Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.127

version 1.41.2.1, 2003/06/12 10:43:20 version 1.127, 2006/04/28 18:11:50
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.127  2006/04/28 18:11:50  brouard
      (Module): Yes the sum of survivors was wrong since
   This program computes Healthy Life Expectancies from    imach-114 because nhstepm was no more computed in the age
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    loop. Now we define nhstepma in the age loop.
   first survey ("cross") where individuals from different ages are    (Module): In order to speed up (in case of numerous covariates) we
   interviewed on their health status or degree of disability (in the    compute health expectancies (without variances) in a first step
   case of a health survey which is our main interest) -2- at least a    and then all the health expectancies with variances or standard
   second wave of interviews ("longitudinal") which measure each change    deviation (needs data from the Hessian matrices) which slows the
   (if any) in individual health status.  Health expectancies are    computation.
   computed from the time spent in each health state according to a    In the future we should be able to stop the program is only health
   model. More health states you consider, more time is necessary to reach the    expectancies and graph are needed without standard deviations.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.126  2006/04/28 17:23:28  brouard
   probability to be observed in state j at the second wave    (Module): Yes the sum of survivors was wrong since
   conditional to be observed in state i at the first wave. Therefore    imach-114 because nhstepm was no more computed in the age
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    loop. Now we define nhstepma in the age loop.
   'age' is age and 'sex' is a covariate. If you want to have a more    Version 0.98h
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.125  2006/04/04 15:20:31  lievre
   you to do it.  More covariates you add, slower the    Errors in calculation of health expectancies. Age was not initialized.
   convergence.    Forecasting file added.
   
   The advantage of this computer programme, compared to a simple    Revision 1.124  2006/03/22 17:13:53  lievre
   multinomial logistic model, is clear when the delay between waves is not    Parameters are printed with %lf instead of %f (more numbers after the comma).
   identical for each individual. Also, if a individual missed an    The log-likelihood is printed in the log file
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
   hPijx is the probability to be observed in state i at age x+h    name. <head> headers where missing.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): Weights can have a decimal point as for
   states. This elementary transition (by month or quarter trimester,    English (a comma might work with a correct LC_NUMERIC environment,
   semester or year) is model as a multinomial logistic.  The hPx    otherwise the weight is truncated).
   matrix is simply the matrix product of nh*stepm elementary matrices    Modification of warning when the covariates values are not 0 or
   and the contribution of each individual to the likelihood is simply    1.
   hPijx.    Version 0.98g
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.122  2006/03/20 09:45:41  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Weights can have a decimal point as for
      English (a comma might work with a correct LC_NUMERIC environment,
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    otherwise the weight is truncated).
            Institut national d'études démographiques, Paris.    Modification of warning when the covariates values are not 0 or
   This software have been partly granted by Euro-REVES, a concerted action    1.
   from the European Union.    Version 0.98g
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.121  2006/03/16 17:45:01  lievre
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): Comments concerning covariates added
   **********************************************************************/  
      * imach.c (Module): refinements in the computation of lli if
 #include <math.h>    status=-2 in order to have more reliable computation if stepm is
 #include <stdio.h>    not 1 month. Version 0.98f
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 #define MAXLINE 256    status=-2 in order to have more reliable computation if stepm is
 #define GNUPLOTPROGRAM "wgnuplot"    not 1 month. Version 0.98f
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.119  2006/03/15 17:42:26  brouard
 /*#define DEBUG*/    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.118  2006/03/14 18:20:07  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Function pstamp added
     (Module): Version 0.98d
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.117  2006/03/14 17:16:22  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): varevsij Comments added explaining the second
 #define NCOVMAX 8 /* Maximum number of covariates */    table of variances if popbased=1 .
 #define MAXN 20000    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define YEARM 12. /* Number of months per year */    (Module): Function pstamp added
 #define AGESUP 130    (Module): Version 0.98d
 #define AGEBASE 40  
     Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 int erreur; /* Error number */    varian-covariance of ej. is needed (Saito).
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.115  2006/02/27 12:17:45  brouard
 int npar=NPARMAX;    (Module): One freematrix added in mlikeli! 0.98c
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.114  2006/02/26 12:57:58  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Some improvements in processing parameter
 int popbased=0;    filename with strsep.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.113  2006/02/24 14:20:24  brouard
 int maxwav; /* Maxim number of waves */    (Module): Memory leaks checks with valgrind and:
 int jmin, jmax; /* min, max spacing between 2 waves */    datafile was not closed, some imatrix were not freed and on matrix
 int mle, weightopt;    allocation too.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.112  2006/01/30 09:55:26  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.111  2006/01/25 20:38:18  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE *ficgp,*ficresprob,*ficpop;    (Module): Comments can be added in data file. Missing date values
 FILE *ficreseij;    can be a simple dot '.'.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.110  2006/01/25 00:51:50  brouard
   char fileresv[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.108  2006/01/19 18:05:42  lievre
 #define FTOL 1.0e-10    Gnuplot problem appeared...
     To be fixed
 #define NRANSI  
 #define ITMAX 200    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 #define TOL 2.0e-4  
     Revision 1.106  2006/01/19 13:24:36  brouard
 #define CGOLD 0.3819660    Some cleaning and links added in html output
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.104  2005/09/30 16:11:43  lievre
 #define TINY 1.0e-20    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 static double maxarg1,maxarg2;    that the person is alive, then we can code his/her status as -2
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (instead of missing=-1 in earlier versions) and his/her
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    contributions to the likelihood is 1 - Prob of dying from last
      health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    the healthy state at last known wave). Version is 0.98
 #define rint(a) floor(a+0.5)  
     Revision 1.103  2005/09/30 15:54:49  lievre
 static double sqrarg;    (Module): sump fixed, loop imx fixed, and simplifications.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 int imx;  
 int stepm;    Revision 1.101  2004/09/15 10:38:38  brouard
 /* Stepm, step in month: minimum step interpolation*/    Fix on curr_time
   
 int estepm;    Revision 1.100  2004/07/12 18:29:06  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Add version for Mac OS X. Just define UNIX in Makefile
   
 int m,nb;    Revision 1.99  2004/06/05 08:57:40  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    *** empty log message ***
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.98  2004/05/16 15:05:56  brouard
 double dateintmean=0;    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 double *weight;    state at each age, but using a Gompertz model: log u =a + b*age .
 int **s; /* Status */    This is the basic analysis of mortality and should be done before any
 double *agedc, **covar, idx;    other analysis, in order to test if the mortality estimated from the
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    The same imach parameter file can be used but the option for mle should be -3.
   
 /**************** split *************************/    Agnès, who wrote this part of the code, tried to keep most of the
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    former routines in order to include the new code within the former code.
 {  
    char *s;                             /* pointer */    The output is very simple: only an estimate of the intercept and of
    int  l1, l2;                         /* length counters */    the slope with 95% confident intervals.
   
    l1 = strlen( path );                 /* length of path */    Current limitations:
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    A) Even if you enter covariates, i.e. with the
 #ifdef windows    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    s = strrchr( path, '\\' );           /* find last / */    B) There is no computation of Life Expectancy nor Life Table.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.97  2004/02/20 13:25:42  lievre
 #endif    Version 0.96d. Population forecasting command line is (temporarily)
    if ( s == NULL ) {                   /* no directory, so use current */    suppressed.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       if ( getwd( dirc ) == NULL ) {    rewritten within the same printf. Workaround: many printfs.
 #else  
       extern char       *getcwd( );    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Repository): Using imachwizard code to output a more meaningful covariance
 #endif    matrix (cov(a12,c31) instead of numbers.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.94  2003/06/27 13:00:02  brouard
       strcpy( name, path );             /* we've got it */    Just cleaning
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.93  2003/06/25 16:33:55  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): On windows (cygwin) function asctime_r doesn't
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    exist so I changed back to asctime which exists.
       strcpy( name, s );                /* save file name */    (Module): Version 0.96b
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.92  2003/06/25 16:30:45  brouard
    }    (Module): On windows (cygwin) function asctime_r doesn't
    l1 = strlen( dirc );                 /* length of directory */    exist so I changed back to asctime which exists.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.91  2003/06/25 15:30:29  brouard
 #else    * imach.c (Repository): Duplicated warning errors corrected.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Repository): Elapsed time after each iteration is now output. It
 #endif    helps to forecast when convergence will be reached. Elapsed time
    s = strrchr( name, '.' );            /* find last / */    is stamped in powell.  We created a new html file for the graphs
    s++;    concerning matrix of covariance. It has extension -cov.htm.
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.90  2003/06/24 12:34:15  brouard
    l2= strlen( s)+1;    (Module): Some bugs corrected for windows. Also, when
    strncpy( finame, name, l1-l2);    mle=-1 a template is output in file "or"mypar.txt with the design
    finame[l1-l2]= 0;    of the covariance matrix to be input.
    return( 0 );                         /* we're done */  
 }    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /******************************************/    of the covariance matrix to be input.
   
 void replace(char *s, char*t)    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   int i;  
   int lg=20;    Revision 1.87  2003/06/18 12:26:01  brouard
   i=0;    Version 0.96
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.86  2003/06/17 20:04:08  brouard
     (s[i] = t[i]);    (Module): Change position of html and gnuplot routines and added
     if (t[i]== '\\') s[i]='/';    routine fileappend.
   }  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 int nbocc(char *s, char occ)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   int i,j=0;    was wrong (infinity). We still send an "Error" but patch by
   int lg=20;    assuming that the date of death was just one stepm after the
   i=0;    interview.
   lg=strlen(s);    (Repository): Because some people have very long ID (first column)
   for(i=0; i<= lg; i++) {    we changed int to long in num[] and we added a new lvector for
   if  (s[i] == occ ) j++;    memory allocation. But we also truncated to 8 characters (left
   }    truncation)
   return j;    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 void cutv(char *u,char *v, char*t, char occ)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   int i,lg,j,p=0;    many times. Probs is memory consuming and must be used with
   i=0;    parcimony.
   for(j=0; j<=strlen(t)-1; j++) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.82  2003/06/05 15:57:20  brouard
     (u[j] = t[j]);    Add log in  imach.c and  fullversion number is now printed.
   }  
      u[p]='\0';  */
   /*
    for(j=0; j<= lg; j++) {     Interpolated Markov Chain
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Short summary of the programme:
 }    
     This program computes Healthy Life Expectancies from
 /********************** nrerror ********************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 void nrerror(char error_text[])    interviewed on their health status or degree of disability (in the
 {    case of a health survey which is our main interest) -2- at least a
   fprintf(stderr,"ERREUR ...\n");    second wave of interviews ("longitudinal") which measure each change
   fprintf(stderr,"%s\n",error_text);    (if any) in individual health status.  Health expectancies are
   exit(1);    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
 /*********************** vector *******************/    Maximum Likelihood of the parameters involved in the model.  The
 double *vector(int nl, int nh)    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   double *v;    conditional to be observed in state i at the first wave. Therefore
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if (!v) nrerror("allocation failure in vector");    'age' is age and 'sex' is a covariate. If you want to have a more
   return v-nl+NR_END;    complex model than "constant and age", you should modify the program
 }    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 /************************ free vector ******************/    convergence.
 void free_vector(double*v, int nl, int nh)  
 {    The advantage of this computer programme, compared to a simple
   free((FREE_ARG)(v+nl-NR_END));    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /************************ivector *******************************/    account using an interpolation or extrapolation.  
 int *ivector(long nl,long nh)  
 {    hPijx is the probability to be observed in state i at age x+h
   int *v;    conditional to the observed state i at age x. The delay 'h' can be
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    split into an exact number (nh*stepm) of unobserved intermediate
   if (!v) nrerror("allocation failure in ivector");    states. This elementary transition (by month, quarter,
   return v-nl+NR_END;    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /******************free ivector **************************/    hPijx.
 void free_ivector(int *v, long nl, long nh)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   free((FREE_ARG)(v+nl-NR_END));    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /******************* imatrix *******************************/             Institut national d'études démographiques, Paris.
 int **imatrix(long nrl, long nrh, long ncl, long nch)    This software have been partly granted by Euro-REVES, a concerted action
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    software can be distributed freely for non commercial use. Latest version
   int **m;    can be accessed at http://euroreves.ined.fr/imach .
    
   /* allocate pointers to rows */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    **********************************************************************/
   m -= nrl;  /*
      main
      read parameterfile
   /* allocate rows and set pointers to them */    read datafile
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    concatwav
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    freqsummary
   m[nrl] += NR_END;    if (mle >= 1)
   m[nrl] -= ncl;      mlikeli
      print results files
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    if mle==1 
         computes hessian
   /* return pointer to array of pointers to rows */    read end of parameter file: agemin, agemax, bage, fage, estepm
   return m;        begin-prev-date,...
 }    open gnuplot file
     open html file
 /****************** free_imatrix *************************/    period (stable) prevalence
 void free_imatrix(m,nrl,nrh,ncl,nch)     for age prevalim()
       int **m;    h Pij x
       long nch,ncl,nrh,nrl;    variance of p varprob
      /* free an int matrix allocated by imatrix() */    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Variance-covariance of DFLE
   free((FREE_ARG) (m+nrl-NR_END));    prevalence()
 }     movingaverage()
     varevsij() 
 /******************* matrix *******************************/    if popbased==1 varevsij(,popbased)
 double **matrix(long nrl, long nrh, long ncl, long nch)    total life expectancies
 {    Variance of period (stable) prevalence
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;   end
   double **m;  */
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;   
   m -= nrl;  #include <math.h>
   #include <stdio.h>
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <stdlib.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <string.h>
   m[nrl] += NR_END;  #include <unistd.h>
   m[nrl] -= ncl;  
   #include <limits.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <sys/types.h>
   return m;  #include <sys/stat.h>
 }  #include <errno.h>
   extern int errno;
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /* #include <sys/time.h> */
 {  #include <time.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include "timeval.h"
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define MAXLINE 256
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define GNUPLOTPROGRAM "gnuplot"
   double ***m;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m += NR_END;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m -= nrl;  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define NINTERVMAX 8
   m[nrl] -= ncl;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define YEARM 12. /* Number of months per year */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define AGESUP 130
   m[nrl][ncl] += NR_END;  #define AGEBASE 40
   m[nrl][ncl] -= nll;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   for (j=ncl+1; j<=nch; j++)  #ifdef UNIX
     m[nrl][j]=m[nrl][j-1]+nlay;  #define DIRSEPARATOR '/'
    #define CHARSEPARATOR "/"
   for (i=nrl+1; i<=nrh; i++) {  #define ODIRSEPARATOR '\\'
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #else
     for (j=ncl+1; j<=nch; j++)  #define DIRSEPARATOR '\\'
       m[i][j]=m[i][j-1]+nlay;  #define CHARSEPARATOR "\\"
   }  #define ODIRSEPARATOR '/'
   return m;  #endif
 }  
   /* $Id$ */
 /*************************free ma3x ************************/  /* $State$ */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  char version[]="Imach version 0.98h, April 2006, INED-EUROREVES-Institut de longevite ";
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char fullversion[]="$Revision$ $Date$"; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char strstart[80];
   free((FREE_ARG)(m+nrl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /***************** f1dim *************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 extern int ncom;  int npar=NPARMAX;
 extern double *pcom,*xicom;  int nlstate=2; /* Number of live states */
 extern double (*nrfunc)(double []);  int ndeath=1; /* Number of dead states */
    int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double f1dim(double x)  int popbased=0;
 {  
   int j;  int *wav; /* Number of waves for this individuual 0 is possible */
   double f;  int maxwav; /* Maxim number of waves */
   double *xt;  int jmin, jmax; /* min, max spacing between 2 waves */
    int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   xt=vector(1,ncom);  int gipmx, gsw; /* Global variables on the number of contributions 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];                     to the likelihood and the sum of weights (done by funcone)*/
   f=(*nrfunc)(xt);  int mle, weightopt;
   free_vector(xt,1,ncom);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   return f;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /*****************brent *************************/  double jmean; /* Mean space between 2 waves */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   int iter;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double a,b,d,etemp;  FILE *ficlog, *ficrespow;
   double fu,fv,fw,fx;  int globpr; /* Global variable for printing or not */
   double ftemp;  double fretone; /* Only one call to likelihood */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  long ipmx; /* Number of contributions */
   double e=0.0;  double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   b=(ax > cx ? ax : cx);  FILE *ficresilk;
   x=w=v=bx;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   fw=fv=fx=(*f)(x);  FILE *ficresprobmorprev;
   for (iter=1;iter<=ITMAX;iter++) {  FILE *fichtm, *fichtmcov; /* Html File */
     xm=0.5*(a+b);  FILE *ficreseij;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char filerese[FILENAMELENGTH];
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE *ficresstdeij;
     printf(".");fflush(stdout);  char fileresstde[FILENAMELENGTH];
 #ifdef DEBUG  FILE *ficrescveij;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char filerescve[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  FILE  *ficresvij;
 #endif  char fileresv[FILENAMELENGTH];
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE  *ficresvpl;
       *xmin=x;  char fileresvpl[FILENAMELENGTH];
       return fx;  char title[MAXLINE];
     }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     ftemp=fu;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     if (fabs(e) > tol1) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       r=(x-w)*(fx-fv);  char command[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  int  outcmd=0;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       if (q > 0.0) p = -p;  
       q=fabs(q);  char filelog[FILENAMELENGTH]; /* Log file */
       etemp=e;  char filerest[FILENAMELENGTH];
       e=d;  char fileregp[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char popfile[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         d=p/q;  
         u=x+d;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
         if (u-a < tol2 || b-u < tol2)  struct timezone tzp;
           d=SIGN(tol1,xm-x);  extern int gettimeofday();
       }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     } else {  long time_value;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  extern long time();
     }  char strcurr[80], strfor[80];
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  char *endptr;
     if (fu <= fx) {  long lval;
       if (u >= x) a=x; else b=x;  double dval;
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  #define NR_END 1
         } else {  #define FREE_ARG char*
           if (u < x) a=u; else b=u;  #define FTOL 1.0e-10
           if (fu <= fw || w == x) {  
             v=w;  #define NRANSI 
             w=u;  #define ITMAX 200 
             fv=fw;  
             fw=fu;  #define TOL 2.0e-4 
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  #define CGOLD 0.3819660 
             fv=fu;  #define ZEPS 1.0e-10 
           }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         }  
   }  #define GOLD 1.618034 
   nrerror("Too many iterations in brent");  #define GLIMIT 100.0 
   *xmin=x;  #define TINY 1.0e-20 
   return fx;  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /****************** mnbrak ***********************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
             double (*func)(double))  #define rint(a) floor(a+0.5)
 {  
   double ulim,u,r,q, dum;  static double sqrarg;
   double fu;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   *fa=(*func)(*ax);  int agegomp= AGEGOMP;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  int imx; 
     SHFT(dum,*ax,*bx,dum)  int stepm=1;
       SHFT(dum,*fb,*fa,dum)  /* Stepm, step in month: minimum step interpolation*/
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  int estepm;
   *fc=(*func)(*cx);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  int m,nb;
     q=(*bx-*cx)*(*fb-*fa);  long *num;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double **pmmij, ***probs;
     if ((*bx-u)*(u-*cx) > 0.0) {  double *ageexmed,*agecens;
       fu=(*func)(u);  double dateintmean=0;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  double *weight;
       if (fu < *fc) {  int **s; /* Status */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double *agedc, **covar, idx;
           SHFT(*fb,*fc,fu,(*func)(u))  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
           }  double *lsurv, *lpop, *tpop;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       fu=(*func)(u);  double ftolhess; /* Tolerance for computing hessian */
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /**************** split *************************/
       fu=(*func)(u);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     }  {
     SHFT(*ax,*bx,*cx,u)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       SHFT(*fa,*fb,*fc,fu)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       }    */ 
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /*************** linmin ************************/  
     l1 = strlen(path );                   /* length of path */
 int ncom;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 double *pcom,*xicom;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 double (*nrfunc)(double []);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double brent(double ax, double bx, double cx,      /* get current working directory */
                double (*f)(double), double tol, double *xmin);      /*    extern  char* getcwd ( char *buf , int len);*/
   double f1dim(double x);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        return( GLOCK_ERROR_GETCWD );
               double *fc, double (*func)(double));      }
   int j;      /* got dirc from getcwd*/
   double xx,xmin,bx,ax;      printf(" DIRC = %s \n",dirc);
   double fx,fb,fa;    } else {                              /* strip direcotry from path */
        ss++;                               /* after this, the filename */
   ncom=n;      l2 = strlen( ss );                  /* length of filename */
   pcom=vector(1,n);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   xicom=vector(1,n);      strcpy( name, ss );         /* save file name */
   nrfunc=func;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for (j=1;j<=n;j++) {      dirc[l1-l2] = 0;                    /* add zero */
     pcom[j]=p[j];      printf(" DIRC2 = %s \n",dirc);
     xicom[j]=xi[j];    }
   }    /* We add a separator at the end of dirc if not exists */
   ax=0.0;    l1 = strlen( dirc );                  /* length of directory */
   xx=1.0;    if( dirc[l1-1] != DIRSEPARATOR ){
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      dirc[l1] =  DIRSEPARATOR;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      dirc[l1+1] = 0; 
 #ifdef DEBUG      printf(" DIRC3 = %s \n",dirc);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    }
 #endif    ss = strrchr( name, '.' );            /* find last / */
   for (j=1;j<=n;j++) {    if (ss >0){
     xi[j] *= xmin;      ss++;
     p[j] += xi[j];      strcpy(ext,ss);                     /* save extension */
   }      l1= strlen( name);
   free_vector(xicom,1,n);      l2= strlen(ss)+1;
   free_vector(pcom,1,n);      strncpy( finame, name, l1-l2);
 }      finame[l1-l2]= 0;
     }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    return( 0 );                          /* we're done */
             double (*func)(double []))  }
 {  
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /******************************************/
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  void replace_back_to_slash(char *s, char*t)
   double fp,fptt;  {
   double *xits;    int i;
   pt=vector(1,n);    int lg=0;
   ptt=vector(1,n);    i=0;
   xit=vector(1,n);    lg=strlen(t);
   xits=vector(1,n);    for(i=0; i<= lg; i++) {
   *fret=(*func)(p);      (s[i] = t[i]);
   for (j=1;j<=n;j++) pt[j]=p[j];      if (t[i]== '\\') s[i]='/';
   for (*iter=1;;++(*iter)) {    }
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  int nbocc(char *s, char occ)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    int i,j=0;
       printf(" %d %.12f",i, p[i]);    int lg=20;
     printf("\n");    i=0;
     for (i=1;i<=n;i++) {    lg=strlen(s);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for(i=0; i<= lg; i++) {
       fptt=(*fret);    if  (s[i] == occ ) j++;
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);    return j;
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  void cutv(char *u,char *v, char*t, char occ)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         ibig=i;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       }       gives u="abcedf" and v="ghi2j" */
 #ifdef DEBUG    int i,lg,j,p=0;
       printf("%d %.12e",i,(*fret));    i=0;
       for (j=1;j<=n;j++) {    for(j=0; j<=strlen(t)-1; j++) {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         printf(" x(%d)=%.12e",j,xit[j]);    }
       }  
       for(j=1;j<=n;j++)    lg=strlen(t);
         printf(" p=%.12e",p[j]);    for(j=0; j<p; j++) {
       printf("\n");      (u[j] = t[j]);
 #endif    }
     }       u[p]='\0';
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG     for(j=0; j<= lg; j++) {
       int k[2],l;      if (j>=(p+1))(v[j-p-1] = t[j]);
       k[0]=1;    }
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /********************** nrerror ********************/
         printf(" %.12e",p[j]);  
       printf("\n");  void nrerror(char error_text[])
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    fprintf(stderr,"ERREUR ...\n");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    fprintf(stderr,"%s\n",error_text);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    exit(EXIT_FAILURE);
         }  }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
 #endif  {
     double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       free_vector(xit,1,n);    if (!v) nrerror("allocation failure in vector");
       free_vector(xits,1,n);    return v-nl+NR_END;
       free_vector(ptt,1,n);  }
       free_vector(pt,1,n);  
       return;  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    int *v;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       if (t < 0.0) {    if (!v) nrerror("allocation failure in ivector");
         linmin(p,xit,n,fret,func);    return v-nl+NR_END;
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /******************free ivector **************************/
         }  void free_ivector(int *v, long nl, long nh)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free((FREE_ARG)(v+nl-NR_END));
         for(j=1;j<=n;j++)  }
           printf(" %.12e",xit[j]);  
         printf("\n");  /************************lvector *******************************/
 #endif  long *lvector(long nl,long nh)
       }  {
     }    long *v;
   }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /**** Prevalence limit ****************/  }
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /******************free lvector **************************/
 {  void free_lvector(long *v, long nl, long nh)
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  {
      matrix by transitions matrix until convergence is reached */    free((FREE_ARG)(v+nl-NR_END));
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /******************* imatrix *******************************/
   double **matprod2();  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double **out, cov[NCOVMAX], **pmij();       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double **newm;  { 
   double agefin, delaymax=50 ; /* Max number of years to converge */    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    
     for (j=1;j<=nlstate+ndeath;j++){    /* allocate pointers to rows */ 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
    cov[1]=1.;    m -= nrl; 
      
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    /* allocate rows and set pointers to them */ 
     newm=savm;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     /* Covariates have to be included here again */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      cov[2]=agefin;    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
       for (k=1; k<=cptcovn;k++) {    
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    
       }    /* return pointer to array of pointers to rows */ 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return m; 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /****************** free_imatrix *************************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  void free_imatrix(m,nrl,nrh,ncl,nch)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        int **m;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        long nch,ncl,nrh,nrl; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);       /* free an int matrix allocated by imatrix() */ 
   { 
     savm=oldm;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     oldm=newm;    free((FREE_ARG) (m+nrl-NR_END)); 
     maxmax=0.;  } 
     for(j=1;j<=nlstate;j++){  
       min=1.;  /******************* matrix *******************************/
       max=0.;  double **matrix(long nrl, long nrh, long ncl, long nch)
       for(i=1; i<=nlstate; i++) {  {
         sumnew=0;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double **m;
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         min=FMIN(min,prlim[i][j]);    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       maxmin=max-min;    m -= nrl;
       maxmax=FMAX(maxmax,maxmin);  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if(maxmax < ftolpl){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       return prlim;    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 /*************** transition probabilities ***************/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /*************************free matrix ************************/
   /*double t34;*/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   int i,j,j1, nc, ii, jj;  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(i=1; i<= nlstate; i++){    free((FREE_ARG)(m+nrl-NR_END));
     for(j=1; j<i;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /******************* ma3x *******************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       ps[i][j]=s2;    double ***m;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=i+1; j<=nlstate+ndeath;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m += NR_END;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m -= nrl;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       ps[i][j]=s2;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
     /*ps[3][2]=1;*/  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for(i=1; i<= nlstate; i++){  
      s1=0;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for(j=1; j<i; j++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       s1+=exp(ps[i][j]);    m[nrl][ncl] += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl][ncl] -= nll;
       s1+=exp(ps[i][j]);    for (j=ncl+1; j<=nch; j++) 
     ps[i][i]=1./(s1+1.);      m[nrl][j]=m[nrl][j-1]+nlay;
     for(j=1; j<i; j++)    
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (i=nrl+1; i<=nrh; i++) {
     for(j=i+1; j<=nlstate+ndeath; j++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       ps[i][j]= exp(ps[i][j])*ps[i][i];      for (j=ncl+1; j<=nch; j++) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        m[i][j]=m[i][j-1]+nlay;
   } /* end i */    }
     return m; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(jj=1; jj<= nlstate+ndeath; jj++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       ps[ii][jj]=0;    */
       ps[ii][ii]=1;  }
     }  
   }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      printf("%lf ",ps[ii][jj]);    free((FREE_ARG)(m+nrl-NR_END));
    }  }
     printf("\n ");  
     }  /*************** function subdirf ***********/
     printf("\n ");printf("%lf ",cov[2]);*/  char *subdirf(char fileres[])
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    /* Caution optionfilefiname is hidden */
   goto end;*/    strcpy(tmpout,optionfilefiname);
     return ps;    strcat(tmpout,"/"); /* Add to the right */
 }    strcat(tmpout,fileres);
     return tmpout;
 /**************** Product of 2 matrices ******************/  }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*************** function subdirf2 ***********/
 {  char *subdirf2(char fileres[], char *preop)
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    
   /* in, b, out are matrice of pointers which should have been initialized    /* Caution optionfilefiname is hidden */
      before: only the contents of out is modified. The function returns    strcpy(tmpout,optionfilefiname);
      a pointer to pointers identical to out */    strcat(tmpout,"/");
   long i, j, k;    strcat(tmpout,preop);
   for(i=nrl; i<= nrh; i++)    strcat(tmpout,fileres);
     for(k=ncolol; k<=ncoloh; k++)    return tmpout;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /*************** function subdirf3 ***********/
   return out;  char *subdirf3(char fileres[], char *preop, char *preop2)
 }  {
     
     /* Caution optionfilefiname is hidden */
 /************* Higher Matrix Product ***************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    strcat(tmpout,preop);
 {    strcat(tmpout,preop2);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    strcat(tmpout,fileres);
      duration (i.e. until    return tmpout;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /***************** f1dim *************************/
      Model is determined by parameters x and covariates have to be  extern int ncom; 
      included manually here.  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
      */   
   double f1dim(double x) 
   int i, j, d, h, k;  { 
   double **out, cov[NCOVMAX];    int j; 
   double **newm;    double f;
     double *xt; 
   /* Hstepm could be zero and should return the unit matrix */   
   for (i=1;i<=nlstate+ndeath;i++)    xt=vector(1,ncom); 
     for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    f=(*nrfunc)(xt); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    free_vector(xt,1,ncom); 
     }    return f; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  } 
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  /*****************brent *************************/
       newm=savm;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       /* Covariates have to be included here again */  { 
       cov[1]=1.;    int iter; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double a,b,d,etemp;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double fu,fv,fw,fx;
       for (k=1; k<=cptcovage;k++)    double ftemp;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for (k=1; k<=cptcovprod;k++)    double e=0.0; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];   
     a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    x=w=v=bx; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    fw=fv=fx=(*f)(x); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for (iter=1;iter<=ITMAX;iter++) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      xm=0.5*(a+b); 
       savm=oldm;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       oldm=newm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
     for(i=1; i<=nlstate+ndeath; i++)      fprintf(ficlog,".");fflush(ficlog);
       for(j=1;j<=nlstate+ndeath;j++) {  #ifdef DEBUG
         po[i][j][h]=newm[i][j];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
          */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
   } /* end h */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   return po;        *xmin=x; 
 }        return fx; 
       } 
       ftemp=fu;
 /*************** log-likelihood *************/      if (fabs(e) > tol1) { 
 double func( double *x)        r=(x-w)*(fx-fv); 
 {        q=(x-v)*(fx-fw); 
   int i, ii, j, k, mi, d, kk;        p=(x-v)*q-(x-w)*r; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        q=2.0*(q-r); 
   double **out;        if (q > 0.0) p = -p; 
   double sw; /* Sum of weights */        q=fabs(q); 
   double lli; /* Individual log likelihood */        etemp=e; 
   long ipmx;        e=d; 
   /*extern weight */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /* We are differentiating ll according to initial status */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        else { 
   /*for(i=1;i<imx;i++)          d=p/q; 
     printf(" %d\n",s[4][i]);          u=x+d; 
   */          if (u-a < tol2 || b-u < tol2) 
   cov[1]=1.;            d=SIGN(tol1,xm-x); 
         } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      } else { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      } 
     for(mi=1; mi<= wav[i]-1; mi++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      fu=(*f)(u); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if (fu <= fx) { 
       for(d=0; d<dh[mi][i]; d++){        if (u >= x) a=x; else b=x; 
         newm=savm;        SHFT(v,w,x,u) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          SHFT(fv,fw,fx,fu) 
         for (kk=1; kk<=cptcovage;kk++) {          } else { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            if (u < x) a=u; else b=u; 
         }            if (fu <= fw || w == x) { 
                      v=w; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              w=u; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              fv=fw; 
         savm=oldm;              fw=fu; 
         oldm=newm;            } else if (fu <= fv || v == x || v == w) { 
                      v=u; 
                      fv=fu; 
       } /* end mult */            } 
                } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    nrerror("Too many iterations in brent"); 
       ipmx +=1;    *xmin=x; 
       sw += weight[i];    return fx; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  } 
     } /* end of wave */  
   } /* end of individual */  /****************** mnbrak ***********************/
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */              double (*func)(double)) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  { 
   return -l;    double ulim,u,r,q, dum;
 }    double fu; 
    
     *fa=(*func)(*ax); 
 /*********** Maximum Likelihood Estimation ***************/    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      SHFT(dum,*ax,*bx,dum) 
 {        SHFT(dum,*fb,*fa,dum) 
   int i,j, iter;        } 
   double **xi,*delti;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double fret;    *fc=(*func)(*cx); 
   xi=matrix(1,npar,1,npar);    while (*fb > *fc) { 
   for (i=1;i<=npar;i++)      r=(*bx-*ax)*(*fb-*fc); 
     for (j=1;j<=npar;j++)      q=(*bx-*cx)*(*fb-*fa); 
       xi[i][j]=(i==j ? 1.0 : 0.0);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   printf("Powell\n");        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fu=(*func)(u); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 }        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 /**** Computes Hessian and covariance matrix ***/            SHFT(*fb,*fc,fu,(*func)(u)) 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            } 
 {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double  **a,**y,*x,pd;        u=ulim; 
   double **hess;        fu=(*func)(u); 
   int i, j,jk;      } else { 
   int *indx;        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   double hessii(double p[], double delta, int theta, double delti[]);      } 
   double hessij(double p[], double delti[], int i, int j);      SHFT(*ax,*bx,*cx,u) 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        SHFT(*fa,*fb,*fc,fu) 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        } 
   } 
   hess=matrix(1,npar,1,npar);  
   /*************** linmin ************************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  int ncom; 
     printf("%d",i);fflush(stdout);  double *pcom,*xicom;
     hess[i][i]=hessii(p,ftolhess,i,delti);  double (*nrfunc)(double []); 
     /*printf(" %f ",p[i]);*/   
     /*printf(" %lf ",hess[i][i]);*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   }  { 
      double brent(double ax, double bx, double cx, 
   for (i=1;i<=npar;i++) {                 double (*f)(double), double tol, double *xmin); 
     for (j=1;j<=npar;j++)  {    double f1dim(double x); 
       if (j>i) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         printf(".%d%d",i,j);fflush(stdout);                double *fc, double (*func)(double)); 
         hess[i][j]=hessij(p,delti,i,j);    int j; 
         hess[j][i]=hess[i][j];        double xx,xmin,bx,ax; 
         /*printf(" %lf ",hess[i][j]);*/    double fx,fb,fa;
       }   
     }    ncom=n; 
   }    pcom=vector(1,n); 
   printf("\n");    xicom=vector(1,n); 
     nrfunc=func; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for (j=1;j<=n;j++) { 
        pcom[j]=p[j]; 
   a=matrix(1,npar,1,npar);      xicom[j]=xi[j]; 
   y=matrix(1,npar,1,npar);    } 
   x=vector(1,npar);    ax=0.0; 
   indx=ivector(1,npar);    xx=1.0; 
   for (i=1;i<=npar;i++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   ludcmp(a,npar,indx,&pd);  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (j=1;j<=npar;j++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=1;i<=npar;i++) x[i]=0;  #endif
     x[j]=1;    for (j=1;j<=n;j++) { 
     lubksb(a,npar,indx,x);      xi[j] *= xmin; 
     for (i=1;i<=npar;i++){      p[j] += xi[j]; 
       matcov[i][j]=x[i];    } 
     }    free_vector(xicom,1,n); 
   }    free_vector(pcom,1,n); 
   } 
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  char *asc_diff_time(long time_sec, char ascdiff[])
     for (j=1;j<=npar;j++) {  {
       printf("%.3e ",hess[i][j]);    long sec_left, days, hours, minutes;
     }    days = (time_sec) / (60*60*24);
     printf("\n");    sec_left = (time_sec) % (60*60*24);
   }    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   /* Recompute Inverse */    minutes = (sec_left) /60;
   for (i=1;i<=npar;i++)    sec_left = (sec_left) % (60);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   ludcmp(a,npar,indx,&pd);    return ascdiff;
   }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   /*************** powell ************************/
   for (j=1;j<=npar;j++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (i=1;i<=npar;i++) x[i]=0;              double (*func)(double [])) 
     x[j]=1;  { 
     lubksb(a,npar,indx,x);    void linmin(double p[], double xi[], int n, double *fret, 
     for (i=1;i<=npar;i++){                double (*func)(double [])); 
       y[i][j]=x[i];    int i,ibig,j; 
       printf("%.3e ",y[i][j]);    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
     printf("\n");    double *xits;
   }    int niterf, itmp;
   */  
     pt=vector(1,n); 
   free_matrix(a,1,npar,1,npar);    ptt=vector(1,n); 
   free_matrix(y,1,npar,1,npar);    xit=vector(1,n); 
   free_vector(x,1,npar);    xits=vector(1,n); 
   free_ivector(indx,1,npar);    *fret=(*func)(p); 
   free_matrix(hess,1,npar,1,npar);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
 }      ibig=0; 
       del=0.0; 
 /*************** hessian matrix ****************/      last_time=curr_time;
 double hessii( double x[], double delta, int theta, double delti[])      (void) gettimeofday(&curr_time,&tzp);
 {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   int i;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   int l=1, lmax=20;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   double k1,k2;     for (i=1;i<=n;i++) {
   double p2[NPARMAX+1];        printf(" %d %.12f",i, p[i]);
   double res;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        fprintf(ficrespow," %.12lf", p[i]);
   double fx;      }
   int k=0,kmax=10;      printf("\n");
   double l1;      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   fx=func(x);      if(*iter <=3){
   for (i=1;i<=npar;i++) p2[i]=x[i];        tm = *localtime(&curr_time.tv_sec);
   for(l=0 ; l <=lmax; l++){        strcpy(strcurr,asctime(&tm));
     l1=pow(10,l);  /*       asctime_r(&tm,strcurr); */
     delts=delt;        forecast_time=curr_time; 
     for(k=1 ; k <kmax; k=k+1){        itmp = strlen(strcurr);
       delt = delta*(l1*k);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       p2[theta]=x[theta] +delt;          strcurr[itmp-1]='\0';
       k1=func(p2)-fx;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       p2[theta]=x[theta]-delt;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       k2=func(p2)-fx;        for(niterf=10;niterf<=30;niterf+=10){
       /*res= (k1-2.0*fx+k2)/delt/delt; */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          tmf = *localtime(&forecast_time.tv_sec);
        /*      asctime_r(&tmf,strfor); */
 #ifdef DEBUG          strcpy(strfor,asctime(&tmf));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          itmp = strlen(strfor);
 #endif          if(strfor[itmp-1]=='\n')
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          strfor[itmp-1]='\0';
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         k=kmax;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }        }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      }
         k=kmax; l=lmax*10.;      for (i=1;i<=n;i++) { 
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        fptt=(*fret); 
         delts=delt;  #ifdef DEBUG
       }        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
   delti[theta]=delts;        printf("%d",i);fflush(stdout);
   return res;        fprintf(ficlog,"%d",i);fflush(ficlog);
          linmin(p,xit,n,fret,func); 
 }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 double hessij( double x[], double delti[], int thetai,int thetaj)          ibig=i; 
 {        } 
   int i;  #ifdef DEBUG
   int l=1, l1, lmax=20;        printf("%d %.12e",i,(*fret));
   double k1,k2,k3,k4,res,fx;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double p2[NPARMAX+1];        for (j=1;j<=n;j++) {
   int k;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   fx=func(x);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for (k=1; k<=2; k++) {        }
     for (i=1;i<=npar;i++) p2[i]=x[i];        for(j=1;j<=n;j++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;          printf(" p=%.12e",p[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          fprintf(ficlog," p=%.12e",p[j]);
     k1=func(p2)-fx;        }
          printf("\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #endif
     k2=func(p2)-fx;      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     p2[thetai]=x[thetai]-delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        int k[2],l;
     k3=func(p2)-fx;        k[0]=1;
          k[1]=-1;
     p2[thetai]=x[thetai]-delti[thetai]/k;        printf("Max: %.12e",(*func)(p));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     k4=func(p2)-fx;        for (j=1;j<=n;j++) {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          printf(" %.12e",p[j]);
 #ifdef DEBUG          fprintf(ficlog," %.12e",p[j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        }
 #endif        printf("\n");
   }        fprintf(ficlog,"\n");
   return res;        for(l=0;l<=1;l++) {
 }          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 /************** Inverse of matrix **************/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 void ludcmp(double **a, int n, int *indx, double *d)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {          }
   int i,imax,j,k;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double big,dum,sum,temp;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double *vv;        }
    #endif
   vv=vector(1,n);  
   *d=1.0;  
   for (i=1;i<=n;i++) {        free_vector(xit,1,n); 
     big=0.0;        free_vector(xits,1,n); 
     for (j=1;j<=n;j++)        free_vector(ptt,1,n); 
       if ((temp=fabs(a[i][j])) > big) big=temp;        free_vector(pt,1,n); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        return; 
     vv[i]=1.0/big;      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (j=1;j<=n;j++) {      for (j=1;j<=n;j++) { 
     for (i=1;i<j;i++) {        ptt[j]=2.0*p[j]-pt[j]; 
       sum=a[i][j];        xit[j]=p[j]-pt[j]; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        pt[j]=p[j]; 
       a[i][j]=sum;      } 
     }      fptt=(*func)(ptt); 
     big=0.0;      if (fptt < fp) { 
     for (i=j;i<=n;i++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       sum=a[i][j];        if (t < 0.0) { 
       for (k=1;k<j;k++)          linmin(p,xit,n,fret,func); 
         sum -= a[i][k]*a[k][j];          for (j=1;j<=n;j++) { 
       a[i][j]=sum;            xi[j][ibig]=xi[j][n]; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {            xi[j][n]=xit[j]; 
         big=dum;          }
         imax=i;  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     if (j != imax) {          for(j=1;j<=n;j++){
       for (k=1;k<=n;k++) {            printf(" %.12e",xit[j]);
         dum=a[imax][k];            fprintf(ficlog," %.12e",xit[j]);
         a[imax][k]=a[j][k];          }
         a[j][k]=dum;          printf("\n");
       }          fprintf(ficlog,"\n");
       *d = -(*d);  #endif
       vv[imax]=vv[j];        }
     }      } 
     indx[j]=imax;    } 
     if (a[j][j] == 0.0) a[j][j]=TINY;  } 
     if (j != n) {  
       dum=1.0/(a[j][j]);  /**** Prevalence limit (stable or period prevalence)  ****************/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  {
   free_vector(vv,1,n);  /* Doesn't work */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 ;       matrix by transitions matrix until convergence is reached */
 }  
     int i, ii,j,k;
 void lubksb(double **a, int n, int *indx, double b[])    double min, max, maxmin, maxmax,sumnew=0.;
 {    double **matprod2();
   int i,ii=0,ip,j;    double **out, cov[NCOVMAX], **pmij();
   double sum;    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
   for (i=1;i<=n;i++) {  
     ip=indx[i];    for (ii=1;ii<=nlstate+ndeath;ii++)
     sum=b[ip];      for (j=1;j<=nlstate+ndeath;j++){
     b[ip]=b[i];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (ii)      }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;     cov[1]=1.;
     b[i]=sum;   
   }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=n;i>=1;i--) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     sum=b[i];      newm=savm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      /* Covariates have to be included here again */
     b[i]=sum/a[i][i];       cov[2]=agefin;
   }    
 }        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /************ Frequencies ********************/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        }
 {  /* Some frequencies */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double ***freq; /* Frequencies */  
   double *pp;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double pos, k2, dateintsum=0,k2cpt=0;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   FILE *ficresp;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   char fileresp[FILENAMELENGTH];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
    
   pp=vector(1,nlstate);      savm=oldm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      oldm=newm;
   strcpy(fileresp,"p");      maxmax=0.;
   strcat(fileresp,fileres);      for(j=1;j<=nlstate;j++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {        min=1.;
     printf("Problem with prevalence resultfile: %s\n", fileresp);        max=0.;
     exit(0);        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   j1=0;          prlim[i][j]= newm[i][j]/(1-sumnew);
            max=FMAX(max,prlim[i][j]);
   j=cptcoveff;          min=FMIN(min,prlim[i][j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
          maxmin=max-min;
   for(k1=1; k1<=j;k1++){        maxmax=FMAX(maxmax,maxmin);
     for(i1=1; i1<=ncodemax[k1];i1++){      }
       j1++;      if(maxmax < ftolpl){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        return prlim;
         scanf("%d", i);*/      }
       for (i=-1; i<=nlstate+ndeath; i++)      }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    }
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  /*************** transition probabilities ***************/ 
        
       dateintsum=0;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       k2cpt=0;  {
       for (i=1; i<=imx; i++) {    double s1, s2;
         bool=1;    /*double t34;*/
         if  (cptcovn>0) {    int i,j,j1, nc, ii, jj;
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for(i=1; i<= nlstate; i++){
               bool=0;        for(j=1; j<i;j++){
         }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         if (bool==1) {            /*s2 += param[i][j][nc]*cov[nc];*/
           for(m=firstpass; m<=lastpass; m++){            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
             k2=anint[m][i]+(mint[m][i]/12.);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          }
               if(agev[m][i]==0) agev[m][i]=agemax+1;          ps[i][j]=s2;
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
               if (m<lastpass) {        }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(j=i+1; j<=nlstate+ndeath;j++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
               }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          }
                 dateintsum=dateintsum+k2;          ps[i][j]=s2;
                 k2cpt++;        }
               }      }
             }      /*ps[3][2]=1;*/
           }      
         }      for(i=1; i<= nlstate; i++){
       }        s1=0;
                for(j=1; j<i; j++)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          s1+=exp(ps[i][j]);
         for(j=i+1; j<=nlstate+ndeath; j++)
       if  (cptcovn>0) {          s1+=exp(ps[i][j]);
         fprintf(ficresp, "\n#********** Variable ");        ps[i][i]=1./(s1+1.);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<i; j++)
         fprintf(ficresp, "**********\n#");          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        for(j=i+1; j<=nlstate+ndeath; j++)
       for(i=1; i<=nlstate;i++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       fprintf(ficresp, "\n");      } /* end i */
            
       for(i=(int)agemin; i <= (int)agemax+3; i++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         if(i==(int)agemax+3)        for(jj=1; jj<= nlstate+ndeath; jj++){
           printf("Total");          ps[ii][jj]=0;
         else          ps[ii][ii]=1;
           printf("Age %d", i);        }
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      
             pp[jk] += freq[jk][m][i];  
         }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         for(jk=1; jk <=nlstate ; jk++){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           for(m=-1, pos=0; m <=0 ; m++)  /*         printf("ddd %lf ",ps[ii][jj]); */
             pos += freq[jk][m][i];  /*       } */
           if(pp[jk]>=1.e-10)  /*       printf("\n "); */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*        } */
           else  /*        printf("\n ");printf("%lf ",cov[2]); */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);         /*
         }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
         for(jk=1; jk <=nlstate ; jk++){      return ps;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  }
             pp[jk] += freq[jk][m][i];  
         }  /**************** Product of 2 matrices ******************/
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           pos += pp[jk];  {
         for(jk=1; jk <=nlstate ; jk++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           if(pos>=1.e-5)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /* in, b, out are matrice of pointers which should have been initialized 
           else       before: only the contents of out is modified. The function returns
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       a pointer to pointers identical to out */
           if( i <= (int) agemax){    long i, j, k;
             if(pos>=1.e-5){    for(i=nrl; i<= nrh; i++)
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for(k=ncolol; k<=ncoloh; k++)
               probs[i][jk][j1]= pp[jk]/pos;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          out[i][k] +=in[i][j]*b[j][k];
             }  
             else    return out;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  }
           }  
         }  
          /************* Higher Matrix Product ***************/
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  {
         if(i <= (int) agemax)    /* Computes the transition matrix starting at age 'age' over 
           fprintf(ficresp,"\n");       'nhstepm*hstepm*stepm' months (i.e. until
         printf("\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       }       nhstepm*hstepm matrices. 
     }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   }       (typically every 2 years instead of every month which is too big 
   dateintmean=dateintsum/k2cpt;       for the memory).
         Model is determined by parameters x and covariates have to be 
   fclose(ficresp);       included manually here. 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);       */
    
   /* End of Freq */    int i, j, d, h, k;
 }    double **out, cov[NCOVMAX];
     double **newm;
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    /* Hstepm could be zero and should return the unit matrix */
 {  /* Some frequencies */    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double *pp;      }
   double pos, k2;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   pp=vector(1,nlstate);      for(d=1; d <=hstepm; d++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        newm=savm;
          /* Covariates have to be included here again */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        cov[1]=1.;
   j1=0;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   j=cptcoveff;        for (k=1; k<=cptcovage;k++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
  for(k1=1; k1<=j;k1++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for (i=-1; i<=nlstate+ndeath; i++)          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for (jk=-1; jk<=nlstate+ndeath; jk++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for(m=agemin; m <= agemax+3; m++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             freq[i][jk][m]=0;        savm=oldm;
              oldm=newm;
       for (i=1; i<=imx; i++) {      }
         bool=1;      for(i=1; i<=nlstate+ndeath; i++)
         if  (cptcovn>0) {        for(j=1;j<=nlstate+ndeath;j++) {
           for (z1=1; z1<=cptcoveff; z1++)          po[i][j][h]=newm[i][j];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
               bool=0;           */
         }        }
         if (bool==1) {    } /* end h */
           for(m=firstpass; m<=lastpass; m++){    return po;
             k2=anint[m][i]+(mint[m][i]/12.);  }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*************** log-likelihood *************/
               if (m<lastpass)  double func( double *x)
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  {
               else    int i, ii, j, k, mi, d, kk;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    double **out;
             }    double sw; /* Sum of weights */
           }    double lli; /* Individual log likelihood */
         }    int s1, s2;
       }    double bbh, survp;
         for(i=(int)agemin; i <= (int)agemax+3; i++){    long ipmx;
           for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /* We are differentiating ll according to initial status */
               pp[jk] += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           }    /*for(i=1;i<imx;i++) 
           for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
             for(m=-1, pos=0; m <=0 ; m++)    */
             pos += freq[jk][m][i];    cov[1]=1.;
         }  
            for(k=1; k<=nlstate; k++) ll[k]=0.;
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    if(mle==1){
              pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                  for(mi=1; mi<= wav[i]-1; mi++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
          for(jk=1; jk <=nlstate ; jk++){                        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            if( i <= (int) agemax){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              if(pos>=1.e-5){            }
                probs[i][jk][j1]= pp[jk]/pos;          for(d=0; d<dh[mi][i]; d++){
              }            newm=savm;
            }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          }            for (kk=1; kk<=cptcovage;kk++) {
                        cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
              oldm=newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } /* end mult */
   free_vector(pp,1,nlstate);        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 }  /* End of Freq */          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
 /************* Waves Concatenation ***************/           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * probability in order to take into account the bias as a fraction of the way
      Death is a valid wave (if date is known).           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * -stepm/2 to stepm/2 .
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * For stepm=1 the results are the same as for previous versions of Imach.
      and mw[mi+1][i]. dh depends on stepm.           * For stepm > 1 the results are less biased than in previous versions. 
      */           */
           s1=s[mw[mi][i]][i];
   int i, mi, m;          s2=s[mw[mi+1][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          bbh=(double)bh[mi][i]/(double)stepm; 
      double sum=0., jmean=0.;*/          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   int j, k=0,jk, ju, jl;           */
   double sum=0.;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   jmin=1e+5;          if( s2 > nlstate){ 
   jmax=-1;            /* i.e. if s2 is a death state and if the date of death is known 
   jmean=0.;               then the contribution to the likelihood is the probability to 
   for(i=1; i<=imx; i++){               die between last step unit time and current  step unit time, 
     mi=0;               which is also equal to probability to die before dh 
     m=firstpass;               minus probability to die before dh-stepm . 
     while(s[m][i] <= nlstate){               In version up to 0.92 likelihood was computed
       if(s[m][i]>=1)          as if date of death was unknown. Death was treated as any other
         mw[++mi][i]=m;          health state: the date of the interview describes the actual state
       if(m >=lastpass)          and not the date of a change in health state. The former idea was
         break;          to consider that at each interview the state was recorded
       else          (healthy, disable or death) and IMaCh was corrected; but when we
         m++;          introduced the exact date of death then we should have modified
     }/* end while */          the contribution of an exact death to the likelihood. This new
     if (s[m][i] > nlstate){          contribution is smaller and very dependent of the step unit
       mi++;     /* Death is another wave */          stepm. It is no more the probability to die between last interview
       /* if(mi==0)  never been interviewed correctly before death */          and month of death but the probability to survive from last
          /* Only death is a correct wave */          interview up to one month before death multiplied by the
       mw[mi][i]=m;          probability to die within a month. Thanks to Chris
     }          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
     wav[i]=mi;          which slows down the processing. The difference can be up to 10%
     if(mi==0)          lower mortality.
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            */
   }            lli=log(out[s1][s2] - savm[s1][s2]);
   
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){          } else if  (s2==-2) {
       if (stepm <=0)            for (j=1,survp=0. ; j<=nlstate; j++) 
         dh[mi][i]=1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       else{            /*survp += out[s1][j]; */
         if (s[mw[mi+1][i]][i] > nlstate) {            lli= log(survp);
           if (agedc[i] < 2*AGESUP) {          }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          
           if(j==0) j=1;  /* Survives at least one month after exam */          else if  (s2==-4) { 
           k=k+1;            for (j=3,survp=0. ; j<=nlstate; j++)  
           if (j >= jmax) jmax=j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           if (j <= jmin) jmin=j;            lli= log(survp); 
           sum=sum+j;          } 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }          else if  (s2==-5) { 
         }            for (j=1,survp=0. ; j<=2; j++)  
         else{              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            lli= log(survp); 
           k=k+1;          } 
           if (j >= jmax) jmax=j;          
           else if (j <= jmin)jmin=j;          else{
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           sum=sum+j;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         }          } 
         jk= j/stepm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         jl= j -jk*stepm;          /*if(lli ==000.0)*/
         ju= j -(jk+1)*stepm;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if(jl <= -ju)          ipmx +=1;
           dh[mi][i]=jk;          sw += weight[i];
         else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=jk+1;        } /* end of wave */
         if(dh[mi][i]==0)      } /* end of individual */
           dh[mi][i]=1; /* At least one step */    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   jmean=sum/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            for (j=1;j<=nlstate+ndeath;j++){
  }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Tricode ****************************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void tricode(int *Tvar, int **nbcode, int imx)            }
 {          for(d=0; d<=dh[mi][i]; d++){
   int Ndum[20],ij=1, k, j, i;            newm=savm;
   int cptcode=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   cptcoveff=0;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (k=0; k<19; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            savm=oldm;
     for (i=1; i<=imx; i++) {            oldm=newm;
       ij=(int)(covar[Tvar[j]][i]);          } /* end mult */
       Ndum[ij]++;        
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          s1=s[mw[mi][i]][i];
       if (ij > cptcode) cptcode=ij;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=0; i<=cptcode; i++) {          ipmx +=1;
       if(Ndum[i]!=0) ncodemax[j]++;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     ij=1;        } /* end of wave */
       } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
     for (i=1; i<=ncodemax[j]; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=0; k<=19; k++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (Ndum[k] != 0) {        for(mi=1; mi<= wav[i]-1; mi++){
           nbcode[Tvar[j]][ij]=k;          for (ii=1;ii<=nlstate+ndeath;ii++)
                      for (j=1;j<=nlstate+ndeath;j++){
           ij++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (ij > ncodemax[j]) break;            }
       }            for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
   }              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
  for (k=0; k<19; k++) Ndum[k]=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
  for (i=1; i<=ncovmodel-2; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       ij=Tvar[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       Ndum[ij]++;            savm=oldm;
     }            oldm=newm;
           } /* end mult */
  ij=1;        
  for (i=1; i<=10; i++) {          s1=s[mw[mi][i]][i];
    if((Ndum[i]!=0) && (i<=ncovcol)){          s2=s[mw[mi+1][i]][i];
      Tvaraff[ij]=i;          bbh=(double)bh[mi][i]/(double)stepm; 
      ij++;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
    }          ipmx +=1;
  }          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     cptcoveff=ij-1;        } /* end of wave */
 }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 /*********** Health Expectancies ****************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Health expectancies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim, hf;            }
   double ***p3mat,***varhe;          for(d=0; d<dh[mi][i]; d++){
   double **dnewm,**doldm;            newm=savm;
   double *xp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **gp, **gm;            for (kk=1; kk<=cptcovage;kk++) {
   double ***gradg, ***trgradg;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int theta;            }
           
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   xp=vector(1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewm=matrix(1,nlstate*2,1,npar);            savm=oldm;
   doldm=matrix(1,nlstate*2,1,nlstate*2);            oldm=newm;
            } /* end mult */
   fprintf(ficreseij,"# Health expectancies\n");        
   fprintf(ficreseij,"# Age");          s1=s[mw[mi][i]][i];
   for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
     for(j=1; j<=nlstate;j++)          if( s2 > nlstate){ 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficreseij,"\n");          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   if(estepm < stepm){          }
     printf ("Problem %d lower than %d\n",estepm, stepm);          ipmx +=1;
   }          sw += weight[i];
   else  hstepm=estepm;            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* We compute the life expectancy from trapezoids spaced every estepm months  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * This is mainly to measure the difference between two models: for example        } /* end of wave */
    * if stepm=24 months pijx are given only every 2 years and by summing them      } /* end of individual */
    * we are calculating an estimate of the Life Expectancy assuming a linear    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
    * progression inbetween and thus overestimating or underestimating according      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * to the curvature of the survival function. If, for the same date, we        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        for(mi=1; mi<= wav[i]-1; mi++){
    * to compare the new estimate of Life expectancy with the same linear          for (ii=1;ii<=nlstate+ndeath;ii++)
    * hypothesis. A more precise result, taking into account a more precise            for (j=1;j<=nlstate+ndeath;j++){
    * curvature will be obtained if estepm is as small as stepm. */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* For example we decided to compute the life expectancy with the smallest unit */            }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for(d=0; d<dh[mi][i]; d++){
      nhstepm is the number of hstepm from age to agelim            newm=savm;
      nstepm is the number of stepm from age to agelin.            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Look at hpijx to understand the reason of that which relies in memory size            for (kk=1; kk<=cptcovage;kk++) {
      and note for a fixed period like estepm months */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it          
      means that if the survival funtion is printed only each two years of age and if            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      results. So we changed our mind and took the option of the best precision.            savm=oldm;
   */            oldm=newm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          } /* end mult */
         
   agelim=AGESUP;          s1=s[mw[mi][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s2=s[mw[mi+1][i]][i];
     /* nhstepm age range expressed in number of stepm */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          ipmx +=1;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          sw += weight[i];
     /* if (stepm >= YEARM) hstepm=1;*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end of wave */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      } /* end of individual */
     gp=matrix(0,nhstepm,1,nlstate*2);    } /* End of if */
     gm=matrix(0,nhstepm,1,nlstate*2);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    return -l;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    }
    
   /*************** log-likelihood *************/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  double funcone( double *x)
   {
     /* Computing Variances of health expectancies */    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
      for(theta=1; theta <=npar; theta++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for(i=1; i<=npar; i++){    double **out;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double lli; /* Individual log likelihood */
       }    double llt;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int s1, s2;
      double bbh, survp;
       cptj=0;    /*extern weight */
       for(j=1; j<= nlstate; j++){    /* We are differentiating ll according to initial status */
         for(i=1; i<=nlstate; i++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           cptj=cptj+1;    /*for(i=1;i<imx;i++) 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      printf(" %d\n",s[4][i]);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    */
           }    cov[1]=1.;
         }  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
        
          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=npar; i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(mi=1; mi<= wav[i]-1; mi++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
       cptj=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate;i++){          }
           cptj=cptj+1;        for(d=0; d<dh[mi][i]; d++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          newm=savm;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }          for (kk=1; kk<=cptcovage;kk++) {
         }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
       for(j=1; j<= nlstate*2; j++)          oldm=newm;
         for(h=0; h<=nhstepm-1; h++){        } /* end mult */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        
         }        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
      }        bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
 /* End theta */         * is higher than the multiple of stepm and negative otherwise.
          */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
      for(h=0; h<=nhstepm-1; h++)        } else if  (s2==-2) {
       for(j=1; j<=nlstate*2;j++)          for (j=1,survp=0. ; j<=nlstate; j++) 
         for(theta=1; theta <=npar; theta++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         trgradg[h][j][theta]=gradg[h][theta][j];          lli= log(survp);
         }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      for(i=1;i<=nlstate*2;i++)        } else if(mle==2){
       for(j=1;j<=nlstate*2;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         varhe[i][j][(int)age] =0.;        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(h=0;h<=nhstepm-1;h++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(k=0;k<=nhstepm-1;k++){          lli=log(out[s1][s2]); /* Original formula */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          lli=log(out[s1][s2]); /* Original formula */
         for(i=1;i<=nlstate*2;i++)        } /* End of if */
           for(j=1;j<=nlstate*2;j++)        ipmx +=1;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        sw += weight[i];
       }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
                fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     /* Computing expectancies */   %11.6f %11.6f %11.6f ", \
     for(i=1; i<=nlstate;i++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(j=1; j<=nlstate;j++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            llt +=ll[k]*gipmx/gsw;
                      fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          }
           fprintf(ficresilk," %10.6f\n", -llt);
         }        }
       } /* end of wave */
     fprintf(ficreseij,"%3.0f",age );    } /* end of individual */
     cptj=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(i=1; i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1; j<=nlstate;j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         cptj++;    if(globpr==0){ /* First time we count the contributions and weights */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      gipmx=ipmx;
       }      gsw=sw;
     fprintf(ficreseij,"\n");    }
        return -l;
     free_matrix(gm,0,nhstepm,1,nlstate*2);  }
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  /*************** function likelione ***********/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }  {
   free_vector(xp,1,npar);    /* This routine should help understanding what is done with 
   free_matrix(dnewm,1,nlstate*2,1,npar);       the selection of individuals/waves and
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);       to check the exact contribution to the likelihood.
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);       Plotting could be done.
 }     */
     int k;
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    if(*globpri !=0){ /* Just counts and sums, no printings */
 {      strcpy(fileresilk,"ilk"); 
   /* Variance of health expectancies */      strcat(fileresilk,fileres);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double **newm;        printf("Problem with resultfile: %s\n", fileresilk);
   double **dnewm,**doldm;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int i, j, nhstepm, hstepm, h, nstepm ;      }
   int k, cptcode;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double *xp;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double **gp, **gm;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double ***gradg, ***trgradg;      for(k=1; k<=nlstate; k++) 
   double ***p3mat;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double age,agelim, hf;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int theta;    }
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");    *fretone=(*funcone)(p);
   fprintf(ficresvij,"# Age");    if(*globpri !=0){
   for(i=1; i<=nlstate;i++)      fclose(ficresilk);
     for(j=1; j<=nlstate;j++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fflush(fichtm); 
   fprintf(ficresvij,"\n");    } 
     return;
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  
    /*********** Maximum Likelihood Estimation ***************/
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
   else  hstepm=estepm;      int i,j, iter;
   /* For example we decided to compute the life expectancy with the smallest unit */    double **xi;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double fret;
      nhstepm is the number of hstepm from age to agelim    double fretone; /* Only one call to likelihood */
      nstepm is the number of stepm from age to agelin.    /*  char filerespow[FILENAMELENGTH];*/
      Look at hpijx to understand the reason of that which relies in memory size    xi=matrix(1,npar,1,npar);
      and note for a fixed period like k years */    for (i=1;i<=npar;i++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (j=1;j<=npar;j++)
      survival function given by stepm (the optimization length). Unfortunately it        xi[i][j]=(i==j ? 1.0 : 0.0);
      means that if the survival funtion is printed only each two years of age and if    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    strcpy(filerespow,"pow"); 
      results. So we changed our mind and took the option of the best precision.    strcat(filerespow,fileres);
   */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("Problem with resultfile: %s\n", filerespow);
   agelim = AGESUP;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (i=1;i<=nlstate;i++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1;j<=nlstate+ndeath;j++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     gp=matrix(0,nhstepm,1,nlstate);    fprintf(ficrespow,"\n");
     gm=matrix(0,nhstepm,1,nlstate);  
     powell(p,xi,npar,ftol,&iter,&fret,func);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_matrix(xi,1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fclose(ficrespow);
       }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
       if (popbased==1) {  }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    {
       for(j=1; j<= nlstate; j++){    double  **a,**y,*x,pd;
         for(h=0; h<=nhstepm; h++){    double **hess;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    int i, j,jk;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int *indx;
         }  
       }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
        double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    void lubksb(double **a, int npar, int *indx, double b[]) ;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double gompertz(double p[]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    hess=matrix(1,npar,1,npar);
    
       if (popbased==1) {    printf("\nCalculation of the hessian matrix. Wait...\n");
         for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++){
       }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
       for(j=1; j<= nlstate; j++){     
         for(h=0; h<=nhstepm; h++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      /*  printf(" %f ",p[i]);
         }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       }    }
     
       for(j=1; j<= nlstate; j++)    for (i=1;i<=npar;i++) {
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++)  {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if (j>i) { 
         }          printf(".%d%d",i,j);fflush(stdout);
     } /* End theta */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          
           hess[j][i]=hess[i][j];    
     for(h=0; h<=nhstepm; h++)          /*printf(" %lf ",hess[i][j]);*/
       for(j=1; j<=nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)      }
           trgradg[h][j][theta]=gradg[h][theta][j];    }
     printf("\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fprintf(ficlog,"\n");
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         vareij[i][j][(int)age] =0.;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
     for(h=0;h<=nhstepm;h++){    a=matrix(1,npar,1,npar);
       for(k=0;k<=nhstepm;k++){    y=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    x=vector(1,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    indx=ivector(1,npar);
         for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++)
           for(j=1;j<=nlstate;j++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    ludcmp(a,npar,indx,&pd);
       }  
     }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     fprintf(ficresvij,"%.0f ",age );      x[j]=1;
     for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
       for(j=1; j<=nlstate;j++){      for (i=1;i<=npar;i++){ 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        matcov[i][j]=x[i];
       }      }
     fprintf(ficresvij,"\n");    }
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);    printf("\n#Hessian matrix#\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for (i=1;i<=npar;i++) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++) { 
   } /* End age */        printf("%.3e ",hess[i][j]);
          fprintf(ficlog,"%.3e ",hess[i][j]);
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,npar);      printf("\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);      fprintf(ficlog,"\n");
     }
 }  
     /* Recompute Inverse */
 /************ Variance of prevlim ******************/    for (i=1;i<=npar;i++)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 {    ludcmp(a,npar,indx,&pd);
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /*  printf("\n#Hessian matrix recomputed#\n");
   double **newm;  
   double **dnewm,**doldm;    for (j=1;j<=npar;j++) {
   int i, j, nhstepm, hstepm;      for (i=1;i<=npar;i++) x[i]=0;
   int k, cptcode;      x[j]=1;
   double *xp;      lubksb(a,npar,indx,x);
   double *gp, *gm;      for (i=1;i<=npar;i++){ 
   double **gradg, **trgradg;        y[i][j]=x[i];
   double age,agelim;        printf("%.3e ",y[i][j]);
   int theta;        fprintf(ficlog,"%.3e ",y[i][j]);
          }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      printf("\n");
   fprintf(ficresvpl,"# Age");      fprintf(ficlog,"\n");
   for(i=1; i<=nlstate;i++)    }
       fprintf(ficresvpl," %1d-%1d",i,i);    */
   fprintf(ficresvpl,"\n");  
     free_matrix(a,1,npar,1,npar);
   xp=vector(1,npar);    free_matrix(y,1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    free_vector(x,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    free_ivector(indx,1,npar);
      free_matrix(hess,1,npar,1,npar);
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*************** hessian matrix ****************/
     if (stepm >= YEARM) hstepm=1;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
     gradg=matrix(1,npar,1,nlstate);    int i;
     gp=vector(1,nlstate);    int l=1, lmax=20;
     gm=vector(1,nlstate);    double k1,k2;
     double p2[NPARMAX+1];
     for(theta=1; theta <=npar; theta++){    double res;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double fx;
       }    int k=0,kmax=10;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double l1;
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    fx=func(x);
        for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1; i<=npar; i++) /* Computes gradient */    for(l=0 ; l <=lmax; l++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      l1=pow(10,l);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      delts=delt;
       for(i=1;i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
         gm[i] = prlim[i][i];        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
       for(i=1;i<=nlstate;i++)        k1=func(p2)-fx;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        p2[theta]=x[theta]-delt;
     } /* End theta */        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     trgradg =matrix(1,nlstate,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
     for(j=1; j<=nlstate;j++)  #ifdef DEBUG
       for(theta=1; theta <=npar; theta++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         trgradg[j][theta]=gradg[theta][j];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
     for(i=1;i<=nlstate;i++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       varpl[i][(int)age] =0.;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          k=kmax;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          k=kmax; l=lmax*10.;
         }
     fprintf(ficresvpl,"%.0f ",age );        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(i=1; i<=nlstate;i++)          delts=delt;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        }
     fprintf(ficresvpl,"\n");      }
     free_vector(gp,1,nlstate);    }
     free_vector(gm,1,nlstate);    delti[theta]=delts;
     free_matrix(gradg,1,npar,1,nlstate);    return res; 
     free_matrix(trgradg,1,nlstate,1,npar);    
   } /* End age */  }
   
   free_vector(xp,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   free_matrix(doldm,1,nlstate,1,npar);  {
   free_matrix(dnewm,1,nlstate,1,nlstate);    int i;
     int l=1, l1, lmax=20;
 }    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
 /************ Variance of one-step probabilities  ******************/    int k;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {    fx=func(x);
   int i, j, i1, k1, j1, z1;    for (k=1; k<=2; k++) {
   int k=0, cptcode;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double **dnewm,**doldm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *xp;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double *gp, *gm;      k1=func(p2)-fx;
   double **gradg, **trgradg;    
   double age,agelim, cov[NCOVMAX];      p2[thetai]=x[thetai]+delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   char fileresprob[FILENAMELENGTH];      k2=func(p2)-fx;
     
   strcpy(fileresprob,"prob");      p2[thetai]=x[thetai]-delti[thetai]/k;
   strcat(fileresprob,fileres);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      k3=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprob);    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k4=func(p2)-fx;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   fprintf(ficresprob,"# Age");  #ifdef DEBUG
   for(i=1; i<=nlstate;i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(j=1; j<=(nlstate+ndeath);j++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  #endif
     }
     return res;
   fprintf(ficresprob,"\n");  }
   
   /************** Inverse of matrix **************/
   xp=vector(1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  { 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    int i,imax,j,k; 
      double big,dum,sum,temp; 
   cov[1]=1;    double *vv; 
   j=cptcoveff;   
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    vv=vector(1,n); 
   j1=0;    *d=1.0; 
   for(k1=1; k1<=1;k1++){    for (i=1;i<=n;i++) { 
     for(i1=1; i1<=ncodemax[k1];i1++){      big=0.0; 
     j1++;      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
     if  (cptcovn>0) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       fprintf(ficresprob, "\n#********** Variable ");      vv[i]=1.0/big; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } 
       fprintf(ficresprob, "**********\n#");    for (j=1;j<=n;j++) { 
     }      for (i=1;i<j;i++) { 
            sum=a[i][j]; 
       for (age=bage; age<=fage; age ++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         cov[2]=age;        a[i][j]=sum; 
         for (k=1; k<=cptcovn;k++) {      } 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      big=0.0; 
                for (i=j;i<=n;i++) { 
         }        sum=a[i][j]; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (k=1;k<j;k++) 
         for (k=1; k<=cptcovprod;k++)          sum -= a[i][k]*a[k][j]; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        a[i][j]=sum; 
                if ( (dum=vv[i]*fabs(sum)) >= big) { 
         gradg=matrix(1,npar,1,9);          big=dum; 
         trgradg=matrix(1,9,1,npar);          imax=i; 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        } 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      } 
          if (j != imax) { 
         for(theta=1; theta <=npar; theta++){        for (k=1;k<=n;k++) { 
           for(i=1; i<=npar; i++)          dum=a[imax][k]; 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          a[imax][k]=a[j][k]; 
                    a[j][k]=dum; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        } 
                  *d = -(*d); 
           k=0;        vv[imax]=vv[j]; 
           for(i=1; i<= (nlstate+ndeath); i++){      } 
             for(j=1; j<=(nlstate+ndeath);j++){      indx[j]=imax; 
               k=k+1;      if (a[j][j] == 0.0) a[j][j]=TINY; 
               gp[k]=pmmij[i][j];      if (j != n) { 
             }        dum=1.0/(a[j][j]); 
           }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                } 
           for(i=1; i<=npar; i++)    } 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_vector(vv,1,n);  /* Doesn't work */
      ;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  } 
           k=0;  
           for(i=1; i<=(nlstate+ndeath); i++){  void lubksb(double **a, int n, int *indx, double b[]) 
             for(j=1; j<=(nlstate+ndeath);j++){  { 
               k=k+1;    int i,ii=0,ip,j; 
               gm[k]=pmmij[i][j];    double sum; 
             }   
           }    for (i=1;i<=n;i++) { 
            ip=indx[i]; 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      sum=b[ip]; 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        b[ip]=b[i]; 
         }      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      else if (sum) ii=i; 
           for(theta=1; theta <=npar; theta++)      b[i]=sum; 
             trgradg[j][theta]=gradg[theta][j];    } 
            for (i=n;i>=1;i--) { 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      sum=b[i]; 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
              b[i]=sum/a[i][i]; 
         pmij(pmmij,cov,ncovmodel,x,nlstate);    } 
          } 
         k=0;  
         for(i=1; i<=(nlstate+ndeath); i++){  void pstamp(FILE *fichier)
           for(j=1; j<=(nlstate+ndeath);j++){  {
             k=k+1;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             gm[k]=pmmij[i][j];  }
           }  
         }  /************ Frequencies ********************/
        void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      /*printf("\n%d ",(int)age);  {  /* Some frequencies */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      }*/    int first;
     double ***freq; /* Frequencies */
         fprintf(ficresprob,"\n%d ",(int)age);    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    char fileresp[FILENAMELENGTH];
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    
      pp=vector(1,nlstate);
       }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    strcpy(fileresp,"p");
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    strcat(fileresp,fileres);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   }      exit(0);
   free_vector(xp,1,npar);    }
   fclose(ficresprob);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
 }    
     j=cptcoveff;
 /******************* Printing html file ***********/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\    first=1;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    for(k1=1; k1<=j;k1++){
  char version[], int popforecast, int estepm ){      for(i1=1; i1<=ncodemax[k1];i1++){
   int jj1, k1, i1, cpt;        j1++;
   FILE *fichtm;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   /*char optionfilehtm[FILENAMELENGTH];*/          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   strcpy(optionfilehtm,optionfile);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   strcat(optionfilehtm,".htm");            for(m=iagemin; m <= iagemax+3; m++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              freq[i][jk][m]=0;
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          prop[i][m]=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        
 \n        dateintsum=0;
 Total number of observations=%d <br>\n        k2cpt=0;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        for (i=1; i<=imx; i++) {
 <hr  size=\"2\" color=\"#EC5E5E\">          bool=1;
  <ul><li>Outputs files<br>\n          if  (cptcovn>0) {
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n                bool=0;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          }
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          if (bool==1){
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
  fprintf(fichtm,"\n              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n                if (m<lastpass) {
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
  if(popforecast==1) fprintf(fichtm,"\n                }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         <br>",fileres,fileres,fileres,fileres);                  dateintsum=dateintsum+k2;
  else                  k2cpt++;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                }
 fprintf(fichtm," <li>Graphs</li><p>");                /*}*/
             }
  m=cptcoveff;          }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
          
  jj1=0;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  for(k1=1; k1<=m;k1++){        pstamp(ficresp);
    for(i1=1; i1<=ncodemax[k1];i1++){        if  (cptcovn>0) {
        jj1++;          fprintf(ficresp, "\n#********** Variable "); 
        if (cptcovn > 0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          fprintf(ficresp, "**********\n#");
          for (cpt=1; cpt<=cptcoveff;cpt++)        }
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for(i=1; i<=nlstate;i++) 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
        }        fprintf(ficresp, "\n");
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for(i=iagemin; i <= iagemax+3; i++){
        for(cpt=1; cpt<nlstate;cpt++){          if(i==iagemax+3){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            fprintf(ficlog,"Total");
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }else{
        }            if(first==1){
     for(cpt=1; cpt<=nlstate;cpt++) {              first=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              printf("See log file for details...\n");
 interval) in state (%d): v%s%d%d.gif <br>            }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              fprintf(ficlog,"Age %d", i);
      }          }
      for(cpt=1; cpt<=nlstate;cpt++) {          for(jk=1; jk <=nlstate ; jk++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              pp[jk] += freq[jk][m][i]; 
      }          }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          for(jk=1; jk <=nlstate ; jk++){
 health expectancies in states (1) and (2): e%s%d.gif<br>            for(m=-1, pos=0; m <=0 ; m++)
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              pos += freq[jk][m][i];
 fprintf(fichtm,"\n</body>");            if(pp[jk]>=1.e-10){
    }              if(first==1){
    }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 fclose(fichtm);              }
 }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
 /******************* Gnuplot file **************/              if(first==1)
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            }
           }
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp.txt");          for(jk=1; jk <=nlstate ; jk++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     printf("Problem with file %s",optionfilegnuplot);              pp[jk] += freq[jk][m][i];
   }          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 #ifdef windows            pos += pp[jk];
     fprintf(ficgp,"cd \"%s\" \n",pathc);            posprop += prop[jk][i];
 #endif          }
 m=pow(2,cptcoveff);          for(jk=1; jk <=nlstate ; jk++){
              if(pos>=1.e-5){
  /* 1eme*/              if(first==1)
   for (cpt=1; cpt<= nlstate ; cpt ++) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    for (k1=1; k1<= m ; k1 ++) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 for (i=1; i<= nlstate ; i ++) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if( i <= iagemax){
 }              if(pos>=1.e-5){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for (i=1; i<= nlstate ; i ++) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }              else
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          
 }            for(jk=-1; jk <=nlstate+ndeath; jk++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              if(first==1)
    }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   /*2 eme*/              }
           if(i <= iagemax)
   for (k1=1; k1<= m ; k1 ++) {            fprintf(ficresp,"\n");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          if(first==1)
                printf("Others in log...\n");
     for (i=1; i<= nlstate+1 ; i ++) {          fprintf(ficlog,"\n");
       k=2*i;        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      }
       for (j=1; j<= nlstate+1 ; j ++) {    }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    dateintmean=dateintsum/k2cpt; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }      fclose(ficresp);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    free_vector(pp,1,nlstate);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       for (j=1; j<= nlstate+1 ; j ++) {    /* End of Freq */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  }
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    /************ Prevalence ********************/
       fprintf(ficgp,"\" t\"\" w l 0,");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  {  
       for (j=1; j<= nlstate+1 ; j ++) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   else fprintf(ficgp," \%%*lf (\%%*lf)");       We still use firstpass and lastpass as another selection.
 }      */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");   
       else fprintf(ficgp,"\" t\"\" w l 0,");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     }    double ***freq; /* Frequencies */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    double *pp, **prop;
   }    double pos,posprop; 
      double  y2; /* in fractional years */
   /*3eme*/    int iagemin, iagemax;
   
   for (k1=1; k1<= m ; k1 ++) {    iagemin= (int) agemin;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    iagemax= (int) agemax;
       k=2+nlstate*(2*cpt-2);    /*pp=vector(1,nlstate);*/
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    j1=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    j=cptcoveff;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    
     for(k1=1; k1<=j;k1++){
 */      for(i1=1; i1<=ncodemax[k1];i1++){
       for (i=1; i< nlstate ; i ++) {        j1++;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        
         for (i=1; i<=nlstate; i++)  
       }          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            prop[i][m]=0.0;
     }       
     }        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
   /* CV preval stat */          if  (cptcovn>0) {
     for (k1=1; k1<= m ; k1 ++) {            for (z1=1; z1<=cptcoveff; z1++) 
     for (cpt=1; cpt<nlstate ; cpt ++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       k=3;                bool=0;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          } 
           if (bool==1) { 
       for (i=1; i< nlstate ; i ++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         fprintf(ficgp,"+$%d",k+i+1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                      if(agev[m][i]==0) agev[m][i]=iagemax+1;
       l=3+(nlstate+ndeath)*cpt;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       for (i=1; i< nlstate ; i ++) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         l=3+(nlstate+ndeath)*cpt;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         fprintf(ficgp,"+$%d",l+i+1);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  } 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              }
     }            } /* end selection of waves */
   }            }
          }
   /* proba elementaires */        for(i=iagemin; i <= iagemax+3; i++){  
    for(i=1,jk=1; i <=nlstate; i++){          
     for(k=1; k <=(nlstate+ndeath); k++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       if (k != i) {            posprop += prop[jk][i]; 
         for(j=1; j <=ncovmodel; j++){          } 
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(jk=1; jk <=nlstate ; jk++){     
           jk++;            if( i <=  iagemax){ 
           fprintf(ficgp,"\n");              if(posprop>=1.e-5){ 
         }                probs[i][jk][j1]= prop[jk][i]/posprop;
       }              } 
     }            } 
     }          }/* end jk */ 
         }/* end i */ 
     for(jk=1; jk <=m; jk++) {      } /* end i1 */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    } /* end k1 */
    i=1;    
    for(k2=1; k2<=nlstate; k2++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      k3=i;    /*free_vector(pp,1,nlstate);*/
      for(k=1; k<=(nlstate+ndeath); k++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
        if (k != k2){  }  /* End of prevalence */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;  /************* Waves Concatenation ***************/
         for(j=3; j <=ncovmodel; j++) {  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  {
             ij++;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           }       Death is a valid wave (if date is known).
           else       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         }       and mw[mi+1][i]. dh depends on stepm.
           fprintf(ficgp,")/(1");       */
          
         for(k1=1; k1 <=nlstate; k1++){      int i, mi, m;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 ij=1;       double sum=0., jmean=0.;*/
           for(j=3; j <=ncovmodel; j++){    int first;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int j, k=0,jk, ju, jl;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double sum=0.;
             ij++;    first=0;
           }    jmin=1e+5;
           else    jmax=-1;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    jmean=0.;
           }    for(i=1; i<=imx; i++){
           fprintf(ficgp,")");      mi=0;
         }      m=firstpass;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      while(s[m][i] <= nlstate){
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         i=i+ncovmodel;          mw[++mi][i]=m;
        }        if(m >=lastpass)
      }          break;
    }        else
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          m++;
    }      }/* end while */
          if (s[m][i] > nlstate){
   fclose(ficgp);        mi++;     /* Death is another wave */
 }  /* end gnuplot */        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
         mw[mi][i]=m;
 /*************** Moving average **************/      }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
       wav[i]=mi;
   int i, cpt, cptcod;      if(mi==0){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        nbwarn++;
       for (i=1; i<=nlstate;i++)        if(first==0){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           mobaverage[(int)agedeb][i][cptcod]=0.;          first=1;
            }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        if(first==1){
       for (i=1; i<=nlstate;i++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
           for (cpt=0;cpt<=4;cpt++){      } /* end mi==0 */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    } /* End individuals */
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    for(i=1; i<=imx; i++){
         }      for(mi=1; mi<wav[i];mi++){
       }        if (stepm <=0)
     }          dh[mi][i]=1;
            else{
 }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 /************** Forecasting ******************/              if(j==0) j=1;  /* Survives at least one month after exam */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              else if(j<0){
                  nberr++;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   int *popage;                j=1; /* Temporary Dangerous patch */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   double *popeffectif,*popcount;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double ***p3mat;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   char fileresf[FILENAMELENGTH];              }
               k=k+1;
  agelim=AGESUP;              if (j >= jmax){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;                jmax=j;
                 ijmax=i;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              }
                if (j <= jmin){
                  jmin=j;
   strcpy(fileresf,"f");                ijmin=i;
   strcat(fileresf,fileres);              }
   if((ficresf=fopen(fileresf,"w"))==NULL) {              sum=sum+j;
     printf("Problem with forecast resultfile: %s\n", fileresf);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   printf("Computing forecasting: result on file '%s' \n", fileresf);            }
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   if (mobilav==1) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);            k=k+1;
   }            if (j >= jmax) {
               jmax=j;
   stepsize=(int) (stepm+YEARM-1)/YEARM;              ijmax=i;
   if (stepm<=12) stepsize=1;            }
              else if (j <= jmin){
   agelim=AGESUP;              jmin=j;
                ijmin=i;
   hstepm=1;            }
   hstepm=hstepm/stepm;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   yp1=modf(dateintmean,&yp);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   anprojmean=yp;            if(j<0){
   yp2=modf((yp1*12),&yp);              nberr++;
   mprojmean=yp;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   yp1=modf((yp2*30.5),&yp);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   jprojmean=yp;            }
   if(jprojmean==0) jprojmean=1;            sum=sum+j;
   if(mprojmean==0) jprojmean=1;          }
            jk= j/stepm;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
   for(cptcov=1;cptcov<=i2;cptcov++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if(jl==0){
       k=k+1;              dh[mi][i]=jk;
       fprintf(ficresf,"\n#******");              bh[mi][i]=0;
       for(j=1;j<=cptcoveff;j++) {            }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    * at the price of an extra matrix product in likelihood */
       }              dh[mi][i]=jk+1;
       fprintf(ficresf,"******\n");              bh[mi][i]=ju;
       fprintf(ficresf,"# StartingAge FinalAge");            }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          }else{
                  if(jl <= -ju){
                    dh[mi][i]=jk;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              bh[mi][i]=jl;       /* bias is positive if real duration
         fprintf(ficresf,"\n");                                   * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                                     */
             }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            else{
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              dh[mi][i]=jk+1;
           nhstepm = nhstepm/hstepm;              bh[mi][i]=ju;
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(dh[mi][i]==0){
           oldm=oldms;savm=savms;              dh[mi][i]=1; /* At least one step */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                bh[mi][i]=ju; /* At least one step */
                      /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {          } /* end if mle */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        }
             }      } /* end wave */
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;    jmean=sum/k;
               for(i=1; i<=nlstate;i++) {                  printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                 if (mobilav==1)    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   }
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /*********** Tricode ****************************/
                 }  void tricode(int *Tvar, int **nbcode, int imx)
                  {
               }    
               if (h==(int)(calagedate+12*cpt)){    int Ndum[20],ij=1, k, j, i, maxncov=19;
                 fprintf(ficresf," %.3f", kk1);    int cptcode=0;
                            cptcoveff=0; 
               }   
             }    for (k=0; k<maxncov; k++) Ndum[k]=0;
           }    for (k=1; k<=7; k++) ncodemax[k]=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     }                                 modality*/ 
   }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                Ndum[ij]++; /*store the modality */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   fclose(ficresf);                                         Tvar[j]. If V=sex and male is 0 and 
 }                                         female is 1, then  cptcode=1.*/
 /************** Forecasting ******************/      }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
        for (i=0; i<=cptcode; i++) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   int *popage;      }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;      ij=1; 
   double ***p3mat,***tabpop,***tabpopprev;      for (i=1; i<=ncodemax[j]; i++) {
   char filerespop[FILENAMELENGTH];        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            nbcode[Tvar[j]][ij]=k; 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   agelim=AGESUP;            
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            ij++;
            }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          if (ij > ncodemax[j]) break; 
          }  
        } 
   strcpy(filerespop,"pop");    }  
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }   for (i=1; i<=ncovmodel-2; i++) { 
   printf("Computing forecasting: result on file '%s' \n", filerespop);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     Ndum[ij]++;
    }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   ij=1;
     movingaverage(agedeb, fage, ageminpar, mobaverage);   for (i=1; i<= maxncov; i++) {
   }     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
   stepsize=(int) (stepm+YEARM-1)/YEARM;       ij++;
   if (stepm<=12) stepsize=1;     }
     }
   agelim=AGESUP;   
     cptcoveff=ij-1; /*Number of simple covariates*/
   hstepm=1;  }
   hstepm=hstepm/stepm;  
    /*********** Health Expectancies ****************/
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }  {
     popage=ivector(0,AGESUP);    /* Health expectancies, no variances */
     popeffectif=vector(0,AGESUP);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     popcount=vector(0,AGESUP);    int nhstepma, nstepma; /* Decreasing with age */
        double age, agelim, hf;
     i=1;      double ***p3mat;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double eip;
      
     imx=i;    pstamp(ficreseij);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   }    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   for(cptcov=1;cptcov<=i2;cptcov++){      for(j=1; j<=nlstate;j++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficreseij," e%1d%1d ",i,j);
       k=k+1;      }
       fprintf(ficrespop,"\n#******");      fprintf(ficreseij," e%1d. ",i);
       for(j=1;j<=cptcoveff;j++) {    }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficreseij,"\n");
       }  
       fprintf(ficrespop,"******\n");    
       fprintf(ficrespop,"# Age");    if(estepm < stepm){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      printf ("Problem %d lower than %d\n",estepm, stepm);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    }
          else  hstepm=estepm;   
       for (cpt=0; cpt<=0;cpt++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       * This is mainly to measure the difference between two models: for example
             * if stepm=24 months pijx are given only every 2 years and by summing them
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * we are calculating an estimate of the Life Expectancy assuming a linear 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * progression in between and thus overestimating or underestimating according
           nhstepm = nhstepm/hstepm;     * to the curvature of the survival function. If, for the same date, we 
               * estimate the model with stepm=1 month, we can keep estepm to 24 months
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * to compare the new estimate of Life expectancy with the same linear 
           oldm=oldms;savm=savms;     * hypothesis. A more precise result, taking into account a more precise
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * curvature will be obtained if estepm is as small as stepm. */
          
           for (h=0; h<=nhstepm; h++){    /* For example we decided to compute the life expectancy with the smallest unit */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       nhstepm is the number of hstepm from age to agelim 
             }       nstepm is the number of stepm from age to agelin. 
             for(j=1; j<=nlstate+ndeath;j++) {       Look at hpijx to understand the reason of that which relies in memory size
               kk1=0.;kk2=0;       and note for a fixed period like estepm months */
               for(i=1; i<=nlstate;i++) {                  /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 if (mobilav==1)       survival function given by stepm (the optimization length). Unfortunately it
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       means that if the survival funtion is printed only each two years of age and if
                 else {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       results. So we changed our mind and took the option of the best precision.
                 }    */
               }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    agelim=AGESUP;
                   /*fprintf(ficrespop," %.3f", kk1);    /* If stepm=6 months */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
             }      
             for(i=1; i<=nlstate;i++){  /* nhstepm age range expressed in number of stepm */
               kk1=0.;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                 for(j=1; j<=nlstate;j++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    /* if (stepm >= YEARM) hstepm=1;*/
                 }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }  
     for (age=bage; age<=fage; age ++){ 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           }      /* if (stepm >= YEARM) hstepm=1;*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         }  
       }      /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepma matrices, stored
   /******/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      
           nhstepm = nhstepm/hstepm;      printf("%d|",(int)age);fflush(stdout);
                fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           oldm=oldms;savm=savms;      /* Computing expectancies */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){        for(j=1; j<=nlstate;j++)
             if (h==(int) (calagedate+YEARM*cpt)) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             }            
             for(j=1; j<=nlstate+ndeath;j++) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                        }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }      fprintf(ficreseij,"%3.0f",age );
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      for(i=1; i<=nlstate;i++){
             }        eip=0;
           }        for(j=1; j<=nlstate;j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          eip +=eij[i][j][(int)age];
         }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       }        }
    }        fprintf(ficreseij,"%9.4f", eip );
   }      }
        fprintf(ficreseij,"\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
     }
   if (popforecast==1) {    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ivector(popage,0,AGESUP);    printf("\n");
     free_vector(popeffectif,0,AGESUP);    fprintf(ficlog,"\n");
     free_vector(popcount,0,AGESUP);    
   }  }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   fclose(ficrespop);  
 }  {
     /* Covariances of health expectancies eij and of total life expectancies according
 /***********************************************/     to initial status i, ei. .
 /**************** Main Program *****************/    */
 /***********************************************/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
 int main(int argc, char *argv[])    double age, agelim, hf;
 {    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double *xp, *xm;
   double agedeb, agefin,hf;    double **gp, **gm;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double ***gradg, ***trgradg;
     int theta;
   double fret;  
   double **xi,tmp,delta;    double eip, vip;
   
   double dum; /* Dummy variable */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   double ***p3mat;    xp=vector(1,npar);
   int *indx;    xm=vector(1,npar);
   char line[MAXLINE], linepar[MAXLINE];    dnewm=matrix(1,nlstate*nlstate,1,npar);
   char title[MAXLINE];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    pstamp(ficresstdeij);
      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
   char filerest[FILENAMELENGTH];      for(j=1; j<=nlstate;j++)
   char fileregp[FILENAMELENGTH];        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   char popfile[FILENAMELENGTH];      fprintf(ficresstdeij," e%1d. ",i);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    }
   int firstobs=1, lastobs=10;    fprintf(ficresstdeij,"\n");
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    pstamp(ficrescveij);
   int ju,jl, mi;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficrescveij,"# Age");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    for(i=1; i<=nlstate;i++)
   int mobilav=0,popforecast=0;      for(j=1; j<=nlstate;j++){
   int hstepm, nhstepm;        cptj= (j-1)*nlstate+i;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
   double bage, fage, age, agelim, agebase;            cptj2= (j2-1)*nlstate+i2;
   double ftolpl=FTOL;            if(cptj2 <= cptj)
   double **prlim;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   double *severity;          }
   double ***param; /* Matrix of parameters */      }
   double  *p;    fprintf(ficrescveij,"\n");
   double **matcov; /* Matrix of covariance */    
   double ***delti3; /* Scale */    if(estepm < stepm){
   double *delti; /* Scale */      printf ("Problem %d lower than %d\n",estepm, stepm);
   double ***eij, ***vareij;    }
   double **varpl; /* Variances of prevalence limits by age */    else  hstepm=estepm;   
   double *epj, vepp;    /* We compute the life expectancy from trapezoids spaced every estepm months
   double kk1, kk2;     * This is mainly to measure the difference between two models: for example
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;     * if stepm=24 months pijx are given only every 2 years and by summing them
       * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";     * to the curvature of the survival function. If, for the same date, we 
   char *alph[]={"a","a","b","c","d","e"}, str[4];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   char z[1]="c", occ;     * curvature will be obtained if estepm is as small as stepm. */
 #include <sys/time.h>  
 #include <time.h>    /* For example we decided to compute the life expectancy with the smallest unit */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   /* long total_usecs;       nstepm is the number of stepm from age to agelin. 
   struct timeval start_time, end_time;       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   getcwd(pathcd, size);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   printf("\n%s",version);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if(argc <=1){       results. So we changed our mind and took the option of the best precision.
     printf("\nEnter the parameter file name: ");    */
     scanf("%s",pathtot);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
   else{    /* If stepm=6 months */
     strcpy(pathtot,argv[1]);    /* nhstepm age range expressed in number of stepm */
   }    agelim=AGESUP;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   /*cygwin_split_path(pathtot,path,optionfile);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /* if (stepm >= YEARM) hstepm=1;*/
   /* cutv(path,optionfile,pathtot,'\\');*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   chdir(path);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   replace(pathc,path);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
 /*-------- arguments in the command line --------*/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   strcpy(fileres,"r");    for (age=bage; age<=fage; age ++){ 
   strcat(fileres, optionfilefiname);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   strcat(fileres,".txt");    /* Other files have txt extension */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   /*---------arguments file --------*/      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      /* If stepm=6 months */
     printf("Problem with optionfile %s\n",optionfile);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     goto end;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   }      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   strcpy(filereso,"o");  
   strcat(filereso,fileres);      /* Computing  Variances of health expectancies */
   if((ficparo=fopen(filereso,"w"))==NULL) {      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     printf("Problem with Output resultfile: %s\n", filereso);goto end;         decrease memory allocation */
   }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   /* Reads comments: lines beginning with '#' */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   while((c=getc(ficpar))=='#' && c!= EOF){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     puts(line);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     fputs(line,ficparo);    
   }        for(j=1; j<= nlstate; j++){
   ungetc(c,ficpar);          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            }
 while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);       
     puts(line);        for(ij=1; ij<= nlstate*nlstate; ij++)
     fputs(line,ficparo);          for(h=0; h<=nhstepm-1; h++){
   }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   ungetc(c,ficpar);          }
        }/* End theta */
          
   covar=matrix(0,NCOVMAX,1,n);      
   cptcovn=0;      for(h=0; h<=nhstepm-1; h++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   ncovmodel=2+cptcovn;            trgradg[h][j][theta]=gradg[h][theta][j];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      
    
   /* Read guess parameters */       for(ij=1;ij<=nlstate*nlstate;ij++)
   /* Reads comments: lines beginning with '#' */        for(ji=1;ji<=nlstate*nlstate;ji++)
   while((c=getc(ficpar))=='#' && c!= EOF){          varhe[ij][ji][(int)age] =0.;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);       printf("%d|",(int)age);fflush(stdout);
     puts(line);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fputs(line,ficparo);       for(h=0;h<=nhstepm-1;h++){
   }        for(k=0;k<=nhstepm-1;k++){
   ungetc(c,ficpar);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(ij=1;ij<=nlstate*nlstate;ij++)
     for(i=1; i <=nlstate; i++)            for(ji=1;ji<=nlstate*nlstate;ji++)
     for(j=1; j <=nlstate+ndeath-1; j++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       fprintf(ficparo,"%1d%1d",i1,j1);      }
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){      /* Computing expectancies */
         fscanf(ficpar," %lf",&param[i][j][k]);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         printf(" %lf",param[i][j][k]);      for(i=1; i<=nlstate;i++)
         fprintf(ficparo," %lf",param[i][j][k]);        for(j=1; j<=nlstate;j++)
       }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fscanf(ficpar,"\n");            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       printf("\n");            
       fprintf(ficparo,"\n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
            }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
       fprintf(ficresstdeij,"%3.0f",age );
   p=param[1][1];      for(i=1; i<=nlstate;i++){
          eip=0.;
   /* Reads comments: lines beginning with '#' */        vip=0.;
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);          eip += eij[i][j][(int)age];
     fgets(line, MAXLINE, ficpar);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     puts(line);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     fputs(line,ficparo);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   }        }
   ungetc(c,ficpar);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresstdeij,"\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){      fprintf(ficrescveij,"%3.0f",age );
     for(j=1; j <=nlstate+ndeath-1; j++){      for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for(j=1; j<=nlstate;j++){
       printf("%1d%1d",i,j);          cptj= (j-1)*nlstate+i;
       fprintf(ficparo,"%1d%1d",i1,j1);          for(i2=1; i2<=nlstate;i2++)
       for(k=1; k<=ncovmodel;k++){            for(j2=1; j2<=nlstate;j2++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);              cptj2= (j2-1)*nlstate+i2;
         printf(" %le",delti3[i][j][k]);              if(cptj2 <= cptj)
         fprintf(ficparo," %le",delti3[i][j][k]);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       }            }
       fscanf(ficpar,"\n");        }
       printf("\n");      fprintf(ficrescveij,"\n");
       fprintf(ficparo,"\n");     
     }    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   delti=delti3[1][1];    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /* Reads comments: lines beginning with '#' */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    printf("\n");
     puts(line);    fprintf(ficlog,"\n");
     fputs(line,ficparo);  
   }    free_vector(xm,1,npar);
   ungetc(c,ficpar);    free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   matcov=matrix(1,npar,1,npar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   for(i=1; i <=npar; i++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     fscanf(ficpar,"%s",&str);  }
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  /************ Variance ******************/
     for(j=1; j <=i; j++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       fscanf(ficpar," %le",&matcov[i][j]);  {
       printf(" %.5le",matcov[i][j]);    /* Variance of health expectancies */
       fprintf(ficparo," %.5le",matcov[i][j]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     }    /* double **newm;*/
     fscanf(ficpar,"\n");    double **dnewm,**doldm;
     printf("\n");    double **dnewmp,**doldmp;
     fprintf(ficparo,"\n");    int i, j, nhstepm, hstepm, h, nstepm ;
   }    int k, cptcode;
   for(i=1; i <=npar; i++)    double *xp;
     for(j=i+1;j<=npar;j++)    double **gp, **gm;  /* for var eij */
       matcov[i][j]=matcov[j][i];    double ***gradg, ***trgradg; /*for var eij */
        double **gradgp, **trgradgp; /* for var p point j */
   printf("\n");    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     /*-------- Rewriting paramater file ----------*/    double age,agelim, hf;
      strcpy(rfileres,"r");    /* "Rparameterfile */    double ***mobaverage;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    int theta;
      strcat(rfileres,".");    /* */    char digit[4];
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    char digitp[25];
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    char fileresprobmorprev[FILENAMELENGTH];
     }  
     fprintf(ficres,"#%s\n",version);    if(popbased==1){
          if(mobilav!=0)
     /*-------- data file ----------*/        strcpy(digitp,"-populbased-mobilav-");
     if((fic=fopen(datafile,"r"))==NULL)    {      else strcpy(digitp,"-populbased-nomobil-");
       printf("Problem with datafile: %s\n", datafile);goto end;    }
     }    else 
       strcpy(digitp,"-stablbased-");
     n= lastobs;  
     severity = vector(1,maxwav);    if (mobilav!=0) {
     outcome=imatrix(1,maxwav+1,1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     num=ivector(1,n);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     moisnais=vector(1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     annais=vector(1,n);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     moisdc=vector(1,n);      }
     andc=vector(1,n);    }
     agedc=vector(1,n);  
     cod=ivector(1,n);    strcpy(fileresprobmorprev,"prmorprev"); 
     weight=vector(1,n);    sprintf(digit,"%-d",ij);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     mint=matrix(1,maxwav,1,n);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     anint=matrix(1,maxwav,1,n);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     s=imatrix(1,maxwav+1,1,n);    strcat(fileresprobmorprev,fileres);
     adl=imatrix(1,maxwav+1,1,n);        if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     tab=ivector(1,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     ncodemax=ivector(1,8);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     i=1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     while (fgets(line, MAXLINE, fic) != NULL)    {   
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            pstamp(ficresprobmorprev);
         for (j=maxwav;j>=1;j--){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           strcpy(line,stra);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresprobmorprev," p.%-d SE",j);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1; i<=nlstate;i++)
         }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
            }  
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobmorprev,"\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (j=ncovcol;j>=1;j--){    pstamp(ficresvij);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         }    if(popbased==1)
         num[i]=atol(stra);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
            else
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
         i=i+1;      for(j=1; j<=nlstate;j++)
       }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     }    fprintf(ficresvij,"\n");
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/    xp=vector(1,npar);
   imx=i-1; /* Number of individuals */    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   /* for (i=1; i<=imx; i++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     }*/    gpp=vector(nlstate+1,nlstate+ndeath);
    /*  for (i=1; i<=imx; i++){    gmp=vector(nlstate+1,nlstate+ndeath);
      if (s[4][i]==9)  s[4][i]=-1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    
      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   /* Calculation of the number of parameter from char model*/    }
   Tvar=ivector(1,15);    else  hstepm=estepm;   
   Tprod=ivector(1,15);    /* For example we decided to compute the life expectancy with the smallest unit */
   Tvaraff=ivector(1,15);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   Tvard=imatrix(1,15,1,2);       nhstepm is the number of hstepm from age to agelim 
   Tage=ivector(1,15);             nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
   if (strlen(model) >1){       and note for a fixed period like k years */
     j=0, j1=0, k1=1, k2=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     j=nbocc(model,'+');       survival function given by stepm (the optimization length). Unfortunately it
     j1=nbocc(model,'*');       means that if the survival funtion is printed every two years of age and if
     cptcovn=j+1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     cptcovprod=j1;       results. So we changed our mind and took the option of the best precision.
        */
     strcpy(modelsav,model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    agelim = AGESUP;
       printf("Error. Non available option model=%s ",model);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       goto end;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=(j+1); i>=1;i--){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       cutv(stra,strb,modelsav,'+');      gp=matrix(0,nhstepm,1,nlstate);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      gm=matrix(0,nhstepm,1,nlstate);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {      for(theta=1; theta <=npar; theta++){
         cutv(strd,strc,strb,'*');        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         if (strcmp(strc,"age")==0) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           Tvar[i]=atoi(stre);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cptcovage++;  
             Tage[cptcovage]=i;        if (popbased==1) {
             /*printf("stre=%s ", stre);*/          if(mobilav ==0){
         }            for(i=1; i<=nlstate;i++)
         else if (strcmp(strd,"age")==0) {              prlim[i][i]=probs[(int)age][i][ij];
           cptcovprod--;          }else{ /* mobilav */ 
           cutv(strb,stre,strc,'V');            for(i=1; i<=nlstate;i++)
           Tvar[i]=atoi(stre);              prlim[i][i]=mobaverage[(int)age][i][ij];
           cptcovage++;          }
           Tage[cptcovage]=i;        }
         }    
         else {        for(j=1; j<= nlstate; j++){
           cutv(strb,stre,strc,'V');          for(h=0; h<=nhstepm; h++){
           Tvar[i]=ncovcol+k1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           cutv(strb,strc,strd,'V');              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           Tprod[k1]=i;          }
           Tvard[k1][1]=atoi(strc);        }
           Tvard[k1][2]=atoi(stre);        /* This for computing probability of death (h=1 means
           Tvar[cptcovn+k2]=Tvard[k1][1];           computed over hstepm matrices product = hstepm*stepm months) 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];           as a weighted average of prlim.
           for (k=1; k<=lastobs;k++)        */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           k1++;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           k2=k2+2;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }        }    
       }        /* end probability of death */
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
        /*  scanf("%d",i);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       cutv(strd,strc,strb,'V');        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       Tvar[i]=atoi(strc);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }   
       strcpy(modelsav,stra);          if (popbased==1) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          if(mobilav ==0){
         scanf("%d",i);*/            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
 }          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              prlim[i][i]=mobaverage[(int)age][i][ij];
   printf("cptcovprod=%d ", cptcovprod);          }
   scanf("%d ",i);*/        }
     fclose(fic);  
         for(j=1; j<= nlstate; j++){
     /*  if(mle==1){*/          for(h=0; h<=nhstepm; h++){
     if (weightopt != 1) { /* Maximisation without weights*/            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       for(i=1;i<=n;i++) weight[i]=1.0;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
     /*-calculation of age at interview from date of interview and age at death -*/        }
     agev=matrix(1,maxwav,1,imx);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
     for (i=1; i<=imx; i++) {           as a weighted average of prlim.
       for(m=2; (m<= maxwav); m++) {        */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          anint[m][i]=9999;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
          s[m][i]=-1;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
        }        }    
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        /* end probability of death */
       }  
     }        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
     for (i=1; i<=imx; i++)  {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           if (s[m][i] >= nlstate+1) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             if(agedc[i]>0)        }
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];      } /* End theta */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      for(h=0; h<=nhstepm; h++) /* veij */
               agev[m][i]=-1;        for(j=1; j<=nlstate;j++)
               }          for(theta=1; theta <=npar; theta++)
             }            trgradg[h][j][theta]=gradg[h][theta][j];
           }  
           else if(s[m][i] !=9){ /* Should no more exist */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for(theta=1; theta <=npar; theta++)
             if(mint[m][i]==99 || anint[m][i]==9999)          trgradgp[j][theta]=gradgp[theta][j];
               agev[m][i]=1;    
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      for(i=1;i<=nlstate;i++)
             }        for(j=1;j<=nlstate;j++)
             else if(agev[m][i] >agemax){          vareij[i][j][(int)age] =0.;
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for(h=0;h<=nhstepm;h++){
             }        for(k=0;k<=nhstepm;k++){
             /*agev[m][i]=anint[m][i]-annais[i];*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             /*   agev[m][i] = age[i]+2*m;*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           }          for(i=1;i<=nlstate;i++)
           else { /* =9 */            for(j=1;j<=nlstate;j++)
             agev[m][i]=1;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
             s[m][i]=-1;        }
           }      }
         }    
         else /*= 0 Unknown */      /* pptj */
           agev[m][i]=1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(j=nlstate+1;j<=nlstate+ndeath;j++)
     }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     for (i=1; i<=imx; i++)  {          varppt[j][i]=doldmp[j][i];
       for(m=1; (m<= maxwav); m++){      /* end ppptj */
         if (s[m][i] > (nlstate+ndeath)) {      /*  x centered again */
           printf("Error: Wrong value in nlstate or ndeath\n");        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           goto end;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         }   
       }      if (popbased==1) {
     }        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
     free_vector(severity,1,maxwav);          for(i=1; i<=nlstate;i++)
     free_imatrix(outcome,1,maxwav+1,1,n);            prlim[i][i]=mobaverage[(int)age][i][ij];
     free_vector(moisnais,1,n);        }
     free_vector(annais,1,n);      }
     /* free_matrix(mint,1,maxwav,1,n);               
        free_matrix(anint,1,maxwav,1,n);*/      /* This for computing probability of death (h=1 means
     free_vector(moisdc,1,n);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     free_vector(andc,1,n);         as a weighted average of prlim.
       */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
     wav=ivector(1,imx);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      }    
          /* end probability of death */
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       Tcode=ivector(1,100);        for(i=1; i<=nlstate;i++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       ncodemax[1]=1;        }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      } 
            fprintf(ficresprobmorprev,"\n");
    codtab=imatrix(1,100,1,10);  
    h=0;      fprintf(ficresvij,"%.0f ",age );
    m=pow(2,cptcoveff);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
    for(k=1;k<=cptcoveff; k++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
      for(i=1; i <=(m/pow(2,k));i++){        }
        for(j=1; j <= ncodemax[k]; j++){      fprintf(ficresvij,"\n");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      free_matrix(gp,0,nhstepm,1,nlstate);
            h++;      free_matrix(gm,0,nhstepm,1,nlstate);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }    } /* End age */
      }    free_vector(gpp,nlstate+1,nlstate+ndeath);
    }    free_vector(gmp,nlstate+1,nlstate+ndeath);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       codtab[1][2]=1;codtab[2][2]=2; */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    /* for(i=1; i <=m ;i++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       for(k=1; k <=cptcovn; k++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       printf("\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       scanf("%d",i);*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
    /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
        and prints on file fileres'p'. */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(xp,1,npar);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_matrix(doldm,1,nlstate,1,nlstate);
          free_matrix(dnewm,1,nlstate,1,npar);
     /* For Powell, parameters are in a vector p[] starting at p[1]    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if(mle==1){    fclose(ficresprobmorprev);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fflush(ficgp);
     }    fflush(fichtm); 
      }  /* end varevsij */
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
    jk=1;    /* Variance of prevalence limit */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double **newm;
    for(i=1,jk=1; i <=nlstate; i++){    double **dnewm,**doldm;
      for(k=1; k <=(nlstate+ndeath); k++){    int i, j, nhstepm, hstepm;
        if (k != i)    int k, cptcode;
          {    double *xp;
            printf("%d%d ",i,k);    double *gp, *gm;
            fprintf(ficres,"%1d%1d ",i,k);    double **gradg, **trgradg;
            for(j=1; j <=ncovmodel; j++){    double age,agelim;
              printf("%f ",p[jk]);    int theta;
              fprintf(ficres,"%f ",p[jk]);    
              jk++;    pstamp(ficresvpl);
            }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
            printf("\n");    fprintf(ficresvpl,"# Age");
            fprintf(ficres,"\n");    for(i=1; i<=nlstate;i++)
          }        fprintf(ficresvpl," %1d-%1d",i,i);
      }    fprintf(ficresvpl,"\n");
    }  
  if(mle==1){    xp=vector(1,npar);
     /* Computing hessian and covariance matrix */    dnewm=matrix(1,nlstate,1,npar);
     ftolhess=ftol; /* Usually correct */    doldm=matrix(1,nlstate,1,nlstate);
     hesscov(matcov, p, npar, delti, ftolhess, func);    
  }    hstepm=1*YEARM; /* Every year of age */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     printf("# Scales (for hessian or gradient estimation)\n");    agelim = AGESUP;
      for(i=1,jk=1; i <=nlstate; i++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(j=1; j <=nlstate+ndeath; j++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         if (j!=i) {      if (stepm >= YEARM) hstepm=1;
           fprintf(ficres,"%1d%1d",i,j);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           printf("%1d%1d",i,j);      gradg=matrix(1,npar,1,nlstate);
           for(k=1; k<=ncovmodel;k++){      gp=vector(1,nlstate);
             printf(" %.5e",delti[jk]);      gm=vector(1,nlstate);
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;      for(theta=1; theta <=npar; theta++){
           }        for(i=1; i<=npar; i++){ /* Computes gradient */
           printf("\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficres,"\n");        }
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
      }          gp[i] = prlim[i][i];
          
     k=1;        for(i=1; i<=npar; i++) /* Computes gradient */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(i=1;i<=npar;i++){        for(i=1;i<=nlstate;i++)
       /*  if (k>nlstate) k=1;          gm[i] = prlim[i][i];
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(i=1;i<=nlstate;i++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       fprintf(ficres,"%3d",i);      } /* End theta */
       printf("%3d",i);  
       for(j=1; j<=i;j++){      trgradg =matrix(1,nlstate,1,npar);
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);      for(j=1; j<=nlstate;j++)
       }        for(theta=1; theta <=npar; theta++)
       fprintf(ficres,"\n");          trgradg[j][theta]=gradg[theta][j];
       printf("\n");  
       k++;      for(i=1;i<=nlstate;i++)
     }        varpl[i][(int)age] =0.;
          matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     while((c=getc(ficpar))=='#' && c!= EOF){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
       fgets(line, MAXLINE, ficpar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       puts(line);  
       fputs(line,ficparo);      fprintf(ficresvpl,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     estepm=0;      fprintf(ficresvpl,"\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      free_vector(gp,1,nlstate);
     if (estepm==0 || estepm < stepm) estepm=stepm;      free_vector(gm,1,nlstate);
     if (fage <= 2) {      free_matrix(gradg,1,npar,1,nlstate);
       bage = ageminpar;      free_matrix(trgradg,1,nlstate,1,npar);
       fage = agemaxpar;    } /* End age */
     }  
        free_vector(xp,1,npar);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    free_matrix(doldm,1,nlstate,1,npar);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    free_matrix(dnewm,1,nlstate,1,nlstate);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
    }
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance of one-step probabilities  ******************/
     fgets(line, MAXLINE, ficpar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     puts(line);  {
     fputs(line,ficparo);    int i, j=0,  i1, k1, l1, t, tj;
   }    int k2, l2, j1,  z1;
   ungetc(c,ficpar);    int k=0,l, cptcode;
      int first=1, first1;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double **dnewm,**doldm;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double *xp;
          double *gp, *gm;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **gradg, **trgradg;
     ungetc(c,ficpar);    double **mu;
     fgets(line, MAXLINE, ficpar);    double age,agelim, cov[NCOVMAX];
     puts(line);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     fputs(line,ficparo);    int theta;
   }    char fileresprob[FILENAMELENGTH];
   ungetc(c,ficpar);    char fileresprobcov[FILENAMELENGTH];
      char fileresprobcor[FILENAMELENGTH];
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    double ***varpij;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
     strcpy(fileresprob,"prob"); 
   fscanf(ficpar,"pop_based=%d\n",&popbased);    strcat(fileresprob,fileres);
   fprintf(ficparo,"pop_based=%d\n",popbased);      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   fprintf(ficres,"pop_based=%d\n",popbased);        printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    strcpy(fileresprobcov,"probcov"); 
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobcov,fileres);
     puts(line);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     fputs(line,ficparo);      printf("Problem with resultfile: %s\n", fileresprobcov);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   ungetc(c,ficpar);    }
     strcpy(fileresprobcor,"probcor"); 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    strcat(fileresprobcor,fileres);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
 while((c=getc(ficpar))=='#' && c!= EOF){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     ungetc(c,ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     puts(line);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    fprintf(ficresprob,"# Age");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    pstamp(ficresprobcov);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 /*------------ gnuplot -------------*/    fprintf(ficresprobcor,"# Age");
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  
    
 /*------------ free_vector  -------------*/    for(i=1; i<=nlstate;i++)
  chdir(path);      for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  free_ivector(wav,1,imx);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        }  
  free_ivector(num,1,n);   /* fprintf(ficresprob,"\n");
  free_vector(agedc,1,n);    fprintf(ficresprobcov,"\n");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    fprintf(ficresprobcor,"\n");
  fclose(ficparo);   */
  fclose(ficres);   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 /*--------- index.htm --------*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
      fprintf(ficgp,"\n# Routine varprob");
   /*--------------- Prevalence limit --------------*/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    file %s<br>\n",optionfilehtmcov);
   }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  and drawn. It helps understanding how is the covariance between two incidences.\
   fprintf(ficrespl,"#Prevalence limit\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   fprintf(ficrespl,"#Age ");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   fprintf(ficrespl,"\n");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
    standard deviations wide on each axis. <br>\
   prlim=matrix(1,nlstate,1,nlstate);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    cov[1]=1;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    tj=cptcoveff;
   k=0;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   agebase=ageminpar;    j1=0;
   agelim=agemaxpar;    for(t=1; t<=tj;t++){
   ftolpl=1.e-10;      for(i1=1; i1<=ncodemax[t];i1++){ 
   i1=cptcoveff;        j1++;
   if (cptcovn < 1){i1=1;}        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   for(cptcov=1;cptcov<=i1;cptcov++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficresprob, "**********\n#\n");
         k=k+1;          fprintf(ficresprobcov, "\n#********** Variable "); 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrespl,"\n#******");          fprintf(ficresprobcov, "**********\n#\n");
         for(j=1;j<=cptcoveff;j++)          
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp, "\n#********** Variable "); 
         fprintf(ficrespl,"******\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(ficgp, "**********\n#\n");
         for (age=agebase; age<=agelim; age++){          
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          
           fprintf(ficrespl,"%.0f",age );          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for(i=1; i<=nlstate;i++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficrespl," %.5f", prlim[i][i]);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrespl,"\n");          
         }          fprintf(ficresprobcor, "\n#********** Variable ");    
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresprobcor, "**********\n#");    
   fclose(ficrespl);        }
         
   /*------------- h Pij x at various ages ------------*/        for (age=bage; age<=fage; age ++){ 
            cov[2]=age;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          for (k=1; k<=cptcovn;k++) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          }
   }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("Computing pij: result on file '%s' \n", filerespij);          for (k=1; k<=cptcovprod;k++)
              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          
   /*if (stepm<=24) stepsize=2;*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   agelim=AGESUP;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   hstepm=stepsize*YEARM; /* Every year of age */          gm=vector(1,(nlstate)*(nlstate+ndeath));
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      
            for(theta=1; theta <=npar; theta++){
   k=0;            for(i=1; i<=npar; i++)
   for(cptcov=1;cptcov<=i1;cptcov++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            
       k=k+1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficrespij,"\n#****** ");            
         for(j=1;j<=cptcoveff;j++)            k=0;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<= (nlstate); i++){
         fprintf(ficrespij,"******\n");              for(j=1; j<=(nlstate+ndeath);j++){
                        k=k+1;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                gp[k]=pmmij[i][j];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            
           oldm=oldms;savm=savms;            for(i=1; i<=npar; i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           fprintf(ficrespij,"# Age");      
           for(i=1; i<=nlstate;i++)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             for(j=1; j<=nlstate+ndeath;j++)            k=0;
               fprintf(ficrespij," %1d-%1d",i,j);            for(i=1; i<=(nlstate); i++){
           fprintf(ficrespij,"\n");              for(j=1; j<=(nlstate+ndeath);j++){
            for (h=0; h<=nhstepm; h++){                k=k+1;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                gm[k]=pmmij[i][j];
             for(i=1; i<=nlstate;i++)              }
               for(j=1; j<=nlstate+ndeath;j++)            }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       
             fprintf(ficrespij,"\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
              }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           fprintf(ficrespij,"\n");  
         }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     }            for(theta=1; theta <=npar; theta++)
   }              trgradg[j][theta]=gradg[theta][j];
           
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   fclose(ficrespij);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /*---------- Forecasting ------------------*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          pmij(pmmij,cov,ncovmodel,x,nlstate);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          
   }          k=0;
   else{          for(i=1; i<=(nlstate); i++){
     erreur=108;            for(j=1; j<=(nlstate+ndeath);j++){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);              k=k+1;
   }              mu[k][(int) age]=pmmij[i][j];
              }
           }
   /*---------- Health expectancies and variances ------------*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   strcpy(filerest,"t");              varpij[i][j][(int)age] = doldm[i][j];
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {          /*printf("\n%d ",(int)age);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
   strcpy(filerese,"e");          fprintf(ficresprob,"\n%d ",(int)age);
   strcat(filerese,fileres);          fprintf(ficresprobcov,"\n%d ",(int)age);
   if((ficreseij=fopen(filerese,"w"))==NULL) {          fprintf(ficresprobcor,"\n%d ",(int)age);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  strcpy(fileresv,"v");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   strcat(fileresv,fileres);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          i=0;
   }          for (k=1; k<=(nlstate);k++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            for (l=1; l<=(nlstate+ndeath);l++){ 
   calagedate=-1;              i=i++;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   k=0;              for (j=1; j<=i;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       k=k+1;              }
       fprintf(ficrest,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)          }/* end of loop for state */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        } /* end of loop for age */
       fprintf(ficrest,"******\n");  
         /* Confidence intervalle of pij  */
       fprintf(ficreseij,"\n#****** ");        /*
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\nset noparametric;unset label");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       fprintf(ficreseij,"******\n");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       fprintf(ficresvij,"\n#****** ");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       fprintf(ficresvij,"******\n");        */
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       oldm=oldms;savm=savms;        first1=1;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          for (k2=1; k2<=(nlstate);k2++){
            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            if(l2==k2) continue;
       oldm=oldms;savm=savms;            j=(k2-1)*(nlstate+ndeath)+l2;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);            for (k1=1; k1<=(nlstate);k1++){
                  for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                  i=(k1-1)*(nlstate+ndeath)+l1;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                if(i<=j) continue;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                for (age=bage; age<=fage; age ++){ 
       fprintf(ficrest,"\n");                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       epj=vector(1,nlstate+1);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       for(age=bage; age <=fage ;age++){                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    mu1=mu[i][(int) age]/stepm*YEARM ;
         if (popbased==1) {                    mu2=mu[j][(int) age]/stepm*YEARM;
           for(i=1; i<=nlstate;i++)                    c12=cv12/sqrt(v1*v2);
             prlim[i][i]=probs[(int)age][i][k];                    /* Computing eigen value of matrix of covariance */
         }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                            lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         fprintf(ficrest," %4.0f",age);                    /* Eigen vectors */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    /*v21=sqrt(1.-v11*v11); *//* error */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                    v21=(lc1-v1)/cv12*v11;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    v12=-v21;
           }                    v22=v11;
           epj[nlstate+1] +=epj[j];                    tnalp=v21/v11;
         }                    if(first1==1){
                       first1=0;
         for(i=1, vepp=0.;i <=nlstate;i++)                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           for(j=1;j <=nlstate;j++)                    }
             vepp += vareij[i][j][(int)age];                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                    /*printf(fignu*/
         for(j=1;j <=nlstate;j++){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         }                    if(first==1){
         fprintf(ficrest,"\n");                      first=0;
       }                      fprintf(ficgp,"\nset parametric;unset label");
     }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 free_matrix(mint,1,maxwav,1,n);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     free_vector(weight,1,n);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   fclose(ficreseij);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   fclose(ficresvij);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fclose(ficrest);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fclose(ficpar);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   free_vector(epj,1,nlstate+1);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*------- Variance limit prevalence------*/                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   strcpy(fileresvpl,"vpl");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcat(fileresvpl,fileres);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                    }else{
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                      first=0;
     exit(0);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   k=0;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   for(cptcov=1;cptcov<=i1;cptcov++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    }/* if first */
       k=k+1;                  } /* age mod 5 */
       fprintf(ficresvpl,"\n#****** ");                } /* end loop age */
       for(j=1;j<=cptcoveff;j++)                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                first=1;
       fprintf(ficresvpl,"******\n");              } /*l12 */
                  } /* k12 */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          } /*l1 */
       oldm=oldms;savm=savms;        }/* k1 */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      } /* loop covariates */
     }    }
  }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   fclose(ficresvpl);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   /*---------- End : free ----------------*/    free_vector(xp,1,npar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    fclose(ficresprob);
      fclose(ficresprobcov);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fclose(ficresprobcor);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fflush(ficgp);
      fflush(fichtmcov);
    }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  /******************* Printing html file ***********/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
   free_matrix(matcov,1,npar,1,npar);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   free_vector(delti,1,npar);                    int popforecast, int estepm ,\
   free_matrix(agev,1,maxwav,1,imx);                    double jprev1, double mprev1,double anprev1, \
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   else   printf("End of Imach\n");     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  </ul>");
       fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   /*printf("Total time was %d uSec.\n", total_usecs);*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   /*------ End -----------*/     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
  end:     fprintf(fichtm,"\
   /* chdir(pathcd);*/   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
  /*system("wgnuplot graph.plt");*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  /*system("../gp37mgw/wgnuplot graph.plt");*/     fprintf(fichtm,"\
  /*system("cd ../gp37mgw");*/   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/     <a href=\"%s\">%s</a> <br>\n",
  strcpy(plotcmd,GNUPLOTPROGRAM);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
  strcat(plotcmd," ");     fprintf(fichtm,"\
  strcat(plotcmd,optionfilegnuplot);   - Population projections by age and states: \
  system(plotcmd);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
  /*#ifdef windows*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   while (z[0] != 'q') {  
     /* chdir(path); */   m=cptcoveff;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");   jj1=0;
     else if (z[0] == 'e') system(optionfilehtm);   for(k1=1; k1<=m;k1++){
     else if (z[0] == 'g') system(plotcmd);     for(i1=1; i1<=ncodemax[k1];i1++){
     else if (z[0] == 'q') exit(0);       jj1++;
   }       if (cptcovn > 0) {
   /*#endif */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 }         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.127


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>