<=nlstate+ndeath; j++)  double f1dim(double x) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    int j; 
   } /* end i */    double f;
     double *xt; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){   
     for(jj=1; jj<= nlstate+ndeath; jj++){    xt=vector(1,ncom); 
       ps[ii][jj]=0;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       ps[ii][ii]=1;    f=(*nrfunc)(xt); 
     }    free_vector(xt,1,ncom); 
   }    return f; 
   } 
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*****************brent *************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      printf("%lf ",ps[ii][jj]);  { 
    }    int iter; 
     printf("\n ");    double a,b,d,etemp;
     }    double fu,fv,fw,fx;
     printf("\n ");printf("%lf ",cov[2]);*/    double ftemp;
 /*    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double e=0.0; 
   goto end;*/   
     return ps;    a=(ax < cx ? ax : cx); 
 }    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 /**************** Product of 2 matrices ******************/    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      xm=0.5*(a+b); 
 {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      printf(".");fflush(stdout);
   /* in, b, out are matrice of pointers which should have been initialized      fprintf(ficlog,".");fflush(ficlog);
      before: only the contents of out is modified. The function returns  #ifdef DEBUG
      a pointer to pointers identical to out */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   long i, j, k;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for(i=nrl; i<= nrh; i++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(k=ncolol; k<=ncoloh; k++)  #endif
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         out[i][k] +=in[i][j]*b[j][k];        *xmin=x; 
         return fx; 
   return out;      } 
 }      ftemp=fu;
       if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
 /************* Higher Matrix Product ***************/        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        q=2.0*(q-r); 
 {        if (q > 0.0) p = -p; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        q=fabs(q); 
      duration (i.e. until        etemp=e; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        e=d; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      (typically every 2 years instead of every month which is too big).          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      Model is determined by parameters x and covariates have to be        else { 
      included manually here.          d=p/q; 
           u=x+d; 
      */          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
   int i, j, d, h, k;        } 
   double **out, cov[NCOVMAX];      } else { 
   double **newm;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   /* Hstepm could be zero and should return the unit matrix */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for (i=1;i<=nlstate+ndeath;i++)      fu=(*f)(u); 
     for (j=1;j<=nlstate+ndeath;j++){      if (fu <= fx) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        if (u >= x) a=x; else b=x; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          } else { 
   for(h=1; h <=nhstepm; h++){            if (u < x) a=u; else b=u; 
     for(d=1; d <=hstepm; d++){            if (fu <= fw || w == x) { 
       newm=savm;              v=w; 
       /* Covariates have to be included here again */              w=u; 
       cov[1]=1.;              fv=fw; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;              fw=fu; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            } else if (fu <= fv || v == x || v == w) { 
       for (k=1; k<=cptcovage;k++)              v=u; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              fv=fu; 
       for (k=1; k<=cptcovprod;k++)            } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          } 
     } 
     nrerror("Too many iterations in brent"); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    *xmin=x; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    return fx; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /****************** mnbrak ***********************/
       oldm=newm;  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(i=1; i<=nlstate+ndeath; i++)              double (*func)(double)) 
       for(j=1;j<=nlstate+ndeath;j++) {  { 
         po[i][j][h]=newm[i][j];    double ulim,u,r,q, dum;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double fu; 
          */   
       }    *fa=(*func)(*ax); 
   } /* end h */    *fb=(*func)(*bx); 
   return po;    if (*fb > *fa) { 
 }      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
         } 
 /*************** log-likelihood *************/    *cx=(*bx)+GOLD*(*bx-*ax); 
 double func( double *x)    *fc=(*func)(*cx); 
 {    while (*fb > *fc) { 
   int i, ii, j, k, mi, d, kk;      r=(*bx-*ax)*(*fb-*fc); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      q=(*bx-*cx)*(*fb-*fa); 
   double **out;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double sw; /* Sum of weights */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double lli; /* Individual log likelihood */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   long ipmx;      if ((*bx-u)*(u-*cx) > 0.0) { 
   /*extern weight */        fu=(*func)(u); 
   /* We are differentiating ll according to initial status */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        fu=(*func)(u); 
   /*for(i=1;i<imx;i++)        if (fu < *fc) { 
     printf(" %d\n",s[4][i]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   */            SHFT(*fb,*fc,fu,(*func)(u)) 
   cov[1]=1.;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        u=ulim; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fu=(*func)(u); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      } else { 
     for(mi=1; mi<= wav[i]-1; mi++){        u=(*cx)+GOLD*(*cx-*bx); 
       for (ii=1;ii<=nlstate+ndeath;ii++)        fu=(*func)(u); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } 
       for(d=0; d<dh[mi][i]; d++){      SHFT(*ax,*bx,*cx,u) 
         newm=savm;        SHFT(*fa,*fb,*fc,fu) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        } 
         for (kk=1; kk<=cptcovage;kk++) {  } 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  /*************** linmin ************************/
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  int ncom; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  double *pcom,*xicom;
         savm=oldm;  double (*nrfunc)(double []); 
         oldm=newm;   
          void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
          { 
       } /* end mult */    double brent(double ax, double bx, double cx, 
                       double (*f)(double), double tol, double *xmin); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double f1dim(double x); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       ipmx +=1;                double *fc, double (*func)(double)); 
       sw += weight[i];    int j; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double xx,xmin,bx,ax; 
     } /* end of wave */    double fx,fb,fa;
   } /* end of individual */   
     ncom=n; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    pcom=vector(1,n); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    xicom=vector(1,n); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    nrfunc=func; 
   return -l;    for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
     } 
 /*********** Maximum Likelihood Estimation ***************/    ax=0.0; 
     xx=1.0; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   int i,j, iter;  #ifdef DEBUG
   double **xi,*delti;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double fret;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   xi=matrix(1,npar,1,npar);  #endif
   for (i=1;i<=npar;i++)    for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++)      xi[j] *= xmin; 
       xi[i][j]=(i==j ? 1.0 : 0.0);      p[j] += xi[j]; 
   printf("Powell\n");    } 
   powell(p,xi,npar,ftol,&iter,&fret,func);    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   char *asc_diff_time(long time_sec, char ascdiff[])
 }  {
     long sec_left, days, hours, minutes;
 /**** Computes Hessian and covariance matrix ***/    days = (time_sec) / (60*60*24);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    sec_left = (time_sec) % (60*60*24);
 {    hours = (sec_left) / (60*60) ;
   double  **a,**y,*x,pd;    sec_left = (sec_left) %(60*60);
   double **hess;    minutes = (sec_left) /60;
   int i, j,jk;    sec_left = (sec_left) % (60);
   int *indx;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   double hessii(double p[], double delta, int theta, double delti[]);  }
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*************** powell ************************/
   void ludcmp(double **a, int npar, int *indx, double *d) ;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   hess=matrix(1,npar,1,npar);  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   printf("\nCalculation of the hessian matrix. Wait...\n");                double (*func)(double [])); 
   for (i=1;i<=npar;i++){    int i,ibig,j; 
     printf("%d",i);fflush(stdout);    double del,t,*pt,*ptt,*xit;
     hess[i][i]=hessii(p,ftolhess,i,delti);    double fp,fptt;
     /*printf(" %f ",p[i]);*/    double *xits;
     /*printf(" %lf ",hess[i][i]);*/    int niterf, itmp;
   }  
      pt=vector(1,n); 
   for (i=1;i<=npar;i++) {    ptt=vector(1,n); 
     for (j=1;j<=npar;j++)  {    xit=vector(1,n); 
       if (j>i) {    xits=vector(1,n); 
         printf(".%d%d",i,j);fflush(stdout);    *fret=(*func)(p); 
         hess[i][j]=hessij(p,delti,i,j);    for (j=1;j<=n;j++) pt[j]=p[j]; 
         hess[j][i]=hess[i][j];        for (*iter=1;;++(*iter)) { 
         /*printf(" %lf ",hess[i][j]);*/      fp=(*fret); 
       }      ibig=0; 
     }      del=0.0; 
   }      last_time=curr_time;
   printf("\n");      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
        fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   a=matrix(1,npar,1,npar);      */
   y=matrix(1,npar,1,npar);     for (i=1;i<=n;i++) {
   x=vector(1,npar);        printf(" %d %.12f",i, p[i]);
   indx=ivector(1,npar);        fprintf(ficlog," %d %.12lf",i, p[i]);
   for (i=1;i<=npar;i++)        fprintf(ficrespow," %.12lf", p[i]);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      }
   ludcmp(a,npar,indx,&pd);      printf("\n");
       fprintf(ficlog,"\n");
   for (j=1;j<=npar;j++) {      fprintf(ficrespow,"\n");fflush(ficrespow);
     for (i=1;i<=npar;i++) x[i]=0;      if(*iter <=3){
     x[j]=1;        tm = *localtime(&curr_time.tv_sec);
     lubksb(a,npar,indx,x);        strcpy(strcurr,asctime(&tm));
     for (i=1;i<=npar;i++){  /*       asctime_r(&tm,strcurr); */
       matcov[i][j]=x[i];        forecast_time=curr_time; 
     }        itmp = strlen(strcurr);
   }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   printf("\n#Hessian matrix#\n");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=npar;j++) {        for(niterf=10;niterf<=30;niterf+=10){
       printf("%.3e ",hess[i][j]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
     printf("\n");  /*      asctime_r(&tmf,strfor); */
   }          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
   /* Recompute Inverse */          if(strfor[itmp-1]=='\n')
   for (i=1;i<=npar;i++)          strfor[itmp-1]='\0';
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   /*  printf("\n#Hessian matrix recomputed#\n");      }
       for (i=1;i<=n;i++) { 
   for (j=1;j<=npar;j++) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for (i=1;i<=npar;i++) x[i]=0;        fptt=(*fret); 
     x[j]=1;  #ifdef DEBUG
     lubksb(a,npar,indx,x);        printf("fret=%lf \n",*fret);
     for (i=1;i<=npar;i++){        fprintf(ficlog,"fret=%lf \n",*fret);
       y[i][j]=x[i];  #endif
       printf("%.3e ",y[i][j]);        printf("%d",i);fflush(stdout);
     }        fprintf(ficlog,"%d",i);fflush(ficlog);
     printf("\n");        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
   */          del=fabs(fptt-(*fret)); 
           ibig=i; 
   free_matrix(a,1,npar,1,npar);        } 
   free_matrix(y,1,npar,1,npar);  #ifdef DEBUG
   free_vector(x,1,npar);        printf("%d %.12e",i,(*fret));
   free_ivector(indx,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   free_matrix(hess,1,npar,1,npar);        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 /*************** hessian matrix ****************/        for(j=1;j<=n;j++) {
 double hessii( double x[], double delta, int theta, double delti[])          printf(" p=%.12e",p[j]);
 {          fprintf(ficlog," p=%.12e",p[j]);
   int i;        }
   int l=1, lmax=20;        printf("\n");
   double k1,k2;        fprintf(ficlog,"\n");
   double p2[NPARMAX+1];  #endif
   double res;      } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double fx;  #ifdef DEBUG
   int k=0,kmax=10;        int k[2],l;
   double l1;        k[0]=1;
         k[1]=-1;
   fx=func(x);        printf("Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++) p2[i]=x[i];        fprintf(ficlog,"Max: %.12e",(*func)(p));
   for(l=0 ; l <=lmax; l++){        for (j=1;j<=n;j++) {
     l1=pow(10,l);          printf(" %.12e",p[j]);
     delts=delt;          fprintf(ficlog," %.12e",p[j]);
     for(k=1 ; k <kmax; k=k+1){        }
       delt = delta*(l1*k);        printf("\n");
       p2[theta]=x[theta] +delt;        fprintf(ficlog,"\n");
       k1=func(p2)-fx;        for(l=0;l<=1;l++) {
       p2[theta]=x[theta]-delt;          for (j=1;j<=n;j++) {
       k2=func(p2)-fx;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       /*res= (k1-2.0*fx+k2)/delt/delt; */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                }
 #ifdef DEBUG          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 #endif        }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #endif
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  
       }        free_vector(xit,1,n); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        free_vector(xits,1,n); 
         k=kmax; l=lmax*10.;        free_vector(ptt,1,n); 
       }        free_vector(pt,1,n); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        return; 
         delts=delt;      } 
       }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     }      for (j=1;j<=n;j++) { 
   }        ptt[j]=2.0*p[j]-pt[j]; 
   delti[theta]=delts;        xit[j]=p[j]-pt[j]; 
   return res;        pt[j]=p[j]; 
        } 
 }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 double hessij( double x[], double delti[], int thetai,int thetaj)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 {        if (t < 0.0) { 
   int i;          linmin(p,xit,n,fret,func); 
   int l=1, l1, lmax=20;          for (j=1;j<=n;j++) { 
   double k1,k2,k3,k4,res,fx;            xi[j][ibig]=xi[j][n]; 
   double p2[NPARMAX+1];            xi[j][n]=xit[j]; 
   int k;          }
   #ifdef DEBUG
   fx=func(x);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (k=1; k<=2; k++) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (i=1;i<=npar;i++) p2[i]=x[i];          for(j=1;j<=n;j++){
     p2[thetai]=x[thetai]+delti[thetai]/k;            printf(" %.12e",xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            fprintf(ficlog," %.12e",xit[j]);
     k1=func(p2)-fx;          }
            printf("\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #endif
     k2=func(p2)-fx;        }
        } 
     p2[thetai]=x[thetai]-delti[thetai]/k;    } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  } 
     k3=func(p2)-fx;  
    /**** Prevalence limit (stable or period prevalence)  ****************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     k4=func(p2)-fx;  {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 #ifdef DEBUG       matrix by transitions matrix until convergence is reached */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif    int i, ii,j,k;
   }    double min, max, maxmin, maxmax,sumnew=0.;
   return res;    double **matprod2();
 }    double **out, cov[NCOVMAX], **pmij();
     double **newm;
 /************** Inverse of matrix **************/    double agefin, delaymax=50 ; /* Max number of years to converge */
 void ludcmp(double **a, int n, int *indx, double *d)  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   int i,imax,j,k;      for (j=1;j<=nlstate+ndeath;j++){
   double big,dum,sum,temp;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *vv;      }
    
   vv=vector(1,n);     cov[1]=1.;
   *d=1.0;   
   for (i=1;i<=n;i++) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     big=0.0;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (j=1;j<=n;j++)      newm=savm;
       if ((temp=fabs(a[i][j])) > big) big=temp;      /* Covariates have to be included here again */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       cov[2]=agefin;
     vv[i]=1.0/big;    
   }        for (k=1; k<=cptcovn;k++) {
   for (j=1;j<=n;j++) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (i=1;i<j;i++) {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       a[i][j]=sum;        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     big=0.0;  
     for (i=j;i<=n;i++) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       sum=a[i][j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for (k=1;k<j;k++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         sum -= a[i][k]*a[k][j];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {      savm=oldm;
         big=dum;      oldm=newm;
         imax=i;      maxmax=0.;
       }      for(j=1;j<=nlstate;j++){
     }        min=1.;
     if (j != imax) {        max=0.;
       for (k=1;k<=n;k++) {        for(i=1; i<=nlstate; i++) {
         dum=a[imax][k];          sumnew=0;
         a[imax][k]=a[j][k];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         a[j][k]=dum;          prlim[i][j]= newm[i][j]/(1-sumnew);
       }          max=FMAX(max,prlim[i][j]);
       *d = -(*d);          min=FMIN(min,prlim[i][j]);
       vv[imax]=vv[j];        }
     }        maxmin=max-min;
     indx[j]=imax;        maxmax=FMAX(maxmax,maxmin);
     if (a[j][j] == 0.0) a[j][j]=TINY;      }
     if (j != n) {      if(maxmax < ftolpl){
       dum=1.0/(a[j][j]);        return prlim;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      }
     }    }
   }  }
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  /*************** transition probabilities ***************/ 
 }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 void lubksb(double **a, int n, int *indx, double b[])  {
 {    double s1, s2;
   int i,ii=0,ip,j;    /*double t34;*/
   double sum;    int i,j,j1, nc, ii, jj;
    
   for (i=1;i<=n;i++) {      for(i=1; i<= nlstate; i++){
     ip=indx[i];        for(j=1; j<i;j++){
     sum=b[ip];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     b[ip]=b[i];            /*s2 += param[i][j][nc]*cov[nc];*/
     if (ii)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     else if (sum) ii=i;          }
     b[i]=sum;          ps[i][j]=s2;
   }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   for (i=n;i>=1;i--) {        }
     sum=b[i];        for(j=i+1; j<=nlstate+ndeath;j++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     b[i]=sum/a[i][i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 }          }
           ps[i][j]=s2;
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      }
 {  /* Some frequencies */      /*ps[3][2]=1;*/
        
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for(i=1; i<= nlstate; i++){
   double ***freq; /* Frequencies */        s1=0;
   double *pp;        for(j=1; j<i; j++)
   double pos, k2, dateintsum=0,k2cpt=0;          s1+=exp(ps[i][j]);
   FILE *ficresp;        for(j=i+1; j<=nlstate+ndeath; j++)
   char fileresp[FILENAMELENGTH];          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
   pp=vector(1,nlstate);        for(j=1; j<i; j++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   strcpy(fileresp,"p");        for(j=i+1; j<=nlstate+ndeath; j++)
   strcat(fileresp,fileres);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     printf("Problem with prevalence resultfile: %s\n", fileresp);      } /* end i */
     exit(0);      
   }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(jj=1; jj<= nlstate+ndeath; jj++){
   j1=0;          ps[ii][jj]=0;
            ps[ii][ii]=1;
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
        
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       j1++;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*         printf("ddd %lf ",ps[ii][jj]); */
         scanf("%d", i);*/  /*       } */
       for (i=-1; i<=nlstate+ndeath; i++)    /*       printf("\n "); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /*        } */
           for(m=agemin; m <= agemax+3; m++)  /*        printf("\n ");printf("%lf ",cov[2]); */
             freq[i][jk][m]=0;         /*
              for(i=1; i<= npar; i++) printf("%f ",x[i]);
       dateintsum=0;        goto end;*/
       k2cpt=0;      return ps;
       for (i=1; i<=imx; i++) {  }
         bool=1;  
         if  (cptcovn>0) {  /**************** Product of 2 matrices ******************/
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
               bool=0;  {
         }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         if (bool==1) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           for(m=firstpass; m<=lastpass; m++){    /* in, b, out are matrice of pointers which should have been initialized 
             k2=anint[m][i]+(mint[m][i]/12.);       before: only the contents of out is modified. The function returns
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       a pointer to pointers identical to out */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    long i, j, k;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    for(i=nrl; i<= nrh; i++)
               if (m<lastpass) {      for(k=ncolol; k<=ncoloh; k++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          out[i][k] +=in[i][j]*b[j][k];
               }  
                  return out;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  }
                 dateintsum=dateintsum+k2;  
                 k2cpt++;  
               }  /************* Higher Matrix Product ***************/
             }  
           }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         }  {
       }    /* Computes the transition matrix starting at age 'age' over 
               'nhstepm*hstepm*stepm' months (i.e. until
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
       if  (cptcovn>0) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         fprintf(ficresp, "\n#********** Variable ");       (typically every 2 years instead of every month which is too big 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       for the memory).
         fprintf(ficresp, "**********\n#");       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);       */
       fprintf(ficresp, "\n");  
          int i, j, d, h, k;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double **out, cov[NCOVMAX];
         if(i==(int)agemax+3)    double **newm;
           printf("Total");  
         else    /* Hstepm could be zero and should return the unit matrix */
           printf("Age %d", i);    for (i=1;i<=nlstate+ndeath;i++)
         for(jk=1; jk <=nlstate ; jk++){      for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];        po[i][j][0]=(i==j ? 1.0 : 0.0);
         }      }
         for(jk=1; jk <=nlstate ; jk++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           for(m=-1, pos=0; m <=0 ; m++)    for(h=1; h <=nhstepm; h++){
             pos += freq[jk][m][i];      for(d=1; d <=hstepm; d++){
           if(pp[jk]>=1.e-10)        newm=savm;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        /* Covariates have to be included here again */
           else        cov[1]=1.;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
         for(jk=1; jk <=nlstate ; jk++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovprod;k++)
             pp[jk] += freq[jk][m][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }  
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           pos += pp[jk];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for(jk=1; jk <=nlstate ; jk++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           if(pos>=1.e-5)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        savm=oldm;
           else        oldm=newm;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      }
           if( i <= (int) agemax){      for(i=1; i<=nlstate+ndeath; i++)
             if(pos>=1.e-5){        for(j=1;j<=nlstate+ndeath;j++) {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          po[i][j][h]=newm[i][j];
               probs[i][jk][j1]= pp[jk]/pos;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/           */
             }        }
             else    } /* end h */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    return po;
           }  }
         }  
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)  /*************** log-likelihood *************/
           for(m=-1; m <=nlstate+ndeath; m++)  double func( double *x)
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  {
         if(i <= (int) agemax)    int i, ii, j, k, mi, d, kk;
           fprintf(ficresp,"\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         printf("\n");    double **out;
       }    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
   }    int s1, s2;
   dateintmean=dateintsum/k2cpt;    double bbh, survp;
      long ipmx;
   fclose(ficresp);    /*extern weight */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* We are differentiating ll according to initial status */
   free_vector(pp,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   /* End of Freq */      printf(" %d\n",s[4][i]);
 }    */
     cov[1]=1.;
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {  /* Some frequencies */  
      if(mle==1){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *pp;        for(mi=1; mi<= wav[i]-1; mi++){
   double pos, k2;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   pp=vector(1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for(d=0; d<dh[mi][i]; d++){
   j1=0;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j=cptcoveff;            for (kk=1; kk<=cptcovage;kk++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
  for(k1=1; k1<=j;k1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i1=1; i1<=ncodemax[k1];i1++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       j1++;            savm=oldm;
              oldm=newm;
       for (i=-1; i<=nlstate+ndeath; i++)            } /* end mult */
         for (jk=-1; jk<=nlstate+ndeath; jk++)          
           for(m=agemin; m <= agemax+3; m++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             freq[i][jk][m]=0;          /* But now since version 0.9 we anticipate for bias at large stepm.
                 * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for (i=1; i<=imx; i++) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
         bool=1;           * the nearest (and in case of equal distance, to the lowest) interval but now
         if  (cptcovn>0) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           for (z1=1; z1<=cptcoveff; z1++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * probability in order to take into account the bias as a fraction of the way
               bool=0;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
         if (bool==1) {           * For stepm=1 the results are the same as for previous versions of Imach.
           for(m=firstpass; m<=lastpass; m++){           * For stepm > 1 the results are less biased than in previous versions. 
             k2=anint[m][i]+(mint[m][i]/12.);           */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          s1=s[mw[mi][i]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          s2=s[mw[mi+1][i]][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          bbh=(double)bh[mi][i]/(double)stepm; 
               if (m<lastpass)          /* bias bh is positive if real duration
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];           * is higher than the multiple of stepm and negative otherwise.
               else           */
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          if( s2 > nlstate){ 
             }            /* i.e. if s2 is a death state and if the date of death is known 
           }               then the contribution to the likelihood is the probability to 
         }               die between last step unit time and current  step unit time, 
       }               which is also equal to probability to die before dh 
         for(i=(int)agemin; i <= (int)agemax+3; i++){               minus probability to die before dh-stepm . 
           for(jk=1; jk <=nlstate ; jk++){               In version up to 0.92 likelihood was computed
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          as if date of death was unknown. Death was treated as any other
               pp[jk] += freq[jk][m][i];          health state: the date of the interview describes the actual state
           }          and not the date of a change in health state. The former idea was
           for(jk=1; jk <=nlstate ; jk++){          to consider that at each interview the state was recorded
             for(m=-1, pos=0; m <=0 ; m++)          (healthy, disable or death) and IMaCh was corrected; but when we
             pos += freq[jk][m][i];          introduced the exact date of death then we should have modified
         }          the contribution of an exact death to the likelihood. This new
                  contribution is smaller and very dependent of the step unit
          for(jk=1; jk <=nlstate ; jk++){          stepm. It is no more the probability to die between last interview
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          and month of death but the probability to survive from last
              pp[jk] += freq[jk][m][i];          interview up to one month before death multiplied by the
          }          probability to die within a month. Thanks to Chris
                    Jackson for correcting this bug.  Former versions increased
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
          for(jk=1; jk <=nlstate ; jk++){                    lower mortality.
            if( i <= (int) agemax){            */
              if(pos>=1.e-5){            lli=log(out[s1][s2] - savm[s1][s2]);
                probs[i][jk][j1]= pp[jk]/pos;  
              }  
            }          } else if  (s2==-2) {
          }            for (j=1,survp=0. ; j<=nlstate; j++) 
                        survp += out[s1][j];
         }            lli= log(survp);
     }          }
   }          
   /*      else if  (s2==-4) { */
    /*        for (j=3,survp=0. ; j<=nlstate; j++)  */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*          survp += out[s1][j]; */
   free_vector(pp,1,nlstate);  /*        lli= survp; */
    /*      } */
 }  /* End of Freq */          
   /*      else if  (s2==-5) { */
 /************* Waves Concatenation ***************/  /*        for (j=1,survp=0. ; j<=2; j++)  */
   /*          survp += out[s1][j]; */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /*        lli= survp; */
 {  /*      } */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          else{
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      and mw[mi+1][i]. dh depends on stepm.            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      */          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int i, mi, m;          /*if(lli ==000.0)*/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
      double sum=0., jmean=0.;*/          ipmx +=1;
           sw += weight[i];
   int j, k=0,jk, ju, jl;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double sum=0.;        } /* end of wave */
   jmin=1e+5;      } /* end of individual */
   jmax=-1;    }  else if(mle==2){
   jmean=0.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=imx; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     mi=0;        for(mi=1; mi<= wav[i]-1; mi++){
     m=firstpass;          for (ii=1;ii<=nlstate+ndeath;ii++)
     while(s[m][i] <= nlstate){            for (j=1;j<=nlstate+ndeath;j++){
       if(s[m][i]>=1)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         mw[++mi][i]=m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)            }
         break;          for(d=0; d<=dh[mi][i]; d++){
       else            newm=savm;
         m++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }/* end while */            for (kk=1; kk<=cptcovage;kk++) {
     if (s[m][i] > nlstate){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mi++;     /* Death is another wave */            }
       /* if(mi==0)  never been interviewed correctly before death */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          /* Only death is a correct wave */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       mw[mi][i]=m;            savm=oldm;
     }            oldm=newm;
           } /* end mult */
     wav[i]=mi;        
     if(mi==0)          s1=s[mw[mi][i]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for(i=1; i<=imx; i++){          ipmx +=1;
     for(mi=1; mi<wav[i];mi++){          sw += weight[i];
       if (stepm <=0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         dh[mi][i]=1;        } /* end of wave */
       else{      } /* end of individual */
         if (s[mw[mi+1][i]][i] > nlstate) {    }  else if(mle==3){  /* exponential inter-extrapolation */
           if (agedc[i] < 2*AGESUP) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */        for(mi=1; mi<= wav[i]-1; mi++){
           k=k+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j >= jmax) jmax=j;            for (j=1;j<=nlstate+ndeath;j++){
           if (j <= jmin) jmin=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            }
           }          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            for (kk=1; kk<=cptcovage;kk++) {
           k=k+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j >= jmax) jmax=j;            }
           else if (j <= jmin)jmin=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;            savm=oldm;
         }            oldm=newm;
         jk= j/stepm;          } /* end mult */
         jl= j -jk*stepm;        
         ju= j -(jk+1)*stepm;          s1=s[mw[mi][i]][i];
         if(jl <= -ju)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk;          bbh=(double)bh[mi][i]/(double)stepm; 
         else          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           dh[mi][i]=jk+1;          ipmx +=1;
         if(dh[mi][i]==0)          sw += weight[i];
           dh[mi][i]=1; /* At least one step */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
   }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   jmean=sum/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  }        for(mi=1; mi<= wav[i]-1; mi++){
 /*********** Tricode ****************************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void tricode(int *Tvar, int **nbcode, int imx)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int Ndum[20],ij=1, k, j, i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;            }
   cptcoveff=0;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   for (k=0; k<19; k++) Ndum[k]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (k=1; k<=7; k++) ncodemax[k]=0;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            }
     for (i=1; i<=imx; i++) {          
       ij=(int)(covar[Tvar[j]][i]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       Ndum[ij]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            savm=oldm;
       if (ij > cptcode) cptcode=ij;            oldm=newm;
     }          } /* end mult */
         
     for (i=0; i<=cptcode; i++) {          s1=s[mw[mi][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          s2=s[mw[mi+1][i]][i];
     }          if( s2 > nlstate){ 
     ij=1;            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (i=1; i<=ncodemax[j]; i++) {          }
       for (k=0; k<=19; k++) {          ipmx +=1;
         if (Ndum[k] != 0) {          sw += weight[i];
           nbcode[Tvar[j]][ij]=k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           ij++;        } /* end of wave */
         }      } /* end of individual */
         if (ij > ncodemax[j]) break;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }          for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
  for (k=0; k<19; k++) Ndum[k]=0;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=ncovmodel-2; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=Tvar[i];            }
       Ndum[ij]++;          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  ij=1;            for (kk=1; kk<=cptcovage;kk++) {
  for (i=1; i<=10; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    if((Ndum[i]!=0) && (i<=ncovcol)){            }
      Tvaraff[ij]=i;          
      ij++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  }            savm=oldm;
              oldm=newm;
     cptcoveff=ij-1;          } /* end mult */
 }        
           s1=s[mw[mi][i]][i];
 /*********** Health Expectancies ****************/          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          ipmx +=1;
           sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Health expectancies */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        } /* end of wave */
   double age, agelim, hf;      } /* end of individual */
   double ***p3mat,***varhe;    } /* End of if */
   double **dnewm,**doldm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double *xp;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double **gp, **gm;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double ***gradg, ***trgradg;    return -l;
   int theta;  }
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  /*************** log-likelihood *************/
   xp=vector(1,npar);  double funcone( double *x)
   dnewm=matrix(1,nlstate*2,1,npar);  {
   doldm=matrix(1,nlstate*2,1,nlstate*2);    /* Same as likeli but slower because of a lot of printf and if */
      int i, ii, j, k, mi, d, kk;
   fprintf(ficreseij,"# Health expectancies\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   fprintf(ficreseij,"# Age");    double **out;
   for(i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
     for(j=1; j<=nlstate;j++)    double llt;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    int s1, s2;
   fprintf(ficreseij,"\n");    double bbh, survp;
     /*extern weight */
   if(estepm < stepm){    /* We are differentiating ll according to initial status */
     printf ("Problem %d lower than %d\n",estepm, stepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   else  hstepm=estepm;        printf(" %d\n",s[4][i]);
   /* We compute the life expectancy from trapezoids spaced every estepm months    */
    * This is mainly to measure the difference between two models: for example    cov[1]=1.;
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear    for(k=1; k<=nlstate; k++) ll[k]=0.;
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * to compare the new estimate of Life expectancy with the same linear      for(mi=1; mi<= wav[i]-1; mi++){
    * hypothesis. A more precise result, taking into account a more precise        for (ii=1;ii<=nlstate+ndeath;ii++)
    * curvature will be obtained if estepm is as small as stepm. */          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* For example we decided to compute the life expectancy with the smallest unit */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          }
      nhstepm is the number of hstepm from age to agelim        for(d=0; d<dh[mi][i]; d++){
      nstepm is the number of stepm from age to agelin.          newm=savm;
      Look at hpijx to understand the reason of that which relies in memory size          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      and note for a fixed period like estepm months */          for (kk=1; kk<=cptcovage;kk++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      results. So we changed our mind and took the option of the best precision.          savm=oldm;
   */          oldm=newm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } /* end mult */
         
   agelim=AGESUP;        s1=s[mw[mi][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        s2=s[mw[mi+1][i]][i];
     /* nhstepm age range expressed in number of stepm */        bbh=(double)bh[mi][i]/(double)stepm; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        /* bias is positive if real duration
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */         * is higher than the multiple of stepm and negative otherwise.
     /* if (stepm >= YEARM) hstepm=1;*/         */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli=log(out[s1][s2] - savm[s1][s2]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        } else if  (s2==-2) {
     gp=matrix(0,nhstepm,1,nlstate*2);          for (j=1,survp=0. ; j<=nlstate; j++) 
     gm=matrix(0,nhstepm,1,nlstate*2);            survp += out[s1][j];
           lli= log(survp);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        }else if (mle==1){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
     /* Computing Variances of health expectancies */          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      for(theta=1; theta <=npar; theta++){          lli=log(out[s1][s2]); /* Original formula */
       for(i=1; i<=npar; i++){        } /* End of if */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        ipmx +=1;
       }        sw += weight[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       cptj=0;        if(globpr){
       for(j=1; j<= nlstate; j++){          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         for(i=1; i<=nlstate; i++){   %11.6f %11.6f %11.6f ", \
           cptj=cptj+1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           }            llt +=ll[k]*gipmx/gsw;
         }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       }          }
                fprintf(ficresilk," %10.6f\n", -llt);
              }
       for(i=1; i<=npar; i++)      } /* end of wave */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } /* end of individual */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
          /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       cptj=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(j=1; j<= nlstate; j++){    if(globpr==0){ /* First time we count the contributions and weights */
         for(i=1;i<=nlstate;i++){      gipmx=ipmx;
           cptj=cptj+1;      gsw=sw;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    return -l;
           }  }
         }  
       }  
        /*************** function likelione ***********/
      void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
       for(j=1; j<= nlstate*2; j++)    /* This routine should help understanding what is done with 
         for(h=0; h<=nhstepm-1; h++){       the selection of individuals/waves and
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       to check the exact contribution to the likelihood.
         }       Plotting could be done.
      */
      }    int k;
      
 /* End theta */    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      for(h=0; h<=nhstepm-1; h++)        printf("Problem with resultfile: %s\n", fileresilk);
       for(j=1; j<=nlstate*2;j++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         for(theta=1; theta <=npar; theta++)      }
         trgradg[h][j][theta]=gradg[h][theta][j];      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      for(i=1;i<=nlstate*2;i++)      for(k=1; k<=nlstate; k++) 
       for(j=1;j<=nlstate*2;j++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         varhe[i][j][(int)age] =0.;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){    *fretone=(*funcone)(p);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    if(*globpri !=0){
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      fclose(ficresilk);
         for(i=1;i<=nlstate*2;i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           for(j=1;j<=nlstate*2;j++)      fflush(fichtm); 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    } 
       }    return;
     }  }
   
        
     /* Computing expectancies */  /*********** Maximum Likelihood Estimation ***************/
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  {
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    int i,j, iter;
              double **xi;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double fret;
     double fretone; /* Only one call to likelihood */
         }    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
     fprintf(ficreseij,"%3.0f",age );    for (i=1;i<=npar;i++)
     cptj=0;      for (j=1;j<=npar;j++)
     for(i=1; i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         cptj++;    strcpy(filerespow,"pow"); 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    strcat(filerespow,fileres);
       }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     fprintf(ficreseij,"\n");      printf("Problem with resultfile: %s\n", filerespow);
          fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     free_matrix(gm,0,nhstepm,1,nlstate*2);    }
     free_matrix(gp,0,nhstepm,1,nlstate*2);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=nlstate;i++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for(j=1;j<=nlstate+ndeath;j++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   }    fprintf(ficrespow,"\n");
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    free_matrix(xi,1,npar,1,npar);
 }    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 /************ Variance ******************/    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 {  
   /* Variance of health expectancies */  }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  /**** Computes Hessian and covariance matrix ***/
   double **dnewm,**doldm;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int i, j, nhstepm, hstepm, h, nstepm ;  {
   int k, cptcode;    double  **a,**y,*x,pd;
   double *xp;    double **hess;
   double **gp, **gm;    int i, j,jk;
   double ***gradg, ***trgradg;    int *indx;
   double ***p3mat;  
   double age,agelim, hf;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   int theta;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
    fprintf(ficresvij,"# Covariances of life expectancies\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
   fprintf(ficresvij,"# Age");    double gompertz(double p[]);
   for(i=1; i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficresvij,"\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   xp=vector(1,npar);      printf("%d",i);fflush(stdout);
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   doldm=matrix(1,nlstate,1,nlstate);     
         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   if(estepm < stepm){      
     printf ("Problem %d lower than %d\n",estepm, stepm);      /*  printf(" %f ",p[i]);
   }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   else  hstepm=estepm;      }
   /* For example we decided to compute the life expectancy with the smallest unit */    
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++) {
      nhstepm is the number of hstepm from age to agelim      for (j=1;j<=npar;j++)  {
      nstepm is the number of stepm from age to agelin.        if (j>i) { 
      Look at hpijx to understand the reason of that which relies in memory size          printf(".%d%d",i,j);fflush(stdout);
      and note for a fixed period like k years */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          hess[i][j]=hessij(p,delti,i,j,func,npar);
      survival function given by stepm (the optimization length). Unfortunately it          
      means that if the survival funtion is printed only each two years of age and if          hess[j][i]=hess[i][j];    
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          /*printf(" %lf ",hess[i][j]);*/
      results. So we changed our mind and took the option of the best precision.        }
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    }
   agelim = AGESUP;    printf("\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficlog,"\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    
     gp=matrix(0,nhstepm,1,nlstate);    a=matrix(1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate);    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     for(theta=1; theta <=npar; theta++){    indx=ivector(1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (i=1;i<=npar;i++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       }    ludcmp(a,npar,indx,&pd);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       if (popbased==1) {      x[j]=1;
         for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
           prlim[i][i]=probs[(int)age][i][ij];      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
        }
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficlog,"\n#Hessian matrix#\n");
         }    for (i=1;i<=npar;i++) { 
       }      for (j=1;j<=npar;j++) { 
            printf("%.3e ",hess[i][j]);
       for(i=1; i<=npar; i++) /* Computes gradient */        fprintf(ficlog,"%.3e ",hess[i][j]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf("\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficlog,"\n");
      }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    /* Recompute Inverse */
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    /*  printf("\n#Hessian matrix recomputed#\n");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
       lubksb(a,npar,indx,x);
       for(j=1; j<= nlstate; j++)      for (i=1;i<=npar;i++){ 
         for(h=0; h<=nhstepm; h++){        y[i][j]=x[i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        printf("%.3e ",y[i][j]);
         }        fprintf(ficlog,"%.3e ",y[i][j]);
     } /* End theta */      }
       printf("\n");
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      fprintf(ficlog,"\n");
     }
     for(h=0; h<=nhstepm; h++)    */
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    free_matrix(a,1,npar,1,npar);
           trgradg[h][j][theta]=gradg[h][theta][j];    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    free_ivector(indx,1,npar);
     for(i=1;i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;  
   }
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  /*************** hessian matrix ****************/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  {
         for(i=1;i<=nlstate;i++)    int i;
           for(j=1;j<=nlstate;j++)    int l=1, lmax=20;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double k1,k2;
       }    double p2[NPARMAX+1];
     }    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fprintf(ficresvij,"%.0f ",age );    double fx;
     for(i=1; i<=nlstate;i++)    int k=0,kmax=10;
       for(j=1; j<=nlstate;j++){    double l1;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }    fx=func(x);
     fprintf(ficresvij,"\n");    for (i=1;i<=npar;i++) p2[i]=x[i];
     free_matrix(gp,0,nhstepm,1,nlstate);    for(l=0 ; l <=lmax; l++){
     free_matrix(gm,0,nhstepm,1,nlstate);      l1=pow(10,l);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      delts=delt;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for(k=1 ; k <kmax; k=k+1){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        delt = delta*(l1*k);
   } /* End age */        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
   free_vector(xp,1,npar);        p2[theta]=x[theta]-delt;
   free_matrix(doldm,1,nlstate,1,npar);        k2=func(p2)-fx;
   free_matrix(dnewm,1,nlstate,1,nlstate);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 }        
   #ifdef DEBUG
 /************ Variance of prevlim ******************/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 {  #endif
   /* Variance of prevalence limit */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double **newm;          k=kmax;
   double **dnewm,**doldm;        }
   int i, j, nhstepm, hstepm;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int k, cptcode;          k=kmax; l=lmax*10.;
   double *xp;        }
   double *gp, *gm;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **gradg, **trgradg;          delts=delt;
   double age,agelim;        }
   int theta;      }
        }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    delti[theta]=delts;
   fprintf(ficresvpl,"# Age");    return res; 
   for(i=1; i<=nlstate;i++)    
       fprintf(ficresvpl," %1d-%1d",i,i);  }
   fprintf(ficresvpl,"\n");  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate,1,npar);    int i;
   doldm=matrix(1,nlstate,1,nlstate);    int l=1, l1, lmax=20;
      double k1,k2,k3,k4,res,fx;
   hstepm=1*YEARM; /* Every year of age */    double p2[NPARMAX+1];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    int k;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fx=func(x);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (k=1; k<=2; k++) {
     if (stepm >= YEARM) hstepm=1;      for (i=1;i<=npar;i++) p2[i]=x[i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      p2[thetai]=x[thetai]+delti[thetai]/k;
     gradg=matrix(1,npar,1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     gp=vector(1,nlstate);      k1=func(p2)-fx;
     gm=vector(1,nlstate);    
       p2[thetai]=x[thetai]+delti[thetai]/k;
     for(theta=1; theta <=npar; theta++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(i=1; i<=npar; i++){ /* Computes gradient */      k2=func(p2)-fx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1;i<=nlstate;i++)      k3=func(p2)-fx;
         gp[i] = prlim[i][i];    
          p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1; i<=npar; i++) /* Computes gradient */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      k4=func(p2)-fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(i=1;i<=nlstate;i++)  #ifdef DEBUG
         gm[i] = prlim[i][i];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1;i<=nlstate;i++)  #endif
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }
     } /* End theta */    return res;
   }
     trgradg =matrix(1,nlstate,1,npar);  
   /************** Inverse of matrix **************/
     for(j=1; j<=nlstate;j++)  void ludcmp(double **a, int n, int *indx, double *d) 
       for(theta=1; theta <=npar; theta++)  { 
         trgradg[j][theta]=gradg[theta][j];    int i,imax,j,k; 
     double big,dum,sum,temp; 
     for(i=1;i<=nlstate;i++)    double *vv; 
       varpl[i][(int)age] =0.;   
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    vv=vector(1,n); 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    *d=1.0; 
     for(i=1;i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      big=0.0; 
       for (j=1;j<=n;j++) 
     fprintf(ficresvpl,"%.0f ",age );        if ((temp=fabs(a[i][j])) > big) big=temp; 
     for(i=1; i<=nlstate;i++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      vv[i]=1.0/big; 
     fprintf(ficresvpl,"\n");    } 
     free_vector(gp,1,nlstate);    for (j=1;j<=n;j++) { 
     free_vector(gm,1,nlstate);      for (i=1;i<j;i++) { 
     free_matrix(gradg,1,npar,1,nlstate);        sum=a[i][j]; 
     free_matrix(trgradg,1,nlstate,1,npar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   } /* End age */        a[i][j]=sum; 
       } 
   free_vector(xp,1,npar);      big=0.0; 
   free_matrix(doldm,1,nlstate,1,npar);      for (i=j;i<=n;i++) { 
   free_matrix(dnewm,1,nlstate,1,nlstate);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
 }          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 /************ Variance of one-step probabilities  ******************/        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          big=dum; 
 {          imax=i; 
   int i, j, i1, k1, j1, z1;        } 
   int k=0, cptcode;      } 
   double **dnewm,**doldm;      if (j != imax) { 
   double *xp;        for (k=1;k<=n;k++) { 
   double *gp, *gm;          dum=a[imax][k]; 
   double **gradg, **trgradg;          a[imax][k]=a[j][k]; 
   double age,agelim, cov[NCOVMAX];          a[j][k]=dum; 
   int theta;        } 
   char fileresprob[FILENAMELENGTH];        *d = -(*d); 
         vv[imax]=vv[j]; 
   strcpy(fileresprob,"prob");      } 
   strcat(fileresprob,fileres);      indx[j]=imax; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
     printf("Problem with resultfile: %s\n", fileresprob);      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        } 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    } 
   fprintf(ficresprob,"# Age");    free_vector(vv,1,n);  /* Doesn't work */
   for(i=1; i<=nlstate;i++)  ;
     for(j=1; j<=(nlstate+ndeath);j++)  } 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
   void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   fprintf(ficresprob,"\n");    int i,ii=0,ip,j; 
     double sum; 
    
   xp=vector(1,npar);    for (i=1;i<=n;i++) { 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      ip=indx[i]; 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      sum=b[ip]; 
        b[ip]=b[i]; 
   cov[1]=1;      if (ii) 
   j=cptcoveff;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      else if (sum) ii=i; 
   j1=0;      b[i]=sum; 
   for(k1=1; k1<=1;k1++){    } 
     for(i1=1; i1<=ncodemax[k1];i1++){    for (i=n;i>=1;i--) { 
     j1++;      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     if  (cptcovn>0) {      b[i]=sum/a[i][i]; 
       fprintf(ficresprob, "\n#********** Variable ");    } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  } 
       fprintf(ficresprob, "**********\n#");  
     }  void pstamp(FILE *fichier)
      {
       for (age=bage; age<=fage; age ++){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         cov[2]=age;  }
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  /************ Frequencies ********************/
            void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         }  {  /* Some frequencies */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
         for (k=1; k<=cptcovprod;k++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int first;
            double ***freq; /* Frequencies */
         gradg=matrix(1,npar,1,9);    double *pp, **prop;
         trgradg=matrix(1,9,1,npar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    char fileresp[FILENAMELENGTH];
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    
        pp=vector(1,nlstate);
         for(theta=1; theta <=npar; theta++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
           for(i=1; i<=npar; i++)    strcpy(fileresp,"p");
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    strcat(fileresp,fileres);
              if((ficresp=fopen(fileresp,"w"))==NULL) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
                fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           k=0;      exit(0);
           for(i=1; i<= (nlstate+ndeath); i++){    }
             for(j=1; j<=(nlstate+ndeath);j++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               k=k+1;    j1=0;
               gp[k]=pmmij[i][j];    
             }    j=cptcoveff;
           }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            
           for(i=1; i<=npar; i++)    first=1;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
        for(k1=1; k1<=j;k1++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
           k=0;        j1++;
           for(i=1; i<=(nlstate+ndeath); i++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             for(j=1; j<=(nlstate+ndeath);j++){          scanf("%d", i);*/
               k=k+1;        for (i=-5; i<=nlstate+ndeath; i++)  
               gm[k]=pmmij[i][j];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             }            for(m=iagemin; m <= iagemax+3; m++)
           }              freq[i][jk][m]=0;
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      for (i=1; i<=nlstate; i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for(m=iagemin; m <= iagemax+3; m++)
         }          prop[i][m]=0;
         
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        dateintsum=0;
           for(theta=1; theta <=npar; theta++)        k2cpt=0;
             trgradg[j][theta]=gradg[theta][j];        for (i=1; i<=imx; i++) {
                  bool=1;
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          if  (cptcovn>0) {
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            for (z1=1; z1<=cptcoveff; z1++) 
                      if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         pmij(pmmij,cov,ncovmodel,x,nlstate);                bool=0;
                  }
         k=0;          if (bool==1){
         for(i=1; i<=(nlstate+ndeath); i++){            for(m=firstpass; m<=lastpass; m++){
           for(j=1; j<=(nlstate+ndeath);j++){              k2=anint[m][i]+(mint[m][i]/12.);
             k=k+1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             gm[k]=pmmij[i][j];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                      if (m<lastpass) {
      /*printf("\n%d ",(int)age);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                }
      }*/                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         fprintf(ficresprob,"\n%d ",(int)age);                  dateintsum=dateintsum+k2;
                   k2cpt++;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)                }
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));                /*}*/
              }
       }          }
     }        }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));         
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        pstamp(ficresp);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if  (cptcovn>0) {
   }          fprintf(ficresp, "\n#********** Variable "); 
   free_vector(xp,1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficresprob);          fprintf(ficresp, "**********\n#");
          }
 }        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 /******************* Printing html file ***********/        fprintf(ficresp, "\n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        
  int lastpass, int stepm, int weightopt, char model[],\        for(i=iagemin; i <= iagemax+3; i++){
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          if(i==iagemax+3){
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\            fprintf(ficlog,"Total");
  char version[], int popforecast, int estepm ){          }else{
   int jj1, k1, i1, cpt;            if(first==1){
   FILE *fichtm;              first=0;
   /*char optionfilehtm[FILENAMELENGTH];*/              printf("See log file for details...\n");
             }
   strcpy(optionfilehtm,optionfile);            fprintf(ficlog,"Age %d", i);
   strcat(optionfilehtm,".htm");          }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(jk=1; jk <=nlstate ; jk++){
     printf("Problem with %s \n",optionfilehtm), exit(0);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i]; 
           }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          for(jk=1; jk <=nlstate ; jk++){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            for(m=-1, pos=0; m <=0 ; m++)
 \n              pos += freq[jk][m][i];
 Total number of observations=%d <br>\n            if(pp[jk]>=1.e-10){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n              if(first==1){
 <hr  size=\"2\" color=\"#EC5E5E\">              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  <ul><li>Outputs files<br>\n              }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n            }else{
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              if(first==1)
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            }
           }
  fprintf(fichtm,"\n  
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          for(jk=1; jk <=nlstate ; jk++){
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              pp[jk] += freq[jk][m][i];
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          }       
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
  if(popforecast==1) fprintf(fichtm,"\n            posprop += prop[jk][i];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          for(jk=1; jk <=nlstate ; jk++){
         <br>",fileres,fileres,fileres,fileres);            if(pos>=1.e-5){
  else              if(first==1)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 fprintf(fichtm," <li>Graphs</li><p>");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
  m=cptcoveff;              if(first==1)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  jj1=0;            }
  for(k1=1; k1<=m;k1++){            if( i <= iagemax){
    for(i1=1; i1<=ncodemax[k1];i1++){              if(pos>=1.e-5){
        jj1++;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
        if (cptcovn > 0) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
          for (cpt=1; cpt<=cptcoveff;cpt++)              }
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              else
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
        }            }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              
        for(cpt=1; cpt<nlstate;cpt++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            for(m=-1; m <=nlstate+ndeath; m++)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if(freq[jk][m][i] !=0 ) {
        }              if(first==1)
     for(cpt=1; cpt<=nlstate;cpt++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 interval) in state (%d): v%s%d%d.gif <br>              }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if(i <= iagemax)
      }            fprintf(ficresp,"\n");
      for(cpt=1; cpt<=nlstate;cpt++) {          if(first==1)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            printf("Others in log...\n");
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          fprintf(ficlog,"\n");
      }        }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      }
 health expectancies in states (1) and (2): e%s%d.gif<br>    }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    dateintmean=dateintsum/k2cpt; 
 fprintf(fichtm,"\n</body>");   
    }    fclose(ficresp);
    }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 fclose(fichtm);    free_vector(pp,1,nlstate);
 }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
 /******************* Gnuplot file **************/  }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   /************ Prevalence ********************/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   strcpy(optionfilegnuplot,optionfilefiname);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   strcat(optionfilegnuplot,".gp.txt");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       We still use firstpass and lastpass as another selection.
     printf("Problem with file %s",optionfilegnuplot);    */
   }   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 #ifdef windows    double ***freq; /* Frequencies */
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double *pp, **prop;
 #endif    double pos,posprop; 
 m=pow(2,cptcoveff);    double  y2; /* in fractional years */
      int iagemin, iagemax;
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    iagemin= (int) agemin;
    for (k1=1; k1<= m ; k1 ++) {    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 for (i=1; i<= nlstate ; i ++) {    j1=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    j=cptcoveff;
 }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    
     for (i=1; i<= nlstate ; i ++) {    for(k1=1; k1<=j;k1++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(i1=1; i1<=ncodemax[k1];i1++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        j1++;
 }        
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for (i=1; i<=nlstate; i++)  
      for (i=1; i<= nlstate ; i ++) {          for(m=iagemin; m <= iagemax+3; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            prop[i][m]=0.0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");       
 }          for (i=1; i<=imx; i++) { /* Each individual */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          bool=1;
           if  (cptcovn>0) {
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            for (z1=1; z1<=cptcoveff; z1++) 
    }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   }                bool=0;
   /*2 eme*/          } 
           if (bool==1) { 
   for (k1=1; k1<= m ; k1 ++) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for (i=1; i<= nlstate+1 ; i ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       k=2*i;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       for (j=1; j<= nlstate+1 ; j ++) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                    prop[s[m][i]][iagemax+3] += weight[i]; 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                } 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            } /* end selection of waves */
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=iagemin; i <= iagemax+3; i++){  
 }            
       fprintf(ficgp,"\" t\"\" w l 0,");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            posprop += prop[jk][i]; 
       for (j=1; j<= nlstate+1 ; j ++) {          } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){     
 }              if( i <=  iagemax){ 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              if(posprop>=1.e-5){ 
       else fprintf(ficgp,"\" t\"\" w l 0,");                probs[i][jk][j1]= prop[jk][i]/posprop;
     }              } 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            } 
   }          }/* end jk */ 
          }/* end i */ 
   /*3eme*/      } /* end i1 */
     } /* end k1 */
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       k=2+nlstate*(2*cpt-2);    /*free_vector(pp,1,nlstate);*/
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  }  /* End of prevalence */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  /************* Waves Concatenation ***************/
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 */       Death is a valid wave (if date is known).
       for (i=1; i< nlstate ; i ++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
       }       */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    int i, mi, m;
     }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
   /* CV preval stat */    int first;
     for (k1=1; k1<= m ; k1 ++) {    int j, k=0,jk, ju, jl;
     for (cpt=1; cpt<nlstate ; cpt ++) {    double sum=0.;
       k=3;    first=0;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    jmin=1e+5;
     jmax=-1;
       for (i=1; i< nlstate ; i ++)    jmean=0.;
         fprintf(ficgp,"+$%d",k+i+1);    for(i=1; i<=imx; i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      mi=0;
            m=firstpass;
       l=3+(nlstate+ndeath)*cpt;      while(s[m][i] <= nlstate){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       for (i=1; i< nlstate ; i ++) {          mw[++mi][i]=m;
         l=3+(nlstate+ndeath)*cpt;        if(m >=lastpass)
         fprintf(ficgp,"+$%d",l+i+1);          break;
       }        else
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            m++;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }/* end while */
     }      if (s[m][i] > nlstate){
   }          mi++;     /* Death is another wave */
          /* if(mi==0)  never been interviewed correctly before death */
   /* proba elementaires */           /* Only death is a correct wave */
    for(i=1,jk=1; i <=nlstate; i++){        mw[mi][i]=m;
     for(k=1; k <=(nlstate+ndeath); k++){      }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){      wav[i]=mi;
              if(mi==0){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        nbwarn++;
           jk++;        if(first==0){
           fprintf(ficgp,"\n");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }          first=1;
       }        }
     }        if(first==1){
     }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
     for(jk=1; jk <=m; jk++) {      } /* end mi==0 */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    } /* End individuals */
    i=1;  
    for(k2=1; k2<=nlstate; k2++) {    for(i=1; i<=imx; i++){
      k3=i;      for(mi=1; mi<wav[i];mi++){
      for(k=1; k<=(nlstate+ndeath); k++) {        if (stepm <=0)
        if (k != k2){          dh[mi][i]=1;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        else{
 ij=1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for(j=3; j <=ncovmodel; j++) {            if (agedc[i] < 2*AGESUP) {
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              if(j==0) j=1;  /* Survives at least one month after exam */
             ij++;              else if(j<0){
           }                nberr++;
           else                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                j=1; /* Temporary Dangerous patch */
         }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficgp,")/(1");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                        fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         for(k1=1; k1 <=nlstate; k1++){                }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              k=k+1;
 ij=1;              if (j >= jmax){
           for(j=3; j <=ncovmodel; j++){                jmax=j;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                ijmax=i;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              }
             ij++;              if (j <= jmin){
           }                jmin=j;
           else                ijmin=i;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              }
           }              sum=sum+j;
           fprintf(ficgp,")");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }
         i=i+ncovmodel;          else{
        }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            k=k+1;
    }            if (j >= jmax) {
                  jmax=j;
   fclose(ficgp);              ijmax=i;
 }  /* end gnuplot */            }
             else if (j <= jmin){
               jmin=j;
 /*************** Moving average **************/              ijmin=i;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   int i, cpt, cptcod;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            if(j<0){
       for (i=1; i<=nlstate;i++)              nberr++;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           mobaverage[(int)agedeb][i][cptcod]=0.;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            sum=sum+j;
       for (i=1; i<=nlstate;i++){          }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          jk= j/stepm;
           for (cpt=0;cpt<=4;cpt++){          jl= j -jk*stepm;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          ju= j -(jk+1)*stepm;
           }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            if(jl==0){
         }              dh[mi][i]=jk;
       }              bh[mi][i]=0;
     }            }else{ /* We want a negative bias in order to only have interpolation ie
                        * at the price of an extra matrix product in likelihood */
 }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
 /************** Forecasting ******************/          }else{
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            if(jl <= -ju){
                dh[mi][i]=jk;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              bh[mi][i]=jl;       /* bias is positive if real duration
   int *popage;                                   * is higher than the multiple of stepm and negative otherwise.
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                                   */
   double *popeffectif,*popcount;            }
   double ***p3mat;            else{
   char fileresf[FILENAMELENGTH];              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
  agelim=AGESUP;            }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              bh[mi][i]=ju; /* At least one step */
                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
   strcpy(fileresf,"f");          } /* end if mle */
   strcat(fileresf,fileres);        }
   if((ficresf=fopen(fileresf,"w"))==NULL) {      } /* end wave */
     printf("Problem with forecast resultfile: %s\n", fileresf);    }
   }    jmean=sum/k;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   }
   
   if (mobilav==1) {  /*********** Tricode ****************************/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void tricode(int *Tvar, int **nbcode, int imx)
     movingaverage(agedeb, fage, ageminpar, mobaverage);  {
   }    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int cptcode=0;
   if (stepm<=12) stepsize=1;    cptcoveff=0; 
     
   agelim=AGESUP;    for (k=0; k<maxncov; k++) Ndum[k]=0;
      for (k=1; k<=7; k++) ncodemax[k]=0;
   hstepm=1;  
   hstepm=hstepm/stepm;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   yp1=modf(dateintmean,&yp);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   anprojmean=yp;                                 modality*/ 
   yp2=modf((yp1*12),&yp);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   mprojmean=yp;        Ndum[ij]++; /*store the modality */
   yp1=modf((yp2*30.5),&yp);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   jprojmean=yp;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   if(jprojmean==0) jprojmean=1;                                         Tvar[j]. If V=sex and male is 0 and 
   if(mprojmean==0) jprojmean=1;                                         female is 1, then  cptcode=1.*/
        }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
        for (i=0; i<=cptcode; i++) {
   for(cptcov=1;cptcov<=i2;cptcov++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      }
       k=k+1;  
       fprintf(ficresf,"\n#******");      ij=1; 
       for(j=1;j<=cptcoveff;j++) {      for (i=1; i<=ncodemax[j]; i++) {
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (k=0; k<= maxncov; k++) {
       }          if (Ndum[k] != 0) {
       fprintf(ficresf,"******\n");            nbcode[Tvar[j]][ij]=k; 
       fprintf(ficresf,"# StartingAge FinalAge");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            
                  ij++;
                }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          if (ij > ncodemax[j]) break; 
         fprintf(ficresf,"\n");        }  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        } 
     }  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   for (k=0; k< maxncov; k++) Ndum[k]=0;
           nhstepm = nhstepm/hstepm;  
             for (i=1; i<=ncovmodel-2; i++) { 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           oldm=oldms;savm=savms;     ij=Tvar[i];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       Ndum[ij]++;
           }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {   ij=1;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);   for (i=1; i<= maxncov; i++) {
             }     if((Ndum[i]!=0) && (i<=ncovcol)){
             for(j=1; j<=nlstate+ndeath;j++) {       Tvaraff[ij]=i; /*For printing */
               kk1=0.;kk2=0;       ij++;
               for(i=1; i<=nlstate;i++) {                   }
                 if (mobilav==1)   }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   
                 else {   cptcoveff=ij-1; /*Number of simple covariates*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  }
                 }  
                  /*********** Health Expectancies ****************/
               }  
               if (h==(int)(calagedate+12*cpt)){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                 fprintf(ficresf," %.3f", kk1);  
                          {
               }    /* Health expectancies, no variances */
             }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           }    double age, agelim, hf;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***p3mat;
         }    double eip;
       }  
     }    pstamp(ficreseij);
   }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
            fprintf(ficreseij,"# Age");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   fclose(ficresf);        fprintf(ficreseij," e%1d%1d ",i,j);
 }      }
 /************** Forecasting ******************/      fprintf(ficreseij," e%1d. ",i);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    }
      fprintf(ficreseij,"\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    if(estepm < stepm){
   double *popeffectif,*popcount;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double ***p3mat,***tabpop,***tabpopprev;    }
   char filerespop[FILENAMELENGTH];    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * This is mainly to measure the difference between two models: for example
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * if stepm=24 months pijx are given only every 2 years and by summing them
   agelim=AGESUP;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   strcpy(filerespop,"pop");     * curvature will be obtained if estepm is as small as stepm. */
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("Problem with forecast resultfile: %s\n", filerespop);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   printf("Computing forecasting: result on file '%s' \n", filerespop);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (mobilav==1) {       survival function given by stepm (the optimization length). Unfortunately it
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       means that if the survival funtion is printed only each two years of age and if
     movingaverage(agedeb, fage, ageminpar, mobaverage);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
     */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (stepm<=12) stepsize=1;  
      agelim=AGESUP;
   agelim=AGESUP;    /* nhstepm age range expressed in number of stepm */
      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   hstepm=1;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   hstepm=hstepm/stepm;    /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (popforecast==1) {    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     popage=ivector(0,AGESUP);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     popeffectif=vector(0,AGESUP);      
     popcount=vector(0,AGESUP);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
          
     i=1;        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      
          printf("%d|",(int)age);fflush(stdout);
     imx=i;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      
   }      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){        for(j=1; j<=nlstate;j++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       k=k+1;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       fprintf(ficrespop,"\n#******");            
       for(j=1;j<=cptcoveff;j++) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }          }
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");      fprintf(ficreseij,"%3.0f",age );
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      for(i=1; i<=nlstate;i++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");        eip=0;
              for(j=1; j<=nlstate;j++){
       for (cpt=0; cpt<=0;cpt++) {          eip +=eij[i][j][(int)age];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        fprintf(ficreseij,"%9.4f", eip );
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }
           nhstepm = nhstepm/hstepm;      fprintf(ficreseij,"\n");
                
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      printf("\n");
            fprintf(ficlog,"\n");
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {  }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;  {
               for(i=1; i<=nlstate;i++) {                  /* Covariances of health expectancies eij and of total life expectancies according
                 if (mobilav==1)     to initial status i, ei. .
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    */
                 else {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double age, agelim, hf;
                 }    double ***p3matp, ***p3matm, ***varhe;
               }    double **dnewm,**doldm;
               if (h==(int)(calagedate+12*cpt)){    double *xp, *xm;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    double **gp, **gm;
                   /*fprintf(ficrespop," %.3f", kk1);    double ***gradg, ***trgradg;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    int theta;
               }  
             }    double eip, vip;
             for(i=1; i<=nlstate;i++){  
               kk1=0.;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                 for(j=1; j<=nlstate;j++){    xp=vector(1,npar);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    xm=vector(1,npar);
                 }    dnewm=matrix(1,nlstate*nlstate,1,npar);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             }    
     pstamp(ficresstdeij);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fprintf(ficresstdeij,"# Age");
           }    for(i=1; i<=nlstate;i++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=nlstate;j++)
         }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       }      fprintf(ficresstdeij," e%1d. ",i);
      }
   /******/    fprintf(ficresstdeij,"\n");
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    pstamp(ficrescveij);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficrescveij,"# Age");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;      for(j=1; j<=nlstate;j++){
                  cptj= (j-1)*nlstate+i;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i2=1; i2<=nlstate;i2++)
           oldm=oldms;savm=savms;          for(j2=1; j2<=nlstate;j2++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              cptj2= (j2-1)*nlstate+i2;
           for (h=0; h<=nhstepm; h++){            if(cptj2 <= cptj)
             if (h==(int) (calagedate+YEARM*cpt)) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficrescveij,"\n");
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                  if(estepm < stepm){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          printf ("Problem %d lower than %d\n",estepm, stepm);
               }    }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    else  hstepm=estepm;   
             }    /* We compute the life expectancy from trapezoids spaced every estepm months
           }     * This is mainly to measure the difference between two models: for example
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * if stepm=24 months pijx are given only every 2 years and by summing them
         }     * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
    }     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    /* For example we decided to compute the life expectancy with the smallest unit */
     free_vector(popeffectif,0,AGESUP);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     free_vector(popcount,0,AGESUP);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       Look at hpijx to understand the reason of that which relies in memory size
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       and note for a fixed period like estepm months */
   fclose(ficrespop);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
 /***********************************************/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 /**************** Main Program *****************/       results. So we changed our mind and took the option of the best precision.
 /***********************************************/    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 int main(int argc, char *argv[])  
 {    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    agelim=AGESUP;
   double agedeb, agefin,hf;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   double fret;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double **xi,tmp,delta;    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double dum; /* Dummy variable */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***p3mat;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   int *indx;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   char line[MAXLINE], linepar[MAXLINE];    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   char title[MAXLINE];    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    for (age=bage; age<=fage; age ++){ 
    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   char filerest[FILENAMELENGTH];   
   char fileregp[FILENAMELENGTH];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      /* Computing  Variances of health expectancies */
   int firstobs=1, lastobs=10;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   int sdeb, sfin; /* Status at beginning and end */         decrease memory allocation */
   int c,  h , cpt,l;      for(theta=1; theta <=npar; theta++){
   int ju,jl, mi;        for(i=1; i<=npar; i++){ 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   int mobilav=0,popforecast=0;        }
   int hstepm, nhstepm;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
   double bage, fage, age, agelim, agebase;        for(j=1; j<= nlstate; j++){
   double ftolpl=FTOL;          for(i=1; i<=nlstate; i++){
   double **prlim;            for(h=0; h<=nhstepm-1; h++){
   double *severity;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   double ***param; /* Matrix of parameters */              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   double  *p;            }
   double **matcov; /* Matrix of covariance */          }
   double ***delti3; /* Scale */        }
   double *delti; /* Scale */       
   double ***eij, ***vareij;        for(ij=1; ij<= nlstate*nlstate; ij++)
   double **varpl; /* Variances of prevalence limits by age */          for(h=0; h<=nhstepm-1; h++){
   double *epj, vepp;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   double kk1, kk2;          }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      }/* End theta */
        
       
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";      for(h=0; h<=nhstepm-1; h++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   char z[1]="c", occ;      
 #include <sys/time.h>  
 #include <time.h>       for(ij=1;ij<=nlstate*nlstate;ij++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(ji=1;ji<=nlstate*nlstate;ji++)
            varhe[ij][ji][(int)age] =0.;
   /* long total_usecs;  
   struct timeval start_time, end_time;       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       for(h=0;h<=nhstepm-1;h++){
   getcwd(pathcd, size);        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   printf("\n%s",version);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   if(argc <=1){          for(ij=1;ij<=nlstate*nlstate;ij++)
     printf("\nEnter the parameter file name: ");            for(ji=1;ji<=nlstate*nlstate;ji++)
     scanf("%s",pathtot);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   }        }
   else{      }
     strcpy(pathtot,argv[1]);      /* Computing expectancies */
   }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      for(i=1; i<=nlstate;i++)
   /*cygwin_split_path(pathtot,path,optionfile);        for(j=1; j<=nlstate;j++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* cutv(path,optionfile,pathtot,'\\');*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);          }
   replace(pathc,path);  
       fprintf(ficresstdeij,"%3.0f",age );
 /*-------- arguments in the command line --------*/      for(i=1; i<=nlstate;i++){
         eip=0.;
   strcpy(fileres,"r");        vip=0.;
   strcat(fileres, optionfilefiname);        for(j=1; j<=nlstate;j++){
   strcat(fileres,".txt");    /* Other files have txt extension */          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   /*---------arguments file --------*/            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        }
     printf("Problem with optionfile %s\n",optionfile);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     goto end;      }
   }      fprintf(ficresstdeij,"\n");
   
   strcpy(filereso,"o");      fprintf(ficrescveij,"%3.0f",age );
   strcat(filereso,fileres);      for(i=1; i<=nlstate;i++)
   if((ficparo=fopen(filereso,"w"))==NULL) {        for(j=1; j<=nlstate;j++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          cptj= (j-1)*nlstate+i;
   }          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
   /* Reads comments: lines beginning with '#' */              cptj2= (j2-1)*nlstate+i2;
   while((c=getc(ficpar))=='#' && c!= EOF){              if(cptj2 <= cptj)
     ungetc(c,ficpar);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     fgets(line, MAXLINE, ficpar);            }
     puts(line);        }
     fputs(line,ficparo);      fprintf(ficrescveij,"\n");
   }     
   ungetc(c,ficpar);    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 while((c=getc(ficpar))=='#' && c!= EOF){    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    printf("\n");
     puts(line);    fprintf(ficlog,"\n");
     fputs(line,ficparo);  
   }    free_vector(xm,1,npar);
   ungetc(c,ficpar);    free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   covar=matrix(0,NCOVMAX,1,n);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   cptcovn=0;  }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
   /************ Variance ******************/
   ncovmodel=2+cptcovn;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  {
      /* Variance of health expectancies */
   /* Read guess parameters */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* Reads comments: lines beginning with '#' */    /* double **newm;*/
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double **dnewmp,**doldmp;
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     puts(line);    int k, cptcode;
     fputs(line,ficparo);    double *xp;
   }    double **gp, **gm;  /* for var eij */
   ungetc(c,ficpar);    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double *gpp, *gmp; /* for var p point j */
     for(i=1; i <=nlstate; i++)    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     for(j=1; j <=nlstate+ndeath-1; j++){    double ***p3mat;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double age,agelim, hf;
       fprintf(ficparo,"%1d%1d",i1,j1);    double ***mobaverage;
       printf("%1d%1d",i,j);    int theta;
       for(k=1; k<=ncovmodel;k++){    char digit[4];
         fscanf(ficpar," %lf",&param[i][j][k]);    char digitp[25];
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);    char fileresprobmorprev[FILENAMELENGTH];
       }  
       fscanf(ficpar,"\n");    if(popbased==1){
       printf("\n");      if(mobilav!=0)
       fprintf(ficparo,"\n");        strcpy(digitp,"-populbased-mobilav-");
     }      else strcpy(digitp,"-populbased-nomobil-");
      }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    else 
       strcpy(digitp,"-stablbased-");
   p=param[1][1];  
      if (mobilav!=0) {
   /* Reads comments: lines beginning with '#' */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while((c=getc(ficpar))=='#' && c!= EOF){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     ungetc(c,ficpar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fgets(line, MAXLINE, ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);      }
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   for(i=1; i <=nlstate; i++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     for(j=1; j <=nlstate+ndeath-1; j++){    strcat(fileresprobmorprev,fileres);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("%1d%1d",i,j);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar,"%le",&delti3[i][j][k]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         printf(" %le",delti3[i][j][k]);   
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }    pstamp(ficresprobmorprev);
       fscanf(ficpar,"\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       printf("\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficparo,"\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   delti=delti3[1][1];        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
   /* Reads comments: lines beginning with '#' */    fprintf(ficresprobmorprev,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\n# Routine varevsij");
     ungetc(c,ficpar);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     puts(line);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     fputs(line,ficparo);  /*   } */
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    pstamp(ficresvij);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   matcov=matrix(1,npar,1,npar);    if(popbased==1)
   for(i=1; i <=npar; i++){      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     fscanf(ficpar,"%s",&str);    else
     printf("%s",str);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficparo,"%s",str);    fprintf(ficresvij,"# Age");
     for(j=1; j <=i; j++){    for(i=1; i<=nlstate;i++)
       fscanf(ficpar," %le",&matcov[i][j]);      for(j=1; j<=nlstate;j++)
       printf(" %.5le",matcov[i][j]);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(ficresvij,"\n");
     }  
     fscanf(ficpar,"\n");    xp=vector(1,npar);
     printf("\n");    dnewm=matrix(1,nlstate,1,npar);
     fprintf(ficparo,"\n");    doldm=matrix(1,nlstate,1,nlstate);
   }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   for(i=1; i <=npar; i++)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        gpp=vector(nlstate+1,nlstate+ndeath);
   printf("\n");    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     /*-------- Rewriting paramater file ----------*/    if(estepm < stepm){
      strcpy(rfileres,"r");    /* "Rparameterfile */      printf ("Problem %d lower than %d\n",estepm, stepm);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    }
      strcat(rfileres,".");    /* */    else  hstepm=estepm;   
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    /* For example we decided to compute the life expectancy with the smallest unit */
     if((ficres =fopen(rfileres,"w"))==NULL) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
     fprintf(ficres,"#%s\n",version);       Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like k years */
     /*-------- data file ----------*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     if((fic=fopen(datafile,"r"))==NULL)    {       survival function given by stepm (the optimization length). Unfortunately it
       printf("Problem with datafile: %s\n", datafile);goto end;       means that if the survival funtion is printed every two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     n= lastobs;    */
     severity = vector(1,maxwav);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     outcome=imatrix(1,maxwav+1,1,n);    agelim = AGESUP;
     num=ivector(1,n);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     moisnais=vector(1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     annais=vector(1,n);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     moisdc=vector(1,n);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     andc=vector(1,n);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     agedc=vector(1,n);      gp=matrix(0,nhstepm,1,nlstate);
     cod=ivector(1,n);      gm=matrix(0,nhstepm,1,nlstate);
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);      for(theta=1; theta <=npar; theta++){
     anint=matrix(1,maxwav,1,n);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     s=imatrix(1,maxwav+1,1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     adl=imatrix(1,maxwav+1,1,n);            }
     tab=ivector(1,NCOVMAX);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     ncodemax=ivector(1,8);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
     i=1;        if (popbased==1) {
     while (fgets(line, MAXLINE, fic) != NULL)    {          if(mobilav ==0){
       if ((i >= firstobs) && (i <=lastobs)) {            for(i=1; i<=nlstate;i++)
                      prlim[i][i]=probs[(int)age][i][ij];
         for (j=maxwav;j>=1;j--){          }else{ /* mobilav */ 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for(i=1; i<=nlstate;i++)
           strcpy(line,stra);              prlim[i][i]=mobaverage[(int)age][i][ij];
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
         }    
                for(j=1; j<= nlstate; j++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(h=0; h<=nhstepm; h++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         /* This for computing probability of death (h=1 means
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
         for (j=ncovcol;j>=1;j--){           as a weighted average of prlim.
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         num[i]=atol(stra);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                    gpp[j] += prlim[i][i]*p3mat[i][j][1];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }    
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        /* end probability of death */
   
         i=i+1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     /* printf("ii=%d", ij);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        scanf("%d",i);*/   
   imx=i-1; /* Number of individuals */        if (popbased==1) {
           if(mobilav ==0){
   /* for (i=1; i<=imx; i++){            for(i=1; i<=nlstate;i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              prlim[i][i]=probs[(int)age][i][ij];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          }else{ /* mobilav */ 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            for(i=1; i<=nlstate;i++)
     }*/              prlim[i][i]=mobaverage[(int)age][i][ij];
    /*  for (i=1; i<=imx; i++){          }
      if (s[4][i]==9)  s[4][i]=-1;        }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
          for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   /* Calculation of the number of parameter from char model*/            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   Tvar=ivector(1,15);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   Tprod=ivector(1,15);          }
   Tvaraff=ivector(1,15);        }
   Tvard=imatrix(1,15,1,2);        /* This for computing probability of death (h=1 means
   Tage=ivector(1,15);                 computed over hstepm matrices product = hstepm*stepm months) 
               as a weighted average of prlim.
   if (strlen(model) >1){        */
     j=0, j1=0, k1=1, k2=1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     j=nbocc(model,'+');          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     j1=nbocc(model,'*');           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     cptcovn=j+1;        }    
     cptcovprod=j1;        /* end probability of death */
      
     strcpy(modelsav,model);        for(j=1; j<= nlstate; j++) /* vareij */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for(h=0; h<=nhstepm; h++){
       printf("Error. Non available option model=%s ",model);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       goto end;          }
     }  
            for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     for(i=(j+1); i>=1;i--){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       cutv(stra,strb,modelsav,'+');        }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      } /* End theta */
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {      for(h=0; h<=nhstepm; h++) /* veij */
           cptcovprod--;        for(j=1; j<=nlstate;j++)
           cutv(strb,stre,strd,'V');          for(theta=1; theta <=npar; theta++)
           Tvar[i]=atoi(stre);            trgradg[h][j][theta]=gradg[h][theta][j];
           cptcovage++;  
             Tage[cptcovage]=i;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             /*printf("stre=%s ", stre);*/        for(theta=1; theta <=npar; theta++)
         }          trgradgp[j][theta]=gradgp[theta][j];
         else if (strcmp(strd,"age")==0) {    
           cptcovprod--;  
           cutv(strb,stre,strc,'V');      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           Tvar[i]=atoi(stre);      for(i=1;i<=nlstate;i++)
           cptcovage++;        for(j=1;j<=nlstate;j++)
           Tage[cptcovage]=i;          vareij[i][j][(int)age] =0.;
         }  
         else {      for(h=0;h<=nhstepm;h++){
           cutv(strb,stre,strc,'V');        for(k=0;k<=nhstepm;k++){
           Tvar[i]=ncovcol+k1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           cutv(strb,strc,strd,'V');          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           Tprod[k1]=i;          for(i=1;i<=nlstate;i++)
           Tvard[k1][1]=atoi(strc);            for(j=1;j<=nlstate;j++)
           Tvard[k1][2]=atoi(stre);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           Tvar[cptcovn+k2]=Tvard[k1][1];        }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      }
           for (k=1; k<=lastobs;k++)    
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      /* pptj */
           k1++;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           k2=k2+2;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       else {          varppt[j][i]=doldmp[j][i];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      /* end ppptj */
        /*  scanf("%d",i);*/      /*  x centered again */
       cutv(strd,strc,strb,'V');      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       Tvar[i]=atoi(strc);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       }   
       strcpy(modelsav,stra);        if (popbased==1) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        if(mobilav ==0){
         scanf("%d",i);*/          for(i=1; i<=nlstate;i++)
     }            prlim[i][i]=probs[(int)age][i][ij];
 }        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            prlim[i][i]=mobaverage[(int)age][i][ij];
   printf("cptcovprod=%d ", cptcovprod);        }
   scanf("%d ",i);*/      }
     fclose(fic);               
       /* This for computing probability of death (h=1 means
     /*  if(mle==1){*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     if (weightopt != 1) { /* Maximisation without weights*/         as a weighted average of prlim.
       for(i=1;i<=n;i++) weight[i]=1.0;      */
     }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /*-calculation of age at interview from date of interview and age at death -*/        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     agev=matrix(1,maxwav,1,imx);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
     for (i=1; i<=imx; i++) {      /* end probability of death */
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          anint[m][i]=9999;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          s[m][i]=-1;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
        }        for(i=1; i<=nlstate;i++){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       }        }
     }      } 
       fprintf(ficresprobmorprev,"\n");
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      fprintf(ficresvij,"%.0f ",age );
       for(m=1; (m<= maxwav); m++){      for(i=1; i<=nlstate;i++)
         if(s[m][i] >0){        for(j=1; j<=nlstate;j++){
           if (s[m][i] >= nlstate+1) {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
             if(agedc[i]>0)        }
               if(moisdc[i]!=99 && andc[i]!=9999)      fprintf(ficresvij,"\n");
                 agev[m][i]=agedc[i];      free_matrix(gp,0,nhstepm,1,nlstate);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      free_matrix(gm,0,nhstepm,1,nlstate);
            else {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
               if (andc[i]!=9999){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               agev[m][i]=-1;    } /* End age */
               }    free_vector(gpp,nlstate+1,nlstate+ndeath);
             }    free_vector(gmp,nlstate+1,nlstate+ndeath);
           }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           else if(s[m][i] !=9){ /* Should no more exist */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             if(mint[m][i]==99 || anint[m][i]==9999)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
               agev[m][i]=1;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             else if(agev[m][i] <agemin){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
               agemin=agev[m][i];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
             else if(agev[m][i] >agemax){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
               agemax=agev[m][i];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             /*agev[m][i]=anint[m][i]-annais[i];*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             /*   agev[m][i] = age[i]+2*m;*/  */
           }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           else { /* =9 */    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             agev[m][i]=1;  
             s[m][i]=-1;    free_vector(xp,1,npar);
           }    free_matrix(doldm,1,nlstate,1,nlstate);
         }    free_matrix(dnewm,1,nlstate,1,npar);
         else /*= 0 Unknown */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           agev[m][i]=1;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }    fclose(ficresprobmorprev);
     for (i=1; i<=imx; i++)  {    fflush(ficgp);
       for(m=1; (m<= maxwav); m++){    fflush(fichtm); 
         if (s[m][i] > (nlstate+ndeath)) {  }  /* end varevsij */
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;  /************ Variance of prevlim ******************/
         }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       }  {
     }    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double **newm;
     double **dnewm,**doldm;
     free_vector(severity,1,maxwav);    int i, j, nhstepm, hstepm;
     free_imatrix(outcome,1,maxwav+1,1,n);    int k, cptcode;
     free_vector(moisnais,1,n);    double *xp;
     free_vector(annais,1,n);    double *gp, *gm;
     /* free_matrix(mint,1,maxwav,1,n);    double **gradg, **trgradg;
        free_matrix(anint,1,maxwav,1,n);*/    double age,agelim;
     free_vector(moisdc,1,n);    int theta;
     free_vector(andc,1,n);    
     pstamp(ficresvpl);
        fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     wav=ivector(1,imx);    fprintf(ficresvpl,"# Age");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    for(i=1; i<=nlstate;i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficresvpl," %1d-%1d",i,i);
        fprintf(ficresvpl,"\n");
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
       Tcode=ivector(1,100);    
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    hstepm=1*YEARM; /* Every year of age */
       ncodemax[1]=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    agelim = AGESUP;
          for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    codtab=imatrix(1,100,1,10);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    h=0;      if (stepm >= YEARM) hstepm=1;
    m=pow(2,cptcoveff);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        gradg=matrix(1,npar,1,nlstate);
    for(k=1;k<=cptcoveff; k++){      gp=vector(1,nlstate);
      for(i=1; i <=(m/pow(2,k));i++){      gm=vector(1,nlstate);
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      for(theta=1; theta <=npar; theta++){
            h++;        for(i=1; i<=npar; i++){ /* Computes gradient */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        }
          }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        }        for(i=1;i<=nlstate;i++)
      }          gp[i] = prlim[i][i];
    }      
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        for(i=1; i<=npar; i++) /* Computes gradient */
       codtab[1][2]=1;codtab[2][2]=2; */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    /* for(i=1; i <=m ;i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(k=1; k <=cptcovn; k++){        for(i=1;i<=nlstate;i++)
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          gm[i] = prlim[i][i];
       }  
       printf("\n");        for(i=1;i<=nlstate;i++)
       }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       scanf("%d",i);*/      } /* End theta */
      
    /* Calculates basic frequencies. Computes observed prevalence at single age      trgradg =matrix(1,nlstate,1,npar);
        and prints on file fileres'p'. */  
       for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
              trgradg[j][theta]=gradg[theta][j];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1;i<=nlstate;i++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        varpl[i][(int)age] =0.;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
            for(i=1;i<=nlstate;i++)
     /* For Powell, parameters are in a vector p[] starting at p[1]        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
     if(mle==1){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      fprintf(ficresvpl,"\n");
     }      free_vector(gp,1,nlstate);
          free_vector(gm,1,nlstate);
     /*--------- results files --------------*/      free_matrix(gradg,1,npar,1,nlstate);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      free_matrix(trgradg,1,nlstate,1,npar);
      } /* End age */
   
    jk=1;    free_vector(xp,1,npar);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_matrix(doldm,1,nlstate,1,npar);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_matrix(dnewm,1,nlstate,1,nlstate);
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){  }
        if (k != i)  
          {  /************ Variance of one-step probabilities  ******************/
            printf("%d%d ",i,k);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
            fprintf(ficres,"%1d%1d ",i,k);  {
            for(j=1; j <=ncovmodel; j++){    int i, j=0,  i1, k1, l1, t, tj;
              printf("%f ",p[jk]);    int k2, l2, j1,  z1;
              fprintf(ficres,"%f ",p[jk]);    int k=0,l, cptcode;
              jk++;    int first=1, first1;
            }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
            printf("\n");    double **dnewm,**doldm;
            fprintf(ficres,"\n");    double *xp;
          }    double *gp, *gm;
      }    double **gradg, **trgradg;
    }    double **mu;
  if(mle==1){    double age,agelim, cov[NCOVMAX];
     /* Computing hessian and covariance matrix */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     ftolhess=ftol; /* Usually correct */    int theta;
     hesscov(matcov, p, npar, delti, ftolhess, func);    char fileresprob[FILENAMELENGTH];
  }    char fileresprobcov[FILENAMELENGTH];
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    char fileresprobcor[FILENAMELENGTH];
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){    double ***varpij;
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {    strcpy(fileresprob,"prob"); 
           fprintf(ficres,"%1d%1d",i,j);    strcat(fileresprob,fileres);
           printf("%1d%1d",i,j);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           for(k=1; k<=ncovmodel;k++){      printf("Problem with resultfile: %s\n", fileresprob);
             printf(" %.5e",delti[jk]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             fprintf(ficres," %.5e",delti[jk]);    }
             jk++;    strcpy(fileresprobcov,"probcov"); 
           }    strcat(fileresprobcov,fileres);
           printf("\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           fprintf(ficres,"\n");      printf("Problem with resultfile: %s\n", fileresprobcov);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       }    }
      }    strcpy(fileresprobcor,"probcor"); 
        strcat(fileresprobcor,fileres);
     k=1;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     for(i=1;i<=npar;i++){    }
       /*  if (k>nlstate) k=1;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       i1=(i-1)/(ncovmodel*nlstate)+1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficres,"%3d",i);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       printf("%3d",i);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(j=1; j<=i;j++){    pstamp(ficresprob);
         fprintf(ficres," %.5e",matcov[i][j]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         printf(" %.5e",matcov[i][j]);    fprintf(ficresprob,"# Age");
       }    pstamp(ficresprobcov);
       fprintf(ficres,"\n");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       printf("\n");    fprintf(ficresprobcov,"# Age");
       k++;    pstamp(ficresprobcor);
     }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        fprintf(ficresprobcor,"# Age");
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    for(i=1; i<=nlstate;i++)
       puts(line);      for(j=1; j<=(nlstate+ndeath);j++){
       fputs(line,ficparo);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     ungetc(c,ficpar);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     estepm=0;      }  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   /* fprintf(ficresprob,"\n");
     if (estepm==0 || estepm < stepm) estepm=stepm;    fprintf(ficresprobcov,"\n");
     if (fage <= 2) {    fprintf(ficresprobcor,"\n");
       bage = ageminpar;   */
       fage = agemaxpar;   xp=vector(1,npar);
     }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    first=1;
      fprintf(ficgp,"\n# Routine varprob");
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     ungetc(c,ficpar);    fprintf(fichtm,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fputs(line,ficparo);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   }    file %s<br>\n",optionfilehtmcov);
   ungetc(c,ficpar);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    and drawn. It helps understanding how is the covariance between two incidences.\
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
        would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   while((c=getc(ficpar))=='#' && c!= EOF){  standard deviations wide on each axis. <br>\
     ungetc(c,ficpar);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     fgets(line, MAXLINE, ficpar);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     puts(line);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     fputs(line,ficparo);  
   }    cov[1]=1;
   ungetc(c,ficpar);    tj=cptcoveff;
      if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    for(t=1; t<=tj;t++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
   fscanf(ficpar,"pop_based=%d\n",&popbased);        if  (cptcovn>0) {
   fprintf(ficparo,"pop_based=%d\n",popbased);            fprintf(ficresprob, "\n#********** Variable "); 
   fprintf(ficres,"pop_based=%d\n",popbased);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprob, "**********\n#\n");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcov, "\n#********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcov, "**********\n#\n");
     puts(line);          
     fputs(line,ficparo);          fprintf(ficgp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ungetc(c,ficpar);          fprintf(ficgp, "**********\n#\n");
           
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcor, "\n#********** Variable ");    
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcor, "**********\n#");    
     puts(line);        }
     fputs(line,ficparo);        
   }        for (age=bage; age<=fage; age ++){ 
   ungetc(c,ficpar);          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
 /*------------ gnuplot -------------*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            gp=vector(1,(nlstate)*(nlstate+ndeath));
 /*------------ free_vector  -------------*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
  chdir(path);      
            for(theta=1; theta <=npar; theta++){
  free_ivector(wav,1,imx);            for(i=1; i<=npar; i++)
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              
  free_ivector(num,1,n);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  free_vector(agedc,1,n);            
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            k=0;
  fclose(ficparo);            for(i=1; i<= (nlstate); i++){
  fclose(ficres);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
 /*--------- index.htm --------*/                gp[k]=pmmij[i][j];
               }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);            }
             
              for(i=1; i<=npar; i++)
   /*--------------- Prevalence limit --------------*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
   strcpy(filerespl,"pl");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   strcat(filerespl,fileres);            k=0;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            for(i=1; i<=(nlstate); i++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;              for(j=1; j<=(nlstate+ndeath);j++){
   }                k=k+1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                gm[k]=pmmij[i][j];
   fprintf(ficrespl,"#Prevalence limit\n");              }
   fprintf(ficrespl,"#Age ");            }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       
   fprintf(ficrespl,"\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   prlim=matrix(1,nlstate,1,nlstate);          }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(theta=1; theta <=npar; theta++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              trgradg[j][theta]=gradg[theta][j];
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          
   k=0;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   agebase=ageminpar;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   agelim=agemaxpar;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   ftolpl=1.e-10;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   i1=cptcoveff;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if (cptcovn < 1){i1=1;}          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   for(cptcov=1;cptcov<=i1;cptcov++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          
         k=k+1;          k=0;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          for(i=1; i<=(nlstate); i++){
         fprintf(ficrespl,"\n#******");            for(j=1; j<=(nlstate+ndeath);j++){
         for(j=1;j<=cptcoveff;j++)              k=k+1;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              mu[k][(int) age]=pmmij[i][j];
         fprintf(ficrespl,"******\n");            }
                  }
         for (age=agebase; age<=agelim; age++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           fprintf(ficrespl,"%.0f",age );              varpij[i][j][(int)age] = doldm[i][j];
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);          /*printf("\n%d ",(int)age);
           fprintf(ficrespl,"\n");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            }*/
   fclose(ficrespl);  
           fprintf(ficresprob,"\n%d ",(int)age);
   /*------------- h Pij x at various ages ------------*/          fprintf(ficresprobcov,"\n%d ",(int)age);
            fprintf(ficresprobcor,"\n%d ",(int)age);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   printf("Computing pij: result on file '%s' \n", filerespij);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/          i=0;
           for (k=1; k<=(nlstate);k++){
   agelim=AGESUP;            for (l=1; l<=(nlstate+ndeath);l++){ 
   hstepm=stepsize*YEARM; /* Every year of age */              i=i++;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   k=0;              for (j=1; j<=i;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       k=k+1;              }
         fprintf(ficrespij,"\n#****** ");            }
         for(j=1;j<=cptcoveff;j++)          }/* end of loop for state */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        } /* end of loop for age */
         fprintf(ficrespij,"******\n");  
                /* Confidence intervalle of pij  */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        /*
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficgp,"\nset noparametric;unset label");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           oldm=oldms;savm=savms;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficrespij,"# Age");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           for(i=1; i<=nlstate;i++)          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
             for(j=1; j<=nlstate+ndeath;j++)        */
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
            for (h=0; h<=nhstepm; h++){        first1=1;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for (k2=1; k2<=(nlstate);k2++){
             for(i=1; i<=nlstate;i++)          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
               for(j=1; j<=nlstate+ndeath;j++)            if(l2==k2) continue;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            j=(k2-1)*(nlstate+ndeath)+l2;
             fprintf(ficrespij,"\n");            for (k1=1; k1<=(nlstate);k1++){
              }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(l1==k1) continue;
           fprintf(ficrespij,"\n");                i=(k1-1)*(nlstate+ndeath)+l1;
         }                if(i<=j) continue;
     }                for (age=bage; age<=fage; age ++){ 
   }                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fclose(ficrespij);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   /*---------- Forecasting ------------------*/                    /* Computing eigen value of matrix of covariance */
   if((stepm == 1) && (strcmp(model,".")==0)){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                    /* Eigen vectors */
   }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   else{                    /*v21=sqrt(1.-v11*v11); *//* error */
     erreur=108;                    v21=(lc1-v1)/cv12*v11;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                    v12=-v21;
   }                    v22=v11;
                      tnalp=v21/v11;
                     if(first1==1){
   /*---------- Health expectancies and variances ------------*/                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   strcpy(filerest,"t");                    }
   strcat(filerest,fileres);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if((ficrest=fopen(filerest,"w"))==NULL) {                    /*printf(fignu*/
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                    if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
   strcpy(filerese,"e");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   strcat(filerese,fileres);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   if((ficreseij=fopen(filerese,"w"))==NULL) {                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  strcpy(fileresv,"v");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcat(fileresv,fileres);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   calagedate=-1;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
   k=0;                      first=0;
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       k=k+1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fprintf(ficrest,"\n#****** ");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       for(j=1;j<=cptcoveff;j++)                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficrest,"******\n");                    }/* if first */
                   } /* age mod 5 */
       fprintf(ficreseij,"\n#****** ");                } /* end loop age */
       for(j=1;j<=cptcoveff;j++)                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                first=1;
       fprintf(ficreseij,"******\n");              } /*l12 */
             } /* k12 */
       fprintf(ficresvij,"\n#****** ");          } /*l1 */
       for(j=1;j<=cptcoveff;j++)        }/* k1 */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } /* loop covariates */
       fprintf(ficresvij,"******\n");    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       oldm=oldms;savm=savms;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      free_vector(xp,1,npar);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fclose(ficresprob);
       oldm=oldms;savm=savms;    fclose(ficresprobcov);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    fclose(ficresprobcor);
        fflush(ficgp);
     fflush(fichtmcov);
    }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       epj=vector(1,nlstate+1);                    int lastpass, int stepm, int weightopt, char model[],\
       for(age=bage; age <=fage ;age++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    int popforecast, int estepm ,\
         if (popbased==1) {                    double jprev1, double mprev1,double anprev1, \
           for(i=1; i<=nlstate;i++)                    double jprev2, double mprev2,double anprev2){
             prlim[i][i]=probs[(int)age][i][k];    int jj1, k1, i1, cpt;
         }  
             fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         fprintf(ficrest," %4.0f",age);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  </ul>");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
           }     fprintf(fichtm,"\
           epj[nlstate+1] +=epj[j];   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
         }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
         for(i=1, vepp=0.;i <=nlstate;i++)   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
           for(j=1;j <=nlstate;j++)             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
             vepp += vareij[i][j][(int)age];     fprintf(fichtm,"\
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
         for(j=1;j <=nlstate;j++){     <a href=\"%s\">%s</a> <br>\n</li>",
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         }  
         fprintf(ficrest,"\n");  
       }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     }  
   }   m=cptcoveff;
 free_matrix(mint,1,maxwav,1,n);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);   jj1=0;
   fclose(ficreseij);   for(k1=1; k1<=m;k1++){
   fclose(ficresvij);     for(i1=1; i1<=ncodemax[k1];i1++){
   fclose(ficrest);       jj1++;
   fclose(ficpar);       if (cptcovn > 0) {
   free_vector(epj,1,nlstate+1);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   /*------- Variance limit prevalence------*/             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcpy(fileresvpl,"vpl");       }
   strcat(fileresvpl,fileres);       /* Pij */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     exit(0);       /* Quasi-incidences */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   k=0;         /* Period (stable) prevalence in each health state */
   for(cptcov=1;cptcov<=i1;cptcov++){         for(cpt=1; cpt<nlstate;cpt++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
       k=k+1;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fprintf(ficresvpl,"\n#****** ");         }
       for(j=1;j<=cptcoveff;j++)       for(cpt=1; cpt<=nlstate;cpt++) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       fprintf(ficresvpl,"******\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
             }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);     } /* end i1 */
       oldm=oldms;savm=savms;   }/* End k1 */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   fprintf(fichtm,"</ul>");
     }  
  }  
    fprintf(fichtm,"\
   fclose(ficresvpl);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);   fprintf(fichtm,"\
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   fprintf(fichtm,"\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   free_matrix(matcov,1,npar,1,npar);     <a href=\"%s\">%s</a> <br>\n</li>",
   free_vector(delti,1,npar);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   free_matrix(agev,1,maxwav,1,imx);   fprintf(fichtm,"\
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   if(erreur >0)             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     printf("End of Imach with error or warning %d\n",erreur);   fprintf(fichtm,"\
   else   printf("End of Imach\n");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     fprintf(fichtm,"\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   /*printf("Total time was %d uSec.\n", total_usecs);*/           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   /*------ End -----------*/   fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
  end:  
   /* chdir(pathcd);*/  /*  if(popforecast==1) fprintf(fichtm,"\n */
  /*system("wgnuplot graph.plt");*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
  /*system("../gp37mgw/wgnuplot graph.plt");*/  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
  /*system("cd ../gp37mgw");*/  /*      <br>",fileres,fileres,fileres,fileres); */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  /*  else  */
  strcpy(plotcmd,GNUPLOTPROGRAM);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
  strcat(plotcmd," ");   fflush(fichtm);
  strcat(plotcmd,optionfilegnuplot);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
  system(plotcmd);  
    m=cptcoveff;
  /*#ifdef windows*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   while (z[0] != 'q') {  
     /* chdir(path); */   jj1=0;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");   for(k1=1; k1<=m;k1++){
     scanf("%s",z);     for(i1=1; i1<=ncodemax[k1];i1++){
     if (z[0] == 'c') system("./imach");       jj1++;
     else if (z[0] == 'e') system(optionfilehtm);       if (cptcovn > 0) {
     else if (z[0] == 'g') system(plotcmd);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     else if (z[0] == 'q') exit(0);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /*#endif */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 }       }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.119


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>