Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.128

version 1.41.2.1, 2003/06/12 10:43:20 version 1.128, 2006/06/30 13:02:05
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.128  2006/06/30 13:02:05  brouard
      (Module): Clarifications on computing e.j
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.127  2006/04/28 18:11:50  brouard
   first survey ("cross") where individuals from different ages are    (Module): Yes the sum of survivors was wrong since
   interviewed on their health status or degree of disability (in the    imach-114 because nhstepm was no more computed in the age
   case of a health survey which is our main interest) -2- at least a    loop. Now we define nhstepma in the age loop.
   second wave of interviews ("longitudinal") which measure each change    (Module): In order to speed up (in case of numerous covariates) we
   (if any) in individual health status.  Health expectancies are    compute health expectancies (without variances) in a first step
   computed from the time spent in each health state according to a    and then all the health expectancies with variances or standard
   model. More health states you consider, more time is necessary to reach the    deviation (needs data from the Hessian matrices) which slows the
   Maximum Likelihood of the parameters involved in the model.  The    computation.
   simplest model is the multinomial logistic model where pij is the    In the future we should be able to stop the program is only health
   probability to be observed in state j at the second wave    expectancies and graph are needed without standard deviations.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.126  2006/04/28 17:23:28  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Yes the sum of survivors was wrong since
   complex model than "constant and age", you should modify the program    imach-114 because nhstepm was no more computed in the age
   where the markup *Covariates have to be included here again* invites    loop. Now we define nhstepma in the age loop.
   you to do it.  More covariates you add, slower the    Version 0.98h
   convergence.  
     Revision 1.125  2006/04/04 15:20:31  lievre
   The advantage of this computer programme, compared to a simple    Errors in calculation of health expectancies. Age was not initialized.
   multinomial logistic model, is clear when the delay between waves is not    Forecasting file added.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.124  2006/03/22 17:13:53  lievre
   account using an interpolation or extrapolation.      Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.123  2006/03/20 10:52:43  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): <title> changed, corresponds to .htm file
   states. This elementary transition (by month or quarter trimester,    name. <head> headers where missing.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): Weights can have a decimal point as for
   and the contribution of each individual to the likelihood is simply    English (a comma might work with a correct LC_NUMERIC environment,
   hPijx.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Also this programme outputs the covariance matrix of the parameters but also    1.
   of the life expectancies. It also computes the prevalence limits.    Version 0.98g
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.122  2006/03/20 09:45:41  brouard
            Institut national d'études démographiques, Paris.    (Module): Weights can have a decimal point as for
   This software have been partly granted by Euro-REVES, a concerted action    English (a comma might work with a correct LC_NUMERIC environment,
   from the European Union.    otherwise the weight is truncated).
   It is copyrighted identically to a GNU software product, ie programme and    Modification of warning when the covariates values are not 0 or
   software can be distributed freely for non commercial use. Latest version    1.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.98g
   **********************************************************************/  
      Revision 1.121  2006/03/16 17:45:01  lievre
 #include <math.h>    * imach.c (Module): Comments concerning covariates added
 #include <stdio.h>  
 #include <stdlib.h>    * imach.c (Module): refinements in the computation of lli if
 #include <unistd.h>    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    Revision 1.120  2006/03/16 15:10:38  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): refinements in the computation of lli if
 #define FILENAMELENGTH 80    status=-2 in order to have more reliable computation if stepm is
 /*#define DEBUG*/    not 1 month. Version 0.98f
   
 /*#define windows*/    Revision 1.119  2006/03/15 17:42:26  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Bug if status = -2, the loglikelihood was
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    computed as likelihood omitting the logarithm. Version O.98e
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.118  2006/03/14 18:20:07  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 #define NINTERVMAX 8    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Function pstamp added
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Version 0.98d
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.117  2006/03/14 17:16:22  brouard
 #define YEARM 12. /* Number of months per year */    (Module): varevsij Comments added explaining the second
 #define AGESUP 130    table of variances if popbased=1 .
 #define AGEBASE 40    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
     (Module): Version 0.98d
 int erreur; /* Error number */  
 int nvar;    Revision 1.116  2006/03/06 10:29:27  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Variance-covariance wrong links and
 int npar=NPARMAX;    varian-covariance of ej. is needed (Saito).
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.115  2006/02/27 12:17:45  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): One freematrix added in mlikeli! 0.98c
 int popbased=0;  
     Revision 1.114  2006/02/26 12:57:58  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Some improvements in processing parameter
 int maxwav; /* Maxim number of waves */    filename with strsep.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.113  2006/02/24 14:20:24  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Memory leaks checks with valgrind and:
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    datafile was not closed, some imatrix were not freed and on matrix
 double jmean; /* Mean space between 2 waves */    allocation too.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.112  2006/01/30 09:55:26  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.111  2006/01/25 20:38:18  brouard
   char filerese[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
  FILE  *ficresvij;    (Module): Comments can be added in data file. Missing date values
   char fileresv[FILENAMELENGTH];    can be a simple dot '.'.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.109  2006/01/24 19:37:15  brouard
 #define FTOL 1.0e-10    (Module): Comments (lines starting with a #) are allowed in data.
   
 #define NRANSI    Revision 1.108  2006/01/19 18:05:42  lievre
 #define ITMAX 200    Gnuplot problem appeared...
     To be fixed
 #define TOL 2.0e-4  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define CGOLD 0.3819660    Test existence of gnuplot in imach path
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.105  2006/01/05 20:23:19  lievre
 #define TINY 1.0e-20    *** empty log message ***
   
 static double maxarg1,maxarg2;    Revision 1.104  2005/09/30 16:11:43  lievre
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): sump fixed, loop imx fixed, and simplifications.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): If the status is missing at the last wave but we know
      that the person is alive, then we can code his/her status as -2
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (instead of missing=-1 in earlier versions) and his/her
 #define rint(a) floor(a+0.5)    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 static double sqrarg;    the healthy state at last known wave). Version is 0.98
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int imx;  
 int stepm;    Revision 1.102  2004/09/15 17:31:30  brouard
 /* Stepm, step in month: minimum step interpolation*/    Add the possibility to read data file including tab characters.
   
 int estepm;    Revision 1.101  2004/09/15 10:38:38  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Fix on curr_time
   
 int m,nb;    Revision 1.100  2004/07/12 18:29:06  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Add version for Mac OS X. Just define UNIX in Makefile
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.99  2004/06/05 08:57:40  brouard
 double dateintmean=0;    *** empty log message ***
   
 double *weight;    Revision 1.98  2004/05/16 15:05:56  brouard
 int **s; /* Status */    New version 0.97 . First attempt to estimate force of mortality
 double *agedc, **covar, idx;    directly from the data i.e. without the need of knowing the health
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    other analysis, in order to test if the mortality estimated from the
 double ftolhess; /* Tolerance for computing hessian */    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    The same imach parameter file can be used but the option for mle should be -3.
 {  
    char *s;                             /* pointer */    Agnès, who wrote this part of the code, tried to keep most of the
    int  l1, l2;                         /* length counters */    former routines in order to include the new code within the former code.
   
    l1 = strlen( path );                 /* length of path */    The output is very simple: only an estimate of the intercept and of
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    the slope with 95% confident intervals.
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Current limitations:
 #else    A) Even if you enter covariates, i.e. with the
    s = strrchr( path, '/' );            /* find last / */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #endif    B) There is no computation of Life Expectancy nor Life Table.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.97  2004/02/20 13:25:42  lievre
       extern char       *getwd( );    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.96  2003/07/15 15:38:55  brouard
       extern char       *getcwd( );    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.95  2003/07/08 07:54:34  brouard
          return( GLOCK_ERROR_GETCWD );    * imach.c (Repository):
       }    (Repository): Using imachwizard code to output a more meaningful covariance
       strcpy( name, path );             /* we've got it */    matrix (cov(a12,c31) instead of numbers.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.94  2003/06/27 13:00:02  brouard
       l2 = strlen( s );                 /* length of filename */    Just cleaning
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.93  2003/06/25 16:33:55  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): On windows (cygwin) function asctime_r doesn't
       dirc[l1-l2] = 0;                  /* add zero */    exist so I changed back to asctime which exists.
    }    (Module): Version 0.96b
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.92  2003/06/25 16:30:45  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): On windows (cygwin) function asctime_r doesn't
 #else    exist so I changed back to asctime which exists.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.91  2003/06/25 15:30:29  brouard
    s = strrchr( name, '.' );            /* find last / */    * imach.c (Repository): Duplicated warning errors corrected.
    s++;    (Repository): Elapsed time after each iteration is now output. It
    strcpy(ext,s);                       /* save extension */    helps to forecast when convergence will be reached. Elapsed time
    l1= strlen( name);    is stamped in powell.  We created a new html file for the graphs
    l2= strlen( s)+1;    concerning matrix of covariance. It has extension -cov.htm.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.90  2003/06/24 12:34:15  brouard
    return( 0 );                         /* we're done */    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   
 /******************************************/    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 void replace(char *s, char*t)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   int i;  
   int lg=20;    Revision 1.88  2003/06/23 17:54:56  brouard
   i=0;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.87  2003/06/18 12:26:01  brouard
     (s[i] = t[i]);    Version 0.96
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.86  2003/06/17 20:04:08  brouard
 }    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 int nbocc(char *s, char occ)  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   int i,j=0;    * imach.c (Repository): Check when date of death was earlier that
   int lg=20;    current date of interview. It may happen when the death was just
   i=0;    prior to the death. In this case, dh was negative and likelihood
   lg=strlen(s);    was wrong (infinity). We still send an "Error" but patch by
   for(i=0; i<= lg; i++) {    assuming that the date of death was just one stepm after the
   if  (s[i] == occ ) j++;    interview.
   }    (Repository): Because some people have very long ID (first column)
   return j;    we changed int to long in num[] and we added a new lvector for
 }    memory allocation. But we also truncated to 8 characters (left
     truncation)
 void cutv(char *u,char *v, char*t, char occ)    (Repository): No more line truncation errors.
 {  
   int i,lg,j,p=0;    Revision 1.84  2003/06/13 21:44:43  brouard
   i=0;    * imach.c (Repository): Replace "freqsummary" at a correct
   for(j=0; j<=strlen(t)-1; j++) {    place. It differs from routine "prevalence" which may be called
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    many times. Probs is memory consuming and must be used with
   }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.83  2003/06/10 13:39:11  lievre
     (u[j] = t[j]);    *** empty log message ***
   }  
      u[p]='\0';    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  */
   }  /*
 }     Interpolated Markov Chain
   
 /********************** nrerror ********************/    Short summary of the programme:
     
 void nrerror(char error_text[])    This program computes Healthy Life Expectancies from
 {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   fprintf(stderr,"ERREUR ...\n");    first survey ("cross") where individuals from different ages are
   fprintf(stderr,"%s\n",error_text);    interviewed on their health status or degree of disability (in the
   exit(1);    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
 /*********************** vector *******************/    (if any) in individual health status.  Health expectancies are
 double *vector(int nl, int nh)    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
   double *v;    Maximum Likelihood of the parameters involved in the model.  The
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    simplest model is the multinomial logistic model where pij is the
   if (!v) nrerror("allocation failure in vector");    probability to be observed in state j at the second wave
   return v-nl+NR_END;    conditional to be observed in state i at the first wave. Therefore
 }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 /************************ free vector ******************/    complex model than "constant and age", you should modify the program
 void free_vector(double*v, int nl, int nh)    where the markup *Covariates have to be included here again* invites
 {    you to do it.  More covariates you add, slower the
   free((FREE_ARG)(v+nl-NR_END));    convergence.
 }  
     The advantage of this computer programme, compared to a simple
 /************************ivector *******************************/    multinomial logistic model, is clear when the delay between waves is not
 int *ivector(long nl,long nh)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   int *v;    account using an interpolation or extrapolation.  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    hPijx is the probability to be observed in state i at age x+h
   return v-nl+NR_END;    conditional to the observed state i at age x. The delay 'h' can be
 }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 /******************free ivector **************************/    semester or year) is modelled as a multinomial logistic.  The hPx
 void free_ivector(int *v, long nl, long nh)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   free((FREE_ARG)(v+nl-NR_END));    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /******************* imatrix *******************************/    of the life expectancies. It also computes the period (stable) prevalence. 
 int **imatrix(long nrl, long nrh, long ncl, long nch)    
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 {             Institut national d'études démographiques, Paris.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    This software have been partly granted by Euro-REVES, a concerted action
   int **m;    from the European Union.
      It is copyrighted identically to a GNU software product, ie programme and
   /* allocate pointers to rows */    software can be distributed freely for non commercial use. Latest version
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    can be accessed at http://euroreves.ined.fr/imach .
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m -= nrl;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
      **********************************************************************/
   /* allocate rows and set pointers to them */  /*
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    main
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    read parameterfile
   m[nrl] += NR_END;    read datafile
   m[nrl] -= ncl;    concatwav
      freqsummary
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    if (mle >= 1)
        mlikeli
   /* return pointer to array of pointers to rows */    print results files
   return m;    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /****************** free_imatrix *************************/        begin-prev-date,...
 void free_imatrix(m,nrl,nrh,ncl,nch)    open gnuplot file
       int **m;    open html file
       long nch,ncl,nrh,nrl;    period (stable) prevalence
      /* free an int matrix allocated by imatrix() */     for age prevalim()
 {    h Pij x
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    variance of p varprob
   free((FREE_ARG) (m+nrl-NR_END));    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /******************* matrix *******************************/    prevalence()
 double **matrix(long nrl, long nrh, long ncl, long nch)     movingaverage()
 {    varevsij() 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    if popbased==1 varevsij(,popbased)
   double **m;    total life expectancies
     Variance of period (stable) prevalence
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));   end
   if (!m) nrerror("allocation failure 1 in matrix()");  */
   m += NR_END;  
   m -= nrl;  
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));   
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <math.h>
   m[nrl] += NR_END;  #include <stdio.h>
   m[nrl] -= ncl;  #include <stdlib.h>
   #include <string.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <unistd.h>
   return m;  
 }  #include <limits.h>
   #include <sys/types.h>
 /*************************free matrix ************************/  #include <sys/stat.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <errno.h>
 {  extern int errno;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /* #include <sys/time.h> */
 }  #include <time.h>
   #include "timeval.h"
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  #define MAXLINE 256
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define GNUPLOTPROGRAM "gnuplot"
   if (!m) nrerror("allocation failure 1 in matrix()");  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m += NR_END;  #define FILENAMELENGTH 132
   m -= nrl;  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m[nrl] -= ncl;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define NCOVMAX 8 /* Maximum number of covariates */
   m[nrl][ncl] += NR_END;  #define MAXN 20000
   m[nrl][ncl] -= nll;  #define YEARM 12. /* Number of months per year */
   for (j=ncl+1; j<=nch; j++)  #define AGESUP 130
     m[nrl][j]=m[nrl][j-1]+nlay;  #define AGEBASE 40
    #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   for (i=nrl+1; i<=nrh; i++) {  #ifdef UNIX
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define DIRSEPARATOR '/'
     for (j=ncl+1; j<=nch; j++)  #define CHARSEPARATOR "/"
       m[i][j]=m[i][j-1]+nlay;  #define ODIRSEPARATOR '\\'
   }  #else
   return m;  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /*************************free ma3x ************************/  #endif
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  /* $Id$ */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /* $State$ */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
 }  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
 /***************** f1dim *************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 extern int ncom;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 extern double *pcom,*xicom;  int nvar;
 extern double (*nrfunc)(double []);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    int npar=NPARMAX;
 double f1dim(double x)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   int j;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double f;  int popbased=0;
   double *xt;  
    int *wav; /* Number of waves for this individuual 0 is possible */
   xt=vector(1,ncom);  int maxwav; /* Maxim number of waves */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int jmin, jmax; /* min, max spacing between 2 waves */
   f=(*nrfunc)(xt);  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   free_vector(xt,1,ncom);  int gipmx, gsw; /* Global variables on the number of contributions 
   return f;                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /*****************brent *************************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int iter;  double jmean; /* Mean space between 2 waves */
   double a,b,d,etemp;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double fu,fv,fw,fx;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double ftemp;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  FILE *ficlog, *ficrespow;
   double e=0.0;  int globpr; /* Global variable for printing or not */
    double fretone; /* Only one call to likelihood */
   a=(ax < cx ? ax : cx);  long ipmx; /* Number of contributions */
   b=(ax > cx ? ax : cx);  double sw; /* Sum of weights */
   x=w=v=bx;  char filerespow[FILENAMELENGTH];
   fw=fv=fx=(*f)(x);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for (iter=1;iter<=ITMAX;iter++) {  FILE *ficresilk;
     xm=0.5*(a+b);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  FILE *ficresprobmorprev;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE *fichtm, *fichtmcov; /* Html File */
     printf(".");fflush(stdout);  FILE *ficreseij;
 #ifdef DEBUG  char filerese[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  FILE *ficresstdeij;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char fileresstde[FILENAMELENGTH];
 #endif  FILE *ficrescveij;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char filerescve[FILENAMELENGTH];
       *xmin=x;  FILE  *ficresvij;
       return fx;  char fileresv[FILENAMELENGTH];
     }  FILE  *ficresvpl;
     ftemp=fu;  char fileresvpl[FILENAMELENGTH];
     if (fabs(e) > tol1) {  char title[MAXLINE];
       r=(x-w)*(fx-fv);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       p=(x-v)*q-(x-w)*r;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       q=2.0*(q-r);  char command[FILENAMELENGTH];
       if (q > 0.0) p = -p;  int  outcmd=0;
       q=fabs(q);  
       etemp=e;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char filelog[FILENAMELENGTH]; /* Log file */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerest[FILENAMELENGTH];
       else {  char fileregp[FILENAMELENGTH];
         d=p/q;  char popfile[FILENAMELENGTH];
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
           d=SIGN(tol1,xm-x);  
       }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     } else {  struct timezone tzp;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  extern int gettimeofday();
     }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  long time_value;
     fu=(*f)(u);  extern long time();
     if (fu <= fx) {  char strcurr[80], strfor[80];
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  char *endptr;
         SHFT(fv,fw,fx,fu)  long lval;
         } else {  double dval;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  #define NR_END 1
             v=w;  #define FREE_ARG char*
             w=u;  #define FTOL 1.0e-10
             fv=fw;  
             fw=fu;  #define NRANSI 
           } else if (fu <= fv || v == x || v == w) {  #define ITMAX 200 
             v=u;  
             fv=fu;  #define TOL 2.0e-4 
           }  
         }  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
   nrerror("Too many iterations in brent");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   *xmin=x;  
   return fx;  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /****************** mnbrak ***********************/  
   static double maxarg1,maxarg2;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
             double (*func)(double))  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   double ulim,u,r,q, dum;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double fu;  #define rint(a) floor(a+0.5)
    
   *fa=(*func)(*ax);  static double sqrarg;
   *fb=(*func)(*bx);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (*fb > *fa) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     SHFT(dum,*ax,*bx,dum)  int agegomp= AGEGOMP;
       SHFT(dum,*fb,*fa,dum)  
       }  int imx; 
   *cx=(*bx)+GOLD*(*bx-*ax);  int stepm=1;
   *fc=(*func)(*cx);  /* Stepm, step in month: minimum step interpolation*/
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  int estepm;
     q=(*bx-*cx)*(*fb-*fa);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int m,nb;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  long *num;
     if ((*bx-u)*(u-*cx) > 0.0) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       fu=(*func)(u);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double **pmmij, ***probs;
       fu=(*func)(u);  double *ageexmed,*agecens;
       if (fu < *fc) {  double dateintmean=0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  double *weight;
           }  int **s; /* Status */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double *agedc, **covar, idx;
       u=ulim;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       fu=(*func)(u);  double *lsurv, *lpop, *tpop;
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       fu=(*func)(u);  double ftolhess; /* Tolerance for computing hessian */
     }  
     SHFT(*ax,*bx,*cx,u)  /**************** split *************************/
       SHFT(*fa,*fb,*fc,fu)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       }  {
 }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 /*************** linmin ************************/    */ 
     char  *ss;                            /* pointer */
 int ncom;    int   l1, l2;                         /* length counters */
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double brent(double ax, double bx, double cx,      strcpy( name, path );               /* we got the fullname name because no directory */
                double (*f)(double), double tol, double *xmin);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double f1dim(double x);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      /* get current working directory */
               double *fc, double (*func)(double));      /*    extern  char* getcwd ( char *buf , int len);*/
   int j;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double xx,xmin,bx,ax;        return( GLOCK_ERROR_GETCWD );
   double fx,fb,fa;      }
        /* got dirc from getcwd*/
   ncom=n;      printf(" DIRC = %s \n",dirc);
   pcom=vector(1,n);    } else {                              /* strip direcotry from path */
   xicom=vector(1,n);      ss++;                               /* after this, the filename */
   nrfunc=func;      l2 = strlen( ss );                  /* length of filename */
   for (j=1;j<=n;j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     pcom[j]=p[j];      strcpy( name, ss );         /* save file name */
     xicom[j]=xi[j];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
   ax=0.0;      printf(" DIRC2 = %s \n",dirc);
   xx=1.0;    }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    /* We add a separator at the end of dirc if not exists */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    l1 = strlen( dirc );                  /* length of directory */
 #ifdef DEBUG    if( dirc[l1-1] != DIRSEPARATOR ){
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      dirc[l1] =  DIRSEPARATOR;
 #endif      dirc[l1+1] = 0; 
   for (j=1;j<=n;j++) {      printf(" DIRC3 = %s \n",dirc);
     xi[j] *= xmin;    }
     p[j] += xi[j];    ss = strrchr( name, '.' );            /* find last / */
   }    if (ss >0){
   free_vector(xicom,1,n);      ss++;
   free_vector(pcom,1,n);      strcpy(ext,ss);                     /* save extension */
 }      l1= strlen( name);
       l2= strlen(ss)+1;
 /*************** powell ************************/      strncpy( finame, name, l1-l2);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      finame[l1-l2]= 0;
             double (*func)(double []))    }
 {  
   void linmin(double p[], double xi[], int n, double *fret,    return( 0 );                          /* we're done */
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************************************/
   double *xits;  
   pt=vector(1,n);  void replace_back_to_slash(char *s, char*t)
   ptt=vector(1,n);  {
   xit=vector(1,n);    int i;
   xits=vector(1,n);    int lg=0;
   *fret=(*func)(p);    i=0;
   for (j=1;j<=n;j++) pt[j]=p[j];    lg=strlen(t);
   for (*iter=1;;++(*iter)) {    for(i=0; i<= lg; i++) {
     fp=(*fret);      (s[i] = t[i]);
     ibig=0;      if (t[i]== '\\') s[i]='/';
     del=0.0;    }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  int nbocc(char *s, char occ)
     printf("\n");  {
     for (i=1;i<=n;i++) {    int i,j=0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    int lg=20;
       fptt=(*fret);    i=0;
 #ifdef DEBUG    lg=strlen(s);
       printf("fret=%lf \n",*fret);    for(i=0; i<= lg; i++) {
 #endif    if  (s[i] == occ ) j++;
       printf("%d",i);fflush(stdout);    }
       linmin(p,xit,n,fret,func);    return j;
       if (fabs(fptt-(*fret)) > del) {  }
         del=fabs(fptt-(*fret));  
         ibig=i;  void cutv(char *u,char *v, char*t, char occ)
       }  {
 #ifdef DEBUG    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       printf("%d %.12e",i,(*fret));       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       for (j=1;j<=n;j++) {       gives u="abcedf" and v="ghi2j" */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    int i,lg,j,p=0;
         printf(" x(%d)=%.12e",j,xit[j]);    i=0;
       }    for(j=0; j<=strlen(t)-1; j++) {
       for(j=1;j<=n;j++)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         printf(" p=%.12e",p[j]);    }
       printf("\n");  
 #endif    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      (u[j] = t[j]);
 #ifdef DEBUG    }
       int k[2],l;       u[p]='\0';
       k[0]=1;  
       k[1]=-1;     for(j=0; j<= lg; j++) {
       printf("Max: %.12e",(*func)(p));      if (j>=(p+1))(v[j-p-1] = t[j]);
       for (j=1;j<=n;j++)    }
         printf(" %.12e",p[j]);  }
       printf("\n");  
       for(l=0;l<=1;l++) {  /********************** nrerror ********************/
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  void nrerror(char error_text[])
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    fprintf(stderr,"ERREUR ...\n");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    fprintf(stderr,"%s\n",error_text);
       }    exit(EXIT_FAILURE);
 #endif  }
   /*********************** vector *******************/
   double *vector(int nl, int nh)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    double *v;
       free_vector(ptt,1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       free_vector(pt,1,n);    if (!v) nrerror("allocation failure in vector");
       return;    return v-nl+NR_END;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /************************ free vector ******************/
       ptt[j]=2.0*p[j]-pt[j];  void free_vector(double*v, int nl, int nh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    free((FREE_ARG)(v+nl-NR_END));
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /************************ivector *******************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int *ivector(long nl,long nh)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    int *v;
         for (j=1;j<=n;j++) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           xi[j][ibig]=xi[j][n];    if (!v) nrerror("allocation failure in ivector");
           xi[j][n]=xit[j];    return v-nl+NR_END;
         }  }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /******************free ivector **************************/
         for(j=1;j<=n;j++)  void free_ivector(int *v, long nl, long nh)
           printf(" %.12e",xit[j]);  {
         printf("\n");    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
       }  
     }  /************************lvector *******************************/
   }  long *lvector(long nl,long nh)
 }  {
     long *v;
 /**** Prevalence limit ****************/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return v-nl+NR_END;
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(v+nl-NR_END));
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /******************* imatrix *******************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (ii=1;ii<=nlstate+ndeath;ii++)  { 
     for (j=1;j<=nlstate+ndeath;j++){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    int **m; 
     }    
     /* allocate pointers to rows */ 
    cov[1]=1.;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      if (!m) nrerror("allocation failure 1 in matrix()"); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m += NR_END; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m -= nrl; 
     newm=savm;    
     /* Covariates have to be included here again */    
      cov[2]=agefin;    /* allocate rows and set pointers to them */ 
      m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for (k=1; k<=cptcovn;k++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl] += NR_END; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m[nrl] -= ncl; 
       }    
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for (k=1; k<=cptcovprod;k++)    
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* return pointer to array of pointers to rows */ 
     return m; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  } 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /****************** free_imatrix *************************/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
     savm=oldm;        long nch,ncl,nrh,nrl; 
     oldm=newm;       /* free an int matrix allocated by imatrix() */ 
     maxmax=0.;  { 
     for(j=1;j<=nlstate;j++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       min=1.;    free((FREE_ARG) (m+nrl-NR_END)); 
       max=0.;  } 
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /******************* matrix *******************************/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  double **matrix(long nrl, long nrh, long ncl, long nch)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         min=FMIN(min,prlim[i][j]);    double **m;
       }  
       maxmin=max-min;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       maxmax=FMAX(maxmax,maxmin);    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     if(maxmax < ftolpl){    m -= nrl;
       return prlim;  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*************** transition probabilities ***************/  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    return m;
 {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double s1, s2;     */
   /*double t34;*/  }
   int i,j,j1, nc, ii, jj;  
   /*************************free matrix ************************/
     for(i=1; i<= nlstate; i++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for(j=1; j<i;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         /*s2 += param[i][j][nc]*cov[nc];*/    free((FREE_ARG)(m+nrl-NR_END));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /******************* ma3x *******************************/
       ps[i][j]=s2;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(j=i+1; j<=nlstate+ndeath;j++){    double ***m;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       ps[i][j]=s2;    m -= nrl;
     }  
   }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     /*ps[3][2]=1;*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
   for(i=1; i<= nlstate; i++){    m[nrl] -= ncl;
      s1=0;  
     for(j=1; j<i; j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       s1+=exp(ps[i][j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     ps[i][i]=1./(s1+1.);    m[nrl][ncl] += NR_END;
     for(j=1; j<i; j++)    m[nrl][ncl] -= nll;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (j=ncl+1; j<=nch; j++) 
     for(j=i+1; j<=nlstate+ndeath; j++)      m[nrl][j]=m[nrl][j-1]+nlay;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (i=nrl+1; i<=nrh; i++) {
   } /* end i */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        m[i][j]=m[i][j-1]+nlay;
     for(jj=1; jj<= nlstate+ndeath; jj++){    }
       ps[ii][jj]=0;    return m; 
       ps[ii][ii]=1;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   }    */
   }
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*************************free ma3x ************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      printf("%lf ",ps[ii][jj]);  {
    }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     printf("\n ");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     printf("\n ");printf("%lf ",cov[2]);*/  }
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*************** function subdirf ***********/
   goto end;*/  char *subdirf(char fileres[])
     return ps;  {
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /**************** Product of 2 matrices ******************/    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return tmpout;
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*************** function subdirf2 ***********/
   /* in, b, out are matrice of pointers which should have been initialized  char *subdirf2(char fileres[], char *preop)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    
   long i, j, k;    /* Caution optionfilefiname is hidden */
   for(i=nrl; i<= nrh; i++)    strcpy(tmpout,optionfilefiname);
     for(k=ncolol; k<=ncoloh; k++)    strcat(tmpout,"/");
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    strcat(tmpout,preop);
         out[i][k] +=in[i][j]*b[j][k];    strcat(tmpout,fileres);
     return tmpout;
   return out;  }
 }  
   /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
 /************* Higher Matrix Product ***************/  {
     
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    strcat(tmpout,"/");
      duration (i.e. until    strcat(tmpout,preop);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    strcat(tmpout,preop2);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    strcat(tmpout,fileres);
      (typically every 2 years instead of every month which is too big).    return tmpout;
      Model is determined by parameters x and covariates have to be  }
      included manually here.  
   /***************** f1dim *************************/
      */  extern int ncom; 
   extern double *pcom,*xicom;
   int i, j, d, h, k;  extern double (*nrfunc)(double []); 
   double **out, cov[NCOVMAX];   
   double **newm;  double f1dim(double x) 
   { 
   /* Hstepm could be zero and should return the unit matrix */    int j; 
   for (i=1;i<=nlstate+ndeath;i++)    double f;
     for (j=1;j<=nlstate+ndeath;j++){    double *xt; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);   
       po[i][j][0]=(i==j ? 1.0 : 0.0);    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    f=(*nrfunc)(xt); 
   for(h=1; h <=nhstepm; h++){    free_vector(xt,1,ncom); 
     for(d=1; d <=hstepm; d++){    return f; 
       newm=savm;  } 
       /* Covariates have to be included here again */  
       cov[1]=1.;  /*****************brent *************************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  { 
       for (k=1; k<=cptcovage;k++)    int iter; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double a,b,d,etemp;
       for (k=1; k<=cptcovprod;k++)    double fu,fv,fw,fx;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/   
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    a=(ax < cx ? ax : cx); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    b=(ax > cx ? ax : cx); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    x=w=v=bx; 
       savm=oldm;    fw=fv=fx=(*f)(x); 
       oldm=newm;    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     for(i=1; i<=nlstate+ndeath; i++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for(j=1;j<=nlstate+ndeath;j++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         po[i][j][h]=newm[i][j];      printf(".");fflush(stdout);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      fprintf(ficlog,".");fflush(ficlog);
          */  #ifdef DEBUG
       }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   } /* end h */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   return po;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 /*************** log-likelihood *************/        return fx; 
 double func( double *x)      } 
 {      ftemp=fu;
   int i, ii, j, k, mi, d, kk;      if (fabs(e) > tol1) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        r=(x-w)*(fx-fv); 
   double **out;        q=(x-v)*(fx-fw); 
   double sw; /* Sum of weights */        p=(x-v)*q-(x-w)*r; 
   double lli; /* Individual log likelihood */        q=2.0*(q-r); 
   long ipmx;        if (q > 0.0) p = -p; 
   /*extern weight */        q=fabs(q); 
   /* We are differentiating ll according to initial status */        etemp=e; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        e=d; 
   /*for(i=1;i<imx;i++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     printf(" %d\n",s[4][i]);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   */        else { 
   cov[1]=1.;          d=p/q; 
           u=x+d; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;          if (u-a < tol2 || b-u < tol2) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            d=SIGN(tol1,xm-x); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } 
     for(mi=1; mi<= wav[i]-1; mi++){      } else { 
       for (ii=1;ii<=nlstate+ndeath;ii++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } 
       for(d=0; d<dh[mi][i]; d++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         newm=savm;      fu=(*f)(u); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      if (fu <= fx) { 
         for (kk=1; kk<=cptcovage;kk++) {        if (u >= x) a=x; else b=x; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        SHFT(v,w,x,u) 
         }          SHFT(fv,fw,fx,fu) 
                  } else { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            if (u < x) a=u; else b=u; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            if (fu <= fw || w == x) { 
         savm=oldm;              v=w; 
         oldm=newm;              w=u; 
                      fv=fw; 
                      fw=fu; 
       } /* end mult */            } else if (fu <= fv || v == x || v == w) { 
                    v=u; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);              fv=fu; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/            } 
       ipmx +=1;          } 
       sw += weight[i];    } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    nrerror("Too many iterations in brent"); 
     } /* end of wave */    *xmin=x; 
   } /* end of individual */    return fx; 
   } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /****************** mnbrak ***********************/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 }              double (*func)(double)) 
   { 
     double ulim,u,r,q, dum;
 /*********** Maximum Likelihood Estimation ***************/    double fu; 
    
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    *fa=(*func)(*ax); 
 {    *fb=(*func)(*bx); 
   int i,j, iter;    if (*fb > *fa) { 
   double **xi,*delti;      SHFT(dum,*ax,*bx,dum) 
   double fret;        SHFT(dum,*fb,*fa,dum) 
   xi=matrix(1,npar,1,npar);        } 
   for (i=1;i<=npar;i++)    *cx=(*bx)+GOLD*(*bx-*ax); 
     for (j=1;j<=npar;j++)    *fc=(*func)(*cx); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    while (*fb > *fc) { 
   printf("Powell\n");      r=(*bx-*ax)*(*fb-*fc); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
 }        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 /**** Computes Hessian and covariance matrix ***/        fu=(*func)(u); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        if (fu < *fc) { 
 {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double  **a,**y,*x,pd;            SHFT(*fb,*fc,fu,(*func)(u)) 
   double **hess;            } 
   int i, j,jk;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   int *indx;        u=ulim; 
         fu=(*func)(u); 
   double hessii(double p[], double delta, int theta, double delti[]);      } else { 
   double hessij(double p[], double delti[], int i, int j);        u=(*cx)+GOLD*(*cx-*bx); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fu=(*func)(u); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      } 
       SHFT(*ax,*bx,*cx,u) 
   hess=matrix(1,npar,1,npar);        SHFT(*fa,*fb,*fc,fu) 
         } 
   printf("\nCalculation of the hessian matrix. Wait...\n");  } 
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /*************** linmin ************************/
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/  int ncom; 
     /*printf(" %lf ",hess[i][i]);*/  double *pcom,*xicom;
   }  double (*nrfunc)(double []); 
     
   for (i=1;i<=npar;i++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for (j=1;j<=npar;j++)  {  { 
       if (j>i) {    double brent(double ax, double bx, double cx, 
         printf(".%d%d",i,j);fflush(stdout);                 double (*f)(double), double tol, double *xmin); 
         hess[i][j]=hessij(p,delti,i,j);    double f1dim(double x); 
         hess[j][i]=hess[i][j];        void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         /*printf(" %lf ",hess[i][j]);*/                double *fc, double (*func)(double)); 
       }    int j; 
     }    double xx,xmin,bx,ax; 
   }    double fx,fb,fa;
   printf("\n");   
     ncom=n; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    pcom=vector(1,n); 
      xicom=vector(1,n); 
   a=matrix(1,npar,1,npar);    nrfunc=func; 
   y=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
   x=vector(1,npar);      pcom[j]=p[j]; 
   indx=ivector(1,npar);      xicom[j]=xi[j]; 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    ax=0.0; 
   ludcmp(a,npar,indx,&pd);    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for (j=1;j<=npar;j++) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for (i=1;i<=npar;i++) x[i]=0;  #ifdef DEBUG
     x[j]=1;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     lubksb(a,npar,indx,x);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=1;i<=npar;i++){  #endif
       matcov[i][j]=x[i];    for (j=1;j<=n;j++) { 
     }      xi[j] *= xmin; 
   }      p[j] += xi[j]; 
     } 
   printf("\n#Hessian matrix#\n");    free_vector(xicom,1,n); 
   for (i=1;i<=npar;i++) {    free_vector(pcom,1,n); 
     for (j=1;j<=npar;j++) {  } 
       printf("%.3e ",hess[i][j]);  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
     printf("\n");  {
   }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   /* Recompute Inverse */    sec_left = (time_sec) % (60*60*24);
   for (i=1;i<=npar;i++)    hours = (sec_left) / (60*60) ;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    sec_left = (sec_left) %(60*60);
   ludcmp(a,npar,indx,&pd);    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
   /*  printf("\n#Hessian matrix recomputed#\n");    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** powell ************************/
     lubksb(a,npar,indx,x);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (i=1;i<=npar;i++){              double (*func)(double [])) 
       y[i][j]=x[i];  { 
       printf("%.3e ",y[i][j]);    void linmin(double p[], double xi[], int n, double *fret, 
     }                double (*func)(double [])); 
     printf("\n");    int i,ibig,j; 
   }    double del,t,*pt,*ptt,*xit;
   */    double fp,fptt;
     double *xits;
   free_matrix(a,1,npar,1,npar);    int niterf, itmp;
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);    pt=vector(1,n); 
   free_ivector(indx,1,npar);    ptt=vector(1,n); 
   free_matrix(hess,1,npar,1,npar);    xit=vector(1,n); 
     xits=vector(1,n); 
     *fret=(*func)(p); 
 }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 /*************** hessian matrix ****************/      fp=(*fret); 
 double hessii( double x[], double delta, int theta, double delti[])      ibig=0; 
 {      del=0.0; 
   int i;      last_time=curr_time;
   int l=1, lmax=20;      (void) gettimeofday(&curr_time,&tzp);
   double k1,k2;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double p2[NPARMAX+1];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   double res;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;     for (i=1;i<=n;i++) {
   double fx;        printf(" %d %.12f",i, p[i]);
   int k=0,kmax=10;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double l1;        fprintf(ficrespow," %.12lf", p[i]);
       }
   fx=func(x);      printf("\n");
   for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficlog,"\n");
   for(l=0 ; l <=lmax; l++){      fprintf(ficrespow,"\n");fflush(ficrespow);
     l1=pow(10,l);      if(*iter <=3){
     delts=delt;        tm = *localtime(&curr_time.tv_sec);
     for(k=1 ; k <kmax; k=k+1){        strcpy(strcurr,asctime(&tm));
       delt = delta*(l1*k);  /*       asctime_r(&tm,strcurr); */
       p2[theta]=x[theta] +delt;        forecast_time=curr_time; 
       k1=func(p2)-fx;        itmp = strlen(strcurr);
       p2[theta]=x[theta]-delt;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       k2=func(p2)-fx;          strcurr[itmp-1]='\0';
       /*res= (k1-2.0*fx+k2)/delt/delt; */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
              for(niterf=10;niterf<=30;niterf+=10){
 #ifdef DEBUG          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          tmf = *localtime(&forecast_time.tv_sec);
 #endif  /*      asctime_r(&tmf,strfor); */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          strcpy(strfor,asctime(&tmf));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          itmp = strlen(strfor);
         k=kmax;          if(strfor[itmp-1]=='\n')
       }          strfor[itmp-1]='\0';
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         k=kmax; l=lmax*10.;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      }
         delts=delt;      for (i=1;i<=n;i++) { 
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
   }  #ifdef DEBUG
   delti[theta]=delts;        printf("fret=%lf \n",*fret);
   return res;        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 double hessij( double x[], double delti[], int thetai,int thetaj)        linmin(p,xit,n,fret,func); 
 {        if (fabs(fptt-(*fret)) > del) { 
   int i;          del=fabs(fptt-(*fret)); 
   int l=1, l1, lmax=20;          ibig=i; 
   double k1,k2,k3,k4,res,fx;        } 
   double p2[NPARMAX+1];  #ifdef DEBUG
   int k;        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   fx=func(x);        for (j=1;j<=n;j++) {
   for (k=1; k<=2; k++) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (i=1;i<=npar;i++) p2[i]=x[i];          printf(" x(%d)=%.12e",j,xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;        for(j=1;j<=n;j++) {
            printf(" p=%.12e",p[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog," p=%.12e",p[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k2=func(p2)-fx;        printf("\n");
          fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } 
     k3=func(p2)-fx;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;        int k[2],l;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        k[0]=1;
     k4=func(p2)-fx;        k[1]=-1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        printf("Max: %.12e",(*func)(p));
 #ifdef DEBUG        fprintf(ficlog,"Max: %.12e",(*func)(p));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for (j=1;j<=n;j++) {
 #endif          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   return res;        }
 }        printf("\n");
         fprintf(ficlog,"\n");
 /************** Inverse of matrix **************/        for(l=0;l<=1;l++) {
 void ludcmp(double **a, int n, int *indx, double *d)          for (j=1;j<=n;j++) {
 {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int i,imax,j,k;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double big,dum,sum,temp;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double *vv;          }
            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   vv=vector(1,n);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   *d=1.0;        }
   for (i=1;i<=n;i++) {  #endif
     big=0.0;  
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;        free_vector(xit,1,n); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        free_vector(xits,1,n); 
     vv[i]=1.0/big;        free_vector(ptt,1,n); 
   }        free_vector(pt,1,n); 
   for (j=1;j<=n;j++) {        return; 
     for (i=1;i<j;i++) {      } 
       sum=a[i][j];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for (j=1;j<=n;j++) { 
       a[i][j]=sum;        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
     big=0.0;        pt[j]=p[j]; 
     for (i=j;i<=n;i++) {      } 
       sum=a[i][j];      fptt=(*func)(ptt); 
       for (k=1;k<j;k++)      if (fptt < fp) { 
         sum -= a[i][k]*a[k][j];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       a[i][j]=sum;        if (t < 0.0) { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {          linmin(p,xit,n,fret,func); 
         big=dum;          for (j=1;j<=n;j++) { 
         imax=i;            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
     }          }
     if (j != imax) {  #ifdef DEBUG
       for (k=1;k<=n;k++) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         dum=a[imax][k];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         a[imax][k]=a[j][k];          for(j=1;j<=n;j++){
         a[j][k]=dum;            printf(" %.12e",xit[j]);
       }            fprintf(ficlog," %.12e",xit[j]);
       *d = -(*d);          }
       vv[imax]=vv[j];          printf("\n");
     }          fprintf(ficlog,"\n");
     indx[j]=imax;  #endif
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {      } 
       dum=1.0/(a[j][j]);    } 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  } 
     }  
   }  /**** Prevalence limit (stable or period prevalence)  ****************/
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 }  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 void lubksb(double **a, int n, int *indx, double b[])       matrix by transitions matrix until convergence is reached */
 {  
   int i,ii=0,ip,j;    int i, ii,j,k;
   double sum;    double min, max, maxmin, maxmax,sumnew=0.;
      double **matprod2();
   for (i=1;i<=n;i++) {    double **out, cov[NCOVMAX], **pmij();
     ip=indx[i];    double **newm;
     sum=b[ip];    double agefin, delaymax=50 ; /* Max number of years to converge */
     b[ip]=b[i];  
     if (ii)    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for (j=1;j<=nlstate+ndeath;j++){
     else if (sum) ii=i;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum;      }
   }  
   for (i=n;i>=1;i--) {     cov[1]=1.;
     sum=b[i];   
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     b[i]=sum/a[i][i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
 }      /* Covariates have to be included here again */
        cov[2]=agefin;
 /************ Frequencies ********************/    
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for (k=1; k<=cptcovn;k++) {
 {  /* Some frequencies */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double *pp;        for (k=1; k<=cptcovprod;k++)
   double pos, k2, dateintsum=0,k2cpt=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   pp=vector(1,nlstate);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);      savm=oldm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {      oldm=newm;
     printf("Problem with prevalence resultfile: %s\n", fileresp);      maxmax=0.;
     exit(0);      for(j=1;j<=nlstate;j++){
   }        min=1.;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        max=0.;
   j1=0;        for(i=1; i<=nlstate; i++) {
            sumnew=0;
   j=cptcoveff;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          prlim[i][j]= newm[i][j]/(1-sumnew);
            max=FMAX(max,prlim[i][j]);
   for(k1=1; k1<=j;k1++){          min=FMIN(min,prlim[i][j]);
     for(i1=1; i1<=ncodemax[k1];i1++){        }
       j1++;        maxmin=max-min;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        maxmax=FMAX(maxmax,maxmin);
         scanf("%d", i);*/      }
       for (i=-1; i<=nlstate+ndeath; i++)        if(maxmax < ftolpl){
         for (jk=-1; jk<=nlstate+ndeath; jk++)          return prlim;
           for(m=agemin; m <= agemax+3; m++)      }
             freq[i][jk][m]=0;    }
        }
       dateintsum=0;  
       k2cpt=0;  /*************** transition probabilities ***************/ 
       for (i=1; i<=imx; i++) {  
         bool=1;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    double s1, s2;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /*double t34;*/
               bool=0;    int i,j,j1, nc, ii, jj;
         }  
         if (bool==1) {      for(i=1; i<= nlstate; i++){
           for(m=firstpass; m<=lastpass; m++){        for(j=1; j<i;j++){
             k2=anint[m][i]+(mint[m][i]/12.);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            /*s2 += param[i][j][nc]*cov[nc];*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
               if (m<lastpass) {          }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ps[i][j]=s2;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
               }        }
                      for(j=i+1; j<=nlstate+ndeath;j++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                 dateintsum=dateintsum+k2;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                 k2cpt++;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
               }          }
             }          ps[i][j]=s2;
           }        }
         }      }
       }      /*ps[3][2]=1;*/
              
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(i=1; i<= nlstate; i++){
         s1=0;
       if  (cptcovn>0) {        for(j=1; j<i; j++)
         fprintf(ficresp, "\n#********** Variable ");          s1+=exp(ps[i][j]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=i+1; j<=nlstate+ndeath; j++)
         fprintf(ficresp, "**********\n#");          s1+=exp(ps[i][j]);
       }        ps[i][i]=1./(s1+1.);
       for(i=1; i<=nlstate;i++)        for(j=1; j<i; j++)
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       fprintf(ficresp, "\n");        for(j=i+1; j<=nlstate+ndeath; j++)
                ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         if(i==(int)agemax+3)      } /* end i */
           printf("Total");      
         else      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           printf("Age %d", i);        for(jj=1; jj<= nlstate+ndeath; jj++){
         for(jk=1; jk <=nlstate ; jk++){          ps[ii][jj]=0;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ps[ii][ii]=1;
             pp[jk] += freq[jk][m][i];        }
         }      }
         for(jk=1; jk <=nlstate ; jk++){      
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           if(pp[jk]>=1.e-10)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*         printf("ddd %lf ",ps[ii][jj]); */
           else  /*       } */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*       printf("\n "); */
         }  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
         for(jk=1; jk <=nlstate ; jk++){         /*
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
             pp[jk] += freq[jk][m][i];        goto end;*/
         }      return ps;
   }
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  /**************** Product of 2 matrices ******************/
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  {
           else    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           if( i <= (int) agemax){    /* in, b, out are matrice of pointers which should have been initialized 
             if(pos>=1.e-5){       before: only the contents of out is modified. The function returns
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);       a pointer to pointers identical to out */
               probs[i][jk][j1]= pp[jk]/pos;    long i, j, k;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    for(i=nrl; i<= nrh; i++)
             }      for(k=ncolol; k<=ncoloh; k++)
             else        for(j=ncl,out[i][k]=0.; j<=nch; j++)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          out[i][k] +=in[i][j]*b[j][k];
           }  
         }    return out;
          }
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  /************* Higher Matrix Product ***************/
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         printf("\n");  {
       }    /* Computes the transition matrix starting at age 'age' over 
     }       'nhstepm*hstepm*stepm' months (i.e. until
   }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   dateintmean=dateintsum/k2cpt;       nhstepm*hstepm matrices. 
         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   fclose(ficresp);       (typically every 2 years instead of every month which is too big 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       for the memory).
   free_vector(pp,1,nlstate);       Model is determined by parameters x and covariates have to be 
         included manually here. 
   /* End of Freq */  
 }       */
   
 /************ Prevalence ********************/    int i, j, d, h, k;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    double **out, cov[NCOVMAX];
 {  /* Some frequencies */    double **newm;
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /* Hstepm could be zero and should return the unit matrix */
   double ***freq; /* Frequencies */    for (i=1;i<=nlstate+ndeath;i++)
   double *pp;      for (j=1;j<=nlstate+ndeath;j++){
   double pos, k2;        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);      }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for(d=1; d <=hstepm; d++){
   j1=0;        newm=savm;
          /* Covariates have to be included here again */
   j=cptcoveff;        cov[1]=1.;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovage;k++)
     for(i1=1; i1<=ncodemax[k1];i1++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       j1++;        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
             freq[i][jk][m]=0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for (i=1; i<=imx; i++) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         bool=1;        savm=oldm;
         if  (cptcovn>0) {        oldm=newm;
           for (z1=1; z1<=cptcoveff; z1++)      }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for(i=1; i<=nlstate+ndeath; i++)
               bool=0;        for(j=1;j<=nlstate+ndeath;j++) {
         }          po[i][j][h]=newm[i][j];
         if (bool==1) {          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           for(m=firstpass; m<=lastpass; m++){        }
             k2=anint[m][i]+(mint[m][i]/12.);      /*printf("h=%d ",h);*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    } /* end h */
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /*     printf("\n H=%d \n",h); */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    return po;
               if (m<lastpass)  }
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
               else  
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*************** log-likelihood *************/
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  double func( double *x)
             }  {
           }    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       }    double **out;
         for(i=(int)agemin; i <= (int)agemax+3; i++){    double sw; /* Sum of weights */
           for(jk=1; jk <=nlstate ; jk++){    double lli; /* Individual log likelihood */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    int s1, s2;
               pp[jk] += freq[jk][m][i];    double bbh, survp;
           }    long ipmx;
           for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
             for(m=-1, pos=0; m <=0 ; m++)    /* We are differentiating ll according to initial status */
             pos += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
              printf(" %d\n",s[4][i]);
          for(jk=1; jk <=nlstate ; jk++){    */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    cov[1]=1.;
              pp[jk] += freq[jk][m][i];  
          }    for(k=1; k<=nlstate; k++) ll[k]=0.;
            
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for(jk=1; jk <=nlstate ; jk++){                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            if( i <= (int) agemax){        for(mi=1; mi<= wav[i]-1; mi++){
              if(pos>=1.e-5){          for (ii=1;ii<=nlstate+ndeath;ii++)
                probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
              }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          }            }
                    for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(pp,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
 }  /* End of Freq */            oldm=newm;
           } /* end mult */
 /************* Waves Concatenation ***************/        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          /* But now since version 0.9 we anticipate for bias at large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * (in months) between two waves is not a multiple of stepm, we rounded to 
      Death is a valid wave (if date is known).           * the nearest (and in case of equal distance, to the lowest) interval but now
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * we keep into memory the bias bh[mi][i] and also the previous matrix product
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      and mw[mi+1][i]. dh depends on stepm.           * probability in order to take into account the bias as a fraction of the way
      */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   int i, mi, m;           * For stepm=1 the results are the same as for previous versions of Imach.
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * For stepm > 1 the results are less biased than in previous versions. 
      double sum=0., jmean=0.;*/           */
           s1=s[mw[mi][i]][i];
   int j, k=0,jk, ju, jl;          s2=s[mw[mi+1][i]][i];
   double sum=0.;          bbh=(double)bh[mi][i]/(double)stepm; 
   jmin=1e+5;          /* bias bh is positive if real duration
   jmax=-1;           * is higher than the multiple of stepm and negative otherwise.
   jmean=0.;           */
   for(i=1; i<=imx; i++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     mi=0;          if( s2 > nlstate){ 
     m=firstpass;            /* i.e. if s2 is a death state and if the date of death is known 
     while(s[m][i] <= nlstate){               then the contribution to the likelihood is the probability to 
       if(s[m][i]>=1)               die between last step unit time and current  step unit time, 
         mw[++mi][i]=m;               which is also equal to probability to die before dh 
       if(m >=lastpass)               minus probability to die before dh-stepm . 
         break;               In version up to 0.92 likelihood was computed
       else          as if date of death was unknown. Death was treated as any other
         m++;          health state: the date of the interview describes the actual state
     }/* end while */          and not the date of a change in health state. The former idea was
     if (s[m][i] > nlstate){          to consider that at each interview the state was recorded
       mi++;     /* Death is another wave */          (healthy, disable or death) and IMaCh was corrected; but when we
       /* if(mi==0)  never been interviewed correctly before death */          introduced the exact date of death then we should have modified
          /* Only death is a correct wave */          the contribution of an exact death to the likelihood. This new
       mw[mi][i]=m;          contribution is smaller and very dependent of the step unit
     }          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
     wav[i]=mi;          interview up to one month before death multiplied by the
     if(mi==0)          probability to die within a month. Thanks to Chris
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          Jackson for correcting this bug.  Former versions increased
   }          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
   for(i=1; i<=imx; i++){          lower mortality.
     for(mi=1; mi<wav[i];mi++){            */
       if (stepm <=0)            lli=log(out[s1][s2] - savm[s1][s2]);
         dh[mi][i]=1;  
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {          } else if  (s2==-2) {
           if (agedc[i] < 2*AGESUP) {            for (j=1,survp=0. ; j<=nlstate; j++) 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           if(j==0) j=1;  /* Survives at least one month after exam */            /*survp += out[s1][j]; */
           k=k+1;            lli= log(survp);
           if (j >= jmax) jmax=j;          }
           if (j <= jmin) jmin=j;          
           sum=sum+j;          else if  (s2==-4) { 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            for (j=3,survp=0. ; j<=nlstate; j++)  
           }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
         else{          } 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;          else if  (s2==-5) { 
           if (j >= jmax) jmax=j;            for (j=1,survp=0. ; j<=2; j++)  
           else if (j <= jmin)jmin=j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            lli= log(survp); 
           sum=sum+j;          } 
         }          
         jk= j/stepm;          else{
         jl= j -jk*stepm;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         ju= j -(jk+1)*stepm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if(jl <= -ju)          } 
           dh[mi][i]=jk;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         else          /*if(lli ==000.0)*/
           dh[mi][i]=jk+1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if(dh[mi][i]==0)          ipmx +=1;
           dh[mi][i]=1; /* At least one step */          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }      } /* end of individual */
   jmean=sum/k;    }  else if(mle==2){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Tricode ****************************/        for(mi=1; mi<= wav[i]-1; mi++){
 void tricode(int *Tvar, int **nbcode, int imx)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int Ndum[20],ij=1, k, j, i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   cptcoveff=0;            }
            for(d=0; d<=dh[mi][i]; d++){
   for (k=0; k<19; k++) Ndum[k]=0;            newm=savm;
   for (k=1; k<=7; k++) ncodemax[k]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1; i<=imx; i++) {            }
       ij=(int)(covar[Tvar[j]][i]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       Ndum[ij]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            savm=oldm;
       if (ij > cptcode) cptcode=ij;            oldm=newm;
     }          } /* end mult */
         
     for (i=0; i<=cptcode; i++) {          s1=s[mw[mi][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     ij=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
           sw += weight[i];
     for (i=1; i<=ncodemax[j]; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=0; k<=19; k++) {        } /* end of wave */
         if (Ndum[k] != 0) {      } /* end of individual */
           nbcode[Tvar[j]][ij]=k;    }  else if(mle==3){  /* exponential inter-extrapolation */
                for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           ij++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         if (ij > ncodemax[j]) break;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }              for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }                savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  for (k=0; k<19; k++) Ndum[k]=0;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
  for (i=1; i<=ncovmodel-2; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=Tvar[i];            for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  ij=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (i=1; i<=10; i++) {            savm=oldm;
    if((Ndum[i]!=0) && (i<=ncovcol)){            oldm=newm;
      Tvaraff[ij]=i;          } /* end mult */
      ij++;        
    }          s1=s[mw[mi][i]][i];
  }          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
     cptcoveff=ij-1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 }          ipmx +=1;
           sw += weight[i];
 /*********** Health Expectancies ****************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Health expectancies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        for(mi=1; mi<= wav[i]-1; mi++){
   double age, agelim, hf;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***p3mat,***varhe;            for (j=1;j<=nlstate+ndeath;j++){
   double **dnewm,**doldm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          for(d=0; d<dh[mi][i]; d++){
   int theta;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            for (kk=1; kk<=cptcovage;kk++) {
   xp=vector(1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   dnewm=matrix(1,nlstate*2,1,npar);            }
   doldm=matrix(1,nlstate*2,1,nlstate*2);          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficreseij,"# Health expectancies\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficreseij,"# Age");            savm=oldm;
   for(i=1; i<=nlstate;i++)            oldm=newm;
     for(j=1; j<=nlstate;j++)          } /* end mult */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        
   fprintf(ficreseij,"\n");          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   if(estepm < stepm){          if( s2 > nlstate){ 
     printf ("Problem %d lower than %d\n",estepm, stepm);            lli=log(out[s1][s2] - savm[s1][s2]);
   }          }else{
   else  hstepm=estepm;              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* We compute the life expectancy from trapezoids spaced every estepm months          }
    * This is mainly to measure the difference between two models: for example          ipmx +=1;
    * if stepm=24 months pijx are given only every 2 years and by summing them          sw += weight[i];
    * we are calculating an estimate of the Life Expectancy assuming a linear          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * progression inbetween and thus overestimating or underestimating according  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * to the curvature of the survival function. If, for the same date, we        } /* end of wave */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      } /* end of individual */
    * to compare the new estimate of Life expectancy with the same linear    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
    * hypothesis. A more precise result, taking into account a more precise      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * curvature will be obtained if estepm is as small as stepm. */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   /* For example we decided to compute the life expectancy with the smallest unit */          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            for (j=1;j<=nlstate+ndeath;j++){
      nhstepm is the number of hstepm from age to agelim              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      nstepm is the number of stepm from age to agelin.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      Look at hpijx to understand the reason of that which relies in memory size            }
      and note for a fixed period like estepm months */          for(d=0; d<dh[mi][i]; d++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            newm=savm;
      survival function given by stepm (the optimization length). Unfortunately it            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      means that if the survival funtion is printed only each two years of age and if            for (kk=1; kk<=cptcovage;kk++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      results. So we changed our mind and took the option of the best precision.            }
   */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   agelim=AGESUP;            savm=oldm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            oldm=newm;
     /* nhstepm age range expressed in number of stepm */          } /* end mult */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          s1=s[mw[mi][i]][i];
     /* if (stepm >= YEARM) hstepm=1;*/          s2=s[mw[mi+1][i]][i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ipmx +=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          sw += weight[i];
     gp=matrix(0,nhstepm,1,nlstate*2);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gm=matrix(0,nhstepm,1,nlstate*2);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      } /* end of individual */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    } /* End of if */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    return -l;
   }
     /* Computing Variances of health expectancies */  
   /*************** log-likelihood *************/
      for(theta=1; theta <=npar; theta++){  double funcone( double *x)
       for(i=1; i<=npar; i++){  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* Same as likeli but slower because of a lot of printf and if */
       }    int i, ii, j, k, mi, d, kk;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
       cptj=0;    double lli; /* Individual log likelihood */
       for(j=1; j<= nlstate; j++){    double llt;
         for(i=1; i<=nlstate; i++){    int s1, s2;
           cptj=cptj+1;    double bbh, survp;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    /*extern weight */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /* We are differentiating ll according to initial status */
           }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
          */
          cov[1]=1.;
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       cptj=0;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<= nlstate; j++){      for(mi=1; mi<= wav[i]-1; mi++){
         for(i=1;i<=nlstate;i++){        for (ii=1;ii<=nlstate+ndeath;ii++)
           cptj=cptj+1;          for (j=1;j<=nlstate+ndeath;j++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }          }
         }        for(d=0; d<dh[mi][i]; d++){
       }          newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate*2; j++)          }
         for(h=0; h<=nhstepm-1; h++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }          savm=oldm;
           oldm=newm;
      }        } /* end mult */
            
 /* End theta */        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
      for(h=0; h<=nhstepm-1; h++)         * is higher than the multiple of stepm and negative otherwise.
       for(j=1; j<=nlstate*2;j++)         */
         for(theta=1; theta <=npar; theta++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         trgradg[h][j][theta]=gradg[h][theta][j];          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
      for(i=1;i<=nlstate*2;i++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1;j<=nlstate*2;j++)          lli= log(survp);
         varhe[i][j][(int)age] =0.;        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(h=0;h<=nhstepm-1;h++){        } else if(mle==2){
       for(k=0;k<=nhstepm-1;k++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        } else if(mle==3){  /* exponential inter-extrapolation */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1;i<=nlstate*2;i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           for(j=1;j<=nlstate*2;j++)          lli=log(out[s1][s2]); /* Original formula */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       }          lli=log(out[s1][s2]); /* Original formula */
     }        } /* End of if */
         ipmx +=1;
              sw += weight[i];
     /* Computing expectancies */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i=1; i<=nlstate;i++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(j=1; j<=nlstate;j++)        if(globpr){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;   %11.6f %11.6f %11.6f ", \
                            num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     fprintf(ficreseij,"%3.0f",age );          }
     cptj=0;          fprintf(ficresilk," %10.6f\n", -llt);
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){      } /* end of wave */
         cptj++;    } /* end of individual */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     fprintf(ficreseij,"\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        if(globpr==0){ /* First time we count the contributions and weights */
     free_matrix(gm,0,nhstepm,1,nlstate*2);      gipmx=ipmx;
     free_matrix(gp,0,nhstepm,1,nlstate*2);      gsw=sw;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    return -l;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   }  
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);  /*************** function likelione ***********/
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  {
 }    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
 /************ Variance ******************/       to check the exact contribution to the likelihood.
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)       Plotting could be done.
 {     */
   /* Variance of health expectancies */    int k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **dnewm,**doldm;      strcpy(fileresilk,"ilk"); 
   int i, j, nhstepm, hstepm, h, nstepm ;      strcat(fileresilk,fileres);
   int k, cptcode;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double *xp;        printf("Problem with resultfile: %s\n", fileresilk);
   double **gp, **gm;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double ***gradg, ***trgradg;      }
   double ***p3mat;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double age,agelim, hf;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int theta;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
    fprintf(ficresvij,"# Covariances of life expectancies\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficresvij,"# Age");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    *fretone=(*funcone)(p);
   fprintf(ficresvij,"\n");    if(*globpri !=0){
       fclose(ficresilk);
   xp=vector(1,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   dnewm=matrix(1,nlstate,1,npar);      fflush(fichtm); 
   doldm=matrix(1,nlstate,1,nlstate);    } 
      return;
   if(estepm < stepm){  }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  
   else  hstepm=estepm;    /*********** Maximum Likelihood Estimation ***************/
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      nhstepm is the number of hstepm from age to agelim  {
      nstepm is the number of stepm from age to agelin.    int i,j, iter;
      Look at hpijx to understand the reason of that which relies in memory size    double **xi;
      and note for a fixed period like k years */    double fret;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double fretone; /* Only one call to likelihood */
      survival function given by stepm (the optimization length). Unfortunately it    /*  char filerespow[FILENAMELENGTH];*/
      means that if the survival funtion is printed only each two years of age and if    xi=matrix(1,npar,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=npar;i++)
      results. So we changed our mind and took the option of the best precision.      for (j=1;j<=npar;j++)
   */        xi[i][j]=(i==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   agelim = AGESUP;    strcpy(filerespow,"pow"); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcat(filerespow,fileres);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      printf("Problem with resultfile: %s\n", filerespow);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     gm=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     for(theta=1; theta <=npar; theta++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(ficrespow,"\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    powell(p,xi,npar,ftol,&iter,&fret,func);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
       if (popbased==1) {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }  
    }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  /**** Computes Hessian and covariance matrix ***/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  {
         }    double  **a,**y,*x,pd;
       }    double **hess;
        int i, j,jk;
       for(i=1; i<=npar; i++) /* Computes gradient */    int *indx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      void lubksb(double **a, int npar, int *indx, double b[]) ;
       if (popbased==1) {    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(i=1; i<=nlstate;i++)    double gompertz(double p[]);
           prlim[i][i]=probs[(int)age][i][ij];    hess=matrix(1,npar,1,npar);
       }  
     printf("\nCalculation of the hessian matrix. Wait...\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      printf("%d",i);fflush(stdout);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      fprintf(ficlog,"%d",i);fflush(ficlog);
         }     
       }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
       for(j=1; j<= nlstate; j++)      /*  printf(" %f ",p[i]);
         for(h=0; h<=nhstepm; h++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    
     } /* End theta */    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     for(h=0; h<=nhstepm; h++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(j=1; j<=nlstate;j++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
         for(theta=1; theta <=npar; theta++)          
           trgradg[h][j][theta]=gradg[h][theta][j];          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
     for(i=1;i<=nlstate;i++)      }
       for(j=1;j<=nlstate;j++)    }
         vareij[i][j][(int)age] =0.;    printf("\n");
     fprintf(ficlog,"\n");
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    
         for(i=1;i<=nlstate;i++)    a=matrix(1,npar,1,npar);
           for(j=1;j<=nlstate;j++)    y=matrix(1,npar,1,npar);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    x=vector(1,npar);
       }    indx=ivector(1,npar);
     }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     fprintf(ficresvij,"%.0f ",age );    ludcmp(a,npar,indx,&pd);
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    for (j=1;j<=npar;j++) {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
     fprintf(ficresvij,"\n");      lubksb(a,npar,indx,x);
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=1;i<=npar;i++){ 
     free_matrix(gm,0,nhstepm,1,nlstate);        matcov[i][j]=x[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    printf("\n#Hessian matrix#\n");
      fprintf(ficlog,"\n#Hessian matrix#\n");
   free_vector(xp,1,npar);    for (i=1;i<=npar;i++) { 
   free_matrix(doldm,1,nlstate,1,npar);      for (j=1;j<=npar;j++) { 
   free_matrix(dnewm,1,nlstate,1,nlstate);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
 }      }
       printf("\n");
 /************ Variance of prevlim ******************/      fprintf(ficlog,"\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    }
 {  
   /* Variance of prevalence limit */    /* Recompute Inverse */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (i=1;i<=npar;i++)
   double **newm;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double **dnewm,**doldm;    ludcmp(a,npar,indx,&pd);
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    /*  printf("\n#Hessian matrix recomputed#\n");
   double *xp;  
   double *gp, *gm;    for (j=1;j<=npar;j++) {
   double **gradg, **trgradg;      for (i=1;i<=npar;i++) x[i]=0;
   double age,agelim;      x[j]=1;
   int theta;      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        y[i][j]=x[i];
   fprintf(ficresvpl,"# Age");        printf("%.3e ",y[i][j]);
   for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
       fprintf(ficresvpl," %1d-%1d",i,i);      }
   fprintf(ficresvpl,"\n");      printf("\n");
       fprintf(ficlog,"\n");
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);    */
   doldm=matrix(1,nlstate,1,nlstate);  
      free_matrix(a,1,npar,1,npar);
   hstepm=1*YEARM; /* Every year of age */    free_matrix(y,1,npar,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    free_vector(x,1,npar);
   agelim = AGESUP;    free_ivector(indx,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    free_matrix(hess,1,npar,1,npar);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  }
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);  /*************** hessian matrix ****************/
     gm=vector(1,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
     for(theta=1; theta <=npar; theta++){    int i;
       for(i=1; i<=npar; i++){ /* Computes gradient */    int l=1, lmax=20;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double k1,k2;
       }    double p2[NPARMAX+1];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double res;
       for(i=1;i<=nlstate;i++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         gp[i] = prlim[i][i];    double fx;
        int k=0,kmax=10;
       for(i=1; i<=npar; i++) /* Computes gradient */    double l1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fx=func(x);
       for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
         gm[i] = prlim[i][i];    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
       for(i=1;i<=nlstate;i++)      delts=delt;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for(k=1 ; k <kmax; k=k+1){
     } /* End theta */        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
     trgradg =matrix(1,nlstate,1,npar);        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
     for(j=1; j<=nlstate;j++)        k2=func(p2)-fx;
       for(theta=1; theta <=npar; theta++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
         trgradg[j][theta]=gradg[theta][j];        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
     for(i=1;i<=nlstate;i++)  #ifdef DEBUG
       varpl[i][(int)age] =0.;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  #endif
     for(i=1;i<=nlstate;i++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          k=kmax; l=lmax*10.;
     fprintf(ficresvpl,"\n");        }
     free_vector(gp,1,nlstate);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_vector(gm,1,nlstate);          delts=delt;
     free_matrix(gradg,1,npar,1,nlstate);        }
     free_matrix(trgradg,1,nlstate,1,npar);      }
   } /* End age */    }
     delti[theta]=delts;
   free_vector(xp,1,npar);    return res; 
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);  }
   
 }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
 /************ Variance of one-step probabilities  ******************/    int i;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    int l=1, l1, lmax=20;
 {    double k1,k2,k3,k4,res,fx;
   int i, j, i1, k1, j1, z1;    double p2[NPARMAX+1];
   int k=0, cptcode;    int k;
   double **dnewm,**doldm;  
   double *xp;    fx=func(x);
   double *gp, *gm;    for (k=1; k<=2; k++) {
   double **gradg, **trgradg;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double age,agelim, cov[NCOVMAX];      p2[thetai]=x[thetai]+delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char fileresprob[FILENAMELENGTH];      k1=func(p2)-fx;
     
   strcpy(fileresprob,"prob");      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcat(fileresprob,fileres);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      k2=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprob);    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k3=func(p2)-fx;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    
   fprintf(ficresprob,"# Age");      p2[thetai]=x[thetai]-delti[thetai]/k;
   for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(j=1; j<=(nlstate+ndeath);j++)      k4=func(p2)-fx;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresprob,"\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
     }
   xp=vector(1,npar);    return res;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
    /************** Inverse of matrix **************/
   cov[1]=1;  void ludcmp(double **a, int n, int *indx, double *d) 
   j=cptcoveff;  { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    int i,imax,j,k; 
   j1=0;    double big,dum,sum,temp; 
   for(k1=1; k1<=1;k1++){    double *vv; 
     for(i1=1; i1<=ncodemax[k1];i1++){   
     j1++;    vv=vector(1,n); 
     *d=1.0; 
     if  (cptcovn>0) {    for (i=1;i<=n;i++) { 
       fprintf(ficresprob, "\n#********** Variable ");      big=0.0; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (j=1;j<=n;j++) 
       fprintf(ficresprob, "**********\n#");        if ((temp=fabs(a[i][j])) > big) big=temp; 
     }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
          vv[i]=1.0/big; 
       for (age=bage; age<=fage; age ++){    } 
         cov[2]=age;    for (j=1;j<=n;j++) { 
         for (k=1; k<=cptcovn;k++) {      for (i=1;i<j;i++) { 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        sum=a[i][j]; 
                  for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         }        a[i][j]=sum; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } 
         for (k=1; k<=cptcovprod;k++)      big=0.0; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for (i=j;i<=n;i++) { 
                sum=a[i][j]; 
         gradg=matrix(1,npar,1,9);        for (k=1;k<j;k++) 
         trgradg=matrix(1,9,1,npar);          sum -= a[i][k]*a[k][j]; 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        a[i][j]=sum; 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        if ( (dum=vv[i]*fabs(sum)) >= big) { 
              big=dum; 
         for(theta=1; theta <=npar; theta++){          imax=i; 
           for(i=1; i<=npar; i++)        } 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      } 
                if (j != imax) { 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        for (k=1;k<=n;k++) { 
                    dum=a[imax][k]; 
           k=0;          a[imax][k]=a[j][k]; 
           for(i=1; i<= (nlstate+ndeath); i++){          a[j][k]=dum; 
             for(j=1; j<=(nlstate+ndeath);j++){        } 
               k=k+1;        *d = -(*d); 
               gp[k]=pmmij[i][j];        vv[imax]=vv[j]; 
             }      } 
           }      indx[j]=imax; 
                if (a[j][j] == 0.0) a[j][j]=TINY; 
           for(i=1; i<=npar; i++)      if (j != n) { 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        dum=1.0/(a[j][j]); 
            for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      } 
           k=0;    } 
           for(i=1; i<=(nlstate+ndeath); i++){    free_vector(vv,1,n);  /* Doesn't work */
             for(j=1; j<=(nlstate+ndeath);j++){  ;
               k=k+1;  } 
               gm[k]=pmmij[i][j];  
             }  void lubksb(double **a, int n, int *indx, double b[]) 
           }  { 
          int i,ii=0,ip,j; 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    double sum; 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];     
         }    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      sum=b[ip]; 
           for(theta=1; theta <=npar; theta++)      b[ip]=b[i]; 
             trgradg[j][theta]=gradg[theta][j];      if (ii) 
                for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      else if (sum) ii=i; 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      b[i]=sum; 
            } 
         pmij(pmmij,cov,ncovmodel,x,nlstate);    for (i=n;i>=1;i--) { 
              sum=b[i]; 
         k=0;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         for(i=1; i<=(nlstate+ndeath); i++){      b[i]=sum/a[i][i]; 
           for(j=1; j<=(nlstate+ndeath);j++){    } 
             k=k+1;  } 
             gm[k]=pmmij[i][j];  
           }  void pstamp(FILE *fichier)
         }  {
          fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
      /*printf("\n%d ",(int)age);  }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /************ Frequencies ********************/
      }*/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
         fprintf(ficresprob,"\n%d ",(int)age);    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    int first;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    double ***freq; /* Frequencies */
      double *pp, **prop;
       }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }    char fileresp[FILENAMELENGTH];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    pp=vector(1,nlstate);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    strcpy(fileresp,"p");
   }    strcat(fileresp,fileres);
   free_vector(xp,1,npar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   fclose(ficresprob);      printf("Problem with prevalence resultfile: %s\n", fileresp);
        fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 }      exit(0);
     }
 /******************* Printing html file ***********/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    j1=0;
  int lastpass, int stepm, int weightopt, char model[],\    
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    j=cptcoveff;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  char version[], int popforecast, int estepm ){  
   int jj1, k1, i1, cpt;    first=1;
   FILE *fichtm;  
   /*char optionfilehtm[FILENAMELENGTH];*/    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   strcpy(optionfilehtm,optionfile);        j1++;
   strcat(optionfilehtm,".htm");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          scanf("%d", i);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);        for (i=-5; i<=nlstate+ndeath; i++)  
   }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              freq[i][jk][m]=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n      for (i=1; i<=nlstate; i++)  
 Total number of observations=%d <br>\n        for(m=iagemin; m <= iagemax+3; m++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          prop[i][m]=0;
 <hr  size=\"2\" color=\"#EC5E5E\">        
  <ul><li>Outputs files<br>\n        dateintsum=0;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        k2cpt=0;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        for (i=1; i<=imx; i++) {
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          bool=1;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          if  (cptcovn>0) {
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
  fprintf(fichtm,"\n          }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          if (bool==1){
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            for(m=firstpass; m<=lastpass; m++){
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              k2=anint[m][i]+(mint[m][i]/12.);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
  if(popforecast==1) fprintf(fichtm,"\n                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                if (m<lastpass) {
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         <br>",fileres,fileres,fileres,fileres);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
  else                }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                
 fprintf(fichtm," <li>Graphs</li><p>");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
  m=cptcoveff;                  k2cpt++;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                }
                 /*}*/
  jj1=0;            }
  for(k1=1; k1<=m;k1++){          }
    for(i1=1; i1<=ncodemax[k1];i1++){        }
        jj1++;         
        if (cptcovn > 0) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        pstamp(ficresp);
          for (cpt=1; cpt<=cptcoveff;cpt++)        if  (cptcovn>0) {
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          fprintf(ficresp, "\n#********** Variable "); 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        }          fprintf(ficresp, "**********\n#");
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for(i=1; i<=nlstate;i++) 
        for(cpt=1; cpt<nlstate;cpt++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        fprintf(ficresp, "\n");
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        
        }        for(i=iagemin; i <= iagemax+3; i++){
     for(cpt=1; cpt<=nlstate;cpt++) {          if(i==iagemax+3){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            fprintf(ficlog,"Total");
 interval) in state (%d): v%s%d%d.gif <br>          }else{
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if(first==1){
      }              first=0;
      for(cpt=1; cpt<=nlstate;cpt++) {              printf("See log file for details...\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            fprintf(ficlog,"Age %d", i);
      }          }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          for(jk=1; jk <=nlstate ; jk++){
 health expectancies in states (1) and (2): e%s%d.gif<br>            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              pp[jk] += freq[jk][m][i]; 
 fprintf(fichtm,"\n</body>");          }
    }          for(jk=1; jk <=nlstate ; jk++){
    }            for(m=-1, pos=0; m <=0 ; m++)
 fclose(fichtm);              pos += freq[jk][m][i];
 }            if(pp[jk]>=1.e-10){
               if(first==1){
 /******************* Gnuplot file **************/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            }else{
               if(first==1)
   strcpy(optionfilegnuplot,optionfilefiname);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(optionfilegnuplot,".gp.txt");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            }
     printf("Problem with file %s",optionfilegnuplot);          }
   }  
           for(jk=1; jk <=nlstate ; jk++){
 #ifdef windows            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     fprintf(ficgp,"cd \"%s\" \n",pathc);              pp[jk] += freq[jk][m][i];
 #endif          }       
 m=pow(2,cptcoveff);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
  /* 1eme*/            posprop += prop[jk][i];
   for (cpt=1; cpt<= nlstate ; cpt ++) {          }
    for (k1=1; k1<= m ; k1 ++) {          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 for (i=1; i<= nlstate ; i ++) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(first==1)
 }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if( i <= iagemax){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(pos>=1.e-5){
 }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
      for (i=1; i<= nlstate ; i ++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              else
 }                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            }
           }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          
    }          for(jk=-1; jk <=nlstate+ndeath; jk++)
   }            for(m=-1; m <=nlstate+ndeath; m++)
   /*2 eme*/              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   for (k1=1; k1<= m ; k1 ++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                  }
     for (i=1; i<= nlstate+1 ; i ++) {          if(i <= iagemax)
       k=2*i;            fprintf(ficresp,"\n");
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          if(first==1)
       for (j=1; j<= nlstate+1 ; j ++) {            printf("Others in log...\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficlog,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }        }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    dateintmean=dateintsum/k2cpt; 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {    fclose(ficresp);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    free_vector(pp,1,nlstate);
 }      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficgp,"\" t\"\" w l 0,");    /* End of Freq */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /************ Prevalence ********************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 }    {  
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       else fprintf(ficgp,"\" t\"\" w l 0,");       in each health status at the date of interview (if between dateprev1 and dateprev2).
     }       We still use firstpass and lastpass as another selection.
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    */
   }   
      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   /*3eme*/    double ***freq; /* Frequencies */
     double *pp, **prop;
   for (k1=1; k1<= m ; k1 ++) {    double pos,posprop; 
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double  y2; /* in fractional years */
       k=2+nlstate*(2*cpt-2);    int iagemin, iagemax;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    iagemin= (int) agemin;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    iagemax= (int) agemax;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    /*pp=vector(1,nlstate);*/
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    j1=0;
     
 */    j=cptcoveff;
       for (i=1; i< nlstate ; i ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    
     for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        j1++;
     }        
     }        for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
   /* CV preval stat */            prop[i][m]=0.0;
     for (k1=1; k1<= m ; k1 ++) {       
     for (cpt=1; cpt<nlstate ; cpt ++) {        for (i=1; i<=imx; i++) { /* Each individual */
       k=3;          bool=1;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
       for (i=1; i< nlstate ; i ++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         fprintf(ficgp,"+$%d",k+i+1);                bool=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          } 
                if (bool==1) { 
       l=3+(nlstate+ndeath)*cpt;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       for (i=1; i< nlstate ; i ++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         l=3+(nlstate+ndeath)*cpt;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficgp,"+$%d",l+i+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                    prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
   /* proba elementaires */              }
    for(i=1,jk=1; i <=nlstate; i++){            } /* end selection of waves */
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {        }
         for(j=1; j <=ncovmodel; j++){        for(i=iagemin; i <= iagemax+3; i++){  
                  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           jk++;            posprop += prop[jk][i]; 
           fprintf(ficgp,"\n");          } 
         }  
       }          for(jk=1; jk <=nlstate ; jk++){     
     }            if( i <=  iagemax){ 
     }              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
     for(jk=1; jk <=m; jk++) {              } else
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
    i=1;            } 
    for(k2=1; k2<=nlstate; k2++) {          }/* end jk */ 
      k3=i;        }/* end i */ 
      for(k=1; k<=(nlstate+ndeath); k++) {      } /* end i1 */
        if (k != k2){    } /* end k1 */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    
 ij=1;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for(j=3; j <=ncovmodel; j++) {    /*free_vector(pp,1,nlstate);*/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  }  /* End of prevalence */
             ij++;  
           }  /************* Waves Concatenation ***************/
           else  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         }  {
           fprintf(ficgp,")/(1");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               Death is a valid wave (if date is known).
         for(k1=1; k1 <=nlstate; k1++){         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 ij=1;       and mw[mi+1][i]. dh depends on stepm.
           for(j=3; j <=ncovmodel; j++){       */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    int i, mi, m;
             ij++;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           }       double sum=0., jmean=0.;*/
           else    int first;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int j, k=0,jk, ju, jl;
           }    double sum=0.;
           fprintf(ficgp,")");    first=0;
         }    jmin=1e+5;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    jmax=-1;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    jmean=0.;
         i=i+ncovmodel;    for(i=1; i<=imx; i++){
        }      mi=0;
      }      m=firstpass;
    }      while(s[m][i] <= nlstate){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
    }          mw[++mi][i]=m;
            if(m >=lastpass)
   fclose(ficgp);          break;
 }  /* end gnuplot */        else
           m++;
       }/* end while */
 /*************** Moving average **************/      if (s[m][i] > nlstate){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
   int i, cpt, cptcod;           /* Only death is a correct wave */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        mw[mi][i]=m;
       for (i=1; i<=nlstate;i++)      }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;      wav[i]=mi;
          if(mi==0){
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        nbwarn++;
       for (i=1; i<=nlstate;i++){        if(first==0){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           for (cpt=0;cpt<=4;cpt++){          first=1;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        }
           }        if(first==1){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }        }
       }      } /* end mi==0 */
     }    } /* End individuals */
      
 }    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
 /************** Forecasting ******************/          dh[mi][i]=1;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        else{
            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            if (agedc[i] < 2*AGESUP) {
   int *popage;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              if(j==0) j=1;  /* Survives at least one month after exam */
   double *popeffectif,*popcount;              else if(j<0){
   double ***p3mat;                nberr++;
   char fileresf[FILENAMELENGTH];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
  agelim=AGESUP;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              }
                k=k+1;
                if (j >= jmax){
   strcpy(fileresf,"f");                jmax=j;
   strcat(fileresf,fileres);                ijmax=i;
   if((ficresf=fopen(fileresf,"w"))==NULL) {              }
     printf("Problem with forecast resultfile: %s\n", fileresf);              if (j <= jmin){
   }                jmin=j;
   printf("Computing forecasting: result on file '%s' \n", fileresf);                ijmin=i;
               }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   if (mobilav==1) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
     movingaverage(agedeb, fage, ageminpar, mobaverage);          }
   }          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   if (stepm<=12) stepsize=1;  
              k=k+1;
   agelim=AGESUP;            if (j >= jmax) {
                jmax=j;
   hstepm=1;              ijmax=i;
   hstepm=hstepm/stepm;            }
   yp1=modf(dateintmean,&yp);            else if (j <= jmin){
   anprojmean=yp;              jmin=j;
   yp2=modf((yp1*12),&yp);              ijmin=i;
   mprojmean=yp;            }
   yp1=modf((yp2*30.5),&yp);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   jprojmean=yp;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   if(jprojmean==0) jprojmean=1;            if(j<0){
   if(mprojmean==0) jprojmean=1;              nberr++;
                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
   for(cptcov=1;cptcov<=i2;cptcov++){            sum=sum+j;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
       k=k+1;          jk= j/stepm;
       fprintf(ficresf,"\n#******");          jl= j -jk*stepm;
       for(j=1;j<=cptcoveff;j++) {          ju= j -(jk+1)*stepm;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       }            if(jl==0){
       fprintf(ficresf,"******\n");              dh[mi][i]=jk;
       fprintf(ficresf,"# StartingAge FinalAge");              bh[mi][i]=0;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            }else{ /* We want a negative bias in order to only have interpolation ie
                          * at the price of an extra matrix product in likelihood */
                    dh[mi][i]=jk+1;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              bh[mi][i]=ju;
         fprintf(ficresf,"\n");            }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            }else{
             if(jl <= -ju){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              dh[mi][i]=jk;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              bh[mi][i]=jl;       /* bias is positive if real duration
           nhstepm = nhstepm/hstepm;                                   * is higher than the multiple of stepm and negative otherwise.
                                             */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;            else{
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                dh[mi][i]=jk+1;
                      bh[mi][i]=ju;
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {            if(dh[mi][i]==0){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              dh[mi][i]=1; /* At least one step */
             }              bh[mi][i]=ju; /* At least one step */
             for(j=1; j<=nlstate+ndeath;j++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                        } /* end if mle */
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      } /* end wave */
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    jmean=sum/k;
                 }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
               }   }
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);  /*********** Tricode ****************************/
                          void tricode(int *Tvar, int **nbcode, int imx)
               }  {
             }    
           }    int Ndum[20],ij=1, k, j, i, maxncov=19;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int cptcode=0;
         }    cptcoveff=0; 
       }   
     }    for (k=0; k<maxncov; k++) Ndum[k]=0;
   }    for (k=1; k<=7; k++) ncodemax[k]=0;
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   fclose(ficresf);                                 modality*/ 
 }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 /************** Forecasting ******************/        Ndum[ij]++; /*store the modality */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                                         Tvar[j]. If V=sex and male is 0 and 
   int *popage;                                         female is 1, then  cptcode=1.*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      }
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;      for (i=0; i<=cptcode; i++) {
   char filerespop[FILENAMELENGTH];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      ij=1; 
   agelim=AGESUP;      for (i=1; i<=ncodemax[j]; i++) {
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            nbcode[Tvar[j]][ij]=k; 
              /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              
   strcpy(filerespop,"pop");            ij++;
   strcat(filerespop,fileres);          }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          if (ij > ncodemax[j]) break; 
     printf("Problem with forecast resultfile: %s\n", filerespop);        }  
   }      } 
   printf("Computing forecasting: result on file '%s' \n", filerespop);    }  
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   if (mobilav==1) {   for (i=1; i<=ncovmodel-2; i++) { 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);     ij=Tvar[i];
   }     Ndum[ij]++;
    }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;   ij=1;
     for (i=1; i<= maxncov; i++) {
   agelim=AGESUP;     if((Ndum[i]!=0) && (i<=ncovcol)){
         Tvaraff[ij]=i; /*For printing */
   hstepm=1;       ij++;
   hstepm=hstepm/stepm;     }
     }
   if (popforecast==1) {   
     if((ficpop=fopen(popfile,"r"))==NULL) {   cptcoveff=ij-1; /*Number of simple covariates*/
       printf("Problem with population file : %s\n",popfile);exit(0);  }
     }  
     popage=ivector(0,AGESUP);  /*********** Health Expectancies ****************/
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
      
     i=1;    {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    /* Health expectancies, no variances */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     imx=i;    int nhstepma, nstepma; /* Decreasing with age */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double age, agelim, hf;
   }    double ***p3mat;
     double eip;
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    pstamp(ficreseij);
       k=k+1;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficrespop,"\n#******");    fprintf(ficreseij,"# Age");
       for(j=1;j<=cptcoveff;j++) {    for(i=1; i<=nlstate;i++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=1; j<=nlstate;j++){
       }        fprintf(ficreseij," e%1d%1d ",i,j);
       fprintf(ficrespop,"******\n");      }
       fprintf(ficrespop,"# Age");      fprintf(ficreseij," e%1d. ",i);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    }
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficreseij,"\n");
        
       for (cpt=0; cpt<=0;cpt++) {    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      if(estepm < stepm){
              printf ("Problem %d lower than %d\n",estepm, stepm);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    else  hstepm=estepm;   
           nhstepm = nhstepm/hstepm;    /* We compute the life expectancy from trapezoids spaced every estepm months
               * This is mainly to measure the difference between two models: for example
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * if stepm=24 months pijx are given only every 2 years and by summing them
           oldm=oldms;savm=savms;     * we are calculating an estimate of the Life Expectancy assuming a linear 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * progression in between and thus overestimating or underestimating according
             * to the curvature of the survival function. If, for the same date, we 
           for (h=0; h<=nhstepm; h++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             if (h==(int) (calagedate+YEARM*cpt)) {     * to compare the new estimate of Life expectancy with the same linear 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * hypothesis. A more precise result, taking into account a more precise
             }     * curvature will be obtained if estepm is as small as stepm. */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    /* For example we decided to compute the life expectancy with the smallest unit */
               for(i=1; i<=nlstate;i++) {                  /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 if (mobilav==1)       nhstepm is the number of hstepm from age to agelim 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       nstepm is the number of stepm from age to agelin. 
                 else {       Look at hpijx to understand the reason of that which relies in memory size
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       and note for a fixed period like estepm months */
                 }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               }       survival function given by stepm (the optimization length). Unfortunately it
               if (h==(int)(calagedate+12*cpt)){       means that if the survival funtion is printed only each two years of age and if
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   /*fprintf(ficrespop," %.3f", kk1);       results. So we changed our mind and took the option of the best precision.
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    */
               }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             }  
             for(i=1; i<=nlstate;i++){    agelim=AGESUP;
               kk1=0.;    /* If stepm=6 months */
                 for(j=1; j<=nlstate;j++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                 }      
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  /* nhstepm age range expressed in number of stepm */
             }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /* if (stepm >= YEARM) hstepm=1;*/
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    for (age=bage; age<=fage; age ++){ 
       }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /******/      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* If stepm=6 months */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           nhstepm = nhstepm/hstepm;      
                hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           oldm=oldms;savm=savms;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        
           for (h=0; h<=nhstepm; h++){      printf("%d|",(int)age);fflush(stdout);
             if (h==(int) (calagedate+YEARM*cpt)) {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      
             }      /* Computing expectancies */
             for(j=1; j<=nlstate+ndeath;j++) {      for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;        for(j=1; j<=nlstate;j++)
               for(i=1; i<=nlstate;i++) {                        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               }            
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             }  
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      fprintf(ficreseij,"%3.0f",age );
       }      for(i=1; i<=nlstate;i++){
    }        eip=0;
   }        for(j=1; j<=nlstate;j++){
            eip +=eij[i][j][(int)age];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   if (popforecast==1) {        fprintf(ficreseij,"%9.4f", eip );
     free_ivector(popage,0,AGESUP);      }
     free_vector(popeffectif,0,AGESUP);      fprintf(ficreseij,"\n");
     free_vector(popcount,0,AGESUP);      
   }    }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("\n");
   fclose(ficrespop);    fprintf(ficlog,"\n");
 }    
   }
 /***********************************************/  
 /**************** Main Program *****************/  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 /***********************************************/  
   {
 int main(int argc, char *argv[])    /* Covariances of health expectancies eij and of total life expectancies according
 {     to initial status i, ei. .
     */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   double agedeb, agefin,hf;    int nhstepma, nstepma; /* Decreasing with age */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
   double fret;    double **dnewm,**doldm;
   double **xi,tmp,delta;    double *xp, *xm;
     double **gp, **gm;
   double dum; /* Dummy variable */    double ***gradg, ***trgradg;
   double ***p3mat;    int theta;
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    double eip, vip;
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    xp=vector(1,npar);
      xm=vector(1,npar);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   char filerest[FILENAMELENGTH];    
   char fileregp[FILENAMELENGTH];    pstamp(ficresstdeij);
   char popfile[FILENAMELENGTH];    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    fprintf(ficresstdeij,"# Age");
   int firstobs=1, lastobs=10;    for(i=1; i<=nlstate;i++){
   int sdeb, sfin; /* Status at beginning and end */      for(j=1; j<=nlstate;j++)
   int c,  h , cpt,l;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   int ju,jl, mi;      fprintf(ficresstdeij," e%1d. ",i);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficresstdeij,"\n");
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;    pstamp(ficrescveij);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
   double bage, fage, age, agelim, agebase;    for(i=1; i<=nlstate;i++)
   double ftolpl=FTOL;      for(j=1; j<=nlstate;j++){
   double **prlim;        cptj= (j-1)*nlstate+i;
   double *severity;        for(i2=1; i2<=nlstate;i2++)
   double ***param; /* Matrix of parameters */          for(j2=1; j2<=nlstate;j2++){
   double  *p;            cptj2= (j2-1)*nlstate+i2;
   double **matcov; /* Matrix of covariance */            if(cptj2 <= cptj)
   double ***delti3; /* Scale */              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   double *delti; /* Scale */          }
   double ***eij, ***vareij;      }
   double **varpl; /* Variances of prevalence limits by age */    fprintf(ficrescveij,"\n");
   double *epj, vepp;    
   double kk1, kk2;    if(estepm < stepm){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
     else  hstepm=estepm;   
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";    /* We compute the life expectancy from trapezoids spaced every estepm months
   char *alph[]={"a","a","b","c","d","e"}, str[4];     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   char z[1]="c", occ;     * progression in between and thus overestimating or underestimating according
 #include <sys/time.h>     * to the curvature of the survival function. If, for the same date, we 
 #include <time.h>     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   /* long total_usecs;     * curvature will be obtained if estepm is as small as stepm. */
   struct timeval start_time, end_time;  
      /* For example we decided to compute the life expectancy with the smallest unit */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   getcwd(pathcd, size);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   printf("\n%s",version);       Look at hpijx to understand the reason of that which relies in memory size
   if(argc <=1){       and note for a fixed period like estepm months */
     printf("\nEnter the parameter file name: ");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     scanf("%s",pathtot);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
   else{       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     strcpy(pathtot,argv[1]);       results. So we changed our mind and took the option of the best precision.
   }    */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /* If stepm=6 months */
   /* cutv(path,optionfile,pathtot,'\\');*/    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   chdir(path);    /* if (stepm >= YEARM) hstepm=1;*/
   replace(pathc,path);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
 /*-------- arguments in the command line --------*/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(fileres,"r");    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   strcat(fileres, optionfilefiname);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   strcat(fileres,".txt");    /* Other files have txt extension */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   /*---------arguments file --------*/  
     for (age=bage; age<=fage; age ++){ 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     printf("Problem with optionfile %s\n",optionfile);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     goto end;      /* if (stepm >= YEARM) hstepm=1;*/
   }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
   strcpy(filereso,"o");      /* If stepm=6 months */
   strcat(filereso,fileres);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   if((ficparo=fopen(filereso,"w"))==NULL) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
   /* Reads comments: lines beginning with '#' */      /* Computing  Variances of health expectancies */
   while((c=getc(ficpar))=='#' && c!= EOF){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     ungetc(c,ficpar);         decrease memory allocation */
     fgets(line, MAXLINE, ficpar);      for(theta=1; theta <=npar; theta++){
     puts(line);        for(i=1; i<=npar; i++){ 
     fputs(line,ficparo);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for(j=1; j<= nlstate; j++){
 while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1; i<=nlstate; i++){
     ungetc(c,ficpar);            for(h=0; h<=nhstepm-1; h++){
     fgets(line, MAXLINE, ficpar);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     puts(line);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     fputs(line,ficparo);            }
   }          }
   ungetc(c,ficpar);        }
         
            for(ij=1; ij<= nlstate*nlstate; ij++)
   covar=matrix(0,NCOVMAX,1,n);          for(h=0; h<=nhstepm-1; h++){
   cptcovn=0;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          }
       }/* End theta */
   ncovmodel=2+cptcovn;      
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      
        for(h=0; h<=nhstepm-1; h++)
   /* Read guess parameters */        for(j=1; j<=nlstate*nlstate;j++)
   /* Reads comments: lines beginning with '#' */          for(theta=1; theta <=npar; theta++)
   while((c=getc(ficpar))=='#' && c!= EOF){            trgradg[h][j][theta]=gradg[h][theta][j];
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);  
     puts(line);       for(ij=1;ij<=nlstate*nlstate;ij++)
     fputs(line,ficparo);        for(ji=1;ji<=nlstate*nlstate;ji++)
   }          varhe[ij][ji][(int)age] =0.;
   ungetc(c,ficpar);  
         printf("%d|",(int)age);fflush(stdout);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(i=1; i <=nlstate; i++)       for(h=0;h<=nhstepm-1;h++){
     for(j=1; j <=nlstate+ndeath-1; j++){        for(k=0;k<=nhstepm-1;k++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficparo,"%1d%1d",i1,j1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       printf("%1d%1d",i,j);          for(ij=1;ij<=nlstate*nlstate;ij++)
       for(k=1; k<=ncovmodel;k++){            for(ji=1;ji<=nlstate*nlstate;ji++)
         fscanf(ficpar," %lf",&param[i][j][k]);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         printf(" %lf",param[i][j][k]);        }
         fprintf(ficparo," %lf",param[i][j][k]);      }
       }  
       fscanf(ficpar,"\n");      /* Computing expectancies */
       printf("\n");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       fprintf(ficparo,"\n");      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
   p=param[1][1];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      fprintf(ficresstdeij,"%3.0f",age );
     fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++){
     puts(line);        eip=0.;
     fputs(line,ficparo);        vip=0.;
   }        for(j=1; j<=nlstate;j++){
   ungetc(c,ficpar);          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   for(i=1; i <=nlstate; i++){        }
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       fscanf(ficpar,"%1d%1d",&i1,&j1);      }
       printf("%1d%1d",i,j);      fprintf(ficresstdeij,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){      fprintf(ficrescveij,"%3.0f",age );
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(i=1; i<=nlstate;i++)
         printf(" %le",delti3[i][j][k]);        for(j=1; j<=nlstate;j++){
         fprintf(ficparo," %le",delti3[i][j][k]);          cptj= (j-1)*nlstate+i;
       }          for(i2=1; i2<=nlstate;i2++)
       fscanf(ficpar,"\n");            for(j2=1; j2<=nlstate;j2++){
       printf("\n");              cptj2= (j2-1)*nlstate+i2;
       fprintf(ficparo,"\n");              if(cptj2 <= cptj)
     }                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   }            }
   delti=delti3[1][1];        }
        fprintf(ficrescveij,"\n");
   /* Reads comments: lines beginning with '#' */     
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     puts(line);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     fputs(line,ficparo);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   ungetc(c,ficpar);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   matcov=matrix(1,npar,1,npar);    fprintf(ficlog,"\n");
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    free_vector(xm,1,npar);
     printf("%s",str);    free_vector(xp,1,npar);
     fprintf(ficparo,"%s",str);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     for(j=1; j <=i; j++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fscanf(ficpar," %le",&matcov[i][j]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       printf(" %.5le",matcov[i][j]);  }
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }  /************ Variance ******************/
     fscanf(ficpar,"\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     printf("\n");  {
     fprintf(ficparo,"\n");    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   for(i=1; i <=npar; i++)    /* double **newm;*/
     for(j=i+1;j<=npar;j++)    double **dnewm,**doldm;
       matcov[i][j]=matcov[j][i];    double **dnewmp,**doldmp;
        int i, j, nhstepm, hstepm, h, nstepm ;
   printf("\n");    int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     /*-------- Rewriting paramater file ----------*/    double ***gradg, ***trgradg; /*for var eij */
      strcpy(rfileres,"r");    /* "Rparameterfile */    double **gradgp, **trgradgp; /* for var p point j */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    double *gpp, *gmp; /* for var p point j */
      strcat(rfileres,".");    /* */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    double ***p3mat;
     if((ficres =fopen(rfileres,"w"))==NULL) {    double age,agelim, hf;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    double ***mobaverage;
     }    int theta;
     fprintf(ficres,"#%s\n",version);    char digit[4];
        char digitp[25];
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {    char fileresprobmorprev[FILENAMELENGTH];
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }    if(popbased==1){
       if(mobilav!=0)
     n= lastobs;        strcpy(digitp,"-populbased-mobilav-");
     severity = vector(1,maxwav);      else strcpy(digitp,"-populbased-nomobil-");
     outcome=imatrix(1,maxwav+1,1,n);    }
     num=ivector(1,n);    else 
     moisnais=vector(1,n);      strcpy(digitp,"-stablbased-");
     annais=vector(1,n);  
     moisdc=vector(1,n);    if (mobilav!=0) {
     andc=vector(1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agedc=vector(1,n);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     cod=ivector(1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     weight=vector(1,n);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      }
     mint=matrix(1,maxwav,1,n);    }
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    strcpy(fileresprobmorprev,"prmorprev"); 
     adl=imatrix(1,maxwav+1,1,n);        sprintf(digit,"%-d",ij);
     tab=ivector(1,NCOVMAX);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     ncodemax=ivector(1,8);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     i=1;    strcat(fileresprobmorprev,fileres);
     while (fgets(line, MAXLINE, fic) != NULL)    {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       if ((i >= firstobs) && (i <=lastobs)) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         for (j=maxwav;j>=1;j--){    }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           strcpy(line,stra);   
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    pstamp(ficresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
            fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    }  
     fprintf(ficresprobmorprev,"\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n# Routine varevsij");
         for (j=ncovcol;j>=1;j--){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         num[i]=atol(stra);  /*   } */
            varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    pstamp(ficresvij);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
         i=i+1;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       }    else
     }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     /* printf("ii=%d", ij);    fprintf(ficresvij,"# Age");
        scanf("%d",i);*/    for(i=1; i<=nlstate;i++)
   imx=i-1; /* Number of individuals */      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   /* for (i=1; i<=imx; i++){    fprintf(ficresvij,"\n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    xp=vector(1,npar);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    dnewm=matrix(1,nlstate,1,npar);
     }*/    doldm=matrix(1,nlstate,1,nlstate);
    /*  for (i=1; i<=imx; i++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      if (s[4][i]==9)  s[4][i]=-1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   /* Calculation of the number of parameter from char model*/    gmp=vector(nlstate+1,nlstate+ndeath);
   Tvar=ivector(1,15);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   Tprod=ivector(1,15);    
   Tvaraff=ivector(1,15);    if(estepm < stepm){
   Tvard=imatrix(1,15,1,2);      printf ("Problem %d lower than %d\n",estepm, stepm);
   Tage=ivector(1,15);          }
        else  hstepm=estepm;   
   if (strlen(model) >1){    /* For example we decided to compute the life expectancy with the smallest unit */
     j=0, j1=0, k1=1, k2=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     j=nbocc(model,'+');       nhstepm is the number of hstepm from age to agelim 
     j1=nbocc(model,'*');       nstepm is the number of stepm from age to agelin. 
     cptcovn=j+1;       Look at function hpijx to understand why (it is linked to memory size questions) */
     cptcovprod=j1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           survival function given by stepm (the optimization length). Unfortunately it
     strcpy(modelsav,model);       means that if the survival funtion is printed every two years of age and if
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       printf("Error. Non available option model=%s ",model);       results. So we changed our mind and took the option of the best precision.
       goto end;    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        agelim = AGESUP;
     for(i=(j+1); i>=1;i--){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       cutv(stra,strb,modelsav,'+');      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*scanf("%d",i);*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       if (strchr(strb,'*')) {      gp=matrix(0,nhstepm,1,nlstate);
         cutv(strd,strc,strb,'*');      gm=matrix(0,nhstepm,1,nlstate);
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;  
           cutv(strb,stre,strd,'V');      for(theta=1; theta <=npar; theta++){
           Tvar[i]=atoi(stre);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           cptcovage++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             Tage[cptcovage]=i;        }
             /*printf("stre=%s ", stre);*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;        if (popbased==1) {
           cutv(strb,stre,strc,'V');          if(mobilav ==0){
           Tvar[i]=atoi(stre);            for(i=1; i<=nlstate;i++)
           cptcovage++;              prlim[i][i]=probs[(int)age][i][ij];
           Tage[cptcovage]=i;          }else{ /* mobilav */ 
         }            for(i=1; i<=nlstate;i++)
         else {              prlim[i][i]=mobaverage[(int)age][i][ij];
           cutv(strb,stre,strc,'V');          }
           Tvar[i]=ncovcol+k1;        }
           cutv(strb,strc,strd,'V');    
           Tprod[k1]=i;        for(j=1; j<= nlstate; j++){
           Tvard[k1][1]=atoi(strc);          for(h=0; h<=nhstepm; h++){
           Tvard[k1][2]=atoi(stre);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           Tvar[cptcovn+k2]=Tvard[k1][1];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          }
           for (k=1; k<=lastobs;k++)        }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        /* This for computing probability of death (h=1 means
           k1++;           computed over hstepm matrices product = hstepm*stepm months) 
           k2=k2+2;           as a weighted average of prlim.
         }        */
       }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       else {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
        /*  scanf("%d",i);*/        }    
       cutv(strd,strc,strb,'V');        /* end probability of death */
       Tvar[i]=atoi(strc);  
       }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       strcpy(modelsav,stra);            xp[i] = x[i] - (i==theta ?delti[theta]:0);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         scanf("%d",i);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }   
 }        if (popbased==1) {
            if(mobilav ==0){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            for(i=1; i<=nlstate;i++)
   printf("cptcovprod=%d ", cptcovprod);              prlim[i][i]=probs[(int)age][i][ij];
   scanf("%d ",i);*/          }else{ /* mobilav */ 
     fclose(fic);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
     /*  if(mle==1){*/          }
     if (weightopt != 1) { /* Maximisation without weights*/        }
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     /*-calculation of age at interview from date of interview and age at death -*/          for(h=0; h<=nhstepm; h++){
     agev=matrix(1,maxwav,1,imx);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     for (i=1; i<=imx; i++) {          }
       for(m=2; (m<= maxwav); m++) {        }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        /* This for computing probability of death (h=1 means
          anint[m][i]=9999;           computed over hstepm matrices product = hstepm*stepm months) 
          s[m][i]=-1;           as a weighted average of prlim.
        }        */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
     for (i=1; i<=imx; i++)  {        /* end probability of death */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){        for(j=1; j<= nlstate; j++) /* vareij */
         if(s[m][i] >0){          for(h=0; h<=nhstepm; h++){
           if (s[m][i] >= nlstate+1) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             if(agedc[i]>0)          }
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
            else {        }
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      } /* End theta */
               agev[m][i]=-1;  
               }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             }  
           }      for(h=0; h<=nhstepm; h++) /* veij */
           else if(s[m][i] !=9){ /* Should no more exist */        for(j=1; j<=nlstate;j++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for(theta=1; theta <=npar; theta++)
             if(mint[m][i]==99 || anint[m][i]==9999)            trgradg[h][j][theta]=gradg[h][theta][j];
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
               agemin=agev[m][i];        for(theta=1; theta <=npar; theta++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          trgradgp[j][theta]=gradgp[theta][j];
             }    
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for(i=1;i<=nlstate;i++)
             }        for(j=1;j<=nlstate;j++)
             /*agev[m][i]=anint[m][i]-annais[i];*/          vareij[i][j][(int)age] =0.;
             /*   agev[m][i] = age[i]+2*m;*/  
           }      for(h=0;h<=nhstepm;h++){
           else { /* =9 */        for(k=0;k<=nhstepm;k++){
             agev[m][i]=1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             s[m][i]=-1;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           }          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
         else /*= 0 Unknown */              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           agev[m][i]=1;        }
       }      }
        
     }      /* pptj */
     for (i=1; i<=imx; i++)  {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for(m=1; (m<= maxwav); m++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         if (s[m][i] > (nlstate+ndeath)) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           printf("Error: Wrong value in nlstate or ndeath\n");          for(i=nlstate+1;i<=nlstate+ndeath;i++)
           goto end;          varppt[j][i]=doldmp[j][i];
         }      /* end ppptj */
       }      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   
       if (popbased==1) {
     free_vector(severity,1,maxwav);        if(mobilav ==0){
     free_imatrix(outcome,1,maxwav+1,1,n);          for(i=1; i<=nlstate;i++)
     free_vector(moisnais,1,n);            prlim[i][i]=probs[(int)age][i][ij];
     free_vector(annais,1,n);        }else{ /* mobilav */ 
     /* free_matrix(mint,1,maxwav,1,n);          for(i=1; i<=nlstate;i++)
        free_matrix(anint,1,maxwav,1,n);*/            prlim[i][i]=mobaverage[(int)age][i][ij];
     free_vector(moisdc,1,n);        }
     free_vector(andc,1,n);      }
                
          /* This for computing probability of death (h=1 means
     wav=ivector(1,imx);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         as a weighted average of prlim.
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /* Concatenates waves */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       ncodemax[1]=1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
              for(i=1; i<=nlstate;i++){
    codtab=imatrix(1,100,1,10);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
    h=0;        }
    m=pow(2,cptcoveff);      } 
        fprintf(ficresprobmorprev,"\n");
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){      fprintf(ficresvij,"%.0f ",age );
        for(j=1; j <= ncodemax[k]; j++){      for(i=1; i<=nlstate;i++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for(j=1; j<=nlstate;j++){
            h++;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      fprintf(ficresvij,"\n");
          }      free_matrix(gp,0,nhstepm,1,nlstate);
        }      free_matrix(gm,0,nhstepm,1,nlstate);
      }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
    }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       codtab[1][2]=1;codtab[2][2]=2; */    } /* End age */
    /* for(i=1; i <=m ;i++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
       for(k=1; k <=cptcovn; k++){    free_vector(gmp,nlstate+1,nlstate+ndeath);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       printf("\n");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       scanf("%d",i);*/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        and prints on file fileres'p'. */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
          fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    free_vector(xp,1,npar);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     if(mle==1){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /*--------- results files --------------*/    fclose(ficresprobmorprev);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    fflush(ficgp);
      fflush(fichtm); 
   }  /* end varevsij */
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /************ Variance of prevlim ******************/
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    for(i=1,jk=1; i <=nlstate; i++){  {
      for(k=1; k <=(nlstate+ndeath); k++){    /* Variance of prevalence limit */
        if (k != i)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
          {    double **newm;
            printf("%d%d ",i,k);    double **dnewm,**doldm;
            fprintf(ficres,"%1d%1d ",i,k);    int i, j, nhstepm, hstepm;
            for(j=1; j <=ncovmodel; j++){    int k, cptcode;
              printf("%f ",p[jk]);    double *xp;
              fprintf(ficres,"%f ",p[jk]);    double *gp, *gm;
              jk++;    double **gradg, **trgradg;
            }    double age,agelim;
            printf("\n");    int theta;
            fprintf(ficres,"\n");    
          }    pstamp(ficresvpl);
      }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
    }    fprintf(ficresvpl,"# Age");
  if(mle==1){    for(i=1; i<=nlstate;i++)
     /* Computing hessian and covariance matrix */        fprintf(ficresvpl," %1d-%1d",i,i);
     ftolhess=ftol; /* Usually correct */    fprintf(ficresvpl,"\n");
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }    xp=vector(1,npar);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    dnewm=matrix(1,nlstate,1,npar);
     printf("# Scales (for hessian or gradient estimation)\n");    doldm=matrix(1,nlstate,1,nlstate);
      for(i=1,jk=1; i <=nlstate; i++){    
       for(j=1; j <=nlstate+ndeath; j++){    hstepm=1*YEARM; /* Every year of age */
         if (j!=i) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           fprintf(ficres,"%1d%1d",i,j);    agelim = AGESUP;
           printf("%1d%1d",i,j);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for(k=1; k<=ncovmodel;k++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             printf(" %.5e",delti[jk]);      if (stepm >= YEARM) hstepm=1;
             fprintf(ficres," %.5e",delti[jk]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
             jk++;      gradg=matrix(1,npar,1,nlstate);
           }      gp=vector(1,nlstate);
           printf("\n");      gm=vector(1,nlstate);
           fprintf(ficres,"\n");  
         }      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient */
      }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            }
     k=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for(i=1;i<=nlstate;i++)
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          gp[i] = prlim[i][i];
     for(i=1;i<=npar;i++){      
       /*  if (k>nlstate) k=1;        for(i=1; i<=npar; i++) /* Computes gradient */
       i1=(i-1)/(ncovmodel*nlstate)+1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        for(i=1;i<=nlstate;i++)
       fprintf(ficres,"%3d",i);          gm[i] = prlim[i][i];
       printf("%3d",i);  
       for(j=1; j<=i;j++){        for(i=1;i<=nlstate;i++)
         fprintf(ficres," %.5e",matcov[i][j]);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         printf(" %.5e",matcov[i][j]);      } /* End theta */
       }  
       fprintf(ficres,"\n");      trgradg =matrix(1,nlstate,1,npar);
       printf("\n");  
       k++;      for(j=1; j<=nlstate;j++)
     }        for(theta=1; theta <=npar; theta++)
              trgradg[j][theta]=gradg[theta][j];
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
       fgets(line, MAXLINE, ficpar);        varpl[i][(int)age] =0.;
       puts(line);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fputs(line,ficparo);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     }      for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     estepm=0;  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      fprintf(ficresvpl,"%.0f ",age );
     if (estepm==0 || estepm < stepm) estepm=stepm;      for(i=1; i<=nlstate;i++)
     if (fage <= 2) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       bage = ageminpar;      fprintf(ficresvpl,"\n");
       fage = agemaxpar;      free_vector(gp,1,nlstate);
     }      free_vector(gm,1,nlstate);
          free_matrix(gradg,1,npar,1,nlstate);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      free_matrix(trgradg,1,nlstate,1,npar);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    } /* End age */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
      free_vector(xp,1,npar);
     while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(doldm,1,nlstate,1,npar);
     ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate,1,nlstate);
     fgets(line, MAXLINE, ficpar);  
     puts(line);  }
     fputs(line,ficparo);  
   }  /************ Variance of one-step probabilities  ******************/
   ungetc(c,ficpar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    {
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    int i, j=0,  i1, k1, l1, t, tj;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int k2, l2, j1,  z1;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int k=0,l, cptcode;
          int first=1, first1;
   while((c=getc(ficpar))=='#' && c!= EOF){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     ungetc(c,ficpar);    double **dnewm,**doldm;
     fgets(line, MAXLINE, ficpar);    double *xp;
     puts(line);    double *gp, *gm;
     fputs(line,ficparo);    double **gradg, **trgradg;
   }    double **mu;
   ungetc(c,ficpar);    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    char fileresprob[FILENAMELENGTH];
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);      double ***varpij;
   fprintf(ficres,"pop_based=%d\n",popbased);    
      strcpy(fileresprob,"prob"); 
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprob,fileres);
     ungetc(c,ficpar);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", fileresprob);
     puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     fputs(line,ficparo);    }
   }    strcpy(fileresprobcov,"probcov"); 
   ungetc(c,ficpar);    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      printf("Problem with resultfile: %s\n", fileresprobcov);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
 while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobcor);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     puts(line);    }
     fputs(line,ficparo);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   ungetc(c,ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
 /*------------ gnuplot -------------*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    fprintf(ficresprobcov,"# Age");
      pstamp(ficresprobcor);
 /*------------ free_vector  -------------*/    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  chdir(path);    fprintf(ficresprobcor,"# Age");
    
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    for(i=1; i<=nlstate;i++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(j=1; j<=(nlstate+ndeath);j++){
  free_ivector(num,1,n);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  free_vector(agedc,1,n);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        fprintf(ficresprobcor," p%1d-%1d ",i,j);
  fclose(ficparo);      }  
  fclose(ficres);   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
 /*--------- index.htm --------*/    fprintf(ficresprobcor,"\n");
    */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /*--------------- Prevalence limit --------------*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   strcpy(filerespl,"pl");    first=1;
   strcat(filerespl,fileres);    fprintf(ficgp,"\n# Routine varprob");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fprintf(fichtm,"\n");
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   fprintf(ficrespl,"#Prevalence limit\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   fprintf(ficrespl,"#Age ");    file %s<br>\n",optionfilehtmcov);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   fprintf(ficrespl,"\n");  and drawn. It helps understanding how is the covariance between two incidences.\
     They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  standard deviations wide on each axis. <br>\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   k=0;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   agebase=ageminpar;  
   agelim=agemaxpar;    cov[1]=1;
   ftolpl=1.e-10;    tj=cptcoveff;
   i1=cptcoveff;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   if (cptcovn < 1){i1=1;}    j1=0;
     for(t=1; t<=tj;t++){
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i1=1; i1<=ncodemax[t];i1++){ 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        j1++;
         k=k+1;        if  (cptcovn>0) {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficresprob, "\n#********** Variable "); 
         fprintf(ficrespl,"\n#******");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(j=1;j<=cptcoveff;j++)          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresprobcov, "\n#********** Variable "); 
         fprintf(ficrespl,"******\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(ficresprobcov, "**********\n#\n");
         for (age=agebase; age<=agelim; age++){          
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficgp, "\n#********** Variable "); 
           fprintf(ficrespl,"%.0f",age );          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(i=1; i<=nlstate;i++)          fprintf(ficgp, "**********\n#\n");
           fprintf(ficrespl," %.5f", prlim[i][i]);          
           fprintf(ficrespl,"\n");          
         }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   fclose(ficrespl);          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   /*------------- h Pij x at various ages ------------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcor, "**********\n#");    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for (age=bage; age<=fage; age ++){ 
   }          cov[2]=age;
   printf("Computing pij: result on file '%s' \n", filerespij);          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   agelim=AGESUP;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   hstepm=stepsize*YEARM; /* Every year of age */          
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   k=0;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   for(cptcov=1;cptcov<=i1;cptcov++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      
       k=k+1;          for(theta=1; theta <=npar; theta++){
         fprintf(ficrespij,"\n#****** ");            for(i=1; i<=npar; i++)
         for(j=1;j<=cptcoveff;j++)              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            
         fprintf(ficrespij,"******\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                    
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            k=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for(i=1; i<= (nlstate); i++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              for(j=1; j<=(nlstate+ndeath);j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                k=k+1;
           oldm=oldms;savm=savms;                gp[k]=pmmij[i][j];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                }
           fprintf(ficrespij,"# Age");            }
           for(i=1; i<=nlstate;i++)            
             for(j=1; j<=nlstate+ndeath;j++)            for(i=1; i<=npar; i++)
               fprintf(ficrespij," %1d-%1d",i,j);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           fprintf(ficrespij,"\n");      
            for (h=0; h<=nhstepm; h++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            k=0;
             for(i=1; i<=nlstate;i++)            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=nlstate+ndeath;j++)              for(j=1; j<=(nlstate+ndeath);j++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                k=k+1;
             fprintf(ficrespij,"\n");                gm[k]=pmmij[i][j];
              }              }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           fprintf(ficrespij,"\n");       
         }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   }          }
   
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   fclose(ficrespij);              trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   /*---------- Forecasting ------------------*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   if((stepm == 1) && (strcmp(model,".")==0)){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   else{  
     erreur=108;          pmij(pmmij,cov,ncovmodel,x,nlstate);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          
   }          k=0;
            for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
   /*---------- Health expectancies and variances ------------*/              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
   strcpy(filerest,"t");            }
   strcat(filerest,fileres);          }
   if((ficrest=fopen(filerest,"w"))==NULL) {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   }              varpij[i][j][(int)age] = doldm[i][j];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcpy(filerese,"e");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcat(filerese,fileres);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if((ficreseij=fopen(filerese,"w"))==NULL) {            }*/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }          fprintf(ficresprob,"\n%d ",(int)age);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   calagedate=-1;          }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          i=0;
           for (k=1; k<=(nlstate);k++){
   k=0;            for (l=1; l<=(nlstate+ndeath);l++){ 
   for(cptcov=1;cptcov<=i1;cptcov++){              i=i++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       k=k+1;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficrest,"\n#****** ");              for (j=1; j<=i;j++){
       for(j=1;j<=cptcoveff;j++)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       fprintf(ficrest,"******\n");              }
             }
       fprintf(ficreseij,"\n#****** ");          }/* end of loop for state */
       for(j=1;j<=cptcoveff;j++)        } /* end of loop for age */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");        /* Confidence intervalle of pij  */
         /*
       fprintf(ficresvij,"\n#****** ");          fprintf(ficgp,"\nset noparametric;unset label");
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fprintf(ficresvij,"******\n");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       oldm=oldms;savm=savms;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          */
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       oldm=oldms;savm=savms;        first1=1;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        for (k2=1; k2<=(nlstate);k2++){
              for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
              j=(k2-1)*(nlstate+ndeath)+l2;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            for (k1=1; k1<=(nlstate);k1++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       fprintf(ficrest,"\n");                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
       epj=vector(1,nlstate+1);                if(i<=j) continue;
       for(age=bage; age <=fage ;age++){                for (age=bage; age<=fage; age ++){ 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                  if ((int)age %5==0){
         if (popbased==1) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           for(i=1; i<=nlstate;i++)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
             prlim[i][i]=probs[(int)age][i][k];                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    mu1=mu[i][(int) age]/stepm*YEARM ;
                            mu2=mu[j][(int) age]/stepm*YEARM;
         fprintf(ficrest," %4.0f",age);                    c12=cv12/sqrt(v1*v2);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    /* Computing eigen value of matrix of covariance */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    /* Eigen vectors */
           }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           epj[nlstate+1] +=epj[j];                    /*v21=sqrt(1.-v11*v11); *//* error */
         }                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
         for(i=1, vepp=0.;i <=nlstate;i++)                    v22=v11;
           for(j=1;j <=nlstate;j++)                    tnalp=v21/v11;
             vepp += vareij[i][j][(int)age];                    if(first1==1){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                      first1=0;
         for(j=1;j <=nlstate;j++){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                    }
         }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficrest,"\n");                    /*printf(fignu*/
       }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   }                    if(first==1){
 free_matrix(mint,1,maxwav,1,n);                      first=0;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                      fprintf(ficgp,"\nset parametric;unset label");
     free_vector(weight,1,n);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   fclose(ficreseij);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fclose(ficresvij);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   fclose(ficrest);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   fclose(ficpar);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   free_vector(epj,1,nlstate+1);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*------- Variance limit prevalence------*/                        fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   strcpy(fileresvpl,"vpl");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcat(fileresvpl,fileres);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     exit(0);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                    }else{
                       first=0;
   k=0;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       k=k+1;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficresvpl,"\n#****** ");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(j=1;j<=cptcoveff;j++)                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    }/* if first */
       fprintf(ficresvpl,"******\n");                  } /* age mod 5 */
                      } /* end loop age */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       oldm=oldms;savm=savms;                first=1;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              } /*l12 */
     }            } /* k12 */
  }          } /*l1 */
         }/* k1 */
   fclose(ficresvpl);      } /* loop covariates */
     }
   /*---------- End : free ----------------*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    free_vector(xp,1,npar);
      fclose(ficresprob);
      fclose(ficresprobcov);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fclose(ficresprobcor);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fflush(ficgp);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    fflush(fichtmcov);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  }
    
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);  /******************* Printing html file ***********/
   free_matrix(agev,1,maxwav,1,imx);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   if(erreur >0)                    int popforecast, int estepm ,\
     printf("End of Imach with error or warning %d\n",erreur);                    double jprev1, double mprev1,double anprev1, \
   else   printf("End of Imach\n");                    double jprev2, double mprev2,double anprev2){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    int jj1, k1, i1, cpt;
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   /*printf("Total time was %d uSec.\n", total_usecs);*/     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   /*------ End -----------*/  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
  end:             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   /* chdir(pathcd);*/     fprintf(fichtm,"\
  /*system("wgnuplot graph.plt");*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
  /*system("../gp37mgw/wgnuplot graph.plt");*/             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
  /*system("cd ../gp37mgw");*/     fprintf(fichtm,"\
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
  strcpy(plotcmd,GNUPLOTPROGRAM);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  strcat(plotcmd," ");     fprintf(fichtm,"\
  strcat(plotcmd,optionfilegnuplot);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
  system(plotcmd);     <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
  /*#ifdef windows*/     fprintf(fichtm,"\
   while (z[0] != 'q') {   - Population projections by age and states: \
     /* chdir(path); */     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);   m=cptcoveff;
     else if (z[0] == 'g') system(plotcmd);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     else if (z[0] == 'q') exit(0);  
   }   jj1=0;
   /*#endif */   for(k1=1; k1<=m;k1++){
 }     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.128


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>