Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.124

version 1.41.2.1, 2003/06/12 10:43:20 version 1.124, 2006/03/22 17:13:53
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.124  2006/03/22 17:13:53  lievre
      Parameters are printed with %lf instead of %f (more numbers after the comma).
   This program computes Healthy Life Expectancies from    The log-likelihood is printed in the log file
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.123  2006/03/20 10:52:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Module): <title> changed, corresponds to .htm file
   case of a health survey which is our main interest) -2- at least a    name. <head> headers where missing.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    * imach.c (Module): Weights can have a decimal point as for
   computed from the time spent in each health state according to a    English (a comma might work with a correct LC_NUMERIC environment,
   model. More health states you consider, more time is necessary to reach the    otherwise the weight is truncated).
   Maximum Likelihood of the parameters involved in the model.  The    Modification of warning when the covariates values are not 0 or
   simplest model is the multinomial logistic model where pij is the    1.
   probability to be observed in state j at the second wave    Version 0.98g
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.122  2006/03/20 09:45:41  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Weights can have a decimal point as for
   complex model than "constant and age", you should modify the program    English (a comma might work with a correct LC_NUMERIC environment,
   where the markup *Covariates have to be included here again* invites    otherwise the weight is truncated).
   you to do it.  More covariates you add, slower the    Modification of warning when the covariates values are not 0 or
   convergence.    1.
     Version 0.98g
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.121  2006/03/16 17:45:01  lievre
   identical for each individual. Also, if a individual missed an    * imach.c (Module): Comments concerning covariates added
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   hPijx is the probability to be observed in state i at age x+h    not 1 month. Version 0.98f
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.120  2006/03/16 15:10:38  lievre
   states. This elementary transition (by month or quarter trimester,    (Module): refinements in the computation of lli if
   semester or year) is model as a multinomial logistic.  The hPx    status=-2 in order to have more reliable computation if stepm is
   matrix is simply the matrix product of nh*stepm elementary matrices    not 1 month. Version 0.98f
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Also this programme outputs the covariance matrix of the parameters but also    computed as likelihood omitting the logarithm. Version O.98e
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.118  2006/03/14 18:20:07  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): varevsij Comments added explaining the second
            Institut national d'études démographiques, Paris.    table of variances if popbased=1 .
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   from the European Union.    (Module): Function pstamp added
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.98d
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.117  2006/03/14 17:16:22  brouard
   **********************************************************************/    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
 #include <math.h>    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #include <stdio.h>    (Module): Function pstamp added
 #include <stdlib.h>    (Module): Version 0.98d
 #include <unistd.h>  
     Revision 1.116  2006/03/06 10:29:27  brouard
 #define MAXLINE 256    (Module): Variance-covariance wrong links and
 #define GNUPLOTPROGRAM "wgnuplot"    varian-covariance of ej. is needed (Saito).
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.115  2006/02/27 12:17:45  brouard
 /*#define DEBUG*/    (Module): One freematrix added in mlikeli! 0.98c
   
 /*#define windows*/    Revision 1.114  2006/02/26 12:57:58  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Some improvements in processing parameter
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    filename with strsep.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.113  2006/02/24 14:20:24  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 #define NINTERVMAX 8    allocation too.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.112  2006/01/30 09:55:26  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.111  2006/01/25 20:38:18  brouard
 #define AGESUP 130    (Module): Lots of cleaning and bugs added (Gompertz)
 #define AGEBASE 40    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   
 int erreur; /* Error number */    Revision 1.110  2006/01/25 00:51:50  brouard
 int nvar;    (Module): Lots of cleaning and bugs added (Gompertz)
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.109  2006/01/24 19:37:15  brouard
 int nlstate=2; /* Number of live states */    (Module): Comments (lines starting with a #) are allowed in data.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.108  2006/01/19 18:05:42  lievre
 int popbased=0;    Gnuplot problem appeared...
     To be fixed
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.107  2006/01/19 16:20:37  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Test existence of gnuplot in imach path
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.106  2006/01/19 13:24:36  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Some cleaning and links added in html output
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.105  2006/01/05 20:23:19  lievre
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    *** empty log message ***
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.104  2005/09/30 16:11:43  lievre
 FILE *ficreseij;    (Module): sump fixed, loop imx fixed, and simplifications.
   char filerese[FILENAMELENGTH];    (Module): If the status is missing at the last wave but we know
  FILE  *ficresvij;    that the person is alive, then we can code his/her status as -2
   char fileresv[FILENAMELENGTH];    (instead of missing=-1 in earlier versions) and his/her
  FILE  *ficresvpl;    contributions to the likelihood is 1 - Prob of dying from last
   char fileresvpl[FILENAMELENGTH];    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.103  2005/09/30 15:54:49  lievre
 #define FTOL 1.0e-10    (Module): sump fixed, loop imx fixed, and simplifications.
   
 #define NRANSI    Revision 1.102  2004/09/15 17:31:30  brouard
 #define ITMAX 200    Add the possibility to read data file including tab characters.
   
 #define TOL 2.0e-4    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.100  2004/07/12 18:29:06  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Add version for Mac OS X. Just define UNIX in Makefile
   
 #define GOLD 1.618034    Revision 1.99  2004/06/05 08:57:40  brouard
 #define GLIMIT 100.0    *** empty log message ***
 #define TINY 1.0e-20  
     Revision 1.98  2004/05/16 15:05:56  brouard
 static double maxarg1,maxarg2;    New version 0.97 . First attempt to estimate force of mortality
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    directly from the data i.e. without the need of knowing the health
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    state at each age, but using a Gompertz model: log u =a + b*age .
      This is the basic analysis of mortality and should be done before any
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    other analysis, in order to test if the mortality estimated from the
 #define rint(a) floor(a+0.5)    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    The same imach parameter file can be used but the option for mle should be -3.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Agnès, who wrote this part of the code, tried to keep most of the
 int imx;    former routines in order to include the new code within the former code.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Current limitations:
     A) Even if you enter covariates, i.e. with the
 int m,nb;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    B) There is no computation of Life Expectancy nor Life Table.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.97  2004/02/20 13:25:42  lievre
 double dateintmean=0;    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 double *weight;  
 int **s; /* Status */    Revision 1.96  2003/07/15 15:38:55  brouard
 double *agedc, **covar, idx;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    rewritten within the same printf. Workaround: many printfs.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.95  2003/07/08 07:54:34  brouard
 double ftolhess; /* Tolerance for computing hessian */    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 /**************** split *************************/    matrix (cov(a12,c31) instead of numbers.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
    char *s;                             /* pointer */    Just cleaning
    int  l1, l2;                         /* length counters */  
     Revision 1.93  2003/06/25 16:33:55  brouard
    l1 = strlen( path );                 /* length of path */    (Module): On windows (cygwin) function asctime_r doesn't
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    exist so I changed back to asctime which exists.
 #ifdef windows    (Module): Version 0.96b
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.92  2003/06/25 16:30:45  brouard
    s = strrchr( path, '/' );            /* find last / */    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.91  2003/06/25 15:30:29  brouard
       extern char       *getwd( );    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
       if ( getwd( dirc ) == NULL ) {    helps to forecast when convergence will be reached. Elapsed time
 #else    is stamped in powell.  We created a new html file for the graphs
       extern char       *getcwd( );    concerning matrix of covariance. It has extension -cov.htm.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.90  2003/06/24 12:34:15  brouard
 #endif    (Module): Some bugs corrected for windows. Also, when
          return( GLOCK_ERROR_GETCWD );    mle=-1 a template is output in file "or"mypar.txt with the design
       }    of the covariance matrix to be input.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.89  2003/06/24 12:30:52  brouard
       s++;                              /* after this, the filename */    (Module): Some bugs corrected for windows. Also, when
       l2 = strlen( s );                 /* length of filename */    mle=-1 a template is output in file "or"mypar.txt with the design
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    of the covariance matrix to be input.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.88  2003/06/23 17:54:56  brouard
       dirc[l1-l2] = 0;                  /* add zero */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.87  2003/06/18 12:26:01  brouard
 #ifdef windows    Version 0.96
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.86  2003/06/17 20:04:08  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): Change position of html and gnuplot routines and added
 #endif    routine fileappend.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.85  2003/06/17 13:12:43  brouard
    strcpy(ext,s);                       /* save extension */    * imach.c (Repository): Check when date of death was earlier that
    l1= strlen( name);    current date of interview. It may happen when the death was just
    l2= strlen( s)+1;    prior to the death. In this case, dh was negative and likelihood
    strncpy( finame, name, l1-l2);    was wrong (infinity). We still send an "Error" but patch by
    finame[l1-l2]= 0;    assuming that the date of death was just one stepm after the
    return( 0 );                         /* we're done */    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /******************************************/    truncation)
     (Repository): No more line truncation errors.
 void replace(char *s, char*t)  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   int i;    * imach.c (Repository): Replace "freqsummary" at a correct
   int lg=20;    place. It differs from routine "prevalence" which may be called
   i=0;    many times. Probs is memory consuming and must be used with
   lg=strlen(t);    parcimony.
   for(i=0; i<= lg; i++) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.83  2003/06/10 13:39:11  lievre
   }    *** empty log message ***
 }  
     Revision 1.82  2003/06/05 15:57:20  brouard
 int nbocc(char *s, char occ)    Add log in  imach.c and  fullversion number is now printed.
 {  
   int i,j=0;  */
   int lg=20;  /*
   i=0;     Interpolated Markov Chain
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Short summary of the programme:
   if  (s[i] == occ ) j++;    
   }    This program computes Healthy Life Expectancies from
   return j;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 void cutv(char *u,char *v, char*t, char occ)    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   int i,lg,j,p=0;    (if any) in individual health status.  Health expectancies are
   i=0;    computed from the time spent in each health state according to a
   for(j=0; j<=strlen(t)-1; j++) {    model. More health states you consider, more time is necessary to reach the
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Maximum Likelihood of the parameters involved in the model.  The
   }    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
   lg=strlen(t);    conditional to be observed in state i at the first wave. Therefore
   for(j=0; j<p; j++) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     (u[j] = t[j]);    'age' is age and 'sex' is a covariate. If you want to have a more
   }    complex model than "constant and age", you should modify the program
      u[p]='\0';    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
    for(j=0; j<= lg; j++) {    convergence.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /********************** nrerror ********************/    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 void nrerror(char error_text[])  
 {    hPijx is the probability to be observed in state i at age x+h
   fprintf(stderr,"ERREUR ...\n");    conditional to the observed state i at age x. The delay 'h' can be
   fprintf(stderr,"%s\n",error_text);    split into an exact number (nh*stepm) of unobserved intermediate
   exit(1);    states. This elementary transition (by month, quarter,
 }    semester or year) is modelled as a multinomial logistic.  The hPx
 /*********************** vector *******************/    matrix is simply the matrix product of nh*stepm elementary matrices
 double *vector(int nl, int nh)    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Also this programme outputs the covariance matrix of the parameters but also
   if (!v) nrerror("allocation failure in vector");    of the life expectancies. It also computes the period (stable) prevalence. 
   return v-nl+NR_END;    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 /************************ free vector ******************/    This software have been partly granted by Euro-REVES, a concerted action
 void free_vector(double*v, int nl, int nh)    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   free((FREE_ARG)(v+nl-NR_END));    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
 /************************ivector *******************************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int *ivector(long nl,long nh)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   int *v;    **********************************************************************/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /*
   if (!v) nrerror("allocation failure in ivector");    main
   return v-nl+NR_END;    read parameterfile
 }    read datafile
     concatwav
 /******************free ivector **************************/    freqsummary
 void free_ivector(int *v, long nl, long nh)    if (mle >= 1)
 {      mlikeli
   free((FREE_ARG)(v+nl-NR_END));    print results files
 }    if mle==1 
        computes hessian
 /******************* imatrix *******************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 int **imatrix(long nrl, long nrh, long ncl, long nch)        begin-prev-date,...
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    open gnuplot file
 {    open html file
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    period (stable) prevalence
   int **m;     for age prevalim()
      h Pij x
   /* allocate pointers to rows */    variance of p varprob
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    forecasting if prevfcast==1 prevforecast call prevalence()
   if (!m) nrerror("allocation failure 1 in matrix()");    health expectancies
   m += NR_END;    Variance-covariance of DFLE
   m -= nrl;    prevalence()
       movingaverage()
      varevsij() 
   /* allocate rows and set pointers to them */    if popbased==1 varevsij(,popbased)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    total life expectancies
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Variance of period (stable) prevalence
   m[nrl] += NR_END;   end
   m[nrl] -= ncl;  */
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    
   /* return pointer to array of pointers to rows */   
   return m;  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /****************** free_imatrix *************************/  #include <string.h>
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include <unistd.h>
       int **m;  
       long nch,ncl,nrh,nrl;  #include <limits.h>
      /* free an int matrix allocated by imatrix() */  #include <sys/types.h>
 {  #include <sys/stat.h>
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #include <errno.h>
   free((FREE_ARG) (m+nrl-NR_END));  extern int errno;
 }  
   /* #include <sys/time.h> */
 /******************* matrix *******************************/  #include <time.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include "timeval.h"
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /* #include <libintl.h> */
   double **m;  /* #define _(String) gettext (String) */
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define MAXLINE 256
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define GNUPLOTPROGRAM "gnuplot"
   m -= nrl;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m[nrl] += NR_END;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl] -= ncl;  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   return m;  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /*************************free matrix ************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define YEARM 12. /* Number of months per year */
   free((FREE_ARG)(m+nrl-NR_END));  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /******************* ma3x *******************************/  #ifdef UNIX
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define ODIRSEPARATOR '\\'
   double ***m;  #else
   #define DIRSEPARATOR '\\'
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define CHARSEPARATOR "\\"
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ODIRSEPARATOR '/'
   m += NR_END;  #endif
   m -= nrl;  
   /* $Id$ */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* $State$ */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   m[nrl] -= ncl;  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int nvar;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m[nrl][ncl] += NR_END;  int npar=NPARMAX;
   m[nrl][ncl] -= nll;  int nlstate=2; /* Number of live states */
   for (j=ncl+1; j<=nch; j++)  int ndeath=1; /* Number of dead states */
     m[nrl][j]=m[nrl][j-1]+nlay;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int *wav; /* Number of waves for this individuual 0 is possible */
     for (j=ncl+1; j<=nch; j++)  int maxwav; /* Maxim number of waves */
       m[i][j]=m[i][j-1]+nlay;  int jmin, jmax; /* min, max spacing between 2 waves */
   }  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   return m;  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /*************************free ma3x ************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG)(m+nrl-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /***************** f1dim *************************/  FILE *ficlog, *ficrespow;
 extern int ncom;  int globpr; /* Global variable for printing or not */
 extern double *pcom,*xicom;  double fretone; /* Only one call to likelihood */
 extern double (*nrfunc)(double []);  long ipmx; /* Number of contributions */
    double sw; /* Sum of weights */
 double f1dim(double x)  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   int j;  FILE *ficresilk;
   double f;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double *xt;  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
   xt=vector(1,ncom);  FILE *ficreseij;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char filerese[FILENAMELENGTH];
   f=(*nrfunc)(xt);  FILE *ficresstdeij;
   free_vector(xt,1,ncom);  char fileresstde[FILENAMELENGTH];
   return f;  FILE *ficrescveij;
 }  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /*****************brent *************************/  char fileresv[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   int iter;  char title[MAXLINE];
   double a,b,d,etemp;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double fu,fv,fw,fx;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double ftemp;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char command[FILENAMELENGTH];
   double e=0.0;  int  outcmd=0;
    
   a=(ax < cx ? ax : cx);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  char filelog[FILENAMELENGTH]; /* Log file */
   fw=fv=fx=(*f)(x);  char filerest[FILENAMELENGTH];
   for (iter=1;iter<=ITMAX;iter++) {  char fileregp[FILENAMELENGTH];
     xm=0.5*(a+b);  char popfile[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     printf(".");fflush(stdout);  
 #ifdef DEBUG  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  struct timezone tzp;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  extern int gettimeofday();
 #endif  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  long time_value;
       *xmin=x;  extern long time();
       return fx;  char strcurr[80], strfor[80];
     }  
     ftemp=fu;  char *endptr;
     if (fabs(e) > tol1) {  long lval;
       r=(x-w)*(fx-fv);  double dval;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  #define NR_END 1
       q=2.0*(q-r);  #define FREE_ARG char*
       if (q > 0.0) p = -p;  #define FTOL 1.0e-10
       q=fabs(q);  
       etemp=e;  #define NRANSI 
       e=d;  #define ITMAX 200 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define TOL 2.0e-4 
       else {  
         d=p/q;  #define CGOLD 0.3819660 
         u=x+d;  #define ZEPS 1.0e-10 
         if (u-a < tol2 || b-u < tol2)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
           d=SIGN(tol1,xm-x);  
       }  #define GOLD 1.618034 
     } else {  #define GLIMIT 100.0 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define TINY 1.0e-20 
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  static double maxarg1,maxarg2;
     fu=(*f)(u);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     if (fu <= fx) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       if (u >= x) a=x; else b=x;    
       SHFT(v,w,x,u)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         SHFT(fv,fw,fx,fu)  #define rint(a) floor(a+0.5)
         } else {  
           if (u < x) a=u; else b=u;  static double sqrarg;
           if (fu <= fw || w == x) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
             v=w;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
             w=u;  int agegomp= AGEGOMP;
             fv=fw;  
             fw=fu;  int imx; 
           } else if (fu <= fv || v == x || v == w) {  int stepm=1;
             v=u;  /* Stepm, step in month: minimum step interpolation*/
             fv=fu;  
           }  int estepm;
         }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   }  
   nrerror("Too many iterations in brent");  int m,nb;
   *xmin=x;  long *num;
   return fx;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 /****************** mnbrak ***********************/  double *ageexmed,*agecens;
   double dateintmean=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  double *weight;
 {  int **s; /* Status */
   double ulim,u,r,q, dum;  double *agedc, **covar, idx;
   double fu;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    double *lsurv, *lpop, *tpop;
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (*fb > *fa) {  double ftolhess; /* Tolerance for computing hessian */
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /**************** split *************************/
       }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   while (*fb > *fc) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     r=(*bx-*ax)*(*fb-*fc);    */ 
     q=(*bx-*cx)*(*fb-*fa);    char  *ss;                            /* pointer */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    int   l1, l2;                         /* length counters */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    l1 = strlen(path );                   /* length of path */
     if ((*bx-u)*(u-*cx) > 0.0) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       fu=(*func)(u);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       fu=(*func)(u);      strcpy( name, path );               /* we got the fullname name because no directory */
       if (fu < *fc) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
           SHFT(*fb,*fc,fu,(*func)(u))      /* get current working directory */
           }      /*    extern  char* getcwd ( char *buf , int len);*/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       u=ulim;        return( GLOCK_ERROR_GETCWD );
       fu=(*func)(u);      }
     } else {      /* got dirc from getcwd*/
       u=(*cx)+GOLD*(*cx-*bx);      printf(" DIRC = %s \n",dirc);
       fu=(*func)(u);    } else {                              /* strip direcotry from path */
     }      ss++;                               /* after this, the filename */
     SHFT(*ax,*bx,*cx,u)      l2 = strlen( ss );                  /* length of filename */
       SHFT(*fa,*fb,*fc,fu)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       }      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /*************** linmin ************************/      printf(" DIRC2 = %s \n",dirc);
     }
 int ncom;    /* We add a separator at the end of dirc if not exists */
 double *pcom,*xicom;    l1 = strlen( dirc );                  /* length of directory */
 double (*nrfunc)(double []);    if( dirc[l1-1] != DIRSEPARATOR ){
        dirc[l1] =  DIRSEPARATOR;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      dirc[l1+1] = 0; 
 {      printf(" DIRC3 = %s \n",dirc);
   double brent(double ax, double bx, double cx,    }
                double (*f)(double), double tol, double *xmin);    ss = strrchr( name, '.' );            /* find last / */
   double f1dim(double x);    if (ss >0){
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      ss++;
               double *fc, double (*func)(double));      strcpy(ext,ss);                     /* save extension */
   int j;      l1= strlen( name);
   double xx,xmin,bx,ax;      l2= strlen(ss)+1;
   double fx,fb,fa;      strncpy( finame, name, l1-l2);
        finame[l1-l2]= 0;
   ncom=n;    }
   pcom=vector(1,n);  
   xicom=vector(1,n);    return( 0 );                          /* we're done */
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  
     xicom[j]=xi[j];  /******************************************/
   }  
   ax=0.0;  void replace_back_to_slash(char *s, char*t)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int i;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    int lg=0;
 #ifdef DEBUG    i=0;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    lg=strlen(t);
 #endif    for(i=0; i<= lg; i++) {
   for (j=1;j<=n;j++) {      (s[i] = t[i]);
     xi[j] *= xmin;      if (t[i]== '\\') s[i]='/';
     p[j] += xi[j];    }
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /*************** powell ************************/    int lg=20;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    i=0;
             double (*func)(double []))    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   void linmin(double p[], double xi[], int n, double *fret,    if  (s[i] == occ ) j++;
               double (*func)(double []));    }
   int i,ibig,j;    return j;
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  void cutv(char *u,char *v, char*t, char occ)
   pt=vector(1,n);  {
   ptt=vector(1,n);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   xit=vector(1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   xits=vector(1,n);       gives u="abcedf" and v="ghi2j" */
   *fret=(*func)(p);    int i,lg,j,p=0;
   for (j=1;j<=n;j++) pt[j]=p[j];    i=0;
   for (*iter=1;;++(*iter)) {    for(j=0; j<=strlen(t)-1; j++) {
     fp=(*fret);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     ibig=0;    }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    lg=strlen(t);
     for (i=1;i<=n;i++)    for(j=0; j<p; j++) {
       printf(" %d %.12f",i, p[i]);      (u[j] = t[j]);
     printf("\n");    }
     for (i=1;i<=n;i++) {       u[p]='\0';
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);     for(j=0; j<= lg; j++) {
 #ifdef DEBUG      if (j>=(p+1))(v[j-p-1] = t[j]);
       printf("fret=%lf \n",*fret);    }
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /********************** nrerror ********************/
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  void nrerror(char error_text[])
         ibig=i;  {
       }    fprintf(stderr,"ERREUR ...\n");
 #ifdef DEBUG    fprintf(stderr,"%s\n",error_text);
       printf("%d %.12e",i,(*fret));    exit(EXIT_FAILURE);
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /*********************** vector *******************/
         printf(" x(%d)=%.12e",j,xit[j]);  double *vector(int nl, int nh)
       }  {
       for(j=1;j<=n;j++)    double *v;
         printf(" p=%.12e",p[j]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       printf("\n");    if (!v) nrerror("allocation failure in vector");
 #endif    return v-nl+NR_END;
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /************************ free vector ******************/
       int k[2],l;  void free_vector(double*v, int nl, int nh)
       k[0]=1;  {
       k[1]=-1;    free((FREE_ARG)(v+nl-NR_END));
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /************************ivector *******************************/
       printf("\n");  int *ivector(long nl,long nh)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    int *v;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if (!v) nrerror("allocation failure in ivector");
         }    return v-nl+NR_END;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  
 #endif  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   {
       free_vector(xit,1,n);    free((FREE_ARG)(v+nl-NR_END));
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /************************lvector *******************************/
       return;  long *lvector(long nl,long nh)
     }  {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    long *v;
     for (j=1;j<=n;j++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       ptt[j]=2.0*p[j]-pt[j];    if (!v) nrerror("allocation failure in ivector");
       xit[j]=p[j]-pt[j];    return v-nl+NR_END;
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /******************free lvector **************************/
     if (fptt < fp) {  void free_lvector(long *v, long nl, long nh)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    free((FREE_ARG)(v+nl-NR_END));
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /******************* imatrix *******************************/
           xi[j][n]=xit[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 #ifdef DEBUG  { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         for(j=1;j<=n;j++)    int **m; 
           printf(" %.12e",xit[j]);    
         printf("\n");    /* allocate pointers to rows */ 
 #endif    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
   }    m -= nrl; 
 }    
     
 /**** Prevalence limit ****************/    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 {    m[nrl] += NR_END; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m[nrl] -= ncl; 
      matrix by transitions matrix until convergence is reached */    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int i, ii,j,k;    
   double min, max, maxmin, maxmax,sumnew=0.;    /* return pointer to array of pointers to rows */ 
   double **matprod2();    return m; 
   double **out, cov[NCOVMAX], **pmij();  } 
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
   for (ii=1;ii<=nlstate+ndeath;ii++)        int **m;
     for (j=1;j<=nlstate+ndeath;j++){        long nch,ncl,nrh,nrl; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);       /* free an int matrix allocated by imatrix() */ 
     }  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
    cov[1]=1.;    free((FREE_ARG) (m+nrl-NR_END)); 
    } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /******************* matrix *******************************/
     newm=savm;  double **matrix(long nrl, long nrh, long ncl, long nch)
     /* Covariates have to be included here again */  {
      cov[2]=agefin;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      double **m;
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m -= nrl;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m[nrl] += NR_END;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    m[nrl] -= ncl;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
     savm=oldm;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     oldm=newm;     */
     maxmax=0.;  }
     for(j=1;j<=nlstate;j++){  
       min=1.;  /*************************free matrix ************************/
       max=0.;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for(i=1; i<=nlstate; i++) {  {
         sumnew=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free((FREE_ARG)(m+nrl-NR_END));
         prlim[i][j]= newm[i][j]/(1-sumnew);  }
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       maxmin=max-min;  {
       maxmax=FMAX(maxmax,maxmin);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     if(maxmax < ftolpl){  
       return prlim;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
 }    m -= nrl;
   
 /*************** transition probabilities ***************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   double s1, s2;  
   /*double t34;*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int i,j,j1, nc, ii, jj;  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for(i=1; i<= nlstate; i++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for(j=1; j<i;j++){    m[nrl][ncl] += NR_END;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl][ncl] -= nll;
         /*s2 += param[i][j][nc]*cov[nc];*/    for (j=ncl+1; j<=nch; j++) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      m[nrl][j]=m[nrl][j-1]+nlay;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    
       }    for (i=nrl+1; i<=nrh; i++) {
       ps[i][j]=s2;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
     for(j=i+1; j<=nlstate+ndeath;j++){    }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return m; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       }    */
       ps[i][j]=s2;  }
     }  
   }  /*************************free ma3x ************************/
     /*ps[3][2]=1;*/  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
   for(i=1; i<= nlstate; i++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      s1=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(j=1; j<i; j++)    free((FREE_ARG)(m+nrl-NR_END));
       s1+=exp(ps[i][j]);  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  /*************** function subdirf ***********/
     ps[i][i]=1./(s1+1.);  char *subdirf(char fileres[])
     for(j=1; j<i; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /* Caution optionfilefiname is hidden */
     for(j=i+1; j<=nlstate+ndeath; j++)    strcpy(tmpout,optionfilefiname);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,"/"); /* Add to the right */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    strcat(tmpout,fileres);
   } /* end i */    return tmpout;
   }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** function subdirf2 ***********/
       ps[ii][jj]=0;  char *subdirf2(char fileres[], char *preop)
       ps[ii][ii]=1;  {
     }    
   }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,preop);
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,fileres);
      printf("%lf ",ps[ii][jj]);    return tmpout;
    }  }
     printf("\n ");  
     }  /*************** function subdirf3 ***********/
     printf("\n ");printf("%lf ",cov[2]);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    
   goto end;*/    /* Caution optionfilefiname is hidden */
     return ps;    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
 /**************** Product of 2 matrices ******************/    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return tmpout;
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /***************** f1dim *************************/
   /* in, b, out are matrice of pointers which should have been initialized  extern int ncom; 
      before: only the contents of out is modified. The function returns  extern double *pcom,*xicom;
      a pointer to pointers identical to out */  extern double (*nrfunc)(double []); 
   long i, j, k;   
   for(i=nrl; i<= nrh; i++)  double f1dim(double x) 
     for(k=ncolol; k<=ncoloh; k++)  { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    int j; 
         out[i][k] +=in[i][j]*b[j][k];    double f;
     double *xt; 
   return out;   
 }    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 /************* Higher Matrix Product ***************/    free_vector(xt,1,ncom); 
     return f; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  } 
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*****************brent *************************/
      duration (i.e. until  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    int iter; 
      (typically every 2 years instead of every month which is too big).    double a,b,d,etemp;
      Model is determined by parameters x and covariates have to be    double fu,fv,fw,fx;
      included manually here.    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
      */    double e=0.0; 
    
   int i, j, d, h, k;    a=(ax < cx ? ax : cx); 
   double **out, cov[NCOVMAX];    b=(ax > cx ? ax : cx); 
   double **newm;    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
   /* Hstepm could be zero and should return the unit matrix */    for (iter=1;iter<=ITMAX;iter++) { 
   for (i=1;i<=nlstate+ndeath;i++)      xm=0.5*(a+b); 
     for (j=1;j<=nlstate+ndeath;j++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       po[i][j][0]=(i==j ? 1.0 : 0.0);      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #ifdef DEBUG
   for(h=1; h <=nhstepm; h++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(d=1; d <=hstepm; d++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       newm=savm;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       /* Covariates have to be included here again */  #endif
       cov[1]=1.;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        *xmin=x; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        return fx; 
       for (k=1; k<=cptcovage;k++)      } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      ftemp=fu;
       for (k=1; k<=cptcovprod;k++)      if (fabs(e) > tol1) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        q=2.0*(q-r); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        if (q > 0.0) p = -p; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        q=fabs(q); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        etemp=e; 
       savm=oldm;        e=d; 
       oldm=newm;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(i=1; i<=nlstate+ndeath; i++)        else { 
       for(j=1;j<=nlstate+ndeath;j++) {          d=p/q; 
         po[i][j][h]=newm[i][j];          u=x+d; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          if (u-a < tol2 || b-u < tol2) 
          */            d=SIGN(tol1,xm-x); 
       }        } 
   } /* end h */      } else { 
   return po;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
 /*************** log-likelihood *************/      if (fu <= fx) { 
 double func( double *x)        if (u >= x) a=x; else b=x; 
 {        SHFT(v,w,x,u) 
   int i, ii, j, k, mi, d, kk;          SHFT(fv,fw,fx,fu) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          } else { 
   double **out;            if (u < x) a=u; else b=u; 
   double sw; /* Sum of weights */            if (fu <= fw || w == x) { 
   double lli; /* Individual log likelihood */              v=w; 
   long ipmx;              w=u; 
   /*extern weight */              fv=fw; 
   /* We are differentiating ll according to initial status */              fw=fu; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            } else if (fu <= fv || v == x || v == w) { 
   /*for(i=1;i<imx;i++)              v=u; 
     printf(" %d\n",s[4][i]);              fv=fu; 
   */            } 
   cov[1]=1.;          } 
     } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    nrerror("Too many iterations in brent"); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    *xmin=x; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    return fx; 
     for(mi=1; mi<= wav[i]-1; mi++){  } 
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /****************** mnbrak ***********************/
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              double (*func)(double)) 
         for (kk=1; kk<=cptcovage;kk++) {  { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double ulim,u,r,q, dum;
         }    double fu; 
           
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    *fa=(*func)(*ax); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    *fb=(*func)(*bx); 
         savm=oldm;    if (*fb > *fa) { 
         oldm=newm;      SHFT(dum,*ax,*bx,dum) 
                SHFT(dum,*fb,*fa,dum) 
                } 
       } /* end mult */    *cx=(*bx)+GOLD*(*bx-*ax); 
          *fc=(*func)(*cx); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    while (*fb > *fc) { 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      r=(*bx-*ax)*(*fb-*fc); 
       ipmx +=1;      q=(*bx-*cx)*(*fb-*fa); 
       sw += weight[i];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     } /* end of wave */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   } /* end of individual */      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        fu=(*func)(u); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        if (fu < *fc) { 
   return -l;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 }            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 /*********** Maximum Likelihood Estimation ***************/        u=ulim; 
         fu=(*func)(u); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      } else { 
 {        u=(*cx)+GOLD*(*cx-*bx); 
   int i,j, iter;        fu=(*func)(u); 
   double **xi,*delti;      } 
   double fret;      SHFT(*ax,*bx,*cx,u) 
   xi=matrix(1,npar,1,npar);        SHFT(*fa,*fb,*fc,fu) 
   for (i=1;i<=npar;i++)        } 
     for (j=1;j<=npar;j++)  } 
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  /*************** linmin ************************/
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   int ncom; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  double *pcom,*xicom;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  double (*nrfunc)(double []); 
    
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 /**** Computes Hessian and covariance matrix ***/    double brent(double ax, double bx, double cx, 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))                 double (*f)(double), double tol, double *xmin); 
 {    double f1dim(double x); 
   double  **a,**y,*x,pd;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double **hess;                double *fc, double (*func)(double)); 
   int i, j,jk;    int j; 
   int *indx;    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   double hessii(double p[], double delta, int theta, double delti[]);   
   double hessij(double p[], double delti[], int i, int j);    ncom=n; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    pcom=vector(1,n); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    xicom=vector(1,n); 
     nrfunc=func; 
   hess=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   printf("\nCalculation of the hessian matrix. Wait...\n");      xicom[j]=xi[j]; 
   for (i=1;i<=npar;i++){    } 
     printf("%d",i);fflush(stdout);    ax=0.0; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    xx=1.0; 
     /*printf(" %f ",p[i]);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     /*printf(" %lf ",hess[i][i]);*/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   }  #ifdef DEBUG
      printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=npar;i++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=npar;j++)  {  #endif
       if (j>i) {    for (j=1;j<=n;j++) { 
         printf(".%d%d",i,j);fflush(stdout);      xi[j] *= xmin; 
         hess[i][j]=hessij(p,delti,i,j);      p[j] += xi[j]; 
         hess[j][i]=hess[i][j];        } 
         /*printf(" %lf ",hess[i][j]);*/    free_vector(xicom,1,n); 
       }    free_vector(pcom,1,n); 
     }  } 
   }  
   printf("\n");  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    long sec_left, days, hours, minutes;
      days = (time_sec) / (60*60*24);
   a=matrix(1,npar,1,npar);    sec_left = (time_sec) % (60*60*24);
   y=matrix(1,npar,1,npar);    hours = (sec_left) / (60*60) ;
   x=vector(1,npar);    sec_left = (sec_left) %(60*60);
   indx=ivector(1,npar);    minutes = (sec_left) /60;
   for (i=1;i<=npar;i++)    sec_left = (sec_left) % (60);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   ludcmp(a,npar,indx,&pd);    return ascdiff;
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /*************** powell ************************/
     x[j]=1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     lubksb(a,npar,indx,x);              double (*func)(double [])) 
     for (i=1;i<=npar;i++){  { 
       matcov[i][j]=x[i];    void linmin(double p[], double xi[], int n, double *fret, 
     }                double (*func)(double [])); 
   }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   printf("\n#Hessian matrix#\n");    double fp,fptt;
   for (i=1;i<=npar;i++) {    double *xits;
     for (j=1;j<=npar;j++) {    int niterf, itmp;
       printf("%.3e ",hess[i][j]);  
     }    pt=vector(1,n); 
     printf("\n");    ptt=vector(1,n); 
   }    xit=vector(1,n); 
     xits=vector(1,n); 
   /* Recompute Inverse */    *fret=(*func)(p); 
   for (i=1;i<=npar;i++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    for (*iter=1;;++(*iter)) { 
   ludcmp(a,npar,indx,&pd);      fp=(*fret); 
       ibig=0; 
   /*  printf("\n#Hessian matrix recomputed#\n");      del=0.0; 
       last_time=curr_time;
   for (j=1;j<=npar;j++) {      (void) gettimeofday(&curr_time,&tzp);
     for (i=1;i<=npar;i++) x[i]=0;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     x[j]=1;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     lubksb(a,npar,indx,x);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     for (i=1;i<=npar;i++){     for (i=1;i<=n;i++) {
       y[i][j]=x[i];        printf(" %d %.12f",i, p[i]);
       printf("%.3e ",y[i][j]);        fprintf(ficlog," %d %.12lf",i, p[i]);
     }        fprintf(ficrespow," %.12lf", p[i]);
     printf("\n");      }
   }      printf("\n");
   */      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   free_matrix(a,1,npar,1,npar);      if(*iter <=3){
   free_matrix(y,1,npar,1,npar);        tm = *localtime(&curr_time.tv_sec);
   free_vector(x,1,npar);        strcpy(strcurr,asctime(&tm));
   free_ivector(indx,1,npar);  /*       asctime_r(&tm,strcurr); */
   free_matrix(hess,1,npar,1,npar);        forecast_time=curr_time; 
         itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /*************** hessian matrix ****************/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 double hessii( double x[], double delta, int theta, double delti[])        for(niterf=10;niterf<=30;niterf+=10){
 {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   int i;          tmf = *localtime(&forecast_time.tv_sec);
   int l=1, lmax=20;  /*      asctime_r(&tmf,strfor); */
   double k1,k2;          strcpy(strfor,asctime(&tmf));
   double p2[NPARMAX+1];          itmp = strlen(strfor);
   double res;          if(strfor[itmp-1]=='\n')
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          strfor[itmp-1]='\0';
   double fx;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int k=0,kmax=10;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double l1;        }
       }
   fx=func(x);      for (i=1;i<=n;i++) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(l=0 ; l <=lmax; l++){        fptt=(*fret); 
     l1=pow(10,l);  #ifdef DEBUG
     delts=delt;        printf("fret=%lf \n",*fret);
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficlog,"fret=%lf \n",*fret);
       delt = delta*(l1*k);  #endif
       p2[theta]=x[theta] +delt;        printf("%d",i);fflush(stdout);
       k1=func(p2)-fx;        fprintf(ficlog,"%d",i);fflush(ficlog);
       p2[theta]=x[theta]-delt;        linmin(p,xit,n,fret,func); 
       k2=func(p2)-fx;        if (fabs(fptt-(*fret)) > del) { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */          del=fabs(fptt-(*fret)); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          ibig=i; 
              } 
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf("%d %.12e",i,(*fret));
 #endif        fprintf(ficlog,"%d %.12e",i,(*fret));
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for (j=1;j<=n;j++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         k=kmax;          printf(" x(%d)=%.12e",j,xit[j]);
       }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        }
         k=kmax; l=lmax*10.;        for(j=1;j<=n;j++) {
       }          printf(" p=%.12e",p[j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          fprintf(ficlog," p=%.12e",p[j]);
         delts=delt;        }
       }        printf("\n");
     }        fprintf(ficlog,"\n");
   }  #endif
   delti[theta]=delts;      } 
   return res;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
    #ifdef DEBUG
 }        int k[2],l;
         k[0]=1;
 double hessij( double x[], double delti[], int thetai,int thetaj)        k[1]=-1;
 {        printf("Max: %.12e",(*func)(p));
   int i;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int l=1, l1, lmax=20;        for (j=1;j<=n;j++) {
   double k1,k2,k3,k4,res,fx;          printf(" %.12e",p[j]);
   double p2[NPARMAX+1];          fprintf(ficlog," %.12e",p[j]);
   int k;        }
         printf("\n");
   fx=func(x);        fprintf(ficlog,"\n");
   for (k=1; k<=2; k++) {        for(l=0;l<=1;l++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];          for (j=1;j<=n;j++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     k1=func(p2)-fx;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
     p2[thetai]=x[thetai]+delti[thetai]/k;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     k2=func(p2)-fx;        }
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;        free_vector(xit,1,n); 
          free_vector(xits,1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        free_vector(ptt,1,n); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        free_vector(pt,1,n); 
     k4=func(p2)-fx;        return; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      } 
 #ifdef DEBUG      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for (j=1;j<=n;j++) { 
 #endif        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
   return res;        pt[j]=p[j]; 
 }      } 
       fptt=(*func)(ptt); 
 /************** Inverse of matrix **************/      if (fptt < fp) { 
 void ludcmp(double **a, int n, int *indx, double *d)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 {        if (t < 0.0) { 
   int i,imax,j,k;          linmin(p,xit,n,fret,func); 
   double big,dum,sum,temp;          for (j=1;j<=n;j++) { 
   double *vv;            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
   vv=vector(1,n);          }
   *d=1.0;  #ifdef DEBUG
   for (i=1;i<=n;i++) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     big=0.0;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=1;j<=n;j++)          for(j=1;j<=n;j++){
       if ((temp=fabs(a[i][j])) > big) big=temp;            printf(" %.12e",xit[j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            fprintf(ficlog," %.12e",xit[j]);
     vv[i]=1.0/big;          }
   }          printf("\n");
   for (j=1;j<=n;j++) {          fprintf(ficlog,"\n");
     for (i=1;i<j;i++) {  #endif
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      } 
       a[i][j]=sum;    } 
     }  } 
     big=0.0;  
     for (i=j;i<=n;i++) {  /**** Prevalence limit (stable or period prevalence)  ****************/
       sum=a[i][j];  
       for (k=1;k<j;k++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       if ( (dum=vv[i]*fabs(sum)) >= big) {       matrix by transitions matrix until convergence is reached */
         big=dum;  
         imax=i;    int i, ii,j,k;
       }    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
     if (j != imax) {    double **out, cov[NCOVMAX], **pmij();
       for (k=1;k<=n;k++) {    double **newm;
         dum=a[imax][k];    double agefin, delaymax=50 ; /* Max number of years to converge */
         a[imax][k]=a[j][k];  
         a[j][k]=dum;    for (ii=1;ii<=nlstate+ndeath;ii++)
       }      for (j=1;j<=nlstate+ndeath;j++){
       *d = -(*d);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       vv[imax]=vv[j];      }
     }  
     indx[j]=imax;     cov[1]=1.;
     if (a[j][j] == 0.0) a[j][j]=TINY;   
     if (j != n) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       dum=1.0/(a[j][j]);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      newm=savm;
     }      /* Covariates have to be included here again */
   }       cov[2]=agefin;
   free_vector(vv,1,n);  /* Doesn't work */    
 ;        for (k=1; k<=cptcovn;k++) {
 }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 void lubksb(double **a, int n, int *indx, double b[])        }
 {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int i,ii=0,ip,j;        for (k=1; k<=cptcovprod;k++)
   double sum;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   for (i=1;i<=n;i++) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     ip=indx[i];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     sum=b[ip];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     b[ip]=b[i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      savm=oldm;
     else if (sum) ii=i;      oldm=newm;
     b[i]=sum;      maxmax=0.;
   }      for(j=1;j<=nlstate;j++){
   for (i=n;i>=1;i--) {        min=1.;
     sum=b[i];        max=0.;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for(i=1; i<=nlstate; i++) {
     b[i]=sum/a[i][i];          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
 /************ Frequencies ********************/          min=FMIN(min,prlim[i][j]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        }
 {  /* Some frequencies */        maxmin=max-min;
          maxmax=FMAX(maxmax,maxmin);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */      if(maxmax < ftolpl){
   double *pp;        return prlim;
   double pos, k2, dateintsum=0,k2cpt=0;      }
   FILE *ficresp;    }
   char fileresp[FILENAMELENGTH];  }
    
   pp=vector(1,nlstate);  /*************** transition probabilities ***************/ 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   strcat(fileresp,fileres);  {
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double s1, s2;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /*double t34;*/
     exit(0);    int i,j,j1, nc, ii, jj;
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for(i=1; i<= nlstate; i++){
   j1=0;        for(j=1; j<i;j++){
            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   j=cptcoveff;            /*s2 += param[i][j][nc]*cov[nc];*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   for(k1=1; k1<=j;k1++){          }
     for(i1=1; i1<=ncodemax[k1];i1++){          ps[i][j]=s2;
       j1++;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        }
         scanf("%d", i);*/        for(j=i+1; j<=nlstate+ndeath;j++){
       for (i=-1; i<=nlstate+ndeath; i++)            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)              s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           for(m=agemin; m <= agemax+3; m++)  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
             freq[i][jk][m]=0;          }
                ps[i][j]=s2;
       dateintsum=0;        }
       k2cpt=0;      }
       for (i=1; i<=imx; i++) {      /*ps[3][2]=1;*/
         bool=1;      
         if  (cptcovn>0) {      for(i=1; i<= nlstate; i++){
           for (z1=1; z1<=cptcoveff; z1++)        s1=0;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(j=1; j<i; j++)
               bool=0;          s1+=exp(ps[i][j]);
         }        for(j=i+1; j<=nlstate+ndeath; j++)
         if (bool==1) {          s1+=exp(ps[i][j]);
           for(m=firstpass; m<=lastpass; m++){        ps[i][i]=1./(s1+1.);
             k2=anint[m][i]+(mint[m][i]/12.);        for(j=1; j<i; j++)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(j=i+1; j<=nlstate+ndeath; j++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ps[i][j]= exp(ps[i][j])*ps[i][i];
               if (m<lastpass) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      } /* end i */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      
               }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                      for(jj=1; jj<= nlstate+ndeath; jj++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          ps[ii][jj]=0;
                 dateintsum=dateintsum+k2;          ps[ii][ii]=1;
                 k2cpt++;        }
               }      }
             }      
           }  
         }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          /*         printf("ddd %lf ",ps[ii][jj]); */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*       } */
   /*       printf("\n "); */
       if  (cptcovn>0) {  /*        } */
         fprintf(ficresp, "\n#********** Variable ");  /*        printf("\n ");printf("%lf ",cov[2]); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);         /*
         fprintf(ficresp, "**********\n#");        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       }        goto end;*/
       for(i=1; i<=nlstate;i++)      return ps;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  }
       fprintf(ficresp, "\n");  
        /**************** Product of 2 matrices ******************/
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           printf("Total");  {
         else    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           printf("Age %d", i);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         for(jk=1; jk <=nlstate ; jk++){    /* in, b, out are matrice of pointers which should have been initialized 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       before: only the contents of out is modified. The function returns
             pp[jk] += freq[jk][m][i];       a pointer to pointers identical to out */
         }    long i, j, k;
         for(jk=1; jk <=nlstate ; jk++){    for(i=nrl; i<= nrh; i++)
           for(m=-1, pos=0; m <=0 ; m++)      for(k=ncolol; k<=ncoloh; k++)
             pos += freq[jk][m][i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           if(pp[jk]>=1.e-10)          out[i][k] +=in[i][j]*b[j][k];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           else    return out;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  }
         }  
   
         for(jk=1; jk <=nlstate ; jk++){  /************* Higher Matrix Product ***************/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         }  {
     /* Computes the transition matrix starting at age 'age' over 
         for(jk=1,pos=0; jk <=nlstate ; jk++)       'nhstepm*hstepm*stepm' months (i.e. until
           pos += pp[jk];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         for(jk=1; jk <=nlstate ; jk++){       nhstepm*hstepm matrices. 
           if(pos>=1.e-5)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       (typically every 2 years instead of every month which is too big 
           else       for the memory).
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       Model is determined by parameters x and covariates have to be 
           if( i <= (int) agemax){       included manually here. 
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);       */
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    int i, j, d, h, k;
             }    double **out, cov[NCOVMAX];
             else    double **newm;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }    /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
              for (j=1;j<=nlstate+ndeath;j++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
           for(m=-1; m <=nlstate+ndeath; m++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      }
         if(i <= (int) agemax)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           fprintf(ficresp,"\n");    for(h=1; h <=nhstepm; h++){
         printf("\n");      for(d=1; d <=hstepm; d++){
       }        newm=savm;
     }        /* Covariates have to be included here again */
   }        cov[1]=1.;
   dateintmean=dateintsum/k2cpt;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fclose(ficresp);        for (k=1; k<=cptcovage;k++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_vector(pp,1,nlstate);        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /* End of Freq */  
 }  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 /************ Prevalence ********************/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 {  /* Some frequencies */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          savm=oldm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        oldm=newm;
   double ***freq; /* Frequencies */      }
   double *pp;      for(i=1; i<=nlstate+ndeath; i++)
   double pos, k2;        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
   pp=vector(1,nlstate);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           */
          }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    } /* end h */
   j1=0;    return po;
    }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /*************** log-likelihood *************/
  for(k1=1; k1<=j;k1++){  double func( double *x)
     for(i1=1; i1<=ncodemax[k1];i1++){  {
       j1++;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for (i=-1; i<=nlstate+ndeath; i++)      double **out;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double sw; /* Sum of weights */
           for(m=agemin; m <= agemax+3; m++)    double lli; /* Individual log likelihood */
             freq[i][jk][m]=0;    int s1, s2;
          double bbh, survp;
       for (i=1; i<=imx; i++) {    long ipmx;
         bool=1;    /*extern weight */
         if  (cptcovn>0) {    /* We are differentiating ll according to initial status */
           for (z1=1; z1<=cptcoveff; z1++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /*for(i=1;i<imx;i++) 
               bool=0;      printf(" %d\n",s[4][i]);
         }    */
         if (bool==1) {    cov[1]=1.;
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);    for(k=1; k<=nlstate; k++) ll[k]=0.;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    if(mle==1){
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if (m<lastpass)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
               else          for (ii=1;ii<=nlstate+ndeath;ii++)
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
         for(i=(int)agemin; i <= (int)agemax+3; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               pp[jk] += freq[jk][m][i];            }
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             for(m=-1, pos=0; m <=0 ; m++)            savm=oldm;
             pos += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
                
          for(jk=1; jk <=nlstate ; jk++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /* But now since version 0.9 we anticipate for bias at large stepm.
              pp[jk] += freq[jk][m][i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
          }           * (in months) between two waves is not a multiple of stepm, we rounded to 
                     * the nearest (and in case of equal distance, to the lowest) interval but now
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
          for(jk=1; jk <=nlstate ; jk++){                     * probability in order to take into account the bias as a fraction of the way
            if( i <= (int) agemax){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
              if(pos>=1.e-5){           * -stepm/2 to stepm/2 .
                probs[i][jk][j1]= pp[jk]/pos;           * For stepm=1 the results are the same as for previous versions of Imach.
              }           * For stepm > 1 the results are less biased than in previous versions. 
            }           */
          }          s1=s[mw[mi][i]][i];
                    s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias bh is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
            */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          if( s2 > nlstate){ 
   free_vector(pp,1,nlstate);            /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
 }  /* End of Freq */               die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
 /************* Waves Concatenation ***************/               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          as if date of death was unknown. Death was treated as any other
 {          health state: the date of the interview describes the actual state
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          and not the date of a change in health state. The former idea was
      Death is a valid wave (if date is known).          to consider that at each interview the state was recorded
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          (healthy, disable or death) and IMaCh was corrected; but when we
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          introduced the exact date of death then we should have modified
      and mw[mi+1][i]. dh depends on stepm.          the contribution of an exact death to the likelihood. This new
      */          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
   int i, mi, m;          and month of death but the probability to survive from last
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          interview up to one month before death multiplied by the
      double sum=0., jmean=0.;*/          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
   int j, k=0,jk, ju, jl;          mortality artificially. The bad side is that we add another loop
   double sum=0.;          which slows down the processing. The difference can be up to 10%
   jmin=1e+5;          lower mortality.
   jmax=-1;            */
   jmean=0.;            lli=log(out[s1][s2] - savm[s1][s2]);
   for(i=1; i<=imx; i++){  
     mi=0;  
     m=firstpass;          } else if  (s2==-2) {
     while(s[m][i] <= nlstate){            for (j=1,survp=0. ; j<=nlstate; j++) 
       if(s[m][i]>=1)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         mw[++mi][i]=m;            /*survp += out[s1][j]; */
       if(m >=lastpass)            lli= log(survp);
         break;          }
       else          
         m++;          else if  (s2==-4) { 
     }/* end while */            for (j=3,survp=0. ; j<=nlstate; j++)  
     if (s[m][i] > nlstate){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       mi++;     /* Death is another wave */            lli= log(survp); 
       /* if(mi==0)  never been interviewed correctly before death */          } 
          /* Only death is a correct wave */  
       mw[mi][i]=m;          else if  (s2==-5) { 
     }            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     wav[i]=mi;            lli= log(survp); 
     if(mi==0)          } 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          
   }          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for(i=1; i<=imx; i++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for(mi=1; mi<wav[i];mi++){          } 
       if (stepm <=0)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         dh[mi][i]=1;          /*if(lli ==000.0)*/
       else{          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if (s[mw[mi+1][i]][i] > nlstate) {          ipmx +=1;
           if (agedc[i] < 2*AGESUP) {          sw += weight[i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if(j==0) j=1;  /* Survives at least one month after exam */        } /* end of wave */
           k=k+1;      } /* end of individual */
           if (j >= jmax) jmax=j;    }  else if(mle==2){
           if (j <= jmin) jmin=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           sum=sum+j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=k+1;            }
           if (j >= jmax) jmax=j;          for(d=0; d<=dh[mi][i]; d++){
           else if (j <= jmin)jmin=j;            newm=savm;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           sum=sum+j;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         jk= j/stepm;            }
         jl= j -jk*stepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         ju= j -(jk+1)*stepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(jl <= -ju)            savm=oldm;
           dh[mi][i]=jk;            oldm=newm;
         else          } /* end mult */
           dh[mi][i]=jk+1;        
         if(dh[mi][i]==0)          s1=s[mw[mi][i]][i];
           dh[mi][i]=1; /* At least one step */          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }          ipmx +=1;
   jmean=sum/k;          sw += weight[i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }        } /* end of wave */
 /*********** Tricode ****************************/      } /* end of individual */
 void tricode(int *Tvar, int **nbcode, int imx)    }  else if(mle==3){  /* exponential inter-extrapolation */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int Ndum[20],ij=1, k, j, i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int cptcode=0;        for(mi=1; mi<= wav[i]-1; mi++){
   cptcoveff=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   for (k=0; k<19; k++) Ndum[k]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=7; k++) ncodemax[k]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          for(d=0; d<dh[mi][i]; d++){
     for (i=1; i<=imx; i++) {            newm=savm;
       ij=(int)(covar[Tvar[j]][i]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       Ndum[ij]++;            for (kk=1; kk<=cptcovage;kk++) {
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (ij > cptcode) cptcode=ij;            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=0; i<=cptcode; i++) {            savm=oldm;
       if(Ndum[i]!=0) ncodemax[j]++;            oldm=newm;
     }          } /* end mult */
     ij=1;        
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for (i=1; i<=ncodemax[j]; i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
       for (k=0; k<=19; k++) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if (Ndum[k] != 0) {          ipmx +=1;
           nbcode[Tvar[j]][ij]=k;          sw += weight[i];
                    ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           ij++;        } /* end of wave */
         }      } /* end of individual */
         if (ij > ncodemax[j]) break;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       }        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }          for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
  for (k=0; k<19; k++) Ndum[k]=0;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=ncovmodel-2; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=Tvar[i];            }
       Ndum[ij]++;          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  ij=1;            for (kk=1; kk<=cptcovage;kk++) {
  for (i=1; i<=10; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    if((Ndum[i]!=0) && (i<=ncovcol)){            }
      Tvaraff[ij]=i;          
      ij++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  }            savm=oldm;
              oldm=newm;
     cptcoveff=ij-1;          } /* end mult */
 }        
           s1=s[mw[mi][i]][i];
 /*********** Health Expectancies ****************/          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
 {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* Health expectancies */          }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          ipmx +=1;
   double age, agelim, hf;          sw += weight[i];
   double ***p3mat,***varhe;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **dnewm,**doldm;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double *xp;        } /* end of wave */
   double **gp, **gm;      } /* end of individual */
   double ***gradg, ***trgradg;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   int theta;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        for(mi=1; mi<= wav[i]-1; mi++){
   xp=vector(1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   dnewm=matrix(1,nlstate*2,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   doldm=matrix(1,nlstate*2,1,nlstate*2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Health expectancies\n");            }
   fprintf(ficreseij,"# Age");          for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=nlstate;i++)            newm=savm;
     for(j=1; j<=nlstate;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficreseij,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   if(estepm < stepm){          
     printf ("Problem %d lower than %d\n",estepm, stepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else  hstepm=estepm;              savm=oldm;
   /* We compute the life expectancy from trapezoids spaced every estepm months            oldm=newm;
    * This is mainly to measure the difference between two models: for example          } /* end mult */
    * if stepm=24 months pijx are given only every 2 years and by summing them        
    * we are calculating an estimate of the Life Expectancy assuming a linear          s1=s[mw[mi][i]][i];
    * progression inbetween and thus overestimating or underestimating according          s2=s[mw[mi+1][i]][i];
    * to the curvature of the survival function. If, for the same date, we          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          ipmx +=1;
    * to compare the new estimate of Life expectancy with the same linear          sw += weight[i];
    * hypothesis. A more precise result, taking into account a more precise          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * curvature will be obtained if estepm is as small as stepm. */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
   /* For example we decided to compute the life expectancy with the smallest unit */      } /* end of individual */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    } /* End of if */
      nhstepm is the number of hstepm from age to agelim    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      nstepm is the number of stepm from age to agelin.    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      Look at hpijx to understand the reason of that which relies in memory size    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      and note for a fixed period like estepm months */    return -l;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  /*************** log-likelihood *************/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  double funcone( double *x)
      results. So we changed our mind and took the option of the best precision.  {
   */    /* Same as likeli but slower because of a lot of printf and if */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   agelim=AGESUP;    double **out;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double lli; /* Individual log likelihood */
     /* nhstepm age range expressed in number of stepm */    double llt;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int s1, s2;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double bbh, survp;
     /* if (stepm >= YEARM) hstepm=1;*/    /*extern weight */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    /* We are differentiating ll according to initial status */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    /*for(i=1;i<imx;i++) 
     gp=matrix(0,nhstepm,1,nlstate*2);      printf(" %d\n",s[4][i]);
     gm=matrix(0,nhstepm,1,nlstate*2);    */
     cov[1]=1.;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
     /* Computing Variances of health expectancies */          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      for(theta=1; theta <=npar; theta++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++){          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(d=0; d<dh[mi][i]; d++){
       }          newm=savm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
       cptj=0;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate; j++){          }
         for(i=1; i<=nlstate; i++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           cptj=cptj+1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          savm=oldm;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          oldm=newm;
           }        } /* end mult */
         }        
       }        s1=s[mw[mi][i]][i];
              s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1; i<=npar; i++)        /* bias is positive if real duration
         xp[i] = x[i] - (i==theta ?delti[theta]:0);         * is higher than the multiple of stepm and negative otherwise.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           */
              if( s2 > nlstate && (mle <5) ){  /* Jackson */
       cptj=0;          lli=log(out[s1][s2] - savm[s1][s2]);
       for(j=1; j<= nlstate; j++){        } else if  (s2==-2) {
         for(i=1;i<=nlstate;i++){          for (j=1,survp=0. ; j<=nlstate; j++) 
           cptj=cptj+1;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          lli= log(survp);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }else if (mle==1){
           }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
              } else if(mle==3){  /* exponential inter-extrapolation */
              lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(j=1; j<= nlstate*2; j++)          lli=log(out[s1][s2]); /* Original formula */
         for(h=0; h<=nhstepm-1; h++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          lli=log(out[s1][s2]); /* Original formula */
         }        } /* End of if */
         ipmx +=1;
      }        sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /* End theta */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
      for(h=0; h<=nhstepm-1; h++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(j=1; j<=nlstate*2;j++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for(theta=1; theta <=npar; theta++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         trgradg[h][j][theta]=gradg[h][theta][j];            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
      for(i=1;i<=nlstate*2;i++)          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1;j<=nlstate*2;j++)        }
         varhe[i][j][(int)age] =0.;      } /* end of wave */
     } /* end of individual */
     for(h=0;h<=nhstepm-1;h++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(k=0;k<=nhstepm-1;k++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    if(globpr==0){ /* First time we count the contributions and weights */
         for(i=1;i<=nlstate*2;i++)      gipmx=ipmx;
           for(j=1;j<=nlstate*2;j++)      gsw=sw;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    }
       }    return -l;
     }  }
   
        
     /* Computing expectancies */  /*************** function likelione ***********/
     for(i=1; i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for(j=1; j<=nlstate;j++)  {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    /* This routine should help understanding what is done with 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;       the selection of individuals/waves and
                 to check the exact contribution to the likelihood.
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/       Plotting could be done.
      */
         }    int k;
   
     fprintf(ficreseij,"%3.0f",age );    if(*globpri !=0){ /* Just counts and sums, no printings */
     cptj=0;      strcpy(fileresilk,"ilk"); 
     for(i=1; i<=nlstate;i++)      strcat(fileresilk,fileres);
       for(j=1; j<=nlstate;j++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         cptj++;        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }      }
     fprintf(ficreseij,"\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
          fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     free_matrix(gm,0,nhstepm,1,nlstate*2);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     free_matrix(gp,0,nhstepm,1,nlstate*2);      for(k=1; k<=nlstate; k++) 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   }  
   free_vector(xp,1,npar);    *fretone=(*funcone)(p);
   free_matrix(dnewm,1,nlstate*2,1,npar);    if(*globpri !=0){
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      fclose(ficresilk);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 }      fflush(fichtm); 
     } 
 /************ Variance ******************/    return;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  }
 {  
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  /*********** Maximum Likelihood Estimation ***************/
   double **newm;  
   double **dnewm,**doldm;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   int i, j, nhstepm, hstepm, h, nstepm ;  {
   int k, cptcode;    int i,j, iter;
   double *xp;    double **xi;
   double **gp, **gm;    double fret;
   double ***gradg, ***trgradg;    double fretone; /* Only one call to likelihood */
   double ***p3mat;    /*  char filerespow[FILENAMELENGTH];*/
   double age,agelim, hf;    xi=matrix(1,npar,1,npar);
   int theta;    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
    fprintf(ficresvij,"# Covariances of life expectancies\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Age");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for(i=1; i<=nlstate;i++)    strcpy(filerespow,"pow"); 
     for(j=1; j<=nlstate;j++)    strcat(filerespow,fileres);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   fprintf(ficresvij,"\n");      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   if(estepm < stepm){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     printf ("Problem %d lower than %d\n",estepm, stepm);    fprintf(ficrespow,"\n");
   }  
   else  hstepm=estepm;      powell(p,xi,npar,ftol,&iter,&fret,func);
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    free_matrix(xi,1,npar,1,npar);
      nhstepm is the number of hstepm from age to agelim    fclose(ficrespow);
      nstepm is the number of stepm from age to agelin.    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      Look at hpijx to understand the reason of that which relies in memory size    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      and note for a fixed period like k years */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  /**** Computes Hessian and covariance matrix ***/
      results. So we changed our mind and took the option of the best precision.  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   */  {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double  **a,**y,*x,pd;
   agelim = AGESUP;    double **hess;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i, j,jk;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int *indx;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     gp=matrix(0,nhstepm,1,nlstate);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     gm=matrix(0,nhstepm,1,nlstate);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     for(theta=1; theta <=npar; theta++){    hess=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=npar;i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
       if (popbased==1) {     
         for(i=1; i<=nlstate;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           prlim[i][i]=probs[(int)age][i][ij];      
       }      /*  printf(" %f ",p[i]);
            printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){    
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for (i=1;i<=npar;i++) {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
       }          printf(".%d%d",i,j);fflush(stdout);
              fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(i=1; i<=npar; i++) /* Computes gradient */          hess[i][j]=hessij(p,delti,i,j,func,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            hess[j][i]=hess[i][j];    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /*printf(" %lf ",hess[i][j]);*/
          }
       if (popbased==1) {      }
         for(i=1; i<=nlstate;i++)    }
           prlim[i][i]=probs[(int)age][i][ij];    printf("\n");
       }    fprintf(ficlog,"\n");
   
       for(j=1; j<= nlstate; j++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(h=0; h<=nhstepm; h++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    a=matrix(1,npar,1,npar);
         }    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
     indx=ivector(1,npar);
       for(j=1; j<= nlstate; j++)    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    ludcmp(a,npar,indx,&pd);
         }  
     } /* End theta */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      x[j]=1;
       lubksb(a,npar,indx,x);
     for(h=0; h<=nhstepm; h++)      for (i=1;i<=npar;i++){ 
       for(j=1; j<=nlstate;j++)        matcov[i][j]=x[i];
         for(theta=1; theta <=npar; theta++)      }
           trgradg[h][j][theta]=gradg[h][theta][j];    }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("\n#Hessian matrix#\n");
     for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
       for(j=1;j<=nlstate;j++)    for (i=1;i<=npar;i++) { 
         vareij[i][j][(int)age] =0.;      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
     for(h=0;h<=nhstepm;h++){        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(k=0;k<=nhstepm;k++){      }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      printf("\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      fprintf(ficlog,"\n");
         for(i=1;i<=nlstate;i++)    }
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    /* Recompute Inverse */
       }    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
     fprintf(ficresvij,"\n");      x[j]=1;
     free_matrix(gp,0,nhstepm,1,nlstate);      lubksb(a,npar,indx,x);
     free_matrix(gm,0,nhstepm,1,nlstate);      for (i=1;i<=npar;i++){ 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        y[i][j]=x[i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        printf("%.3e ",y[i][j]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficlog,"%.3e ",y[i][j]);
   } /* End age */      }
        printf("\n");
   free_vector(xp,1,npar);      fprintf(ficlog,"\n");
   free_matrix(doldm,1,nlstate,1,npar);    }
   free_matrix(dnewm,1,nlstate,1,nlstate);    */
   
 }    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
 /************ Variance of prevlim ******************/    free_vector(x,1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    free_ivector(indx,1,npar);
 {    free_matrix(hess,1,npar,1,npar);
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  /*************** hessian matrix ****************/
   int k, cptcode;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double *xp;  {
   double *gp, *gm;    int i;
   double **gradg, **trgradg;    int l=1, lmax=20;
   double age,agelim;    double k1,k2;
   int theta;    double p2[NPARMAX+1];
        double res;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   fprintf(ficresvpl,"# Age");    double fx;
   for(i=1; i<=nlstate;i++)    int k=0,kmax=10;
       fprintf(ficresvpl," %1d-%1d",i,i);    double l1;
   fprintf(ficresvpl,"\n");  
     fx=func(x);
   xp=vector(1,npar);    for (i=1;i<=npar;i++) p2[i]=x[i];
   dnewm=matrix(1,nlstate,1,npar);    for(l=0 ; l <=lmax; l++){
   doldm=matrix(1,nlstate,1,nlstate);      l1=pow(10,l);
        delts=delt;
   hstepm=1*YEARM; /* Every year of age */      for(k=1 ; k <kmax; k=k+1){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        delt = delta*(l1*k);
   agelim = AGESUP;        p2[theta]=x[theta] +delt;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        k1=func(p2)-fx;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        p2[theta]=x[theta]-delt;
     if (stepm >= YEARM) hstepm=1;        k2=func(p2)-fx;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /*res= (k1-2.0*fx+k2)/delt/delt; */
     gradg=matrix(1,npar,1,nlstate);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     gp=vector(1,nlstate);        
     gm=vector(1,nlstate);  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(theta=1; theta <=npar; theta++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1; i<=npar; i++){ /* Computes gradient */  #endif
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          k=kmax;
       for(i=1;i<=nlstate;i++)        }
         gp[i] = prlim[i][i];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
              k=kmax; l=lmax*10.;
       for(i=1; i<=npar; i++) /* Computes gradient */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          delts=delt;
       for(i=1;i<=nlstate;i++)        }
         gm[i] = prlim[i][i];      }
     }
       for(i=1;i<=nlstate;i++)    delti[theta]=delts;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    return res; 
     } /* End theta */    
   }
     trgradg =matrix(1,nlstate,1,npar);  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     for(j=1; j<=nlstate;j++)  {
       for(theta=1; theta <=npar; theta++)    int i;
         trgradg[j][theta]=gradg[theta][j];    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     for(i=1;i<=nlstate;i++)    double p2[NPARMAX+1];
       varpl[i][(int)age] =0.;    int k;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    fx=func(x);
     for(i=1;i<=nlstate;i++)    for (k=1; k<=2; k++) {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
     fprintf(ficresvpl,"%.0f ",age );      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i=1; i<=nlstate;i++)      k1=func(p2)-fx;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    
     fprintf(ficresvpl,"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_vector(gp,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_vector(gm,1,nlstate);      k2=func(p2)-fx;
     free_matrix(gradg,1,npar,1,nlstate);    
     free_matrix(trgradg,1,nlstate,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   } /* End age */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
 }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
 /************ Variance of one-step probabilities  ******************/      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 {  #endif
   int i, j, i1, k1, j1, z1;    }
   int k=0, cptcode;    return res;
   double **dnewm,**doldm;  }
   double *xp;  
   double *gp, *gm;  /************** Inverse of matrix **************/
   double **gradg, **trgradg;  void ludcmp(double **a, int n, int *indx, double *d) 
   double age,agelim, cov[NCOVMAX];  { 
   int theta;    int i,imax,j,k; 
   char fileresprob[FILENAMELENGTH];    double big,dum,sum,temp; 
     double *vv; 
   strcpy(fileresprob,"prob");   
   strcat(fileresprob,fileres);    vv=vector(1,n); 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    *d=1.0; 
     printf("Problem with resultfile: %s\n", fileresprob);    for (i=1;i<=n;i++) { 
   }      big=0.0; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      for (j=1;j<=n;j++) 
          if ((temp=fabs(a[i][j])) > big) big=temp; 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   fprintf(ficresprob,"# Age");      vv[i]=1.0/big; 
   for(i=1; i<=nlstate;i++)    } 
     for(j=1; j<=(nlstate+ndeath);j++)    for (j=1;j<=n;j++) { 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   fprintf(ficresprob,"\n");        a[i][j]=sum; 
       } 
       big=0.0; 
   xp=vector(1,npar);      for (i=j;i<=n;i++) { 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        sum=a[i][j]; 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   cov[1]=1;        a[i][j]=sum; 
   j=cptcoveff;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          big=dum; 
   j1=0;          imax=i; 
   for(k1=1; k1<=1;k1++){        } 
     for(i1=1; i1<=ncodemax[k1];i1++){      } 
     j1++;      if (j != imax) { 
         for (k=1;k<=n;k++) { 
     if  (cptcovn>0) {          dum=a[imax][k]; 
       fprintf(ficresprob, "\n#********** Variable ");          a[imax][k]=a[j][k]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          a[j][k]=dum; 
       fprintf(ficresprob, "**********\n#");        } 
     }        *d = -(*d); 
            vv[imax]=vv[j]; 
       for (age=bage; age<=fage; age ++){      } 
         cov[2]=age;      indx[j]=imax; 
         for (k=1; k<=cptcovn;k++) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      if (j != n) { 
                  dum=1.0/(a[j][j]); 
         }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } 
         for (k=1; k<=cptcovprod;k++)    } 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free_vector(vv,1,n);  /* Doesn't work */
          ;
         gradg=matrix(1,npar,1,9);  } 
         trgradg=matrix(1,9,1,npar);  
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  void lubksb(double **a, int n, int *indx, double b[]) 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  { 
        int i,ii=0,ip,j; 
         for(theta=1; theta <=npar; theta++){    double sum; 
           for(i=1; i<=npar; i++)   
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=n;i++) { 
                ip=indx[i]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      sum=b[ip]; 
                b[ip]=b[i]; 
           k=0;      if (ii) 
           for(i=1; i<= (nlstate+ndeath); i++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
             for(j=1; j<=(nlstate+ndeath);j++){      else if (sum) ii=i; 
               k=k+1;      b[i]=sum; 
               gp[k]=pmmij[i][j];    } 
             }    for (i=n;i>=1;i--) { 
           }      sum=b[i]; 
                for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           for(i=1; i<=npar; i++)      b[i]=sum/a[i][i]; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    } 
      } 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;  void pstamp(FILE *fichier)
           for(i=1; i<=(nlstate+ndeath); i++){  {
             for(j=1; j<=(nlstate+ndeath);j++){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
               k=k+1;  }
               gm[k]=pmmij[i][j];  
             }  /************ Frequencies ********************/
           }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
        {  /* Some frequencies */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         }    int first;
     double ***freq; /* Frequencies */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double *pp, **prop;
           for(theta=1; theta <=npar; theta++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             trgradg[j][theta]=gradg[theta][j];    char fileresp[FILENAMELENGTH];
            
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    pp=vector(1,nlstate);
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    prop=matrix(1,nlstate,iagemin,iagemax+3);
            strcpy(fileresp,"p");
         pmij(pmmij,cov,ncovmodel,x,nlstate);    strcat(fileresp,fileres);
            if((ficresp=fopen(fileresp,"w"))==NULL) {
         k=0;      printf("Problem with prevalence resultfile: %s\n", fileresp);
         for(i=1; i<=(nlstate+ndeath); i++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           for(j=1; j<=(nlstate+ndeath);j++){      exit(0);
             k=k+1;    }
             gm[k]=pmmij[i][j];    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           }    j1=0;
         }    
          j=cptcoveff;
      /*printf("\n%d ",(int)age);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    first=1;
      }*/  
     for(k1=1; k1<=j;k1++){
         fprintf(ficresprob,"\n%d ",(int)age);      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          scanf("%d", i);*/
          for (i=-5; i<=nlstate+ndeath; i++)  
       }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     }            for(m=iagemin; m <= iagemax+3; m++)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              freq[i][jk][m]=0;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1; i<=nlstate; i++)  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(m=iagemin; m <= iagemax+3; m++)
   }          prop[i][m]=0;
   free_vector(xp,1,npar);        
   fclose(ficresprob);        dateintsum=0;
          k2cpt=0;
 }        for (i=1; i<=imx; i++) {
           bool=1;
 /******************* Printing html file ***********/          if  (cptcovn>0) {
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            for (z1=1; z1<=cptcoveff; z1++) 
  int lastpass, int stepm, int weightopt, char model[],\              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \                bool=0;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          }
  char version[], int popforecast, int estepm ){          if (bool==1){
   int jj1, k1, i1, cpt;            for(m=firstpass; m<=lastpass; m++){
   FILE *fichtm;              k2=anint[m][i]+(mint[m][i]/12.);
   /*char optionfilehtm[FILENAMELENGTH];*/              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   strcpy(optionfilehtm,optionfile);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   strcat(optionfilehtm,".htm");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                if (m<lastpass) {
     printf("Problem with %s \n",optionfilehtm), exit(0);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 \n                  dateintsum=dateintsum+k2;
 Total number of observations=%d <br>\n                  k2cpt++;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                }
 <hr  size=\"2\" color=\"#EC5E5E\">                /*}*/
  <ul><li>Outputs files<br>\n            }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n         
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        pstamp(ficresp);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
  fprintf(fichtm,"\n          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          fprintf(ficresp, "**********\n#");
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        }
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        for(i=1; i<=nlstate;i++) 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        fprintf(ficresp, "\n");
         
  if(popforecast==1) fprintf(fichtm,"\n        for(i=iagemin; i <= iagemax+3; i++){
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          if(i==iagemax+3){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            fprintf(ficlog,"Total");
         <br>",fileres,fileres,fileres,fileres);            fprintf(fichtm,"<br>Total<br>");
  else          }else{
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            if(first==1){
 fprintf(fichtm," <li>Graphs</li><p>");              first=0;
               printf("See log file for details...\n");
  m=cptcoveff;            }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            fprintf(ficlog,"Age %d", i);
           }
  jj1=0;          for(jk=1; jk <=nlstate ; jk++){
  for(k1=1; k1<=m;k1++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
    for(i1=1; i1<=ncodemax[k1];i1++){              pp[jk] += freq[jk][m][i]; 
        jj1++;          }
        if (cptcovn > 0) {          for(jk=1; jk <=nlstate ; jk++){
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for(m=-1, pos=0; m <=0 ; m++)
          for (cpt=1; cpt<=cptcoveff;cpt++)              pos += freq[jk][m][i];
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            if(pp[jk]>=1.e-10){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              if(first==1){
        }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        for(cpt=1; cpt<nlstate;cpt++){            }else{
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              if(first==1)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
        }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(cpt=1; cpt<=nlstate;cpt++) {            }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          }
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for(jk=1; jk <=nlstate ; jk++){
      }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
      for(cpt=1; cpt<=nlstate;cpt++) {              pp[jk] += freq[jk][m][i];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          }       
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      }            pos += pp[jk];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            posprop += prop[jk][i];
 health expectancies in states (1) and (2): e%s%d.gif<br>          }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(jk=1; jk <=nlstate ; jk++){
 fprintf(fichtm,"\n</body>");            if(pos>=1.e-5){
    }              if(first==1)
    }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 fclose(fichtm);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 }            }else{
               if(first==1)
 /******************* Gnuplot file **************/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            if( i <= iagemax){
               if(pos>=1.e-5){
   strcpy(optionfilegnuplot,optionfilefiname);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   strcat(optionfilegnuplot,".gp.txt");                /*probs[i][jk][j1]= pp[jk]/pos;*/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     printf("Problem with file %s",optionfilegnuplot);              }
   }              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 #ifdef windows            }
     fprintf(ficgp,"cd \"%s\" \n",pathc);          }
 #endif          
 m=pow(2,cptcoveff);          for(jk=-1; jk <=nlstate+ndeath; jk++)
              for(m=-1; m <=nlstate+ndeath; m++)
  /* 1eme*/              if(freq[jk][m][i] !=0 ) {
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if(first==1)
    for (k1=1; k1<= m ; k1 ++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              }
           if(i <= iagemax)
 for (i=1; i<= nlstate ; i ++) {            fprintf(ficresp,"\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if(first==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            printf("Others in log...\n");
 }          fprintf(ficlog,"\n");
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
     for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    dateintmean=dateintsum/k2cpt; 
 }   
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    fclose(ficresp);
      for (i=1; i<= nlstate ; i ++) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    free_vector(pp,1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 }      /* End of Freq */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  }
   
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  /************ Prevalence ********************/
    }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
   /*2 eme*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   for (k1=1; k1<= m ; k1 ++) {       We still use firstpass and lastpass as another selection.
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    */
       
     for (i=1; i<= nlstate+1 ; i ++) {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       k=2*i;    double ***freq; /* Frequencies */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double *pp, **prop;
       for (j=1; j<= nlstate+1 ; j ++) {    double pos,posprop; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double  y2; /* in fractional years */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int iagemin, iagemax;
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    iagemin= (int) agemin;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    iagemax= (int) agemax;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    /*pp=vector(1,nlstate);*/
       for (j=1; j<= nlstate+1 ; j ++) {    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");    j1=0;
 }      
       fprintf(ficgp,"\" t\"\" w l 0,");    j=cptcoveff;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for (j=1; j<= nlstate+1 ; j ++) {    
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(k1=1; k1<=j;k1++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(i1=1; i1<=ncodemax[k1];i1++){
 }          j1++;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        
       else fprintf(ficgp,"\" t\"\" w l 0,");        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            prop[i][m]=0.0;
   }       
          for (i=1; i<=imx; i++) { /* Each individual */
   /*3eme*/          bool=1;
           if  (cptcovn>0) {
   for (k1=1; k1<= m ; k1 ++) {            for (z1=1; z1<=cptcoveff; z1++) 
     for (cpt=1; cpt<= nlstate ; cpt ++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       k=2+nlstate*(2*cpt-2);                bool=0;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          } 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          if (bool==1) { 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for (i=1; i< nlstate ; i ++) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
       }                } 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              }
     }            } /* end selection of waves */
     }          }
          }
   /* CV preval stat */        for(i=iagemin; i <= iagemax+3; i++){  
     for (k1=1; k1<= m ; k1 ++) {          
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       k=3;            posprop += prop[jk][i]; 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          } 
   
       for (i=1; i< nlstate ; i ++)          for(jk=1; jk <=nlstate ; jk++){     
         fprintf(ficgp,"+$%d",k+i+1);            if( i <=  iagemax){ 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              if(posprop>=1.e-5){ 
                      probs[i][jk][j1]= prop[jk][i]/posprop;
       l=3+(nlstate+ndeath)*cpt;              } 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            } 
       for (i=1; i< nlstate ; i ++) {          }/* end jk */ 
         l=3+(nlstate+ndeath)*cpt;        }/* end i */ 
         fprintf(ficgp,"+$%d",l+i+1);      } /* end i1 */
       }    } /* end k1 */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     }    /*free_vector(pp,1,nlstate);*/
   }      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    }  /* End of prevalence */
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){  /************* Waves Concatenation ***************/
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         for(j=1; j <=ncovmodel; j++){  {
            /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);       Death is a valid wave (if date is known).
           jk++;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           fprintf(ficgp,"\n");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         }       and mw[mi+1][i]. dh depends on stepm.
       }       */
     }  
     }    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     for(jk=1; jk <=m; jk++) {       double sum=0., jmean=0.;*/
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    int first;
    i=1;    int j, k=0,jk, ju, jl;
    for(k2=1; k2<=nlstate; k2++) {    double sum=0.;
      k3=i;    first=0;
      for(k=1; k<=(nlstate+ndeath); k++) {    jmin=1e+5;
        if (k != k2){    jmax=-1;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    jmean=0.;
 ij=1;    for(i=1; i<=imx; i++){
         for(j=3; j <=ncovmodel; j++) {      mi=0;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      m=firstpass;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      while(s[m][i] <= nlstate){
             ij++;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           }          mw[++mi][i]=m;
           else        if(m >=lastpass)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          break;
         }        else
           fprintf(ficgp,")/(1");          m++;
              }/* end while */
         for(k1=1; k1 <=nlstate; k1++){        if (s[m][i] > nlstate){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        mi++;     /* Death is another wave */
 ij=1;        /* if(mi==0)  never been interviewed correctly before death */
           for(j=3; j <=ncovmodel; j++){           /* Only death is a correct wave */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        mw[mi][i]=m;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
             ij++;  
           }      wav[i]=mi;
           else      if(mi==0){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        nbwarn++;
           }        if(first==0){
           fprintf(ficgp,")");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }          first=1;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        if(first==1){
         i=i+ncovmodel;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
        }        }
      }      } /* end mi==0 */
    }    } /* End individuals */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
    }    for(i=1; i<=imx; i++){
          for(mi=1; mi<wav[i];mi++){
   fclose(ficgp);        if (stepm <=0)
 }  /* end gnuplot */          dh[mi][i]=1;
         else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 /*************** Moving average **************/            if (agedc[i] < 2*AGESUP) {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
   int i, cpt, cptcod;              else if(j<0){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                nberr++;
       for (i=1; i<=nlstate;i++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                j=1; /* Temporary Dangerous patch */
           mobaverage[(int)agedeb][i][cptcod]=0.;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                    fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for (i=1; i<=nlstate;i++){              }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              k=k+1;
           for (cpt=0;cpt<=4;cpt++){              if (j >= jmax){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                jmax=j;
           }                ijmax=i;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              }
         }              if (j <= jmin){
       }                jmin=j;
     }                ijmin=i;
                  }
 }              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 /************** Forecasting ******************/            }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          }
            else{
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   int *popage;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;            k=k+1;
   double ***p3mat;            if (j >= jmax) {
   char fileresf[FILENAMELENGTH];              jmax=j;
               ijmax=i;
  agelim=AGESUP;            }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            else if (j <= jmin){
               jmin=j;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              ijmin=i;
              }
              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   strcpy(fileresf,"f");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   strcat(fileresf,fileres);            if(j<0){
   if((ficresf=fopen(fileresf,"w"))==NULL) {              nberr++;
     printf("Problem with forecast resultfile: %s\n", fileresf);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   printf("Computing forecasting: result on file '%s' \n", fileresf);            }
             sum=sum+j;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }
           jk= j/stepm;
   if (mobilav==1) {          jl= j -jk*stepm;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          ju= j -(jk+1)*stepm;
     movingaverage(agedeb, fage, ageminpar, mobaverage);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   }            if(jl==0){
               dh[mi][i]=jk;
   stepsize=(int) (stepm+YEARM-1)/YEARM;              bh[mi][i]=0;
   if (stepm<=12) stepsize=1;            }else{ /* We want a negative bias in order to only have interpolation ie
                      * at the price of an extra matrix product in likelihood */
   agelim=AGESUP;              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   hstepm=1;            }
   hstepm=hstepm/stepm;          }else{
   yp1=modf(dateintmean,&yp);            if(jl <= -ju){
   anprojmean=yp;              dh[mi][i]=jk;
   yp2=modf((yp1*12),&yp);              bh[mi][i]=jl;       /* bias is positive if real duration
   mprojmean=yp;                                   * is higher than the multiple of stepm and negative otherwise.
   yp1=modf((yp2*30.5),&yp);                                   */
   jprojmean=yp;            }
   if(jprojmean==0) jprojmean=1;            else{
   if(mprojmean==0) jprojmean=1;              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            }
              if(dh[mi][i]==0){
   for(cptcov=1;cptcov<=i2;cptcov++){              dh[mi][i]=1; /* At least one step */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              bh[mi][i]=ju; /* At least one step */
       k=k+1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficresf,"\n#******");            }
       for(j=1;j<=cptcoveff;j++) {          } /* end if mle */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       }      } /* end wave */
       fprintf(ficresf,"******\n");    }
       fprintf(ficresf,"# StartingAge FinalAge");    jmean=sum/k;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
          fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");  /*********** Tricode ****************************/
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    void tricode(int *Tvar, int **nbcode, int imx)
   {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int Ndum[20],ij=1, k, j, i, maxncov=19;
           nhstepm = nhstepm/hstepm;    int cptcode=0;
              cptcoveff=0; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;    for (k=0; k<maxncov; k++) Ndum[k]=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (k=1; k<=7; k++) ncodemax[k]=0;
          
           for (h=0; h<=nhstepm; h++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             if (h==(int) (calagedate+YEARM*cpt)) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);                                 modality*/ 
             }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             for(j=1; j<=nlstate+ndeath;j++) {        Ndum[ij]++; /*store the modality */
               kk1=0.;kk2=0;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
               for(i=1; i<=nlstate;i++) {                      if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                 if (mobilav==1)                                         Tvar[j]. If V=sex and male is 0 and 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                                         female is 1, then  cptcode=1.*/
                 else {      }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }      for (i=0; i<=cptcode; i++) {
                        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
               }      }
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);      ij=1; 
                              for (i=1; i<=ncodemax[j]; i++) {
               }        for (k=0; k<= maxncov; k++) {
             }          if (Ndum[k] != 0) {
           }            nbcode[Tvar[j]][ij]=k; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         }            
       }            ij++;
     }          }
   }          if (ij > ncodemax[j]) break; 
                }  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } 
     }  
   fclose(ficresf);  
 }   for (k=0; k< maxncov; k++) Ndum[k]=0;
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   for (i=1; i<=ncovmodel-2; i++) { 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;     ij=Tvar[i];
   int *popage;     Ndum[ij]++;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   }
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;   ij=1;
   char filerespop[FILENAMELENGTH];   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       Tvaraff[ij]=i; /*For printing */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       ij++;
   agelim=AGESUP;     }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;   }
     
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   cptcoveff=ij-1; /*Number of simple covariates*/
    }
    
   strcpy(filerespop,"pop");  /*********** Health Expectancies ****************/
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }  {
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double age, agelim, hf;
     double ***p3mat;
   if (mobilav==1) {    double eip;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    pstamp(ficreseij);
   }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(i=1; i<=nlstate;i++){
   if (stepm<=12) stepsize=1;      for(j=1; j<=nlstate;j++){
          fprintf(ficreseij," e%1d%1d ",i,j);
   agelim=AGESUP;      }
        fprintf(ficreseij," e%1d. ",i);
   hstepm=1;    }
   hstepm=hstepm/stepm;    fprintf(ficreseij,"\n");
    
   if (popforecast==1) {    
     if((ficpop=fopen(popfile,"r"))==NULL) {    if(estepm < stepm){
       printf("Problem with population file : %s\n",popfile);exit(0);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
     popage=ivector(0,AGESUP);    else  hstepm=estepm;   
     popeffectif=vector(0,AGESUP);    /* We compute the life expectancy from trapezoids spaced every estepm months
     popcount=vector(0,AGESUP);     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
     i=1;       * we are calculating an estimate of the Life Expectancy assuming a linear 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;     * progression in between and thus overestimating or underestimating according
         * to the curvature of the survival function. If, for the same date, we 
     imx=i;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* For example we decided to compute the life expectancy with the smallest unit */
       k=k+1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficrespop,"\n#******");       nhstepm is the number of hstepm from age to agelim 
       for(j=1;j<=cptcoveff;j++) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
       fprintf(ficrespop,"******\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficrespop,"# Age");       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       means that if the survival funtion is printed only each two years of age and if
       if (popforecast==1)  fprintf(ficrespop," [Population]");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             results. So we changed our mind and took the option of the best precision.
       for (cpt=0; cpt<=0;cpt++) {    */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    agelim=AGESUP;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* nhstepm age range expressed in number of stepm */
           nhstepm = nhstepm/hstepm;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
              /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* if (stepm >= YEARM) hstepm=1;*/
           oldm=oldms;savm=savms;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          
           for (h=0; h<=nhstepm; h++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             if (h==(int) (calagedate+YEARM*cpt)) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
             }      
             for(j=1; j<=nlstate+ndeath;j++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
               kk1=0.;kk2=0;      
               for(i=1; i<=nlstate;i++) {                    hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                 if (mobilav==1)      
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      printf("%d|",(int)age);fflush(stdout);
                 else {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      
                 }      /* Computing expectancies */
               }      for(i=1; i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){        for(j=1; j<=nlstate;j++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   /*fprintf(ficrespop," %.3f", kk1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            
               }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             }  
             for(i=1; i<=nlstate;i++){          }
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){      fprintf(ficreseij,"%3.0f",age );
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for(i=1; i<=nlstate;i++){
                 }        eip=0;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(j=1; j<=nlstate;j++){
             }          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        fprintf(ficreseij,"%9.4f", eip );
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficreseij,"\n");
         }      
       }    }
      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /******/    printf("\n");
     fprintf(ficlog,"\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           nhstepm = nhstepm/hstepm;  
            {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Covariances of health expectancies eij and of total life expectancies according
           oldm=oldms;savm=savms;     to initial status i, ei. .
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      */
           for (h=0; h<=nhstepm; h++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
             if (h==(int) (calagedate+YEARM*cpt)) {    double age, agelim, hf;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double ***p3matp, ***p3matm, ***varhe;
             }    double **dnewm,**doldm;
             for(j=1; j<=nlstate+ndeath;j++) {    double *xp, *xm;
               kk1=0.;kk2=0;    double **gp, **gm;
               for(i=1; i<=nlstate;i++) {                  double ***gradg, ***trgradg;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        int theta;
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    double eip, vip;
             }  
           }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xp=vector(1,npar);
         }    xm=vector(1,npar);
       }    dnewm=matrix(1,nlstate*nlstate,1,npar);
    }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   }    
      pstamp(ficresstdeij);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
   if (popforecast==1) {    for(i=1; i<=nlstate;i++){
     free_ivector(popage,0,AGESUP);      for(j=1; j<=nlstate;j++)
     free_vector(popeffectif,0,AGESUP);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     free_vector(popcount,0,AGESUP);      fprintf(ficresstdeij," e%1d. ",i);
   }    }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresstdeij,"\n");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);    pstamp(ficrescveij);
 }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
 /***********************************************/    for(i=1; i<=nlstate;i++)
 /**************** Main Program *****************/      for(j=1; j<=nlstate;j++){
 /***********************************************/        cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
 int main(int argc, char *argv[])          for(j2=1; j2<=nlstate;j2++){
 {            cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   double agedeb, agefin,hf;          }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      }
     fprintf(ficrescveij,"\n");
   double fret;    
   double **xi,tmp,delta;    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   double dum; /* Dummy variable */    }
   double ***p3mat;    else  hstepm=estepm;   
   int *indx;    /* We compute the life expectancy from trapezoids spaced every estepm months
   char line[MAXLINE], linepar[MAXLINE];     * This is mainly to measure the difference between two models: for example
   char title[MAXLINE];     * if stepm=24 months pijx are given only every 2 years and by summing them
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];     * we are calculating an estimate of the Life Expectancy assuming a linear 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   char filerest[FILENAMELENGTH];     * hypothesis. A more precise result, taking into account a more precise
   char fileregp[FILENAMELENGTH];     * curvature will be obtained if estepm is as small as stepm. */
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    /* For example we decided to compute the life expectancy with the smallest unit */
   int firstobs=1, lastobs=10;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   int sdeb, sfin; /* Status at beginning and end */       nhstepm is the number of hstepm from age to agelim 
   int c,  h , cpt,l;       nstepm is the number of stepm from age to agelin. 
   int ju,jl, mi;       Look at hpijx to understand the reason of that which relies in memory size
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;       and note for a fixed period like estepm months */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   int mobilav=0,popforecast=0;       survival function given by stepm (the optimization length). Unfortunately it
   int hstepm, nhstepm;       means that if the survival funtion is printed only each two years of age and if
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   double bage, fage, age, agelim, agebase;    */
   double ftolpl=FTOL;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double **prlim;  
   double *severity;    /* If stepm=6 months */
   double ***param; /* Matrix of parameters */    /* nhstepm age range expressed in number of stepm */
   double  *p;    agelim=AGESUP;
   double **matcov; /* Matrix of covariance */    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   double ***delti3; /* Scale */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double *delti; /* Scale */    /* if (stepm >= YEARM) hstepm=1;*/
   double ***eij, ***vareij;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double **varpl; /* Variances of prevalence limits by age */    
   double *epj, vepp;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double kk1, kk2;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
     for (age=bage; age<=fage; age ++){ 
   
   char z[1]="c", occ;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 #include <sys/time.h>         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 #include <time.h>   
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
   /* long total_usecs;      /* Computing  Variances of health expectancies */
   struct timeval start_time, end_time;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           decrease memory allocation */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      for(theta=1; theta <=npar; theta++){
   getcwd(pathcd, size);        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   printf("\n%s",version);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   if(argc <=1){        }
     printf("\nEnter the parameter file name: ");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     scanf("%s",pathtot);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   }    
   else{        for(j=1; j<= nlstate; j++){
     strcpy(pathtot,argv[1]);          for(i=1; i<=nlstate; i++){
   }            for(h=0; h<=nhstepm-1; h++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   /*cygwin_split_path(pathtot,path,optionfile);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            }
   /* cutv(path,optionfile,pathtot,'\\');*/          }
         }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for(ij=1; ij<= nlstate*nlstate; ij++)
   chdir(path);          for(h=0; h<=nhstepm-1; h++){
   replace(pathc,path);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
 /*-------- arguments in the command line --------*/      }/* End theta */
       
   strcpy(fileres,"r");      
   strcat(fileres, optionfilefiname);      for(h=0; h<=nhstepm-1; h++)
   strcat(fileres,".txt");    /* Other files have txt extension */        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   /*---------arguments file --------*/            trgradg[h][j][theta]=gradg[h][theta][j];
       
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);       for(ij=1;ij<=nlstate*nlstate;ij++)
     goto end;        for(ji=1;ji<=nlstate*nlstate;ji++)
   }          varhe[ij][ji][(int)age] =0.;
   
   strcpy(filereso,"o");       printf("%d|",(int)age);fflush(stdout);
   strcat(filereso,fileres);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   if((ficparo=fopen(filereso,"w"))==NULL) {       for(h=0;h<=nhstepm-1;h++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        for(k=0;k<=nhstepm-1;k++){
   }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   /* Reads comments: lines beginning with '#' */          for(ij=1;ij<=nlstate*nlstate;ij++)
   while((c=getc(ficpar))=='#' && c!= EOF){            for(ji=1;ji<=nlstate*nlstate;ji++)
     ungetc(c,ficpar);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      }
     fputs(line,ficparo);      /* Computing expectancies */
   }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            
 while((c=getc(ficpar))=='#' && c!= EOF){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          }
     puts(line);  
     fputs(line,ficparo);      fprintf(ficresstdeij,"%3.0f",age );
   }      for(i=1; i<=nlstate;i++){
   ungetc(c,ficpar);        eip=0.;
          vip=0.;
            for(j=1; j<=nlstate;j++){
   covar=matrix(0,NCOVMAX,1,n);          eip += eij[i][j][(int)age];
   cptcovn=0;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
   /* Read guess parameters */      fprintf(ficresstdeij,"\n");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficrescveij,"%3.0f",age );
     ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate;j++){
     puts(line);          cptj= (j-1)*nlstate+i;
     fputs(line,ficparo);          for(i2=1; i2<=nlstate;i2++)
   }            for(j2=1; j2<=nlstate;j2++){
   ungetc(c,ficpar);              cptj2= (j2-1)*nlstate+i2;
                if(cptj2 <= cptj)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     for(i=1; i <=nlstate; i++)            }
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficrescveij,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);     
       printf("%1d%1d",i,j);    }
       for(k=1; k<=ncovmodel;k++){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fscanf(ficpar," %lf",&param[i][j][k]);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         printf(" %lf",param[i][j][k]);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficparo," %lf",param[i][j][k]);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fscanf(ficpar,"\n");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("\n");    printf("\n");
       fprintf(ficparo,"\n");    fprintf(ficlog,"\n");
     }  
      free_vector(xm,1,npar);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   p=param[1][1];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance ******************/
     fgets(line, MAXLINE, ficpar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     puts(line);  {
     fputs(line,ficparo);    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   ungetc(c,ficpar);    /* double **newm;*/
     double **dnewm,**doldm;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double **dnewmp,**doldmp;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    int i, j, nhstepm, hstepm, h, nstepm ;
   for(i=1; i <=nlstate; i++){    int k, cptcode;
     for(j=1; j <=nlstate+ndeath-1; j++){    double *xp;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double **gp, **gm;  /* for var eij */
       printf("%1d%1d",i,j);    double ***gradg, ***trgradg; /*for var eij */
       fprintf(ficparo,"%1d%1d",i1,j1);    double **gradgp, **trgradgp; /* for var p point j */
       for(k=1; k<=ncovmodel;k++){    double *gpp, *gmp; /* for var p point j */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         printf(" %le",delti3[i][j][k]);    double ***p3mat;
         fprintf(ficparo," %le",delti3[i][j][k]);    double age,agelim, hf;
       }    double ***mobaverage;
       fscanf(ficpar,"\n");    int theta;
       printf("\n");    char digit[4];
       fprintf(ficparo,"\n");    char digitp[25];
     }  
   }    char fileresprobmorprev[FILENAMELENGTH];
   delti=delti3[1][1];  
      if(popbased==1){
   /* Reads comments: lines beginning with '#' */      if(mobilav!=0)
   while((c=getc(ficpar))=='#' && c!= EOF){        strcpy(digitp,"-populbased-mobilav-");
     ungetc(c,ficpar);      else strcpy(digitp,"-populbased-nomobil-");
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    else 
     fputs(line,ficparo);      strcpy(digitp,"-stablbased-");
   }  
   ungetc(c,ficpar);    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   matcov=matrix(1,npar,1,npar);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   for(i=1; i <=npar; i++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fscanf(ficpar,"%s",&str);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("%s",str);      }
     fprintf(ficparo,"%s",str);    }
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    strcpy(fileresprobmorprev,"prmorprev"); 
       printf(" %.5le",matcov[i][j]);    sprintf(digit,"%-d",ij);
       fprintf(ficparo," %.5le",matcov[i][j]);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fscanf(ficpar,"\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     printf("\n");    strcat(fileresprobmorprev,fileres);
     fprintf(ficparo,"\n");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   for(i=1; i <=npar; i++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     for(j=i+1;j<=npar;j++)    }
       matcov[i][j]=matcov[j][i];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       
   printf("\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     /*-------- Rewriting paramater file ----------*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      strcpy(rfileres,"r");    /* "Rparameterfile */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      fprintf(ficresprobmorprev," p.%-d SE",j);
      strcat(rfileres,".");    /* */      for(i=1; i<=nlstate;i++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     if((ficres =fopen(rfileres,"w"))==NULL) {    }  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficresprobmorprev,"\n");
     }    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficres,"#%s\n",version);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
        fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     /*-------- data file ----------*/    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     if((fic=fopen(datafile,"r"))==NULL)    {  /*   } */
       printf("Problem with datafile: %s\n", datafile);goto end;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     n= lastobs;    if(popbased==1)
     severity = vector(1,maxwav);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     outcome=imatrix(1,maxwav+1,1,n);    else
     num=ivector(1,n);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     moisnais=vector(1,n);    fprintf(ficresvij,"# Age");
     annais=vector(1,n);    for(i=1; i<=nlstate;i++)
     moisdc=vector(1,n);      for(j=1; j<=nlstate;j++)
     andc=vector(1,n);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     agedc=vector(1,n);    fprintf(ficresvij,"\n");
     cod=ivector(1,n);  
     weight=vector(1,n);    xp=vector(1,npar);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    dnewm=matrix(1,nlstate,1,npar);
     mint=matrix(1,maxwav,1,n);    doldm=matrix(1,nlstate,1,nlstate);
     anint=matrix(1,maxwav,1,n);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     s=imatrix(1,maxwav+1,1,n);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     ncodemax=ivector(1,8);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     i=1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     while (fgets(line, MAXLINE, fic) != NULL)    {    
       if ((i >= firstobs) && (i <=lastobs)) {    if(estepm < stepm){
              printf ("Problem %d lower than %d\n",estepm, stepm);
         for (j=maxwav;j>=1;j--){    }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    else  hstepm=estepm;   
           strcpy(line,stra);    /* For example we decided to compute the life expectancy with the smallest unit */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);       and note for a fixed period like k years */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       means that if the survival funtion is printed every two years of age and if
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    */
         for (j=ncovcol;j>=1;j--){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         num[i]=atol(stra);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
              nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
         i=i+1;      gm=matrix(0,nhstepm,1,nlstate);
       }  
     }  
     /* printf("ii=%d", ij);      for(theta=1; theta <=npar; theta++){
        scanf("%d",i);*/        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   imx=i-1; /* Number of individuals */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   /* for (i=1; i<=imx; i++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        if (popbased==1) {
     }*/          if(mobilav ==0){
    /*  for (i=1; i<=imx; i++){            for(i=1; i<=nlstate;i++)
      if (s[4][i]==9)  s[4][i]=-1;              prlim[i][i]=probs[(int)age][i][ij];
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   /* Calculation of the number of parameter from char model*/          }
   Tvar=ivector(1,15);        }
   Tprod=ivector(1,15);    
   Tvaraff=ivector(1,15);        for(j=1; j<= nlstate; j++){
   Tvard=imatrix(1,15,1,2);          for(h=0; h<=nhstepm; h++){
   Tage=ivector(1,15);                  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                  gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   if (strlen(model) >1){          }
     j=0, j1=0, k1=1, k2=1;        }
     j=nbocc(model,'+');        /* This for computing probability of death (h=1 means
     j1=nbocc(model,'*');           computed over hstepm matrices product = hstepm*stepm months) 
     cptcovn=j+1;           as a weighted average of prlim.
     cptcovprod=j1;        */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
     strcpy(modelsav,model);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       printf("Error. Non available option model=%s ",model);        }    
       goto end;        /* end probability of death */
     }  
            for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     for(i=(j+1); i>=1;i--){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       cutv(stra,strb,modelsav,'+');        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   
       /*scanf("%d",i);*/        if (popbased==1) {
       if (strchr(strb,'*')) {          if(mobilav ==0){
         cutv(strd,strc,strb,'*');            for(i=1; i<=nlstate;i++)
         if (strcmp(strc,"age")==0) {              prlim[i][i]=probs[(int)age][i][ij];
           cptcovprod--;          }else{ /* mobilav */ 
           cutv(strb,stre,strd,'V');            for(i=1; i<=nlstate;i++)
           Tvar[i]=atoi(stre);              prlim[i][i]=mobaverage[(int)age][i][ij];
           cptcovage++;          }
             Tage[cptcovage]=i;        }
             /*printf("stre=%s ", stre);*/  
         }        for(j=1; j<= nlstate; j++){
         else if (strcmp(strd,"age")==0) {          for(h=0; h<=nhstepm; h++){
           cptcovprod--;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           cutv(strb,stre,strc,'V');              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           Tvar[i]=atoi(stre);          }
           cptcovage++;        }
           Tage[cptcovage]=i;        /* This for computing probability of death (h=1 means
         }           computed over hstepm matrices product = hstepm*stepm months) 
         else {           as a weighted average of prlim.
           cutv(strb,stre,strc,'V');        */
           Tvar[i]=ncovcol+k1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cutv(strb,strc,strd,'V');          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           Tprod[k1]=i;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           Tvard[k1][1]=atoi(strc);        }    
           Tvard[k1][2]=atoi(stre);        /* end probability of death */
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        for(j=1; j<= nlstate; j++) /* vareij */
           for (k=1; k<=lastobs;k++)          for(h=0; h<=nhstepm; h++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           k1++;          }
           k2=k2+2;  
         }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       else {        }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/      } /* End theta */
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }  
       strcpy(modelsav,stra);        for(h=0; h<=nhstepm; h++) /* veij */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(j=1; j<=nlstate;j++)
         scanf("%d",i);*/          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
 }  
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        for(theta=1; theta <=npar; theta++)
   printf("cptcovprod=%d ", cptcovprod);          trgradgp[j][theta]=gradgp[theta][j];
   scanf("%d ",i);*/    
     fclose(fic);  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /*  if(mle==1){*/      for(i=1;i<=nlstate;i++)
     if (weightopt != 1) { /* Maximisation without weights*/        for(j=1;j<=nlstate;j++)
       for(i=1;i<=n;i++) weight[i]=1.0;          vareij[i][j][(int)age] =0.;
     }  
     /*-calculation of age at interview from date of interview and age at death -*/      for(h=0;h<=nhstepm;h++){
     agev=matrix(1,maxwav,1,imx);        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     for (i=1; i<=imx; i++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for(m=2; (m<= maxwav); m++) {          for(i=1;i<=nlstate;i++)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for(j=1;j<=nlstate;j++)
          anint[m][i]=9999;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          s[m][i]=-1;        }
        }      }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    
       }      /* pptj */
     }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     for (i=1; i<=imx; i++)  {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       for(m=1; (m<= maxwav); m++){          varppt[j][i]=doldmp[j][i];
         if(s[m][i] >0){      /* end ppptj */
           if (s[m][i] >= nlstate+1) {      /*  x centered again */
             if(agedc[i]>0)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
               if(moisdc[i]!=99 && andc[i]!=9999)      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                 agev[m][i]=agedc[i];   
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      if (popbased==1) {
            else {        if(mobilav ==0){
               if (andc[i]!=9999){          for(i=1; i<=nlstate;i++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            prlim[i][i]=probs[(int)age][i][ij];
               agev[m][i]=-1;        }else{ /* mobilav */ 
               }          for(i=1; i<=nlstate;i++)
             }            prlim[i][i]=mobaverage[(int)age][i][ij];
           }        }
           else if(s[m][i] !=9){ /* Should no more exist */      }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);               
             if(mint[m][i]==99 || anint[m][i]==9999)      /* This for computing probability of death (h=1 means
               agev[m][i]=1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             else if(agev[m][i] <agemin){         as a weighted average of prlim.
               agemin=agev[m][i];      */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             else if(agev[m][i] >agemax){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
               agemax=agev[m][i];      }    
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      /* end probability of death */
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
             /*   agev[m][i] = age[i]+2*m;*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           else { /* =9 */        for(i=1; i<=nlstate;i++){
             agev[m][i]=1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             s[m][i]=-1;        }
           }      } 
         }      fprintf(ficresprobmorprev,"\n");
         else /*= 0 Unknown */  
           agev[m][i]=1;      fprintf(ficresvij,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++){
     }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     for (i=1; i<=imx; i++)  {        }
       for(m=1; (m<= maxwav); m++){      fprintf(ficresvij,"\n");
         if (s[m][i] > (nlstate+ndeath)) {      free_matrix(gp,0,nhstepm,1,nlstate);
           printf("Error: Wrong value in nlstate or ndeath\n");        free_matrix(gm,0,nhstepm,1,nlstate);
           goto end;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_vector(severity,1,maxwav);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     free_imatrix(outcome,1,maxwav+1,1,n);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     free_vector(moisnais,1,n);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     free_vector(annais,1,n);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     /* free_matrix(mint,1,maxwav,1,n);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
        free_matrix(anint,1,maxwav,1,n);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     free_vector(moisdc,1,n);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     free_vector(andc,1,n);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     wav=ivector(1,imx);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      */
     /* Concatenates waves */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
       Tcode=ivector(1,100);    free_matrix(doldm,1,nlstate,1,nlstate);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    free_matrix(dnewm,1,nlstate,1,npar);
       ncodemax[1]=1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
          free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    codtab=imatrix(1,100,1,10);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    h=0;    fclose(ficresprobmorprev);
    m=pow(2,cptcoveff);    fflush(ficgp);
      fflush(fichtm); 
    for(k=1;k<=cptcoveff; k++){  }  /* end varevsij */
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){  /************ Variance of prevlim ******************/
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
            h++;  {
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    /* Variance of prevalence limit */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
          }    double **newm;
        }    double **dnewm,**doldm;
      }    int i, j, nhstepm, hstepm;
    }    int k, cptcode;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    double *xp;
       codtab[1][2]=1;codtab[2][2]=2; */    double *gp, *gm;
    /* for(i=1; i <=m ;i++){    double **gradg, **trgradg;
       for(k=1; k <=cptcovn; k++){    double age,agelim;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    int theta;
       }    
       printf("\n");    pstamp(ficresvpl);
       }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       scanf("%d",i);*/    fprintf(ficresvpl,"# Age");
        for(i=1; i<=nlstate;i++)
    /* Calculates basic frequencies. Computes observed prevalence at single age        fprintf(ficresvpl," %1d-%1d",i,i);
        and prints on file fileres'p'. */    fprintf(ficresvpl,"\n");
   
        xp=vector(1,npar);
        dnewm=matrix(1,nlstate,1,npar);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    doldm=matrix(1,nlstate,1,nlstate);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    hstepm=1*YEARM; /* Every year of age */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    agelim = AGESUP;
          for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     /* For Powell, parameters are in a vector p[] starting at p[1]      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      if (stepm >= YEARM) hstepm=1;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
     if(mle==1){      gp=vector(1,nlstate);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      gm=vector(1,nlstate);
     }  
          for(theta=1; theta <=npar; theta++){
     /*--------- results files --------------*/        for(i=1; i<=npar; i++){ /* Computes gradient */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    jk=1;        for(i=1;i<=nlstate;i++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          gp[i] = prlim[i][i];
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      
    for(i=1,jk=1; i <=nlstate; i++){        for(i=1; i<=npar; i++) /* Computes gradient */
      for(k=1; k <=(nlstate+ndeath); k++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        if (k != i)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          {        for(i=1;i<=nlstate;i++)
            printf("%d%d ",i,k);          gm[i] = prlim[i][i];
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){        for(i=1;i<=nlstate;i++)
              printf("%f ",p[jk]);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
              fprintf(ficres,"%f ",p[jk]);      } /* End theta */
              jk++;  
            }      trgradg =matrix(1,nlstate,1,npar);
            printf("\n");  
            fprintf(ficres,"\n");      for(j=1; j<=nlstate;j++)
          }        for(theta=1; theta <=npar; theta++)
      }          trgradg[j][theta]=gradg[theta][j];
    }  
  if(mle==1){      for(i=1;i<=nlstate;i++)
     /* Computing hessian and covariance matrix */        varpl[i][(int)age] =0.;
     ftolhess=ftol; /* Usually correct */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     hesscov(matcov, p, npar, delti, ftolhess, func);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
  }      for(i=1;i<=nlstate;i++)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficresvpl,"%.0f ",age );
       for(j=1; j <=nlstate+ndeath; j++){      for(i=1; i<=nlstate;i++)
         if (j!=i) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           fprintf(ficres,"%1d%1d",i,j);      fprintf(ficresvpl,"\n");
           printf("%1d%1d",i,j);      free_vector(gp,1,nlstate);
           for(k=1; k<=ncovmodel;k++){      free_vector(gm,1,nlstate);
             printf(" %.5e",delti[jk]);      free_matrix(gradg,1,npar,1,nlstate);
             fprintf(ficres," %.5e",delti[jk]);      free_matrix(trgradg,1,nlstate,1,npar);
             jk++;    } /* End age */
           }  
           printf("\n");    free_vector(xp,1,npar);
           fprintf(ficres,"\n");    free_matrix(doldm,1,nlstate,1,npar);
         }    free_matrix(dnewm,1,nlstate,1,nlstate);
       }  
      }  }
      
     k=1;  /************ Variance of one-step probabilities  ******************/
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  {
     for(i=1;i<=npar;i++){    int i, j=0,  i1, k1, l1, t, tj;
       /*  if (k>nlstate) k=1;    int k2, l2, j1,  z1;
       i1=(i-1)/(ncovmodel*nlstate)+1;    int k=0,l, cptcode;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    int first=1, first1;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       fprintf(ficres,"%3d",i);    double **dnewm,**doldm;
       printf("%3d",i);    double *xp;
       for(j=1; j<=i;j++){    double *gp, *gm;
         fprintf(ficres," %.5e",matcov[i][j]);    double **gradg, **trgradg;
         printf(" %.5e",matcov[i][j]);    double **mu;
       }    double age,agelim, cov[NCOVMAX];
       fprintf(ficres,"\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       printf("\n");    int theta;
       k++;    char fileresprob[FILENAMELENGTH];
     }    char fileresprobcov[FILENAMELENGTH];
        char fileresprobcor[FILENAMELENGTH];
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);    double ***varpij;
       fgets(line, MAXLINE, ficpar);  
       puts(line);    strcpy(fileresprob,"prob"); 
       fputs(line,ficparo);    strcat(fileresprob,fileres);
     }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprob);
     estepm=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    }
     if (estepm==0 || estepm < stepm) estepm=stepm;    strcpy(fileresprobcov,"probcov"); 
     if (fage <= 2) {    strcat(fileresprobcov,fileres);
       bage = ageminpar;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       fage = agemaxpar;      printf("Problem with resultfile: %s\n", fileresprobcov);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    strcpy(fileresprobcor,"probcor"); 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    strcat(fileresprobcor,fileres);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     puts(line);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fputs(line,ficparo);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   ungetc(c,ficpar);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    pstamp(ficresprob);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficresprob,"# Age");
          pstamp(ficresprobcov);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     ungetc(c,ficpar);    fprintf(ficresprobcov,"# Age");
     fgets(line, MAXLINE, ficpar);    pstamp(ficresprobcor);
     puts(line);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fputs(line,ficparo);    fprintf(ficresprobcor,"# Age");
   }  
   ungetc(c,ficpar);  
      for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   fscanf(ficpar,"pop_based=%d\n",&popbased);      }  
   fprintf(ficparo,"pop_based=%d\n",popbased);     /* fprintf(ficresprob,"\n");
   fprintf(ficres,"pop_based=%d\n",popbased);      fprintf(ficresprobcov,"\n");
      fprintf(ficresprobcor,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){   */
     ungetc(c,ficpar);   xp=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     puts(line);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   ungetc(c,ficpar);    first=1;
     fprintf(ficgp,"\n# Routine varprob");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(fichtm,"\n");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 while((c=getc(ficpar))=='#' && c!= EOF){    file %s<br>\n",optionfilehtmcov);
     ungetc(c,ficpar);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     fgets(line, MAXLINE, ficpar);  and drawn. It helps understanding how is the covariance between two incidences.\
     puts(line);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fputs(line,ficparo);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   ungetc(c,ficpar);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    cov[1]=1;
     tj=cptcoveff;
 /*------------ gnuplot -------------*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    j1=0;
      for(t=1; t<=tj;t++){
 /*------------ free_vector  -------------*/      for(i1=1; i1<=ncodemax[t];i1++){ 
  chdir(path);        j1++;
          if  (cptcovn>0) {
  free_ivector(wav,1,imx);          fprintf(ficresprob, "\n#********** Variable "); 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficresprob, "**********\n#\n");
  free_ivector(num,1,n);          fprintf(ficresprobcov, "\n#********** Variable "); 
  free_vector(agedc,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          fprintf(ficresprobcov, "**********\n#\n");
  fclose(ficparo);          
  fclose(ficres);          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /*--------- index.htm --------*/          fprintf(ficgp, "**********\n#\n");
           
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);          
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*--------------- Prevalence limit --------------*/          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   strcpy(filerespl,"pl");          fprintf(ficresprobcor, "\n#********** Variable ");    
   strcat(filerespl,fileres);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          fprintf(ficresprobcor, "**********\n#");    
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }
   }        
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        for (age=bage; age<=fage; age ++){ 
   fprintf(ficrespl,"#Prevalence limit\n");          cov[2]=age;
   fprintf(ficrespl,"#Age ");          for (k=1; k<=cptcovn;k++) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   fprintf(ficrespl,"\n");          }
            for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   prlim=matrix(1,nlstate,1,nlstate);          for (k=1; k<=cptcovprod;k++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          gp=vector(1,(nlstate)*(nlstate+ndeath));
   k=0;          gm=vector(1,(nlstate)*(nlstate+ndeath));
   agebase=ageminpar;      
   agelim=agemaxpar;          for(theta=1; theta <=npar; theta++){
   ftolpl=1.e-10;            for(i=1; i<=npar; i++)
   i1=cptcoveff;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   if (cptcovn < 1){i1=1;}            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   for(cptcov=1;cptcov<=i1;cptcov++){            
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            k=0;
         k=k+1;            for(i=1; i<= (nlstate); i++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficrespl,"\n#******");                k=k+1;
         for(j=1;j<=cptcoveff;j++)                gp[k]=pmmij[i][j];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              }
         fprintf(ficrespl,"******\n");            }
                    
         for (age=agebase; age<=agelim; age++){            for(i=1; i<=npar; i++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           fprintf(ficrespl,"%.0f",age );      
           for(i=1; i<=nlstate;i++)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           fprintf(ficrespl," %.5f", prlim[i][i]);            k=0;
           fprintf(ficrespl,"\n");            for(i=1; i<=(nlstate); i++){
         }              for(j=1; j<=(nlstate+ndeath);j++){
       }                k=k+1;
     }                gm[k]=pmmij[i][j];
   fclose(ficrespl);              }
             }
   /*------------- h Pij x at various ages ------------*/       
              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   printf("Computing pij: result on file '%s' \n", filerespij);            for(theta=1; theta <=npar; theta++)
                trgradg[j][theta]=gradg[theta][j];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          
   /*if (stepm<=24) stepsize=2;*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   agelim=AGESUP;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   hstepm=stepsize*YEARM; /* Every year of age */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          
       k=k+1;          k=0;
         fprintf(ficrespij,"\n#****** ");          for(i=1; i<=(nlstate); i++){
         for(j=1;j<=cptcoveff;j++)            for(j=1; j<=(nlstate+ndeath);j++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              k=k+1;
         fprintf(ficrespij,"******\n");              mu[k][(int) age]=pmmij[i][j];
                    }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              varpij[i][j][(int)age] = doldm[i][j];
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            /*printf("\n%d ",(int)age);
           fprintf(ficrespij,"# Age");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           for(i=1; i<=nlstate;i++)            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             for(j=1; j<=nlstate+ndeath;j++)            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               fprintf(ficrespij," %1d-%1d",i,j);            }*/
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){          fprintf(ficresprob,"\n%d ",(int)age);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(ficresprobcov,"\n%d ",(int)age);
             for(i=1; i<=nlstate;i++)          fprintf(ficresprobcor,"\n%d ",(int)age);
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficrespij,"\n");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
              }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           fprintf(ficrespij,"\n");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         }          }
     }          i=0;
   }          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   fclose(ficrespij);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   /*---------- Forecasting ------------------*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   if((stepm == 1) && (strcmp(model,".")==0)){              }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          }/* end of loop for state */
   }        } /* end of loop for age */
   else{  
     erreur=108;        /* Confidence intervalle of pij  */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        /*
   }          fprintf(ficgp,"\nset noparametric;unset label");
            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /*---------- Health expectancies and variances ------------*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   strcpy(filerest,"t");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   strcat(filerest,fileres);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   if((ficrest=fopen(filerest,"w"))==NULL) {        */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   strcpy(filerese,"e");            if(l2==k2) continue;
   strcat(filerese,fileres);            j=(k2-1)*(nlstate+ndeath)+l2;
   if((ficreseij=fopen(filerese,"w"))==NULL) {            for (k1=1; k1<=(nlstate);k1++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   }                if(l1==k1) continue;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
  strcpy(fileresv,"v");                for (age=bage; age<=fage; age ++){ 
   strcat(fileresv,fileres);                  if ((int)age %5==0){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   calagedate=-1;                    mu2=mu[j][(int) age]/stepm*YEARM;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   k=0;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   for(cptcov=1;cptcov<=i1;cptcov++){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    /* Eigen vectors */
       k=k+1;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       fprintf(ficrest,"\n#****** ");                    /*v21=sqrt(1.-v11*v11); *//* error */
       for(j=1;j<=cptcoveff;j++)                    v21=(lc1-v1)/cv12*v11;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v12=-v21;
       fprintf(ficrest,"******\n");                    v22=v11;
                     tnalp=v21/v11;
       fprintf(ficreseij,"\n#****** ");                    if(first1==1){
       for(j=1;j<=cptcoveff;j++)                      first1=0;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fprintf(ficreseij,"******\n");                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fprintf(ficresvij,"\n#****** ");                    /*printf(fignu*/
       for(j=1;j<=cptcoveff;j++)                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       fprintf(ficresvij,"******\n");                    if(first==1){
                       first=0;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                      fprintf(ficgp,"\nset parametric;unset label");
       oldm=oldms;savm=savms;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                        fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       oldm=oldms;savm=savms;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                  subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fprintf(ficrest,"\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       epj=vector(1,nlstate+1);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(age=bage; age <=fage ;age++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    }else{
         if (popbased==1) {                      first=0;
           for(i=1; i<=nlstate;i++)                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
             prlim[i][i]=probs[(int)age][i][k];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                              fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         fprintf(ficrest," %4.0f",age);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    }/* if first */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                  } /* age mod 5 */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                } /* end loop age */
           }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           epj[nlstate+1] +=epj[j];                first=1;
         }              } /*l12 */
             } /* k12 */
         for(i=1, vepp=0.;i <=nlstate;i++)          } /*l1 */
           for(j=1;j <=nlstate;j++)        }/* k1 */
             vepp += vareij[i][j][(int)age];      } /* loop covariates */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    }
         for(j=1;j <=nlstate;j++){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrest,"\n");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       }    free_vector(xp,1,npar);
     }    fclose(ficresprob);
   }    fclose(ficresprobcov);
 free_matrix(mint,1,maxwav,1,n);    fclose(ficresprobcor);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    fflush(ficgp);
     free_vector(weight,1,n);    fflush(fichtmcov);
   fclose(ficreseij);  }
   fclose(ficresvij);  
   fclose(ficrest);  
   fclose(ficpar);  /******************* Printing html file ***********/
   free_vector(epj,1,nlstate+1);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
   /*------- Variance limit prevalence------*/                      int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
   strcpy(fileresvpl,"vpl");                    double jprev1, double mprev1,double anprev1, \
   strcat(fileresvpl,fileres);                    double jprev2, double mprev2,double anprev2){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    int jj1, k1, i1, cpt;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   k=0;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   for(cptcov=1;cptcov<=i1;cptcov++){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     fprintf(fichtm,"\
       k=k+1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       fprintf(ficresvpl,"\n#****** ");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"\
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvpl,"******\n");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
           fprintf(fichtm,"\
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
       oldm=oldms;savm=savms;     <a href=\"%s\">%s</a> <br>\n</li>",
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     }  
  }  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   fclose(ficresvpl);  
    m=cptcoveff;
   /*---------- End : free ----------------*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
     jj1=0;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);   for(k1=1; k1<=m;k1++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
         if (cptcovn > 0) {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
   free_matrix(matcov,1,npar,1,npar);       /* Pij */
   free_vector(delti,1,npar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   free_matrix(agev,1,maxwav,1,imx);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   if(erreur >0)   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
     printf("End of Imach with error or warning %d\n",erreur);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   else   printf("End of Imach\n");         /* Period (stable) prevalence in each health state */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */         for(cpt=1; cpt<nlstate;cpt++){
             fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   /*printf("Total time was %d uSec.\n", total_usecs);*/         }
   /*------ End -----------*/       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
  end:       }
   /* chdir(pathcd);*/     } /* end i1 */
  /*system("wgnuplot graph.plt");*/   }/* End k1 */
  /*system("../gp37mgw/wgnuplot graph.plt");*/   fprintf(fichtm,"</ul>");
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);   fprintf(fichtm,"\
  strcat(plotcmd," ");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
  strcat(plotcmd,optionfilegnuplot);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  system(plotcmd);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  /*#ifdef windows*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   while (z[0] != 'q') {   fprintf(fichtm,"\
     /* chdir(path); */   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");   fprintf(fichtm,"\
     else if (z[0] == 'e') system(optionfilehtm);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     else if (z[0] == 'g') system(plotcmd);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     else if (z[0] == 'q') exit(0);   fprintf(fichtm,"\
   }   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   /*#endif */     <a href=\"%s\">%s</a> <br>\n</li>",
 }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.124


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>