Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.135

version 1.41.2.1, 2003/06/12 10:43:20 version 1.135, 2009/10/29 15:33:14
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.135  2009/10/29 15:33:14  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.134  2009/10/29 13:18:53  brouard
   first survey ("cross") where individuals from different ages are    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.133  2009/07/06 10:21:25  brouard
   second wave of interviews ("longitudinal") which measure each change    just nforces
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.132  2009/07/06 08:22:05  brouard
   model. More health states you consider, more time is necessary to reach the    Many tings
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.131  2009/06/20 16:22:47  brouard
   probability to be observed in state j at the second wave    Some dimensions resccaled
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.130  2009/05/26 06:44:34  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Max Covariate is now set to 20 instead of 8. A
   complex model than "constant and age", you should modify the program    lot of cleaning with variables initialized to 0. Trying to make
   where the markup *Covariates have to be included here again* invites    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.128  2006/06/30 13:02:05  brouard
   identical for each individual. Also, if a individual missed an    (Module): Clarifications on computing e.j
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
   hPijx is the probability to be observed in state i at age x+h    imach-114 because nhstepm was no more computed in the age
   conditional to the observed state i at age x. The delay 'h' can be    loop. Now we define nhstepma in the age loop.
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): In order to speed up (in case of numerous covariates) we
   states. This elementary transition (by month or quarter trimester,    compute health expectancies (without variances) in a first step
   semester or year) is model as a multinomial logistic.  The hPx    and then all the health expectancies with variances or standard
   matrix is simply the matrix product of nh*stepm elementary matrices    deviation (needs data from the Hessian matrices) which slows the
   and the contribution of each individual to the likelihood is simply    computation.
   hPijx.    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.126  2006/04/28 17:23:28  brouard
      (Module): Yes the sum of survivors was wrong since
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    imach-114 because nhstepm was no more computed in the age
            Institut national d'études démographiques, Paris.    loop. Now we define nhstepma in the age loop.
   This software have been partly granted by Euro-REVES, a concerted action    Version 0.98h
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.125  2006/04/04 15:20:31  lievre
   software can be distributed freely for non commercial use. Latest version    Errors in calculation of health expectancies. Age was not initialized.
   can be accessed at http://euroreves.ined.fr/imach .    Forecasting file added.
   **********************************************************************/  
      Revision 1.124  2006/03/22 17:13:53  lievre
 #include <math.h>    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #include <stdio.h>    The log-likelihood is printed in the log file
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 #define MAXLINE 256    name. <head> headers where missing.
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    * imach.c (Module): Weights can have a decimal point as for
 #define FILENAMELENGTH 80    English (a comma might work with a correct LC_NUMERIC environment,
 /*#define DEBUG*/    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 /*#define windows*/    1.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Version 0.98g
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.122  2006/03/20 09:45:41  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Weights can have a decimal point as for
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 #define NINTERVMAX 8    Modification of warning when the covariates values are not 0 or
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    1.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Version 0.98g
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.121  2006/03/16 17:45:01  lievre
 #define YEARM 12. /* Number of months per year */    * imach.c (Module): Comments concerning covariates added
 #define AGESUP 130  
 #define AGEBASE 40    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 int erreur; /* Error number */  
 int nvar;    Revision 1.120  2006/03/16 15:10:38  lievre
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): refinements in the computation of lli if
 int npar=NPARMAX;    status=-2 in order to have more reliable computation if stepm is
 int nlstate=2; /* Number of live states */    not 1 month. Version 0.98f
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.119  2006/03/15 17:42:26  brouard
 int popbased=0;    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.118  2006/03/14 18:20:07  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): varevsij Comments added explaining the second
 int mle, weightopt;    table of variances if popbased=1 .
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Function pstamp added
 double jmean; /* Mean space between 2 waves */    (Module): Version 0.98d
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.117  2006/03/14 17:16:22  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): varevsij Comments added explaining the second
 FILE *ficgp,*ficresprob,*ficpop;    table of variances if popbased=1 .
 FILE *ficreseij;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   char filerese[FILENAMELENGTH];    (Module): Function pstamp added
  FILE  *ficresvij;    (Module): Version 0.98d
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.116  2006/03/06 10:29:27  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.115  2006/02/27 12:17:45  brouard
 #define FTOL 1.0e-10    (Module): One freematrix added in mlikeli! 0.98c
   
 #define NRANSI    Revision 1.114  2006/02/26 12:57:58  brouard
 #define ITMAX 200    (Module): Some improvements in processing parameter
     filename with strsep.
 #define TOL 2.0e-4  
     Revision 1.113  2006/02/24 14:20:24  brouard
 #define CGOLD 0.3819660    (Module): Memory leaks checks with valgrind and:
 #define ZEPS 1.0e-10    datafile was not closed, some imatrix were not freed and on matrix
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    allocation too.
   
 #define GOLD 1.618034    Revision 1.112  2006/01/30 09:55:26  brouard
 #define GLIMIT 100.0    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define TINY 1.0e-20  
     Revision 1.111  2006/01/25 20:38:18  brouard
 static double maxarg1,maxarg2;    (Module): Lots of cleaning and bugs added (Gompertz)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Comments can be added in data file. Missing date values
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    can be a simple dot '.'.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.110  2006/01/25 00:51:50  brouard
 #define rint(a) floor(a+0.5)    (Module): Lots of cleaning and bugs added (Gompertz)
   
 static double sqrarg;    Revision 1.109  2006/01/24 19:37:15  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Comments (lines starting with a #) are allowed in data.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.108  2006/01/19 18:05:42  lievre
 int imx;    Gnuplot problem appeared...
 int stepm;    To be fixed
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.107  2006/01/19 16:20:37  brouard
 int estepm;    Test existence of gnuplot in imach path
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.106  2006/01/19 13:24:36  brouard
 int m,nb;    Some cleaning and links added in html output
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.105  2006/01/05 20:23:19  lievre
 double **pmmij, ***probs, ***mobaverage;    *** empty log message ***
 double dateintmean=0;  
     Revision 1.104  2005/09/30 16:11:43  lievre
 double *weight;    (Module): sump fixed, loop imx fixed, and simplifications.
 int **s; /* Status */    (Module): If the status is missing at the last wave but we know
 double *agedc, **covar, idx;    that the person is alive, then we can code his/her status as -2
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double ftolhess; /* Tolerance for computing hessian */    the healthy state at last known wave). Version is 0.98
   
 /**************** split *************************/    Revision 1.103  2005/09/30 15:54:49  lievre
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
    char *s;                             /* pointer */    Revision 1.102  2004/09/15 17:31:30  brouard
    int  l1, l2;                         /* length counters */    Add the possibility to read data file including tab characters.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.101  2004/09/15 10:38:38  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Fix on curr_time
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.100  2004/07/12 18:29:06  brouard
 #else    Add version for Mac OS X. Just define UNIX in Makefile
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.99  2004/06/05 08:57:40  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    *** empty log message ***
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
       if ( getwd( dirc ) == NULL ) {    directly from the data i.e. without the need of knowing the health
 #else    state at each age, but using a Gompertz model: log u =a + b*age .
       extern char       *getcwd( );    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    cross-longitudinal survey is different from the mortality estimated
 #endif    from other sources like vital statistic data.
          return( GLOCK_ERROR_GETCWD );  
       }    The same imach parameter file can be used but the option for mle should be -3.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Agnès, who wrote this part of the code, tried to keep most of the
       s++;                              /* after this, the filename */    former routines in order to include the new code within the former code.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    The output is very simple: only an estimate of the intercept and of
       strcpy( name, s );                /* save file name */    the slope with 95% confident intervals.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Current limitations:
    }    A) Even if you enter covariates, i.e. with the
    l1 = strlen( dirc );                 /* length of directory */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #ifdef windows    B) There is no computation of Life Expectancy nor Life Table.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.97  2004/02/20 13:25:42  lievre
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Version 0.96d. Population forecasting command line is (temporarily)
 #endif    suppressed.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.96  2003/07/15 15:38:55  brouard
    strcpy(ext,s);                       /* save extension */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    l1= strlen( name);    rewritten within the same printf. Workaround: many printfs.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.95  2003/07/08 07:54:34  brouard
    finame[l1-l2]= 0;    * imach.c (Repository):
    return( 0 );                         /* we're done */    (Repository): Using imachwizard code to output a more meaningful covariance
 }    matrix (cov(a12,c31) instead of numbers.
   
     Revision 1.94  2003/06/27 13:00:02  brouard
 /******************************************/    Just cleaning
   
 void replace(char *s, char*t)    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   int i;    exist so I changed back to asctime which exists.
   int lg=20;    (Module): Version 0.96b
   i=0;  
   lg=strlen(t);    Revision 1.92  2003/06/25 16:30:45  brouard
   for(i=0; i<= lg; i++) {    (Module): On windows (cygwin) function asctime_r doesn't
     (s[i] = t[i]);    exist so I changed back to asctime which exists.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 int nbocc(char *s, char occ)    helps to forecast when convergence will be reached. Elapsed time
 {    is stamped in powell.  We created a new html file for the graphs
   int i,j=0;    concerning matrix of covariance. It has extension -cov.htm.
   int lg=20;  
   i=0;    Revision 1.90  2003/06/24 12:34:15  brouard
   lg=strlen(s);    (Module): Some bugs corrected for windows. Also, when
   for(i=0; i<= lg; i++) {    mle=-1 a template is output in file "or"mypar.txt with the design
   if  (s[i] == occ ) j++;    of the covariance matrix to be input.
   }  
   return j;    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 void cutv(char *u,char *v, char*t, char occ)    of the covariance matrix to be input.
 {  
   int i,lg,j,p=0;    Revision 1.88  2003/06/23 17:54:56  brouard
   i=0;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.87  2003/06/18 12:26:01  brouard
   }    Version 0.96
   
   lg=strlen(t);    Revision 1.86  2003/06/17 20:04:08  brouard
   for(j=0; j<p; j++) {    (Module): Change position of html and gnuplot routines and added
     (u[j] = t[j]);    routine fileappend.
   }  
      u[p]='\0';    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
    for(j=0; j<= lg; j++) {    current date of interview. It may happen when the death was just
     if (j>=(p+1))(v[j-p-1] = t[j]);    prior to the death. In this case, dh was negative and likelihood
   }    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /********************** nrerror ********************/    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 void nrerror(char error_text[])    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   fprintf(stderr,"ERREUR ...\n");    (Repository): No more line truncation errors.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
 /*********************** vector *******************/    place. It differs from routine "prevalence" which may be called
 double *vector(int nl, int nh)    many times. Probs is memory consuming and must be used with
 {    parcimony.
   double *v;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.83  2003/06/10 13:39:11  lievre
   return v-nl+NR_END;    *** empty log message ***
 }  
     Revision 1.82  2003/06/05 15:57:20  brouard
 /************************ free vector ******************/    Add log in  imach.c and  fullversion number is now printed.
 void free_vector(double*v, int nl, int nh)  
 {  */
   free((FREE_ARG)(v+nl-NR_END));  /*
 }     Interpolated Markov Chain
   
 /************************ivector *******************************/    Short summary of the programme:
 int *ivector(long nl,long nh)    
 {    This program computes Healthy Life Expectancies from
   int *v;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    first survey ("cross") where individuals from different ages are
   if (!v) nrerror("allocation failure in ivector");    interviewed on their health status or degree of disability (in the
   return v-nl+NR_END;    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /******************free ivector **************************/    computed from the time spent in each health state according to a
 void free_ivector(int *v, long nl, long nh)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   free((FREE_ARG)(v+nl-NR_END));    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /******************* imatrix *******************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int **imatrix(long nrl, long nrh, long ncl, long nch)    'age' is age and 'sex' is a covariate. If you want to have a more
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    you to do it.  More covariates you add, slower the
   int **m;    convergence.
    
   /* allocate pointers to rows */    The advantage of this computer programme, compared to a simple
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    multinomial logistic model, is clear when the delay between waves is not
   if (!m) nrerror("allocation failure 1 in matrix()");    identical for each individual. Also, if a individual missed an
   m += NR_END;    intermediate interview, the information is lost, but taken into
   m -= nrl;    account using an interpolation or extrapolation.  
    
      hPijx is the probability to be observed in state i at age x+h
   /* allocate rows and set pointers to them */    conditional to the observed state i at age x. The delay 'h' can be
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    split into an exact number (nh*stepm) of unobserved intermediate
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    states. This elementary transition (by month, quarter,
   m[nrl] += NR_END;    semester or year) is modelled as a multinomial logistic.  The hPx
   m[nrl] -= ncl;    matrix is simply the matrix product of nh*stepm elementary matrices
      and the contribution of each individual to the likelihood is simply
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    hPijx.
    
   /* return pointer to array of pointers to rows */    Also this programme outputs the covariance matrix of the parameters but also
   return m;    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /****************** free_imatrix *************************/             Institut national d'études démographiques, Paris.
 void free_imatrix(m,nrl,nrh,ncl,nch)    This software have been partly granted by Euro-REVES, a concerted action
       int **m;    from the European Union.
       long nch,ncl,nrh,nrl;    It is copyrighted identically to a GNU software product, ie programme and
      /* free an int matrix allocated by imatrix() */    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /******************* matrix *******************************/    **********************************************************************/
 double **matrix(long nrl, long nrh, long ncl, long nch)  /*
 {    main
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    read parameterfile
   double **m;    read datafile
     concatwav
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    freqsummary
   if (!m) nrerror("allocation failure 1 in matrix()");    if (mle >= 1)
   m += NR_END;      mlikeli
   m -= nrl;    print results files
     if mle==1 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));       computes hessian
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl] += NR_END;        begin-prev-date,...
   m[nrl] -= ncl;    open gnuplot file
     open html file
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    period (stable) prevalence
   return m;     for age prevalim()
 }    h Pij x
     variance of p varprob
 /*************************free matrix ************************/    forecasting if prevfcast==1 prevforecast call prevalence()
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    health expectancies
 {    Variance-covariance of DFLE
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    prevalence()
   free((FREE_ARG)(m+nrl-NR_END));     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /******************* ma3x *******************************/    total life expectancies
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Variance of period (stable) prevalence
 {   end
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  */
   double ***m;  
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");   
   m += NR_END;  #include <math.h>
   m -= nrl;  #include <stdio.h>
   #include <stdlib.h>
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <string.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <unistd.h>
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #include <limits.h>
   #include <sys/types.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <sys/stat.h>
   #include <errno.h>
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  extern int errno;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /* #include <sys/time.h> */
   m[nrl][ncl] -= nll;  #include <time.h>
   for (j=ncl+1; j<=nch; j++)  #include "timeval.h"
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /* #include <libintl.h> */
   for (i=nrl+1; i<=nrh; i++) {  /* #define _(String) gettext (String) */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define MAXLINE 256
       m[i][j]=m[i][j-1]+nlay;  
   }  #define GNUPLOTPROGRAM "gnuplot"
   return m;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /*************************free ma3x ************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /***************** f1dim *************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 extern int ncom;  #define NCOVMAX 20 /* Maximum number of covariates */
 extern double *pcom,*xicom;  #define MAXN 20000
 extern double (*nrfunc)(double []);  #define YEARM 12. /* Number of months per year */
    #define AGESUP 130
 double f1dim(double x)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   int j;  #ifdef UNIX
   double f;  #define DIRSEPARATOR '/'
   double *xt;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   xt=vector(1,ncom);  #else
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define DIRSEPARATOR '\\'
   f=(*nrfunc)(xt);  #define CHARSEPARATOR "\\"
   free_vector(xt,1,ncom);  #define ODIRSEPARATOR '/'
   return f;  #endif
 }  
   /* $Id$ */
 /*****************brent *************************/  /* $State$ */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  char version[]="Imach version 0.98l, October 2009, INED-EUROREVES-Institut de longevite ";
   int iter;  char fullversion[]="$Revision$ $Date$"; 
   double a,b,d,etemp;  char strstart[80];
   double fu,fv,fw,fx;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double ftemp;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int nvar=0, nforce=0; /* Number of variables, number of forces */
   double e=0.0;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
    int npar=NPARMAX;
   a=(ax < cx ? ax : cx);  int nlstate=2; /* Number of live states */
   b=(ax > cx ? ax : cx);  int ndeath=1; /* Number of dead states */
   x=w=v=bx;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   fw=fv=fx=(*f)(x);  int popbased=0;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  int *wav; /* Number of waves for this individuual 0 is possible */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int maxwav=0; /* Maxim number of waves */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     printf(".");fflush(stdout);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 #ifdef DEBUG  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);                     to the likelihood and the sum of weights (done by funcone)*/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int mle=1, weightopt=0;
 #endif  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       *xmin=x;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       return fx;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     }  double jmean=1; /* Mean space between 2 waves */
     ftemp=fu;  double **oldm, **newm, **savm; /* Working pointers to matrices */
     if (fabs(e) > tol1) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       r=(x-w)*(fx-fv);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       q=(x-v)*(fx-fw);  FILE *ficlog, *ficrespow;
       p=(x-v)*q-(x-w)*r;  int globpr=0; /* Global variable for printing or not */
       q=2.0*(q-r);  double fretone; /* Only one call to likelihood */
       if (q > 0.0) p = -p;  long ipmx=0; /* Number of contributions */
       q=fabs(q);  double sw; /* Sum of weights */
       etemp=e;  char filerespow[FILENAMELENGTH];
       e=d;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  FILE *ficresilk;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       else {  FILE *ficresprobmorprev;
         d=p/q;  FILE *fichtm, *fichtmcov; /* Html File */
         u=x+d;  FILE *ficreseij;
         if (u-a < tol2 || b-u < tol2)  char filerese[FILENAMELENGTH];
           d=SIGN(tol1,xm-x);  FILE *ficresstdeij;
       }  char fileresstde[FILENAMELENGTH];
     } else {  FILE *ficrescveij;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerescve[FILENAMELENGTH];
     }  FILE  *ficresvij;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char fileresv[FILENAMELENGTH];
     fu=(*f)(u);  FILE  *ficresvpl;
     if (fu <= fx) {  char fileresvpl[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  char title[MAXLINE];
       SHFT(v,w,x,u)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         } else {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
           if (u < x) a=u; else b=u;  char command[FILENAMELENGTH];
           if (fu <= fw || w == x) {  int  outcmd=0;
             v=w;  
             w=u;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
             fv=fw;  
             fw=fu;  char filelog[FILENAMELENGTH]; /* Log file */
           } else if (fu <= fv || v == x || v == w) {  char filerest[FILENAMELENGTH];
             v=u;  char fileregp[FILENAMELENGTH];
             fv=fu;  char popfile[FILENAMELENGTH];
           }  
         }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   }  
   nrerror("Too many iterations in brent");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   *xmin=x;  struct timezone tzp;
   return fx;  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /****************** mnbrak ***********************/  extern long time();
   char strcurr[80], strfor[80];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  char *endptr;
 {  long lval;
   double ulim,u,r,q, dum;  double dval;
   double fu;  
    #define NR_END 1
   *fa=(*func)(*ax);  #define FREE_ARG char*
   *fb=(*func)(*bx);  #define FTOL 1.0e-10
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  #define NRANSI 
       SHFT(dum,*fb,*fa,dum)  #define ITMAX 200 
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  #define TOL 2.0e-4 
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  #define CGOLD 0.3819660 
     r=(*bx-*ax)*(*fb-*fc);  #define ZEPS 1.0e-10 
     q=(*bx-*cx)*(*fb-*fa);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define GOLD 1.618034 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define GLIMIT 100.0 
     if ((*bx-u)*(u-*cx) > 0.0) {  #define TINY 1.0e-20 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  static double maxarg1,maxarg2;
       fu=(*func)(u);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       if (fu < *fc) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    
           SHFT(*fb,*fc,fu,(*func)(u))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
           }  #define rint(a) floor(a+0.5)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  static double sqrarg;
       fu=(*func)(u);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     } else {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       u=(*cx)+GOLD*(*cx-*bx);  int agegomp= AGEGOMP;
       fu=(*func)(u);  
     }  int imx; 
     SHFT(*ax,*bx,*cx,u)  int stepm=1;
       SHFT(*fa,*fb,*fc,fu)  /* Stepm, step in month: minimum step interpolation*/
       }  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /*************** linmin ************************/  
   int m,nb;
 int ncom;  long *num;
 double *pcom,*xicom;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double (*nrfunc)(double []);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  double *ageexmed,*agecens;
 {  double dateintmean=0;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  double *weight;
   double f1dim(double x);  int **s; /* Status */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double *agedc, **covar, idx;
               double *fc, double (*func)(double));  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int j;  double *lsurv, *lpop, *tpop;
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    double ftolhess; /* Tolerance for computing hessian */
   ncom=n;  
   pcom=vector(1,n);  /**************** split *************************/
   xicom=vector(1,n);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     pcom[j]=p[j];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     xicom[j]=xi[j];    */ 
   }    char  *ss;                            /* pointer */
   ax=0.0;    int   l1, l2;                         /* length counters */
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    l1 = strlen(path );                   /* length of path */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #ifdef DEBUG    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 #endif      strcpy( name, path );               /* we got the fullname name because no directory */
   for (j=1;j<=n;j++) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     xi[j] *= xmin;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     p[j] += xi[j];      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
   free_vector(xicom,1,n);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   free_vector(pcom,1,n);        return( GLOCK_ERROR_GETCWD );
 }      }
       /* got dirc from getcwd*/
 /*************** powell ************************/      printf(" DIRC = %s \n",dirc);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    } else {                              /* strip direcotry from path */
             double (*func)(double []))      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   void linmin(double p[], double xi[], int n, double *fret,      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
               double (*func)(double []));      strcpy( name, ss );         /* save file name */
   int i,ibig,j;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double del,t,*pt,*ptt,*xit;      dirc[l1-l2] = 0;                    /* add zero */
   double fp,fptt;      printf(" DIRC2 = %s \n",dirc);
   double *xits;    }
   pt=vector(1,n);    /* We add a separator at the end of dirc if not exists */
   ptt=vector(1,n);    l1 = strlen( dirc );                  /* length of directory */
   xit=vector(1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
   xits=vector(1,n);      dirc[l1] =  DIRSEPARATOR;
   *fret=(*func)(p);      dirc[l1+1] = 0; 
   for (j=1;j<=n;j++) pt[j]=p[j];      printf(" DIRC3 = %s \n",dirc);
   for (*iter=1;;++(*iter)) {    }
     fp=(*fret);    ss = strrchr( name, '.' );            /* find last / */
     ibig=0;    if (ss >0){
     del=0.0;      ss++;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      strcpy(ext,ss);                     /* save extension */
     for (i=1;i<=n;i++)      l1= strlen( name);
       printf(" %d %.12f",i, p[i]);      l2= strlen(ss)+1;
     printf("\n");      strncpy( finame, name, l1-l2);
     for (i=1;i<=n;i++) {      finame[l1-l2]= 0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    }
       fptt=(*fret);  
 #ifdef DEBUG    return( 0 );                          /* we're done */
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /******************************************/
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  void replace_back_to_slash(char *s, char*t)
         ibig=i;  {
       }    int i;
 #ifdef DEBUG    int lg=0;
       printf("%d %.12e",i,(*fret));    i=0;
       for (j=1;j<=n;j++) {    lg=strlen(t);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for(i=0; i<= lg; i++) {
         printf(" x(%d)=%.12e",j,xit[j]);      (s[i] = t[i]);
       }      if (t[i]== '\\') s[i]='/';
       for(j=1;j<=n;j++)    }
         printf(" p=%.12e",p[j]);  }
       printf("\n");  
 #endif  char *trimbb(char *out, char *in)
     }  { /* Trim multiple blanks in line */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    char *s;
 #ifdef DEBUG    s=out;
       int k[2],l;    while (*in != '\0'){
       k[0]=1;      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
       k[1]=-1;        in++;
       printf("Max: %.12e",(*func)(p));      }
       for (j=1;j<=n;j++)      *out++ = *in++;
         printf(" %.12e",p[j]);    }
       printf("\n");    *out='\0';
       for(l=0;l<=1;l++) {    return s;
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int nbocc(char *s, char occ)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    int i,j=0;
       }    int lg=20;
 #endif    i=0;
     lg=strlen(s);
     for(i=0; i<= lg; i++) {
       free_vector(xit,1,n);    if  (s[i] == occ ) j++;
       free_vector(xits,1,n);    }
       free_vector(ptt,1,n);    return j;
       free_vector(pt,1,n);  }
       return;  
     }  void cutv(char *u,char *v, char*t, char occ)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       ptt[j]=2.0*p[j]-pt[j];       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       xit[j]=p[j]-pt[j];       gives u="abcedf" and v="ghi2j" */
       pt[j]=p[j];    int i,lg,j,p=0;
     }    i=0;
     fptt=(*func)(ptt);    for(j=0; j<=strlen(t)-1; j++) {
     if (fptt < fp) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);    lg=strlen(t);
         for (j=1;j<=n;j++) {    for(j=0; j<p; j++) {
           xi[j][ibig]=xi[j][n];      (u[j] = t[j]);
           xi[j][n]=xit[j];    }
         }       u[p]='\0';
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);     for(j=0; j<= lg; j++) {
         for(j=1;j<=n;j++)      if (j>=(p+1))(v[j-p-1] = t[j]);
           printf(" %.12e",xit[j]);    }
         printf("\n");  }
 #endif  
       }  /********************** nrerror ********************/
     }  
   }  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 /**** Prevalence limit ****************/    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  /*********************** vector *******************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double *vector(int nl, int nh)
      matrix by transitions matrix until convergence is reached */  {
     double *v;
   int i, ii,j,k;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double min, max, maxmin, maxmax,sumnew=0.;    if (!v) nrerror("allocation failure in vector");
   double **matprod2();    return v-nl+NR_END;
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG)(v+nl-NR_END));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /************************ivector *******************************/
    cov[1]=1.;  int *ivector(long nl,long nh)
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int *v;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     newm=savm;    if (!v) nrerror("allocation failure in ivector");
     /* Covariates have to be included here again */    return v-nl+NR_END;
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /******************free ivector **************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void free_ivector(int *v, long nl, long nh)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  {
       }    free((FREE_ARG)(v+nl-NR_END));
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /************************lvector *******************************/
   long *lvector(long nl,long nh)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    long *v;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /******************free lvector **************************/
     for(j=1;j<=nlstate;j++){  void free_lvector(long *v, long nl, long nh)
       min=1.;  {
       max=0.;    free((FREE_ARG)(v+nl-NR_END));
       for(i=1; i<=nlstate; i++) {  }
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /******************* imatrix *******************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         max=FMAX(max,prlim[i][j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         min=FMIN(min,prlim[i][j]);  { 
       }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       maxmin=max-min;    int **m; 
       maxmax=FMAX(maxmax,maxmin);    
     }    /* allocate pointers to rows */ 
     if(maxmax < ftolpl){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       return prlim;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
   }    m -= nrl; 
 }    
     
 /*************** transition probabilities ***************/    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 {    m[nrl] += NR_END; 
   double s1, s2;    m[nrl] -= ncl; 
   /*double t34;*/    
   int i,j,j1, nc, ii, jj;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
     for(i=1; i<= nlstate; i++){    /* return pointer to array of pointers to rows */ 
     for(j=1; j<i;j++){    return m; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  } 
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /****************** free_imatrix *************************/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  void free_imatrix(m,nrl,nrh,ncl,nch)
       }        int **m;
       ps[i][j]=s2;        long nch,ncl,nrh,nrl; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/       /* free an int matrix allocated by imatrix() */ 
     }  { 
     for(j=i+1; j<=nlstate+ndeath;j++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG) (m+nrl-NR_END)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /******************* matrix *******************************/
       ps[i][j]=s2;  double **matrix(long nrl, long nrh, long ncl, long nch)
     }  {
   }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     /*ps[3][2]=1;*/    double **m;
   
   for(i=1; i<= nlstate; i++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      s1=0;    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=1; j<i; j++)    m += NR_END;
       s1+=exp(ps[i][j]);    m -= nrl;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     ps[i][i]=1./(s1+1.);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(j=1; j<i; j++)    m[nrl] += NR_END;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl] -= ncl;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    return m;
   } /* end i */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /*************************free matrix ************************/
       ps[ii][ii]=1;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }  {
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /******************* ma3x *******************************/
      printf("%lf ",ps[ii][jj]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    }  {
     printf("\n ");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if (!m) nrerror("allocation failure 1 in matrix()");
   goto end;*/    m += NR_END;
     return ps;    m -= nrl;
 }  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /**************** Product of 2 matrices ******************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m[nrl] -= ncl;
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      before: only the contents of out is modified. The function returns    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
      a pointer to pointers identical to out */    m[nrl][ncl] += NR_END;
   long i, j, k;    m[nrl][ncl] -= nll;
   for(i=nrl; i<= nrh; i++)    for (j=ncl+1; j<=nch; j++) 
     for(k=ncolol; k<=ncoloh; k++)      m[nrl][j]=m[nrl][j-1]+nlay;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    
         out[i][k] +=in[i][j]*b[j][k];    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   return out;      for (j=ncl+1; j<=nch; j++) 
 }        m[i][j]=m[i][j-1]+nlay;
     }
     return m; 
 /************* Higher Matrix Product ***************/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    */
 {  }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  /*************************free ma3x ************************/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  {
      (typically every 2 years instead of every month which is too big).    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      Model is determined by parameters x and covariates have to be    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      included manually here.    free((FREE_ARG)(m+nrl-NR_END));
   }
      */  
   /*************** function subdirf ***********/
   int i, j, d, h, k;  char *subdirf(char fileres[])
   double **out, cov[NCOVMAX];  {
   double **newm;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   /* Hstepm could be zero and should return the unit matrix */    strcat(tmpout,"/"); /* Add to the right */
   for (i=1;i<=nlstate+ndeath;i++)    strcat(tmpout,fileres);
     for (j=1;j<=nlstate+ndeath;j++){    return tmpout;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  }
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  /*************** function subdirf2 ***********/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char *subdirf2(char fileres[], char *preop)
   for(h=1; h <=nhstepm; h++){  {
     for(d=1; d <=hstepm; d++){    
       newm=savm;    /* Caution optionfilefiname is hidden */
       /* Covariates have to be included here again */    strcpy(tmpout,optionfilefiname);
       cov[1]=1.;    strcat(tmpout,"/");
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    strcat(tmpout,preop);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,fileres);
       for (k=1; k<=cptcovage;k++)    return tmpout;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    /* Caution optionfilefiname is hidden */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    strcpy(tmpout,optionfilefiname);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,"/");
       savm=oldm;    strcat(tmpout,preop);
       oldm=newm;    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
     for(i=1; i<=nlstate+ndeath; i++)    return tmpout;
       for(j=1;j<=nlstate+ndeath;j++) {  }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /***************** f1dim *************************/
          */  extern int ncom; 
       }  extern double *pcom,*xicom;
   } /* end h */  extern double (*nrfunc)(double []); 
   return po;   
 }  double f1dim(double x) 
   { 
     int j; 
 /*************** log-likelihood *************/    double f;
 double func( double *x)    double *xt; 
 {   
   int i, ii, j, k, mi, d, kk;    xt=vector(1,ncom); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double **out;    f=(*nrfunc)(xt); 
   double sw; /* Sum of weights */    free_vector(xt,1,ncom); 
   double lli; /* Individual log likelihood */    return f; 
   long ipmx;  } 
   /*extern weight */  
   /* We are differentiating ll according to initial status */  /*****************brent *************************/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /*for(i=1;i<imx;i++)  { 
     printf(" %d\n",s[4][i]);    int iter; 
   */    double a,b,d,etemp;
   cov[1]=1.;    double fu,fv,fw,fx;
     double ftemp;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double e=0.0; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];   
     for(mi=1; mi<= wav[i]-1; mi++){    a=(ax < cx ? ax : cx); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    b=(ax > cx ? ax : cx); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    x=w=v=bx; 
       for(d=0; d<dh[mi][i]; d++){    fw=fv=fx=(*f)(x); 
         newm=savm;    for (iter=1;iter<=ITMAX;iter++) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      xm=0.5*(a+b); 
         for (kk=1; kk<=cptcovage;kk++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         }      printf(".");fflush(stdout);
              fprintf(ficlog,".");fflush(ficlog);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         savm=oldm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         oldm=newm;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
          #endif
              if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       } /* end mult */        *xmin=x; 
              return fx; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      ftemp=fu;
       ipmx +=1;      if (fabs(e) > tol1) { 
       sw += weight[i];        r=(x-w)*(fx-fv); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        q=(x-v)*(fx-fw); 
     } /* end of wave */        p=(x-v)*q-(x-w)*r; 
   } /* end of individual */        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        q=fabs(q); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        etemp=e; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        e=d; 
   return -l;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
           d=p/q; 
 /*********** Maximum Likelihood Estimation ***************/          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            d=SIGN(tol1,xm-x); 
 {        } 
   int i,j, iter;      } else { 
   double **xi,*delti;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double fret;      } 
   xi=matrix(1,npar,1,npar);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for (i=1;i<=npar;i++)      fu=(*f)(u); 
     for (j=1;j<=npar;j++)      if (fu <= fx) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);        if (u >= x) a=x; else b=x; 
   printf("Powell\n");        SHFT(v,w,x,u) 
   powell(p,xi,npar,ftol,&iter,&fret,func);          SHFT(fv,fw,fx,fu) 
           } else { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            if (u < x) a=u; else b=u; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            if (fu <= fw || w == x) { 
               v=w; 
 }              w=u; 
               fv=fw; 
 /**** Computes Hessian and covariance matrix ***/              fw=fu; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            } else if (fu <= fv || v == x || v == w) { 
 {              v=u; 
   double  **a,**y,*x,pd;              fv=fu; 
   double **hess;            } 
   int i, j,jk;          } 
   int *indx;    } 
     nrerror("Too many iterations in brent"); 
   double hessii(double p[], double delta, int theta, double delti[]);    *xmin=x; 
   double hessij(double p[], double delti[], int i, int j);    return fx; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /****************** mnbrak ***********************/
   hess=matrix(1,npar,1,npar);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   printf("\nCalculation of the hessian matrix. Wait...\n");              double (*func)(double)) 
   for (i=1;i<=npar;i++){  { 
     printf("%d",i);fflush(stdout);    double ulim,u,r,q, dum;
     hess[i][i]=hessii(p,ftolhess,i,delti);    double fu; 
     /*printf(" %f ",p[i]);*/   
     /*printf(" %lf ",hess[i][i]);*/    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
      if (*fb > *fa) { 
   for (i=1;i<=npar;i++) {      SHFT(dum,*ax,*bx,dum) 
     for (j=1;j<=npar;j++)  {        SHFT(dum,*fb,*fa,dum) 
       if (j>i) {        } 
         printf(".%d%d",i,j);fflush(stdout);    *cx=(*bx)+GOLD*(*bx-*ax); 
         hess[i][j]=hessij(p,delti,i,j);    *fc=(*func)(*cx); 
         hess[j][i]=hess[i][j];        while (*fb > *fc) { 
         /*printf(" %lf ",hess[i][j]);*/      r=(*bx-*ax)*(*fb-*fc); 
       }      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   printf("\n");      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fu=(*func)(u); 
        } else if ((*cx-u)*(u-ulim) > 0.0) { 
   a=matrix(1,npar,1,npar);        fu=(*func)(u); 
   y=matrix(1,npar,1,npar);        if (fu < *fc) { 
   x=vector(1,npar);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   indx=ivector(1,npar);            SHFT(*fb,*fc,fu,(*func)(u)) 
   for (i=1;i<=npar;i++)            } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   ludcmp(a,npar,indx,&pd);        u=ulim; 
         fu=(*func)(u); 
   for (j=1;j<=npar;j++) {      } else { 
     for (i=1;i<=npar;i++) x[i]=0;        u=(*cx)+GOLD*(*cx-*bx); 
     x[j]=1;        fu=(*func)(u); 
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){      SHFT(*ax,*bx,*cx,u) 
       matcov[i][j]=x[i];        SHFT(*fa,*fb,*fc,fu) 
     }        } 
   }  } 
   
   printf("\n#Hessian matrix#\n");  /*************** linmin ************************/
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  int ncom; 
       printf("%.3e ",hess[i][j]);  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
     printf("\n");   
   }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   /* Recompute Inverse */    double brent(double ax, double bx, double cx, 
   for (i=1;i<=npar;i++)                 double (*f)(double), double tol, double *xmin); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double f1dim(double x); 
   ludcmp(a,npar,indx,&pd);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
   /*  printf("\n#Hessian matrix recomputed#\n");    int j; 
     double xx,xmin,bx,ax; 
   for (j=1;j<=npar;j++) {    double fx,fb,fa;
     for (i=1;i<=npar;i++) x[i]=0;   
     x[j]=1;    ncom=n; 
     lubksb(a,npar,indx,x);    pcom=vector(1,n); 
     for (i=1;i<=npar;i++){    xicom=vector(1,n); 
       y[i][j]=x[i];    nrfunc=func; 
       printf("%.3e ",y[i][j]);    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
     printf("\n");      xicom[j]=xi[j]; 
   }    } 
   */    ax=0.0; 
     xx=1.0; 
   free_matrix(a,1,npar,1,npar);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   free_matrix(y,1,npar,1,npar);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   free_vector(x,1,npar);  #ifdef DEBUG
   free_ivector(indx,1,npar);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   free_matrix(hess,1,npar,1,npar);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
     for (j=1;j<=n;j++) { 
 }      xi[j] *= xmin; 
       p[j] += xi[j]; 
 /*************** hessian matrix ****************/    } 
 double hessii( double x[], double delta, int theta, double delti[])    free_vector(xicom,1,n); 
 {    free_vector(pcom,1,n); 
   int i;  } 
   int l=1, lmax=20;  
   double k1,k2;  char *asc_diff_time(long time_sec, char ascdiff[])
   double p2[NPARMAX+1];  {
   double res;    long sec_left, days, hours, minutes;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    days = (time_sec) / (60*60*24);
   double fx;    sec_left = (time_sec) % (60*60*24);
   int k=0,kmax=10;    hours = (sec_left) / (60*60) ;
   double l1;    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   fx=func(x);    sec_left = (sec_left) % (60);
   for (i=1;i<=npar;i++) p2[i]=x[i];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for(l=0 ; l <=lmax; l++){    return ascdiff;
     l1=pow(10,l);  }
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  /*************** powell ************************/
       delt = delta*(l1*k);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       p2[theta]=x[theta] +delt;              double (*func)(double [])) 
       k1=func(p2)-fx;  { 
       p2[theta]=x[theta]-delt;    void linmin(double p[], double xi[], int n, double *fret, 
       k2=func(p2)-fx;                double (*func)(double [])); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    int i,ibig,j; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double del,t,*pt,*ptt,*xit;
          double fp,fptt;
 #ifdef DEBUG    double *xits;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    int niterf, itmp;
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    pt=vector(1,n); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    ptt=vector(1,n); 
         k=kmax;    xit=vector(1,n); 
       }    xits=vector(1,n); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    *fret=(*func)(p); 
         k=kmax; l=lmax*10.;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      fp=(*fret); 
         delts=delt;      ibig=0; 
       }      del=0.0; 
     }      last_time=curr_time;
   }      (void) gettimeofday(&curr_time,&tzp);
   delti[theta]=delts;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   return res;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
    /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 double hessij( double x[], double delti[], int thetai,int thetaj)        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   int i;      }
   int l=1, l1, lmax=20;      printf("\n");
   double k1,k2,k3,k4,res,fx;      fprintf(ficlog,"\n");
   double p2[NPARMAX+1];      fprintf(ficrespow,"\n");fflush(ficrespow);
   int k;      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   fx=func(x);        strcpy(strcurr,asctime(&tm));
   for (k=1; k<=2; k++) {  /*       asctime_r(&tm,strcurr); */
     for (i=1;i<=npar;i++) p2[i]=x[i];        forecast_time=curr_time; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        itmp = strlen(strcurr);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     k1=func(p2)-fx;          strcurr[itmp-1]='\0';
          printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(niterf=10;niterf<=30;niterf+=10){
     k2=func(p2)-fx;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*      asctime_r(&tmf,strfor); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          strcpy(strfor,asctime(&tmf));
     k3=func(p2)-fx;          itmp = strlen(strfor);
            if(strfor[itmp-1]=='\n')
     p2[thetai]=x[thetai]-delti[thetai]/k;          strfor[itmp-1]='\0';
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     k4=func(p2)-fx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG      }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for (i=1;i<=n;i++) { 
 #endif        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   }        fptt=(*fret); 
   return res;  #ifdef DEBUG
 }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 /************** Inverse of matrix **************/  #endif
 void ludcmp(double **a, int n, int *indx, double *d)        printf("%d",i);fflush(stdout);
 {        fprintf(ficlog,"%d",i);fflush(ficlog);
   int i,imax,j,k;        linmin(p,xit,n,fret,func); 
   double big,dum,sum,temp;        if (fabs(fptt-(*fret)) > del) { 
   double *vv;          del=fabs(fptt-(*fret)); 
            ibig=i; 
   vv=vector(1,n);        } 
   *d=1.0;  #ifdef DEBUG
   for (i=1;i<=n;i++) {        printf("%d %.12e",i,(*fret));
     big=0.0;        fprintf(ficlog,"%d %.12e",i,(*fret));
     for (j=1;j<=n;j++)        for (j=1;j<=n;j++) {
       if ((temp=fabs(a[i][j])) > big) big=temp;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          printf(" x(%d)=%.12e",j,xit[j]);
     vv[i]=1.0/big;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   }        }
   for (j=1;j<=n;j++) {        for(j=1;j<=n;j++) {
     for (i=1;i<j;i++) {          printf(" p=%.12e",p[j]);
       sum=a[i][j];          fprintf(ficlog," p=%.12e",p[j]);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;        printf("\n");
     }        fprintf(ficlog,"\n");
     big=0.0;  #endif
     for (i=j;i<=n;i++) {      } 
       sum=a[i][j];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for (k=1;k<j;k++)  #ifdef DEBUG
         sum -= a[i][k]*a[k][j];        int k[2],l;
       a[i][j]=sum;        k[0]=1;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        k[1]=-1;
         big=dum;        printf("Max: %.12e",(*func)(p));
         imax=i;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       }        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
     if (j != imax) {          fprintf(ficlog," %.12e",p[j]);
       for (k=1;k<=n;k++) {        }
         dum=a[imax][k];        printf("\n");
         a[imax][k]=a[j][k];        fprintf(ficlog,"\n");
         a[j][k]=dum;        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
       *d = -(*d);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       vv[imax]=vv[j];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     indx[j]=imax;          }
     if (a[j][j] == 0.0) a[j][j]=TINY;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     if (j != n) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       dum=1.0/(a[j][j]);        }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  #endif
     }  
   }  
   free_vector(vv,1,n);  /* Doesn't work */        free_vector(xit,1,n); 
 ;        free_vector(xits,1,n); 
 }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
 void lubksb(double **a, int n, int *indx, double b[])        return; 
 {      } 
   int i,ii=0,ip,j;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double sum;      for (j=1;j<=n;j++) { 
          ptt[j]=2.0*p[j]-pt[j]; 
   for (i=1;i<=n;i++) {        xit[j]=p[j]-pt[j]; 
     ip=indx[i];        pt[j]=p[j]; 
     sum=b[ip];      } 
     b[ip]=b[i];      fptt=(*func)(ptt); 
     if (ii)      if (fptt < fp) { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     else if (sum) ii=i;        if (t < 0.0) { 
     b[i]=sum;          linmin(p,xit,n,fret,func); 
   }          for (j=1;j<=n;j++) { 
   for (i=n;i>=1;i--) {            xi[j][ibig]=xi[j][n]; 
     sum=b[i];            xi[j][n]=xit[j]; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          }
     b[i]=sum/a[i][i];  #ifdef DEBUG
   }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 /************ Frequencies ********************/            printf(" %.12e",xit[j]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            fprintf(ficlog," %.12e",xit[j]);
 {  /* Some frequencies */          }
            printf("\n");
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          fprintf(ficlog,"\n");
   double ***freq; /* Frequencies */  #endif
   double *pp;        }
   double pos, k2, dateintsum=0,k2cpt=0;      } 
   FILE *ficresp;    } 
   char fileresp[FILENAMELENGTH];  } 
    
   pp=vector(1,nlstate);  /**** Prevalence limit (stable or period prevalence)  ****************/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   strcat(fileresp,fileres);  {
   if((ficresp=fopen(fileresp,"w"))==NULL) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     printf("Problem with prevalence resultfile: %s\n", fileresp);       matrix by transitions matrix until convergence is reached */
     exit(0);  
   }    int i, ii,j,k;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double min, max, maxmin, maxmax,sumnew=0.;
   j1=0;    double **matprod2();
      double **out, cov[NCOVMAX+1], **pmij();
   j=cptcoveff;    double **newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double agefin, delaymax=50 ; /* Max number of years to converge */
    
   for(k1=1; k1<=j;k1++){    for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i1=1; i1<=ncodemax[k1];i1++){      for (j=1;j<=nlstate+ndeath;j++){
       j1++;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      }
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)       cov[1]=1.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)     
           for(m=agemin; m <= agemax+3; m++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             freq[i][jk][m]=0;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
            newm=savm;
       dateintsum=0;      /* Covariates have to be included here again */
       k2cpt=0;       cov[2]=agefin;
       for (i=1; i<=imx; i++) {    
         bool=1;        for (k=1; k<=cptcovn;k++) {
         if  (cptcovn>0) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           for (z1=1; z1<=cptcoveff; z1++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        }
               bool=0;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }        for (k=1; k<=cptcovprod;k++)
         if (bool==1) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      savm=oldm;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      oldm=newm;
               }      maxmax=0.;
                    for(j=1;j<=nlstate;j++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        min=1.;
                 dateintsum=dateintsum+k2;        max=0.;
                 k2cpt++;        for(i=1; i<=nlstate; i++) {
               }          sumnew=0;
             }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           }          prlim[i][j]= newm[i][j]/(1-sumnew);
         }          max=FMAX(max,prlim[i][j]);
       }          min=FMIN(min,prlim[i][j]);
                }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
       if  (cptcovn>0) {      }
         fprintf(ficresp, "\n#********** Variable ");      if(maxmax < ftolpl){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        return prlim;
         fprintf(ficresp, "**********\n#");      }
       }    }
       for(i=1; i<=nlstate;i++)  }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");  /*************** transition probabilities ***************/ 
        
       for(i=(int)agemin; i <= (int)agemax+3; i++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         if(i==(int)agemax+3)  {
           printf("Total");    double s1, s2;
         else    /*double t34;*/
           printf("Age %d", i);    int i,j,j1, nc, ii, jj;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for(i=1; i<= nlstate; i++){
             pp[jk] += freq[jk][m][i];        for(j=1; j<i;j++){
         }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         for(jk=1; jk <=nlstate ; jk++){            /*s2 += param[i][j][nc]*cov[nc];*/
           for(m=-1, pos=0; m <=0 ; m++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
             pos += freq[jk][m][i];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           if(pp[jk]>=1.e-10)          }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          ps[i][j]=s2;
           else  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        }
         }        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         for(jk=1; jk <=nlstate ; jk++){            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
             pp[jk] += freq[jk][m][i];          }
         }          ps[i][j]=s2;
         }
         for(jk=1,pos=0; jk <=nlstate ; jk++)      }
           pos += pp[jk];      /*ps[3][2]=1;*/
         for(jk=1; jk <=nlstate ; jk++){      
           if(pos>=1.e-5)      for(i=1; i<= nlstate; i++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        s1=0;
           else        for(j=1; j<i; j++){
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          s1+=exp(ps[i][j]);
           if( i <= (int) agemax){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             if(pos>=1.e-5){        }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for(j=i+1; j<=nlstate+ndeath; j++){
               probs[i][jk][j1]= pp[jk]/pos;          s1+=exp(ps[i][j]);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             }        }
             else        ps[i][i]=1./(s1+1.);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for(j=1; j<i; j++)
           }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         }        for(j=i+1; j<=nlstate+ndeath; j++)
                  ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(jk=-1; jk <=nlstate+ndeath; jk++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           for(m=-1; m <=nlstate+ndeath; m++)      } /* end i */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      
         if(i <= (int) agemax)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           fprintf(ficresp,"\n");        for(jj=1; jj<= nlstate+ndeath; jj++){
         printf("\n");          ps[ii][jj]=0;
       }          ps[ii][ii]=1;
     }        }
   }      }
   dateintmean=dateintsum/k2cpt;      
    
   fclose(ficresp);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   free_vector(pp,1,nlstate);  /*         printf("ddd %lf ",ps[ii][jj]); */
    /*       } */
   /* End of Freq */  /*       printf("\n "); */
 }  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
 /************ Prevalence ********************/         /*
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
 {  /* Some frequencies */        goto end;*/
        return ps;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp;  /**************** Product of 2 matrices ******************/
   double pos, k2;  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* in, b, out are matrice of pointers which should have been initialized 
   j1=0;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
   j=cptcoveff;    long i, j, k;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for(i=nrl; i<= nrh; i++)
        for(k=ncolol; k<=ncoloh; k++)
  for(k1=1; k1<=j;k1++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for(i1=1; i1<=ncodemax[k1];i1++){          out[i][k] +=in[i][j]*b[j][k];
       j1++;  
      return out;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  /************* Higher Matrix Product ***************/
        
       for (i=1; i<=imx; i++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         bool=1;  {
         if  (cptcovn>0) {    /* Computes the transition matrix starting at age 'age' over 
           for (z1=1; z1<=cptcoveff; z1++)       'nhstepm*hstepm*stepm' months (i.e. until
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
               bool=0;       nhstepm*hstepm matrices. 
         }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         if (bool==1) {       (typically every 2 years instead of every month which is too big 
           for(m=firstpass; m<=lastpass; m++){       for the memory).
             k2=anint[m][i]+(mint[m][i]/12.);       Model is determined by parameters x and covariates have to be 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       included manually here. 
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;       */
               if (m<lastpass)  
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    int i, j, d, h, k;
               else    double **out, cov[NCOVMAX+1];
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double **newm;
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
             }    /* Hstepm could be zero and should return the unit matrix */
           }    for (i=1;i<=nlstate+ndeath;i++)
         }      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         for(i=(int)agemin; i <= (int)agemax+3; i++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){      }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               pp[jk] += freq[jk][m][i];    for(h=1; h <=nhstepm; h++){
           }      for(d=1; d <=hstepm; d++){
           for(jk=1; jk <=nlstate ; jk++){        newm=savm;
             for(m=-1, pos=0; m <=0 ; m++)        /* Covariates have to be included here again */
             pos += freq[jk][m][i];        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                for (k=1; k<=cptcovn;k++) 
          for(jk=1; jk <=nlstate ; jk++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovage;k++)
              pp[jk] += freq[jk][m][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          }        for (k=1; k<=cptcovprod;k++)
                    cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
   
          for(jk=1; jk <=nlstate ; jk++){                  /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
            if( i <= (int) agemax){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
              if(pos>=1.e-5){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                probs[i][jk][j1]= pp[jk]/pos;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
              }        savm=oldm;
            }        oldm=newm;
          }      }
                for(i=1; i<=nlstate+ndeath; i++)
         }        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
   }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
        /*printf("h=%d ",h);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    } /* end h */
   free_vector(pp,1,nlstate);  /*     printf("\n H=%d \n",h); */
      return po;
 }  /* End of Freq */  }
   
 /************* Waves Concatenation ***************/  
   /*************** log-likelihood *************/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  double func( double *x)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int i, ii, j, k, mi, d, kk;
      Death is a valid wave (if date is known).    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double **out;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double sw; /* Sum of weights */
      and mw[mi+1][i]. dh depends on stepm.    double lli; /* Individual log likelihood */
      */    int s1, s2;
     double bbh, survp;
   int i, mi, m;    long ipmx;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /*extern weight */
      double sum=0., jmean=0.;*/    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int j, k=0,jk, ju, jl;    /*for(i=1;i<imx;i++) 
   double sum=0.;      printf(" %d\n",s[4][i]);
   jmin=1e+5;    */
   jmax=-1;    cov[1]=1.;
   jmean=0.;  
   for(i=1; i<=imx; i++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
     mi=0;  
     m=firstpass;    if(mle==1){
     while(s[m][i] <= nlstate){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(s[m][i]>=1)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         mw[++mi][i]=m;        for(mi=1; mi<= wav[i]-1; mi++){
       if(m >=lastpass)          for (ii=1;ii<=nlstate+ndeath;ii++)
         break;            for (j=1;j<=nlstate+ndeath;j++){
       else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         m++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }/* end while */            }
     if (s[m][i] > nlstate){          for(d=0; d<dh[mi][i]; d++){
       mi++;     /* Death is another wave */            newm=savm;
       /* if(mi==0)  never been interviewed correctly before death */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          /* Only death is a correct wave */            for (kk=1; kk<=cptcovage;kk++) {
       mw[mi][i]=m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     wav[i]=mi;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if(mi==0)            savm=oldm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            oldm=newm;
   }          } /* end mult */
         
   for(i=1; i<=imx; i++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for(mi=1; mi<wav[i];mi++){          /* But now since version 0.9 we anticipate for bias at large stepm.
       if (stepm <=0)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         dh[mi][i]=1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       else{           * the nearest (and in case of equal distance, to the lowest) interval but now
         if (s[mw[mi+1][i]][i] > nlstate) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           if (agedc[i] < 2*AGESUP) {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           * probability in order to take into account the bias as a fraction of the way
           if(j==0) j=1;  /* Survives at least one month after exam */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           k=k+1;           * -stepm/2 to stepm/2 .
           if (j >= jmax) jmax=j;           * For stepm=1 the results are the same as for previous versions of Imach.
           if (j <= jmin) jmin=j;           * For stepm > 1 the results are less biased than in previous versions. 
           sum=sum+j;           */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         else{          /* bias bh is positive if real duration
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));           * is higher than the multiple of stepm and negative otherwise.
           k=k+1;           */
           if (j >= jmax) jmax=j;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           else if (j <= jmin)jmin=j;          if( s2 > nlstate){ 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            /* i.e. if s2 is a death state and if the date of death is known 
           sum=sum+j;               then the contribution to the likelihood is the probability to 
         }               die between last step unit time and current  step unit time, 
         jk= j/stepm;               which is also equal to probability to die before dh 
         jl= j -jk*stepm;               minus probability to die before dh-stepm . 
         ju= j -(jk+1)*stepm;               In version up to 0.92 likelihood was computed
         if(jl <= -ju)          as if date of death was unknown. Death was treated as any other
           dh[mi][i]=jk;          health state: the date of the interview describes the actual state
         else          and not the date of a change in health state. The former idea was
           dh[mi][i]=jk+1;          to consider that at each interview the state was recorded
         if(dh[mi][i]==0)          (healthy, disable or death) and IMaCh was corrected; but when we
           dh[mi][i]=1; /* At least one step */          introduced the exact date of death then we should have modified
       }          the contribution of an exact death to the likelihood. This new
     }          contribution is smaller and very dependent of the step unit
   }          stepm. It is no more the probability to die between last interview
   jmean=sum/k;          and month of death but the probability to survive from last
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          interview up to one month before death multiplied by the
  }          probability to die within a month. Thanks to Chris
 /*********** Tricode ****************************/          Jackson for correcting this bug.  Former versions increased
 void tricode(int *Tvar, int **nbcode, int imx)          mortality artificially. The bad side is that we add another loop
 {          which slows down the processing. The difference can be up to 10%
   int Ndum[20],ij=1, k, j, i;          lower mortality.
   int cptcode=0;            */
   cptcoveff=0;            lli=log(out[s1][s2] - savm[s1][s2]);
    
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for (i=1; i<=imx; i++) {            /*survp += out[s1][j]; */
       ij=(int)(covar[Tvar[j]][i]);            lli= log(survp);
       Ndum[ij]++;          }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          
       if (ij > cptcode) cptcode=ij;          else if  (s2==-4) { 
     }            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for (i=0; i<=cptcode; i++) {            lli= log(survp); 
       if(Ndum[i]!=0) ncodemax[j]++;          } 
     }  
     ij=1;          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for (i=1; i<=ncodemax[j]; i++) {            lli= log(survp); 
       for (k=0; k<=19; k++) {          } 
         if (Ndum[k] != 0) {          
           nbcode[Tvar[j]][ij]=k;          else{
                      lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           ij++;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         }          } 
         if (ij > ncodemax[j]) break;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       }            /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }            ipmx +=1;
           sw += weight[i];
  for (k=0; k<19; k++) Ndum[k]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
  for (i=1; i<=ncovmodel-2; i++) {      } /* end of individual */
       ij=Tvar[i];    }  else if(mle==2){
       Ndum[ij]++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
  for (i=1; i<=10; i++) {            for (j=1;j<=nlstate+ndeath;j++){
    if((Ndum[i]!=0) && (i<=ncovcol)){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      ij++;            }
    }          for(d=0; d<=dh[mi][i]; d++){
  }            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     cptcoveff=ij-1;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /*********** Health Expectancies ****************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            savm=oldm;
             oldm=newm;
 {          } /* end mult */
   /* Health expectancies */        
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          s1=s[mw[mi][i]][i];
   double age, agelim, hf;          s2=s[mw[mi+1][i]][i];
   double ***p3mat,***varhe;          bbh=(double)bh[mi][i]/(double)stepm; 
   double **dnewm,**doldm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double *xp;          ipmx +=1;
   double **gp, **gm;          sw += weight[i];
   double ***gradg, ***trgradg;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int theta;        } /* end of wave */
       } /* end of individual */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    }  else if(mle==3){  /* exponential inter-extrapolation */
   xp=vector(1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   dnewm=matrix(1,nlstate*2,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   doldm=matrix(1,nlstate*2,1,nlstate*2);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"# Health expectancies\n");            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficreseij,"# Age");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)            }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          for(d=0; d<dh[mi][i]; d++){
   fprintf(ficreseij,"\n");            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if(estepm < stepm){            for (kk=1; kk<=cptcovage;kk++) {
     printf ("Problem %d lower than %d\n",estepm, stepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   else  hstepm=estepm;              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* We compute the life expectancy from trapezoids spaced every estepm months                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * This is mainly to measure the difference between two models: for example            savm=oldm;
    * if stepm=24 months pijx are given only every 2 years and by summing them            oldm=newm;
    * we are calculating an estimate of the Life Expectancy assuming a linear          } /* end mult */
    * progression inbetween and thus overestimating or underestimating according        
    * to the curvature of the survival function. If, for the same date, we          s1=s[mw[mi][i]][i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          s2=s[mw[mi+1][i]][i];
    * to compare the new estimate of Life expectancy with the same linear          bbh=(double)bh[mi][i]/(double)stepm; 
    * hypothesis. A more precise result, taking into account a more precise          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
    * curvature will be obtained if estepm is as small as stepm. */          ipmx +=1;
           sw += weight[i];
   /* For example we decided to compute the life expectancy with the smallest unit */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        } /* end of wave */
      nhstepm is the number of hstepm from age to agelim      } /* end of individual */
      nstepm is the number of stepm from age to agelin.    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      Look at hpijx to understand the reason of that which relies in memory size      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      and note for a fixed period like estepm months */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for(mi=1; mi<= wav[i]-1; mi++){
      survival function given by stepm (the optimization length). Unfortunately it          for (ii=1;ii<=nlstate+ndeath;ii++)
      means that if the survival funtion is printed only each two years of age and if            for (j=1;j<=nlstate+ndeath;j++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      results. So we changed our mind and took the option of the best precision.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   agelim=AGESUP;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (kk=1; kk<=cptcovage;kk++) {
     /* nhstepm age range expressed in number of stepm */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          
     /* if (stepm >= YEARM) hstepm=1;*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            oldm=newm;
     gp=matrix(0,nhstepm,1,nlstate*2);          } /* end mult */
     gm=matrix(0,nhstepm,1,nlstate*2);        
           s1=s[mw[mi][i]][i];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          s2=s[mw[mi+1][i]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          if( s2 > nlstate){ 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              lli=log(out[s1][s2] - savm[s1][s2]);
            }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }
           ipmx +=1;
     /* Computing Variances of health expectancies */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      for(theta=1; theta <=npar; theta++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++){        } /* end of wave */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end of individual */
       }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       cptj=0;        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1; i<=nlstate; i++){            for (j=1;j<=nlstate+ndeath;j++){
           cptj=cptj+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            }
           }          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++)            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       cptj=0;            savm=oldm;
       for(j=1; j<= nlstate; j++){            oldm=newm;
         for(i=1;i<=nlstate;i++){          } /* end mult */
           cptj=cptj+1;        
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          s1=s[mw[mi][i]][i];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          s2=s[mw[mi+1][i]][i];
           }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
       }          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
       for(j=1; j<= nlstate*2; j++)      } /* end of individual */
         for(h=0; h<=nhstepm-1; h++){    } /* End of if */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      }    return -l;
      }
 /* End theta */  
   /*************** log-likelihood *************/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  double funcone( double *x)
   {
      for(h=0; h<=nhstepm-1; h++)    /* Same as likeli but slower because of a lot of printf and if */
       for(j=1; j<=nlstate*2;j++)    int i, ii, j, k, mi, d, kk;
         for(theta=1; theta <=npar; theta++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         trgradg[h][j][theta]=gradg[h][theta][j];    double **out;
     double lli; /* Individual log likelihood */
     double llt;
      for(i=1;i<=nlstate*2;i++)    int s1, s2;
       for(j=1;j<=nlstate*2;j++)    double bbh, survp;
         varhe[i][j][(int)age] =0.;    /*extern weight */
     /* We are differentiating ll according to initial status */
     for(h=0;h<=nhstepm-1;h++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(k=0;k<=nhstepm-1;k++){    /*for(i=1;i<imx;i++) 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      printf(" %d\n",s[4][i]);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    */
         for(i=1;i<=nlstate*2;i++)    cov[1]=1.;
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
     }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
     /* Computing expectancies */        for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)          for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          }
                  for(d=0; d<dh[mi][i]; d++){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficreseij,"%3.0f",age );          }
     cptj=0;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate;j++){          savm=oldm;
         cptj++;          oldm=newm;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        } /* end mult */
       }        
     fprintf(ficreseij,"\n");        s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     free_matrix(gm,0,nhstepm,1,nlstate*2);        bbh=(double)bh[mi][i]/(double)stepm; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);        /* bias is positive if real duration
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);         * is higher than the multiple of stepm and negative otherwise.
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);         */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }          lli=log(out[s1][s2] - savm[s1][s2]);
   free_vector(xp,1,npar);        } else if  (s2==-2) {
   free_matrix(dnewm,1,nlstate*2,1,npar);          for (j=1,survp=0. ; j<=nlstate; j++) 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          lli= log(survp);
 }        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /************ Variance ******************/        } else if(mle==2){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {        } else if(mle==3){  /* exponential inter-extrapolation */
   /* Variance of health expectancies */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double **newm;          lli=log(out[s1][s2]); /* Original formula */
   double **dnewm,**doldm;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   int i, j, nhstepm, hstepm, h, nstepm ;          lli=log(out[s1][s2]); /* Original formula */
   int k, cptcode;        } /* End of if */
   double *xp;        ipmx +=1;
   double **gp, **gm;        sw += weight[i];
   double ***gradg, ***trgradg;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***p3mat;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double age,agelim, hf;        if(globpr){
   int theta;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
    fprintf(ficresvij,"# Covariances of life expectancies\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(ficresvij,"# Age");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   for(i=1; i<=nlstate;i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for(j=1; j<=nlstate;j++)            llt +=ll[k]*gipmx/gsw;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   fprintf(ficresvij,"\n");          }
           fprintf(ficresilk," %10.6f\n", -llt);
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate,1,npar);      } /* end of wave */
   doldm=matrix(1,nlstate,1,nlstate);    } /* end of individual */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   if(estepm < stepm){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     printf ("Problem %d lower than %d\n",estepm, stepm);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    if(globpr==0){ /* First time we count the contributions and weights */
   else  hstepm=estepm;        gipmx=ipmx;
   /* For example we decided to compute the life expectancy with the smallest unit */      gsw=sw;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }
      nhstepm is the number of hstepm from age to agelim    return -l;
      nstepm is the number of stepm from age to agelin.  }
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /*************** function likelione ***********/
      survival function given by stepm (the optimization length). Unfortunately it  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      means that if the survival funtion is printed only each two years of age and if  {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /* This routine should help understanding what is done with 
      results. So we changed our mind and took the option of the best precision.       the selection of individuals/waves and
   */       to check the exact contribution to the likelihood.
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       Plotting could be done.
   agelim = AGESUP;     */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int k;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    if(*globpri !=0){ /* Just counts and sums, no printings */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      strcpy(fileresilk,"ilk"); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      strcat(fileresilk,fileres);
     gp=matrix(0,nhstepm,1,nlstate);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     gm=matrix(0,nhstepm,1,nlstate);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(k=1; k<=nlstate; k++) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
        fclose(ficresilk);
       for(j=1; j<= nlstate; j++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         for(h=0; h<=nhstepm; h++){      fflush(fichtm); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    return;
         }  }
       }  
      
       for(i=1; i<=npar; i++) /* Computes gradient */  /*********** Maximum Likelihood Estimation ***************/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
      int i,j, iter;
       if (popbased==1) {    double **xi;
         for(i=1; i<=nlstate;i++)    double fret;
           prlim[i][i]=probs[(int)age][i][ij];    double fretone; /* Only one call to likelihood */
       }    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(j=1; j<= nlstate; j++)      printf("Problem with resultfile: %s\n", filerespow);
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     } /* End theta */    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    powell(p,xi,npar,ftol,&iter,&fret,func);
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1;j<=nlstate;j++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         vareij[i][j][(int)age] =0.;  
   }
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  /**** Computes Hessian and covariance matrix ***/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  {
         for(i=1;i<=nlstate;i++)    double  **a,**y,*x,pd;
           for(j=1;j<=nlstate;j++)    double **hess;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    int i, j,jk;
       }    int *indx;
     }  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     fprintf(ficresvij,"%.0f ",age );    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for(i=1; i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<=nlstate;j++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double gompertz(double p[]);
       }    hess=matrix(1,npar,1,npar);
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);    printf("\nCalculation of the hessian matrix. Wait...\n");
     free_matrix(gm,0,nhstepm,1,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=npar;i++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      printf("%d",i);fflush(stdout);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"%d",i);fflush(ficlog);
   } /* End age */     
         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   free_vector(xp,1,npar);      
   free_matrix(doldm,1,nlstate,1,npar);      /*  printf(" %f ",p[i]);
   free_matrix(dnewm,1,nlstate,1,nlstate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
 }    
     for (i=1;i<=npar;i++) {
 /************ Variance of prevlim ******************/      for (j=1;j<=npar;j++)  {
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        if (j>i) { 
 {          printf(".%d%d",i,j);fflush(stdout);
   /* Variance of prevalence limit */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double **newm;          
   double **dnewm,**doldm;          hess[j][i]=hess[i][j];    
   int i, j, nhstepm, hstepm;          /*printf(" %lf ",hess[i][j]);*/
   int k, cptcode;        }
   double *xp;      }
   double *gp, *gm;    }
   double **gradg, **trgradg;    printf("\n");
   double age,agelim;    fprintf(ficlog,"\n");
   int theta;  
        printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresvpl,"# Age");    
   for(i=1; i<=nlstate;i++)    a=matrix(1,npar,1,npar);
       fprintf(ficresvpl," %1d-%1d",i,i);    y=matrix(1,npar,1,npar);
   fprintf(ficresvpl,"\n");    x=vector(1,npar);
     indx=ivector(1,npar);
   xp=vector(1,npar);    for (i=1;i<=npar;i++)
   dnewm=matrix(1,nlstate,1,npar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   doldm=matrix(1,nlstate,1,nlstate);    ludcmp(a,npar,indx,&pd);
    
   hstepm=1*YEARM; /* Every year of age */    for (j=1;j<=npar;j++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (i=1;i<=npar;i++) x[i]=0;
   agelim = AGESUP;      x[j]=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      lubksb(a,npar,indx,x);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=1;i<=npar;i++){ 
     if (stepm >= YEARM) hstepm=1;        matcov[i][j]=x[i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=1;j<=npar;j++) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gp[i] = prlim[i][i];      fprintf(ficlog,"\n");
        }
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Recompute Inverse */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++)
       for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         gm[i] = prlim[i][i];    ludcmp(a,npar,indx,&pd);
   
       for(i=1;i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     trgradg =matrix(1,nlstate,1,npar);      x[j]=1;
       lubksb(a,npar,indx,x);
     for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
       for(theta=1; theta <=npar; theta++)        y[i][j]=x[i];
         trgradg[j][theta]=gradg[theta][j];        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] =0.;      printf("\n");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      fprintf(ficlog,"\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    }
     for(i=1;i<=nlstate;i++)    */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
     free_matrix(a,1,npar,1,npar);
     fprintf(ficresvpl,"%.0f ",age );    free_matrix(y,1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    free_vector(x,1,npar);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    free_ivector(indx,1,npar);
     fprintf(ficresvpl,"\n");    free_matrix(hess,1,npar,1,npar);
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  }
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   free_vector(xp,1,npar);  {
   free_matrix(doldm,1,nlstate,1,npar);    int i;
   free_matrix(dnewm,1,nlstate,1,nlstate);    int l=1, lmax=20;
     double k1,k2;
 }    double p2[MAXPARM+1]; /* identical to x */
     double res;
 /************ Variance of one-step probabilities  ******************/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double fx;
 {    int k=0,kmax=10;
   int i, j, i1, k1, j1, z1;    double l1;
   int k=0, cptcode;  
   double **dnewm,**doldm;    fx=func(x);
   double *xp;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double *gp, *gm;    for(l=0 ; l <=lmax; l++){
   double **gradg, **trgradg;      l1=pow(10,l);
   double age,agelim, cov[NCOVMAX];      delts=delt;
   int theta;      for(k=1 ; k <kmax; k=k+1){
   char fileresprob[FILENAMELENGTH];        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
   strcpy(fileresprob,"prob");        k1=func(p2)-fx;
   strcat(fileresprob,fileres);        p2[theta]=x[theta]-delt;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        k2=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprob);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        
    #ifdef DEBUGHESS
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficresprob,"# Age");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   for(i=1; i<=nlstate;i++)  #endif
     for(j=1; j<=(nlstate+ndeath);j++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
         }
   fprintf(ficresprob,"\n");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
         }
   xp=vector(1,npar);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          delts=delt;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        }
        }
   cov[1]=1;    }
   j=cptcoveff;    delti[theta]=delts;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    return res; 
   j1=0;    
   for(k1=1; k1<=1;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  
     j1++;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
     if  (cptcovn>0) {    int i;
       fprintf(ficresprob, "\n#********** Variable ");    int l=1, l1, lmax=20;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double k1,k2,k3,k4,res,fx;
       fprintf(ficresprob, "**********\n#");    double p2[MAXPARM+1];
     }    int k;
      
       for (age=bage; age<=fage; age ++){    fx=func(x);
         cov[2]=age;    for (k=1; k<=2; k++) {
         for (k=1; k<=cptcovn;k++) {      for (i=1;i<=npar;i++) p2[i]=x[i];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      p2[thetai]=x[thetai]+delti[thetai]/k;
                p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k1=func(p2)-fx;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
         for (k=1; k<=cptcovprod;k++)      p2[thetai]=x[thetai]+delti[thetai]/k;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
              k2=func(p2)-fx;
         gradg=matrix(1,npar,1,9);    
         trgradg=matrix(1,9,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      k3=func(p2)-fx;
        
         for(theta=1; theta <=npar; theta++){      p2[thetai]=x[thetai]-delti[thetai]/k;
           for(i=1; i<=npar; i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      k4=func(p2)-fx;
                res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  #ifdef DEBUG
                printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           k=0;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for(i=1; i<= (nlstate+ndeath); i++){  #endif
             for(j=1; j<=(nlstate+ndeath);j++){    }
               k=k+1;    return res;
               gp[k]=pmmij[i][j];  }
             }  
           }  /************** Inverse of matrix **************/
            void ludcmp(double **a, int n, int *indx, double *d) 
           for(i=1; i<=npar; i++)  { 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i,imax,j,k; 
        double big,dum,sum,temp; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double *vv; 
           k=0;   
           for(i=1; i<=(nlstate+ndeath); i++){    vv=vector(1,n); 
             for(j=1; j<=(nlstate+ndeath);j++){    *d=1.0; 
               k=k+1;    for (i=1;i<=n;i++) { 
               gm[k]=pmmij[i][j];      big=0.0; 
             }      for (j=1;j<=n;j++) 
           }        if ((temp=fabs(a[i][j])) > big) big=temp; 
            if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      vv[i]=1.0/big; 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      } 
         }    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        sum=a[i][j]; 
           for(theta=1; theta <=npar; theta++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
             trgradg[j][theta]=gradg[theta][j];        a[i][j]=sum; 
              } 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      big=0.0; 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      for (i=j;i<=n;i++) { 
                sum=a[i][j]; 
         pmij(pmmij,cov,ncovmodel,x,nlstate);        for (k=1;k<j;k++) 
                  sum -= a[i][k]*a[k][j]; 
         k=0;        a[i][j]=sum; 
         for(i=1; i<=(nlstate+ndeath); i++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           for(j=1; j<=(nlstate+ndeath);j++){          big=dum; 
             k=k+1;          imax=i; 
             gm[k]=pmmij[i][j];        } 
           }      } 
         }      if (j != imax) { 
              for (k=1;k<=n;k++) { 
      /*printf("\n%d ",(int)age);          dum=a[imax][k]; 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          a[imax][k]=a[j][k]; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          a[j][k]=dum; 
      }*/        } 
         *d = -(*d); 
         fprintf(ficresprob,"\n%d ",(int)age);        vv[imax]=vv[j]; 
       } 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      indx[j]=imax; 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));      if (a[j][j] == 0.0) a[j][j]=TINY; 
        if (j != n) { 
       }        dum=1.0/(a[j][j]); 
     }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      } 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_vector(vv,1,n);  /* Doesn't work */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  ;
   }  } 
   free_vector(xp,1,npar);  
   fclose(ficresprob);  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
 }    int i,ii=0,ip,j; 
     double sum; 
 /******************* Printing html file ***********/   
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    for (i=1;i<=n;i++) { 
  int lastpass, int stepm, int weightopt, char model[],\      ip=indx[i]; 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \      sum=b[ip]; 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      b[ip]=b[i]; 
  char version[], int popforecast, int estepm ){      if (ii) 
   int jj1, k1, i1, cpt;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   FILE *fichtm;      else if (sum) ii=i; 
   /*char optionfilehtm[FILENAMELENGTH];*/      b[i]=sum; 
     } 
   strcpy(optionfilehtm,optionfile);    for (i=n;i>=1;i--) { 
   strcat(optionfilehtm,".htm");      sum=b[i]; 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     printf("Problem with %s \n",optionfilehtm), exit(0);      b[i]=sum/a[i][i]; 
   }    } 
   } 
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  void pstamp(FILE *fichier)
 \n  {
 Total number of observations=%d <br>\n    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  }
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li>Outputs files<br>\n  /************ Frequencies ********************/
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  {  /* Some frequencies */
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    int i, m, jk, k1,i1, j1, bool, z1,j;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    int first;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    double ***freq; /* Frequencies */
     double *pp, **prop;
  fprintf(fichtm,"\n    double pos,posprop, k2, dateintsum=0,k2cpt=0;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    char fileresp[FILENAMELENGTH];
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    pp=vector(1,nlstate);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
  if(popforecast==1) fprintf(fichtm,"\n    if((ficresp=fopen(fileresp,"w"))==NULL) {
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      printf("Problem with prevalence resultfile: %s\n", fileresp);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         <br>",fileres,fileres,fileres,fileres);      exit(0);
  else    }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 fprintf(fichtm," <li>Graphs</li><p>");    j1=0;
     
  m=cptcoveff;    j=cptcoveff;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
  jj1=0;    first=1;
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    for(k1=1; k1<=j;k1++){
        jj1++;      for(i1=1; i1<=ncodemax[k1];i1++){
        if (cptcovn > 0) {        j1++;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
          for (cpt=1; cpt<=cptcoveff;cpt++)          scanf("%d", i);*/
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for (i=-5; i<=nlstate+ndeath; i++)  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
        }            for(m=iagemin; m <= iagemax+3; m++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              freq[i][jk][m]=0;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
        for(cpt=1; cpt<nlstate;cpt++){      for (i=1; i<=nlstate; i++)  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        for(m=iagemin; m <= iagemax+3; m++)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          prop[i][m]=0;
        }        
     for(cpt=1; cpt<=nlstate;cpt++) {        dateintsum=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        k2cpt=0;
 interval) in state (%d): v%s%d%d.gif <br>        for (i=1; i<=imx; i++) {
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            bool=1;
      }          if  (cptcovn>0) {
      for(cpt=1; cpt<=nlstate;cpt++) {            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                bool=0;
      }          }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          if (bool==1){
 health expectancies in states (1) and (2): e%s%d.gif<br>            for(m=firstpass; m<=lastpass; m++){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              k2=anint[m][i]+(mint[m][i]/12.);
 fprintf(fichtm,"\n</body>");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
    }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 fclose(fichtm);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 /******************* Gnuplot file **************/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                }
                 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   strcpy(optionfilegnuplot,optionfilefiname);                  k2cpt++;
   strcat(optionfilegnuplot,".gp.txt");                }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                /*}*/
     printf("Problem with file %s",optionfilegnuplot);            }
   }          }
         }
 #ifdef windows         
     fprintf(ficgp,"cd \"%s\" \n",pathc);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 #endif        pstamp(ficresp);
 m=pow(2,cptcoveff);        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
  /* 1eme*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficresp, "**********\n#");
    for (k1=1; k1<= m ; k1 ++) {        }
         for(i=1; i<=nlstate;i++) 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
 for (i=1; i<= nlstate ; i ++) {        
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(i=iagemin; i <= iagemax+3; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if(i==iagemax+3){
 }            fprintf(ficlog,"Total");
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          }else{
     for (i=1; i<= nlstate ; i ++) {            if(first==1){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              first=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              printf("See log file for details...\n");
 }            }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            fprintf(ficlog,"Age %d", i);
      for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=1; jk <=nlstate ; jk++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 }                pp[jk] += freq[jk][m][i]; 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          }
           for(jk=1; jk <=nlstate ; jk++){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            for(m=-1, pos=0; m <=0 ; m++)
    }              pos += freq[jk][m][i];
   }            if(pp[jk]>=1.e-10){
   /*2 eme*/              if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   for (k1=1; k1<= m ; k1 ++) {              }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }else{
     for (i=1; i<= nlstate+1 ; i ++) {              if(first==1)
       k=2*i;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }            for(jk=1; jk <=nlstate ; jk++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              pp[jk] += freq[jk][m][i];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          }       
       for (j=1; j<= nlstate+1 ; j ++) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            pos += pp[jk];
         else fprintf(ficgp," \%%*lf (\%%*lf)");            posprop += prop[jk][i];
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");          for(jk=1; jk <=nlstate ; jk++){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(pos>=1.e-5){
       for (j=1; j<= nlstate+1 ; j ++) {              if(first==1)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 }              }else{
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              if(first==1)
       else fprintf(ficgp,"\" t\"\" w l 0,");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            }
   }            if( i <= iagemax){
                if(pos>=1.e-5){
   /*3eme*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   for (k1=1; k1<= m ; k1 ++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {              }
       k=2+nlstate*(2*cpt-2);              else
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for(jk=-1; jk <=nlstate+ndeath; jk++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            for(m=-1; m <=nlstate+ndeath; m++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              if(freq[jk][m][i] !=0 ) {
               if(first==1)
 */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       for (i=1; i< nlstate ; i ++) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              }
           if(i <= iagemax)
       }            fprintf(ficresp,"\n");
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if(first==1)
     }            printf("Others in log...\n");
     }          fprintf(ficlog,"\n");
          }
   /* CV preval stat */      }
     for (k1=1; k1<= m ; k1 ++) {    }
     for (cpt=1; cpt<nlstate ; cpt ++) {    dateintmean=dateintsum/k2cpt; 
       k=3;   
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       for (i=1; i< nlstate ; i ++)    free_vector(pp,1,nlstate);
         fprintf(ficgp,"+$%d",k+i+1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /* End of Freq */
        }
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  /************ Prevalence ********************/
       for (i=1; i< nlstate ; i ++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         l=3+(nlstate+ndeath)*cpt;  {  
         fprintf(ficgp,"+$%d",l+i+1);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         We still use firstpass and lastpass as another selection.
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    */
     }   
   }      int i, m, jk, k1, i1, j1, bool, z1,j;
      double ***freq; /* Frequencies */
   /* proba elementaires */    double *pp, **prop;
    for(i=1,jk=1; i <=nlstate; i++){    double pos,posprop; 
     for(k=1; k <=(nlstate+ndeath); k++){    double  y2; /* in fractional years */
       if (k != i) {    int iagemin, iagemax;
         for(j=1; j <=ncovmodel; j++){  
            iagemin= (int) agemin;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    iagemax= (int) agemax;
           jk++;    /*pp=vector(1,nlstate);*/
           fprintf(ficgp,"\n");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       }    j1=0;
     }    
     }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(jk=1; jk <=m; jk++) {    
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    for(k1=1; k1<=j;k1++){
    i=1;      for(i1=1; i1<=ncodemax[k1];i1++){
    for(k2=1; k2<=nlstate; k2++) {        j1++;
      k3=i;        
      for(k=1; k<=(nlstate+ndeath); k++) {        for (i=1; i<=nlstate; i++)  
        if (k != k2){          for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            prop[i][m]=0.0;
 ij=1;       
         for(j=3; j <=ncovmodel; j++) {        for (i=1; i<=imx; i++) { /* Each individual */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          bool=1;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          if  (cptcovn>0) {
             ij++;            for (z1=1; z1<=cptcoveff; z1++) 
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           else                bool=0;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          } 
         }          if (bool==1) { 
           fprintf(ficgp,")/(1");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                      y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for(k1=1; k1 <=nlstate; k1++){                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 ij=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           for(j=3; j <=ncovmodel; j++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             ij++;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                  prop[s[m][i]][iagemax+3] += weight[i]; 
           else                } 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              }
           }            } /* end selection of waves */
           fprintf(ficgp,")");          }
         }        }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for(i=iagemin; i <= iagemax+3; i++){  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          
         i=i+ncovmodel;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        }            posprop += prop[jk][i]; 
      }          } 
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          for(jk=1; jk <=nlstate ; jk++){     
    }            if( i <=  iagemax){ 
                  if(posprop>=1.e-5){ 
   fclose(ficgp);                probs[i][jk][j1]= prop[jk][i]/posprop;
 }  /* end gnuplot */              } else
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
             } 
 /*************** Moving average **************/          }/* end jk */ 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        }/* end i */ 
       } /* end i1 */
   int i, cpt, cptcod;    } /* end k1 */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    
       for (i=1; i<=nlstate;i++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /*free_vector(pp,1,nlstate);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){  /************* Waves Concatenation ***************/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  {
           }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;       Death is a valid wave (if date is known).
         }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     }       and mw[mi+1][i]. dh depends on stepm.
           */
 }  
     int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 /************** Forecasting ******************/       double sum=0., jmean=0.;*/
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int first;
      int j, k=0,jk, ju, jl;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double sum=0.;
   int *popage;    first=0;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    jmin=1e+5;
   double *popeffectif,*popcount;    jmax=-1;
   double ***p3mat;    jmean=0.;
   char fileresf[FILENAMELENGTH];    for(i=1; i<=imx; i++){
       mi=0;
  agelim=AGESUP;      m=firstpass;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          mw[++mi][i]=m;
          if(m >=lastpass)
            break;
   strcpy(fileresf,"f");        else
   strcat(fileresf,fileres);          m++;
   if((ficresf=fopen(fileresf,"w"))==NULL) {      }/* end while */
     printf("Problem with forecast resultfile: %s\n", fileresf);      if (s[m][i] > nlstate){
   }        mi++;     /* Death is another wave */
   printf("Computing forecasting: result on file '%s' \n", fileresf);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        mw[mi][i]=m;
       }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      wav[i]=mi;
     movingaverage(agedeb, fage, ageminpar, mobaverage);      if(mi==0){
   }        nbwarn++;
         if(first==0){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if (stepm<=12) stepsize=1;          first=1;
          }
   agelim=AGESUP;        if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   hstepm=1;        }
   hstepm=hstepm/stepm;      } /* end mi==0 */
   yp1=modf(dateintmean,&yp);    } /* End individuals */
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    for(i=1; i<=imx; i++){
   mprojmean=yp;      for(mi=1; mi<wav[i];mi++){
   yp1=modf((yp2*30.5),&yp);        if (stepm <=0)
   jprojmean=yp;          dh[mi][i]=1;
   if(jprojmean==0) jprojmean=1;        else{
   if(mprojmean==0) jprojmean=1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   for(cptcov=1;cptcov<=i2;cptcov++){              else if(j<0){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                nberr++;
       k=k+1;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresf,"\n#******");                j=1; /* Temporary Dangerous patch */
       for(j=1;j<=cptcoveff;j++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       fprintf(ficresf,"******\n");              }
       fprintf(ficresf,"# StartingAge FinalAge");              k=k+1;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              if (j >= jmax){
                      jmax=j;
                      ijmax=i;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              }
         fprintf(ficresf,"\n");              if (j <= jmin){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                  jmin=j;
                 ijmin=i;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              sum=sum+j;
           nhstepm = nhstepm/hstepm;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                        /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            else{
                    j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           for (h=0; h<=nhstepm; h++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            k=k+1;
             }            if (j >= jmax) {
             for(j=1; j<=nlstate+ndeath;j++) {              jmax=j;
               kk1=0.;kk2=0;              ijmax=i;
               for(i=1; i<=nlstate;i++) {                          }
                 if (mobilav==1)            else if (j <= jmin){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              jmin=j;
                 else {              ijmin=i;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            }
                 }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
               }            if(j<0){
               if (h==(int)(calagedate+12*cpt)){              nberr++;
                 fprintf(ficresf," %.3f", kk1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                                      fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               }            }
             }            sum=sum+j;
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          jk= j/stepm;
         }          jl= j -jk*stepm;
       }          ju= j -(jk+1)*stepm;
     }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   }            if(jl==0){
                      dh[mi][i]=jk;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   fclose(ficresf);                    * at the price of an extra matrix product in likelihood */
 }              dh[mi][i]=jk+1;
 /************** Forecasting ******************/              bh[mi][i]=ju;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            }
            }else{
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            if(jl <= -ju){
   int *popage;              dh[mi][i]=jk;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              bh[mi][i]=jl;       /* bias is positive if real duration
   double *popeffectif,*popcount;                                   * is higher than the multiple of stepm and negative otherwise.
   double ***p3mat,***tabpop,***tabpopprev;                                   */
   char filerespop[FILENAMELENGTH];            }
             else{
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=jk+1;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              bh[mi][i]=ju;
   agelim=AGESUP;            }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            if(dh[mi][i]==0){
                dh[mi][i]=1; /* At least one step */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              bh[mi][i]=ju; /* At least one step */
                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
   strcpy(filerespop,"pop");          } /* end if mle */
   strcat(filerespop,fileres);        }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      } /* end wave */
     printf("Problem with forecast resultfile: %s\n", filerespop);    }
   }    jmean=sum/k;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   }
   
   if (mobilav==1) {  /*********** Tricode ****************************/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void tricode(int *Tvar, int **nbcode, int imx)
     movingaverage(agedeb, fage, ageminpar, mobaverage);  {
   }    
     /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
      int cptcode=0;
   agelim=AGESUP;    cptcoveff=0; 
     
   hstepm=1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   hstepm=hstepm/stepm;    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
    
   if (popforecast==1) {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
     if((ficpop=fopen(popfile,"r"))==NULL) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       printf("Problem with population file : %s\n",popfile);exit(0);                                 modality*/ 
     }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
     popage=ivector(0,AGESUP);        Ndum[ij]++; /*counts the occurence of this modality */
     popeffectif=vector(0,AGESUP);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     popcount=vector(0,AGESUP);        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
                                             Tvar[j]. If V=sex and male is 0 and 
     i=1;                                           female is 1, then  cptcode=1.*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      }
      
     imx=i;      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
   }                                         th covariate. In fact
                                          ncodemax[j]=2
   for(cptcov=1;cptcov<=i2;cptcov++){                                         (dichotom. variables only) but
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                         it can be more */
       k=k+1;      } /* Ndum[-1] number of undefined modalities */
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {      ij=1; 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
       }        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
       fprintf(ficrespop,"******\n");          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
       fprintf(ficrespop,"# Age");            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                                       k is a modality. If we have model=V1+V1*sex 
       if (popforecast==1)  fprintf(ficrespop," [Population]");                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                  ij++;
       for (cpt=0; cpt<=0;cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            if (ij > ncodemax[j]) break; 
                }  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      } 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }  
           nhstepm = nhstepm/hstepm;  
             for (k=0; k< maxncov; k++) Ndum[k]=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
           for (h=0; h<=nhstepm; h++){     Ndum[ij]++;
             if (h==(int) (calagedate+YEARM*cpt)) {   }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }   ij=1;
             for(j=1; j<=nlstate+ndeath;j++) {   for (i=1; i<= maxncov; i++) {
               kk1=0.;kk2=0;     if((Ndum[i]!=0) && (i<=ncovcol)){
               for(i=1; i<=nlstate;i++) {                     Tvaraff[ij]=i; /*For printing */
                 if (mobilav==1)       ij++;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     }
                 else {   }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   ij--;
                 }   cptcoveff=ij; /*Number of simple covariates*/
               }  }
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  /*********** Health Expectancies ****************/
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
               }  
             }  {
             for(i=1; i<=nlstate;i++){    /* Health expectancies, no variances */
               kk1=0.;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
                 for(j=1; j<=nlstate;j++){    int nhstepma, nstepma; /* Decreasing with age */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    double age, agelim, hf;
                 }    double ***p3mat;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    double eip;
             }  
     pstamp(ficreseij);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fprintf(ficreseij,"# Age");
           }    for(i=1; i<=nlstate;i++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=nlstate;j++){
         }        fprintf(ficreseij," e%1d%1d ",i,j);
       }      }
        fprintf(ficreseij," e%1d. ",i);
   /******/    }
     fprintf(ficreseij,"\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    if(estepm < stepm){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
           nhstepm = nhstepm/hstepm;    }
              else  hstepm=estepm;   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* We compute the life expectancy from trapezoids spaced every estepm months
           oldm=oldms;savm=savms;     * This is mainly to measure the difference between two models: for example
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * if stepm=24 months pijx are given only every 2 years and by summing them
           for (h=0; h<=nhstepm; h++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
             if (h==(int) (calagedate+YEARM*cpt)) {     * progression in between and thus overestimating or underestimating according
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * to the curvature of the survival function. If, for the same date, we 
             }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             for(j=1; j<=nlstate+ndeath;j++) {     * to compare the new estimate of Life expectancy with the same linear 
               kk1=0.;kk2=0;     * hypothesis. A more precise result, taking into account a more precise
               for(i=1; i<=nlstate;i++) {                   * curvature will be obtained if estepm is as small as stepm. */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }    /* For example we decided to compute the life expectancy with the smallest unit */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             }       nhstepm is the number of hstepm from age to agelim 
           }       nstepm is the number of stepm from age to agelin. 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Look at hpijx to understand the reason of that which relies in memory size
         }       and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    }       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       results. So we changed our mind and took the option of the best precision.
     */
   if (popforecast==1) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);    agelim=AGESUP;
     free_vector(popcount,0,AGESUP);    /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   fclose(ficrespop);  /* nhstepm age range expressed in number of stepm */
 }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 /***********************************************/    /* if (stepm >= YEARM) hstepm=1;*/
 /**************** Main Program *****************/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 /***********************************************/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
 int main(int argc, char *argv[])    for (age=bage; age<=fage; age ++){ 
 {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      /* if (stepm >= YEARM) hstepm=1;*/
   double agedeb, agefin,hf;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
       /* If stepm=6 months */
   double fret;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   double **xi,tmp,delta;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   double dum; /* Dummy variable */      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double ***p3mat;      
   int *indx;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   char line[MAXLINE], linepar[MAXLINE];      
   char title[MAXLINE];      printf("%d|",(int)age);fflush(stdout);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      
        /* Computing expectancies */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   char filerest[FILENAMELENGTH];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   char fileregp[FILENAMELENGTH];            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   char popfile[FILENAMELENGTH];            
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */          }
   int c,  h , cpt,l;  
   int ju,jl, mi;      fprintf(ficreseij,"%3.0f",age );
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      for(i=1; i<=nlstate;i++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        eip=0;
   int mobilav=0,popforecast=0;        for(j=1; j<=nlstate;j++){
   int hstepm, nhstepm;          eip +=eij[i][j][(int)age];
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   double bage, fage, age, agelim, agebase;        fprintf(ficreseij,"%9.4f", eip );
   double ftolpl=FTOL;      }
   double **prlim;      fprintf(ficreseij,"\n");
   double *severity;      
   double ***param; /* Matrix of parameters */    }
   double  *p;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **matcov; /* Matrix of covariance */    printf("\n");
   double ***delti3; /* Scale */    fprintf(ficlog,"\n");
   double *delti; /* Scale */    
   double ***eij, ***vareij;  }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  {
      /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";    */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   char z[1]="c", occ;    double ***p3matp, ***p3matm, ***varhe;
 #include <sys/time.h>    double **dnewm,**doldm;
 #include <time.h>    double *xp, *xm;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double **gp, **gm;
      double ***gradg, ***trgradg;
   /* long total_usecs;    int theta;
   struct timeval start_time, end_time;  
      double eip, vip;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   printf("\n%s",version);    xm=vector(1,npar);
   if(argc <=1){    dnewm=matrix(1,nlstate*nlstate,1,npar);
     printf("\nEnter the parameter file name: ");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     scanf("%s",pathtot);    
   }    pstamp(ficresstdeij);
   else{    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     strcpy(pathtot,argv[1]);    fprintf(ficresstdeij,"# Age");
   }    for(i=1; i<=nlstate;i++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      for(j=1; j<=nlstate;j++)
   /*cygwin_split_path(pathtot,path,optionfile);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      fprintf(ficresstdeij," e%1d. ",i);
   /* cutv(path,optionfile,pathtot,'\\');*/    }
     fprintf(ficresstdeij,"\n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    pstamp(ficrescveij);
   chdir(path);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   replace(pathc,path);    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
 /*-------- arguments in the command line --------*/      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
   strcpy(fileres,"r");        for(i2=1; i2<=nlstate;i2++)
   strcat(fileres, optionfilefiname);          for(j2=1; j2<=nlstate;j2++){
   strcat(fileres,".txt");    /* Other files have txt extension */            cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
   /*---------arguments file --------*/              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficrescveij,"\n");
     goto end;    
   }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   strcpy(filereso,"o");    }
   strcat(filereso,fileres);    else  hstepm=estepm;   
   if((ficparo=fopen(filereso,"w"))==NULL) {    /* We compute the life expectancy from trapezoids spaced every estepm months
     printf("Problem with Output resultfile: %s\n", filereso);goto end;     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   /* Reads comments: lines beginning with '#' */     * progression in between and thus overestimating or underestimating according
   while((c=getc(ficpar))=='#' && c!= EOF){     * to the curvature of the survival function. If, for the same date, we 
     ungetc(c,ficpar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fgets(line, MAXLINE, ficpar);     * to compare the new estimate of Life expectancy with the same linear 
     puts(line);     * hypothesis. A more precise result, taking into account a more precise
     fputs(line,ficparo);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       nhstepm is the number of hstepm from age to agelim 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);       nstepm is the number of stepm from age to agelin. 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);       Look at hpijx to understand the reason of that which relies in memory size
 while((c=getc(ficpar))=='#' && c!= EOF){       and note for a fixed period like estepm months */
     ungetc(c,ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fgets(line, MAXLINE, ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     puts(line);       means that if the survival funtion is printed only each two years of age and if
     fputs(line,ficparo);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   ungetc(c,ficpar);    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      
   covar=matrix(0,NCOVMAX,1,n);    /* If stepm=6 months */
   cptcovn=0;    /* nhstepm age range expressed in number of stepm */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   ncovmodel=2+cptcovn;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /* Read guess parameters */    
   /* Reads comments: lines beginning with '#' */    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     puts(line);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     fputs(line,ficparo);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   }  
   ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ 
        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     for(i=1; i <=nlstate; i++)      /* if (stepm >= YEARM) hstepm=1;*/
     for(j=1; j <=nlstate+ndeath-1; j++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);      /* If stepm=6 months */
       printf("%1d%1d",i,j);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       for(k=1; k<=ncovmodel;k++){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         fscanf(ficpar," %lf",&param[i][j][k]);      
         printf(" %lf",param[i][j][k]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficparo," %lf",param[i][j][k]);  
       }      /* Computing  Variances of health expectancies */
       fscanf(ficpar,"\n");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       printf("\n");         decrease memory allocation */
       fprintf(ficparo,"\n");      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ 
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
   p=param[1][1];        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<= nlstate; j++){
     ungetc(c,ficpar);          for(i=1; i<=nlstate; i++){
     fgets(line, MAXLINE, ficpar);            for(h=0; h<=nhstepm-1; h++){
     puts(line);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     fputs(line,ficparo);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   }            }
   ungetc(c,ficpar);          }
         }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        for(ij=1; ij<= nlstate*nlstate; ij++)
   for(i=1; i <=nlstate; i++){          for(h=0; h<=nhstepm-1; h++){
     for(j=1; j <=nlstate+ndeath-1; j++){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }
       printf("%1d%1d",i,j);      }/* End theta */
       fprintf(ficparo,"%1d%1d",i1,j1);      
       for(k=1; k<=ncovmodel;k++){      
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(h=0; h<=nhstepm-1; h++)
         printf(" %le",delti3[i][j][k]);        for(j=1; j<=nlstate*nlstate;j++)
         fprintf(ficparo," %le",delti3[i][j][k]);          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
       fscanf(ficpar,"\n");      
       printf("\n");  
       fprintf(ficparo,"\n");       for(ij=1;ij<=nlstate*nlstate;ij++)
     }        for(ji=1;ji<=nlstate*nlstate;ji++)
   }          varhe[ij][ji][(int)age] =0.;
   delti=delti3[1][1];  
         printf("%d|",(int)age);fflush(stdout);
   /* Reads comments: lines beginning with '#' */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   while((c=getc(ficpar))=='#' && c!= EOF){       for(h=0;h<=nhstepm-1;h++){
     ungetc(c,ficpar);        for(k=0;k<=nhstepm-1;k++){
     fgets(line, MAXLINE, ficpar);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     puts(line);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     fputs(line,ficparo);          for(ij=1;ij<=nlstate*nlstate;ij++)
   }            for(ji=1;ji<=nlstate*nlstate;ji++)
   ungetc(c,ficpar);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
          }
   matcov=matrix(1,npar,1,npar);      }
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);      /* Computing expectancies */
     printf("%s",str);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     fprintf(ficparo,"%s",str);      for(i=1; i<=nlstate;i++)
     for(j=1; j <=i; j++){        for(j=1; j<=nlstate;j++)
       fscanf(ficpar," %le",&matcov[i][j]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       printf(" %.5le",matcov[i][j]);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       fprintf(ficparo," %.5le",matcov[i][j]);            
     }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fscanf(ficpar,"\n");  
     printf("\n");          }
     fprintf(ficparo,"\n");  
   }      fprintf(ficresstdeij,"%3.0f",age );
   for(i=1; i <=npar; i++)      for(i=1; i<=nlstate;i++){
     for(j=i+1;j<=npar;j++)        eip=0.;
       matcov[i][j]=matcov[j][i];        vip=0.;
            for(j=1; j<=nlstate;j++){
   printf("\n");          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     /*-------- Rewriting paramater file ----------*/          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
      strcpy(rfileres,"r");    /* "Rparameterfile */        }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
      strcat(rfileres,".");    /* */      }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      fprintf(ficresstdeij,"\n");
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      fprintf(ficrescveij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++)
     fprintf(ficres,"#%s\n",version);        for(j=1; j<=nlstate;j++){
              cptj= (j-1)*nlstate+i;
     /*-------- data file ----------*/          for(i2=1; i2<=nlstate;i2++)
     if((fic=fopen(datafile,"r"))==NULL)    {            for(j2=1; j2<=nlstate;j2++){
       printf("Problem with datafile: %s\n", datafile);goto end;              cptj2= (j2-1)*nlstate+i2;
     }              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     n= lastobs;            }
     severity = vector(1,maxwav);        }
     outcome=imatrix(1,maxwav+1,1,n);      fprintf(ficrescveij,"\n");
     num=ivector(1,n);     
     moisnais=vector(1,n);    }
     annais=vector(1,n);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     moisdc=vector(1,n);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     andc=vector(1,n);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     agedc=vector(1,n);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     cod=ivector(1,n);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     weight=vector(1,n);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    printf("\n");
     mint=matrix(1,maxwav,1,n);    fprintf(ficlog,"\n");
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    free_vector(xm,1,npar);
     adl=imatrix(1,maxwav+1,1,n);        free_vector(xp,1,npar);
     tab=ivector(1,NCOVMAX);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     ncodemax=ivector(1,8);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     i=1;  }
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {  /************ Variance ******************/
          void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         for (j=maxwav;j>=1;j--){  {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    /* Variance of health expectancies */
           strcpy(line,stra);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* double **newm;*/
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
            int i, j, nhstepm, hstepm, h, nstepm ;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    int k, cptcode;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double *xp;
     double **gp, **gm;  /* for var eij */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double ***gradg, ***trgradg; /*for var eij */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         for (j=ncovcol;j>=1;j--){    double ***p3mat;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double age,agelim, hf;
         }    double ***mobaverage;
         num[i]=atol(stra);    int theta;
            char digit[4];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    char digitp[25];
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
     char fileresprobmorprev[FILENAMELENGTH];
         i=i+1;  
       }    if(popbased==1){
     }      if(mobilav!=0)
     /* printf("ii=%d", ij);        strcpy(digitp,"-populbased-mobilav-");
        scanf("%d",i);*/      else strcpy(digitp,"-populbased-nomobil-");
   imx=i-1; /* Number of individuals */    }
     else 
   /* for (i=1; i<=imx; i++){      strcpy(digitp,"-stablbased-");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    if (mobilav!=0) {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }*/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
    /*  for (i=1; i<=imx; i++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      if (s[4][i]==9)  s[4][i]=-1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      }
      }
    
   /* Calculation of the number of parameter from char model*/    strcpy(fileresprobmorprev,"prmorprev"); 
   Tvar=ivector(1,15);    sprintf(digit,"%-d",ij);
   Tprod=ivector(1,15);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   Tvaraff=ivector(1,15);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   Tvard=imatrix(1,15,1,2);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   Tage=ivector(1,15);          strcat(fileresprobmorprev,fileres);
        if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   if (strlen(model) >1){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     j=0, j1=0, k1=1, k2=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     j=nbocc(model,'+');    }
     j1=nbocc(model,'*');    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     cptcovn=j+1;   
     cptcovprod=j1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        pstamp(ficresprobmorprev);
     strcpy(modelsav,model);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       printf("Error. Non available option model=%s ",model);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       goto end;      fprintf(ficresprobmorprev," p.%-d SE",j);
     }      for(i=1; i<=nlstate;i++)
            fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     for(i=(j+1); i>=1;i--){    }  
       cutv(stra,strb,modelsav,'+');    fprintf(ficresprobmorprev,"\n");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    fprintf(ficgp,"\n# Routine varevsij");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       /*scanf("%d",i);*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       if (strchr(strb,'*')) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         cutv(strd,strc,strb,'*');  /*   } */
         if (strcmp(strc,"age")==0) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           cptcovprod--;    pstamp(ficresvij);
           cutv(strb,stre,strd,'V');    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           Tvar[i]=atoi(stre);    if(popbased==1)
           cptcovage++;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
             Tage[cptcovage]=i;    else
             /*printf("stre=%s ", stre);*/      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
         }    fprintf(ficresvij,"# Age");
         else if (strcmp(strd,"age")==0) {    for(i=1; i<=nlstate;i++)
           cptcovprod--;      for(j=1; j<=nlstate;j++)
           cutv(strb,stre,strc,'V');        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
           Tvar[i]=atoi(stre);    fprintf(ficresvij,"\n");
           cptcovage++;  
           Tage[cptcovage]=i;    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
         else {    doldm=matrix(1,nlstate,1,nlstate);
           cutv(strb,stre,strc,'V');    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           Tvar[i]=ncovcol+k1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           Tvard[k1][1]=atoi(strc);    gpp=vector(nlstate+1,nlstate+ndeath);
           Tvard[k1][2]=atoi(stre);    gmp=vector(nlstate+1,nlstate+ndeath);
           Tvar[cptcovn+k2]=Tvard[k1][1];    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    
           for (k=1; k<=lastobs;k++)    if(estepm < stepm){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      printf ("Problem %d lower than %d\n",estepm, stepm);
           k1++;    }
           k2=k2+2;    else  hstepm=estepm;   
         }    /* For example we decided to compute the life expectancy with the smallest unit */
       }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       else {       nhstepm is the number of hstepm from age to agelim 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/       nstepm is the number of stepm from age to agelin. 
        /*  scanf("%d",i);*/       Look at function hpijx to understand why (it is linked to memory size questions) */
       cutv(strd,strc,strb,'V');    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       Tvar[i]=atoi(strc);       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed every two years of age and if
       strcpy(modelsav,stra);         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);       results. So we changed our mind and took the option of the best precision.
         scanf("%d",i);*/    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 }    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   printf("cptcovprod=%d ", cptcovprod);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   scanf("%d ",i);*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fclose(fic);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
     /*  if(mle==1){*/      gm=matrix(0,nhstepm,1,nlstate);
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }      for(theta=1; theta <=npar; theta++){
     /*-calculation of age at interview from date of interview and age at death -*/        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     agev=matrix(1,maxwav,1,imx);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
     for (i=1; i<=imx; i++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(m=2; (m<= maxwav); m++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;        if (popbased==1) {
          s[m][i]=-1;          if(mobilav ==0){
        }            for(i=1; i<=nlstate;i++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              prlim[i][i]=probs[(int)age][i][ij];
       }          }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
     for (i=1; i<=imx; i++)  {          }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        }
       for(m=1; (m<= maxwav); m++){    
         if(s[m][i] >0){        for(j=1; j<= nlstate; j++){
           if (s[m][i] >= nlstate+1) {          for(h=0; h<=nhstepm; h++){
             if(agedc[i]>0)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               if(moisdc[i]!=99 && andc[i]!=9999)              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                 agev[m][i]=agedc[i];          }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }
            else {        /* This for computing probability of death (h=1 means
               if (andc[i]!=9999){           computed over hstepm matrices product = hstepm*stepm months) 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);           as a weighted average of prlim.
               agev[m][i]=-1;        */
               }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           else if(s[m][i] !=9){ /* Should no more exist */        }    
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        /* end probability of death */
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
             else if(agev[m][i] <agemin){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               agemin=agev[m][i];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             }   
             else if(agev[m][i] >agemax){        if (popbased==1) {
               agemax=agev[m][i];          if(mobilav ==0){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
             /*agev[m][i]=anint[m][i]-annais[i];*/          }else{ /* mobilav */ 
             /*   agev[m][i] = age[i]+2*m;*/            for(i=1; i<=nlstate;i++)
           }              prlim[i][i]=mobaverage[(int)age][i][ij];
           else { /* =9 */          }
             agev[m][i]=1;        }
             s[m][i]=-1;  
           }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
         }          for(h=0; h<=nhstepm; h++){
         else /*= 0 Unknown */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           agev[m][i]=1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       }          }
            }
     }        /* This for computing probability of death (h=1 means
     for (i=1; i<=imx; i++)  {           computed over hstepm matrices product = hstepm*stepm months) 
       for(m=1; (m<= maxwav); m++){           as a weighted average of prlim.
         if (s[m][i] > (nlstate+ndeath)) {        */
           printf("Error: Wrong value in nlstate or ndeath\n");          for(j=nlstate+1;j<=nlstate+ndeath;j++){
           goto end;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
     }        /* end probability of death */
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
     free_vector(severity,1,maxwav);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     free_imatrix(outcome,1,maxwav+1,1,n);          }
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     /* free_matrix(mint,1,maxwav,1,n);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
        free_matrix(anint,1,maxwav,1,n);*/        }
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);      } /* End theta */
   
          trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for(h=0; h<=nhstepm; h++) /* veij */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for(j=1; j<=nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     /* Concatenates waves */            trgradg[h][j][theta]=gradg[h][theta][j];
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
       Tcode=ivector(1,100);          trgradgp[j][theta]=gradgp[theta][j];
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
            for(i=1;i<=nlstate;i++)
    codtab=imatrix(1,100,1,10);        for(j=1;j<=nlstate;j++)
    h=0;          vareij[i][j][(int)age] =0.;
    m=pow(2,cptcoveff);  
        for(h=0;h<=nhstepm;h++){
    for(k=1;k<=cptcoveff; k++){        for(k=0;k<=nhstepm;k++){
      for(i=1; i <=(m/pow(2,k));i++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
        for(j=1; j <= ncodemax[k]; j++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          for(i=1;i<=nlstate;i++)
            h++;            for(j=1;j<=nlstate;j++)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        }
          }      }
        }    
      }      /* pptj */
    }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       codtab[1][2]=1;codtab[2][2]=2; */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
    /* for(i=1; i <=m ;i++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       for(k=1; k <=cptcovn; k++){          varppt[j][i]=doldmp[j][i];
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      /* end ppptj */
       }      /*  x centered again */
       printf("\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       scanf("%d",i);*/   
          if (popbased==1) {
    /* Calculates basic frequencies. Computes observed prevalence at single age        if(mobilav ==0){
        and prints on file fileres'p'. */          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prlim[i][i]=mobaverage[(int)age][i][ij];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      /* This for computing probability of death (h=1 means
               computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     /* For Powell, parameters are in a vector p[] starting at p[1]         as a weighted average of prlim.
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     if(mle==1){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      }    
     }      /* end probability of death */
      
     /*--------- results files --------------*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
    jk=1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      } 
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficresprobmorprev,"\n");
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)      fprintf(ficresvij,"%.0f ",age );
          {      for(i=1; i<=nlstate;i++)
            printf("%d%d ",i,k);        for(j=1; j<=nlstate;j++){
            fprintf(ficres,"%1d%1d ",i,k);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);      fprintf(ficresvij,"\n");
              fprintf(ficres,"%f ",p[jk]);      free_matrix(gp,0,nhstepm,1,nlstate);
              jk++;      free_matrix(gm,0,nhstepm,1,nlstate);
            }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
            printf("\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
            fprintf(ficres,"\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          }    } /* End age */
      }    free_vector(gpp,nlstate+1,nlstate+ndeath);
    }    free_vector(gmp,nlstate+1,nlstate+ndeath);
  if(mle==1){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     /* Computing hessian and covariance matrix */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     ftolhess=ftol; /* Usually correct */    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     hesscov(matcov, p, npar, delti, ftolhess, func);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
  }    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     printf("# Scales (for hessian or gradient estimation)\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      for(i=1,jk=1; i <=nlstate; i++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         if (j!=i) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           printf("%1d%1d",i,j);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           for(k=1; k<=ncovmodel;k++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             printf(" %.5e",delti[jk]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             fprintf(ficres," %.5e",delti[jk]);  */
             jk++;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           printf("\n");  
           fprintf(ficres,"\n");    free_vector(xp,1,npar);
         }    free_matrix(doldm,1,nlstate,1,nlstate);
       }    free_matrix(dnewm,1,nlstate,1,npar);
      }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     k=1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fclose(ficresprobmorprev);
     for(i=1;i<=npar;i++){    fflush(ficgp);
       /*  if (k>nlstate) k=1;    fflush(fichtm); 
       i1=(i-1)/(ncovmodel*nlstate)+1;  }  /* end varevsij */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/  /************ Variance of prevlim ******************/
       fprintf(ficres,"%3d",i);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       printf("%3d",i);  {
       for(j=1; j<=i;j++){    /* Variance of prevalence limit */
         fprintf(ficres," %.5e",matcov[i][j]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         printf(" %.5e",matcov[i][j]);    double **newm;
       }    double **dnewm,**doldm;
       fprintf(ficres,"\n");    int i, j, nhstepm, hstepm;
       printf("\n");    int k, cptcode;
       k++;    double *xp;
     }    double *gp, *gm;
        double **gradg, **trgradg;
     while((c=getc(ficpar))=='#' && c!= EOF){    double age,agelim;
       ungetc(c,ficpar);    int theta;
       fgets(line, MAXLINE, ficpar);    
       puts(line);    pstamp(ficresvpl);
       fputs(line,ficparo);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     }    fprintf(ficresvpl,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
     estepm=0;        fprintf(ficresvpl," %1d-%1d",i,i);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    fprintf(ficresvpl,"\n");
     if (estepm==0 || estepm < stepm) estepm=stepm;  
     if (fage <= 2) {    xp=vector(1,npar);
       bage = ageminpar;    dnewm=matrix(1,nlstate,1,npar);
       fage = agemaxpar;    doldm=matrix(1,nlstate,1,nlstate);
     }    
        hstepm=1*YEARM; /* Every year of age */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    agelim = AGESUP;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     while((c=getc(ficpar))=='#' && c!= EOF){      if (stepm >= YEARM) hstepm=1;
     ungetc(c,ficpar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     fgets(line, MAXLINE, ficpar);      gradg=matrix(1,npar,1,nlstate);
     puts(line);      gp=vector(1,nlstate);
     fputs(line,ficparo);      gm=vector(1,nlstate);
   }  
   ungetc(c,ficpar);      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              for(i=1;i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){          gp[i] = prlim[i][i];
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++) /* Computes gradient */
     puts(line);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);          gm[i] = prlim[i][i];
    
         for(i=1;i<=nlstate;i++)
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      } /* End theta */
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);      trgradg =matrix(1,nlstate,1,npar);
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);        for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
   while((c=getc(ficpar))=='#' && c!= EOF){          trgradg[j][theta]=gradg[theta][j];
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(i=1;i<=nlstate;i++)
     puts(line);        varpl[i][(int)age] =0.;
     fputs(line,ficparo);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      fprintf(ficresvpl,"%.0f ",age );
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
 while((c=getc(ficpar))=='#' && c!= EOF){      free_vector(gp,1,nlstate);
     ungetc(c,ficpar);      free_vector(gm,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_matrix(gradg,1,npar,1,nlstate);
     puts(line);      free_matrix(trgradg,1,nlstate,1,npar);
     fputs(line,ficparo);    } /* End age */
   }  
   ungetc(c,ficpar);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    free_matrix(dnewm,1,nlstate,1,nlstate);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  }
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 /*------------ gnuplot -------------*/  {
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    int i, j=0,  i1, k1, l1, t, tj;
      int k2, l2, j1,  z1;
 /*------------ free_vector  -------------*/    int k=0,l, cptcode;
  chdir(path);    int first=1, first1;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
  free_ivector(wav,1,imx);    double **dnewm,**doldm;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double *xp;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double *gp, *gm;
  free_ivector(num,1,n);    double **gradg, **trgradg;
  free_vector(agedc,1,n);    double **mu;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    double age,agelim, cov[NCOVMAX];
  fclose(ficparo);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  fclose(ficres);    int theta;
     char fileresprob[FILENAMELENGTH];
 /*--------- index.htm --------*/    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  
     double ***varpij;
    
   /*--------------- Prevalence limit --------------*/    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
   strcpy(filerespl,"pl");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   strcat(filerespl,fileres);      printf("Problem with resultfile: %s\n", fileresprob);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    }
   }    strcpy(fileresprobcov,"probcov"); 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    strcat(fileresprobcov,fileres);
   fprintf(ficrespl,"#Prevalence limit\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   fprintf(ficrespl,"#Age ");      printf("Problem with resultfile: %s\n", fileresprobcov);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   fprintf(ficrespl,"\n");    }
      strcpy(fileresprobcor,"probcor"); 
   prlim=matrix(1,nlstate,1,nlstate);    strcat(fileresprobcor,fileres);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with resultfile: %s\n", fileresprobcor);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   k=0;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   agebase=ageminpar;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   agelim=agemaxpar;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   ftolpl=1.e-10;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   i1=cptcoveff;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if (cptcovn < 1){i1=1;}    pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresprob,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    pstamp(ficresprobcov);
         k=k+1;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(ficresprobcov,"# Age");
         fprintf(ficrespl,"\n#******");    pstamp(ficresprobcor);
         for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobcor,"# Age");
         fprintf(ficrespl,"******\n");  
          
         for (age=agebase; age<=agelim; age++){    for(i=1; i<=nlstate;i++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(j=1; j<=(nlstate+ndeath);j++){
           fprintf(ficrespl,"%.0f",age );        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           for(i=1; i<=nlstate;i++)        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           fprintf(ficrespl," %.5f", prlim[i][i]);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           fprintf(ficrespl,"\n");      }  
         }   /* fprintf(ficresprob,"\n");
       }    fprintf(ficresprobcov,"\n");
     }    fprintf(ficresprobcor,"\n");
   fclose(ficrespl);   */
     xp=vector(1,npar);
   /*------------- h Pij x at various ages ------------*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    first=1;
   }    fprintf(ficgp,"\n# Routine varprob");
   printf("Computing pij: result on file '%s' \n", filerespij);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   agelim=AGESUP;    file %s<br>\n",optionfilehtmcov);
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  and drawn. It helps understanding how is the covariance between two incidences.\
     They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   k=0;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   for(cptcov=1;cptcov<=i1;cptcov++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       k=k+1;  standard deviations wide on each axis. <br>\
         fprintf(ficrespij,"\n#****** ");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         for(j=1;j<=cptcoveff;j++)   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         fprintf(ficrespij,"******\n");  
            cov[1]=1;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    tj=cptcoveff;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    j1=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(t=1; t<=tj;t++){
           oldm=oldms;savm=savms;      for(i1=1; i1<=ncodemax[t];i1++){ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          j1++;
           fprintf(ficrespij,"# Age");        if  (cptcovn>0) {
           for(i=1; i<=nlstate;i++)          fprintf(ficresprob, "\n#********** Variable "); 
             for(j=1; j<=nlstate+ndeath;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficrespij,"\n");          fprintf(ficresprobcov, "\n#********** Variable "); 
            for (h=0; h<=nhstepm; h++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(ficresprobcov, "**********\n#\n");
             for(i=1; i<=nlstate;i++)          
               for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficgp, "\n#********** Variable "); 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficrespij,"\n");          fprintf(ficgp, "**********\n#\n");
              }          
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
           fprintf(ficrespij,"\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   }          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
   fclose(ficrespij);        }
         
         for (age=bage; age<=fage; age ++){ 
   /*---------- Forecasting ------------------*/          cov[2]=age;
   if((stepm == 1) && (strcmp(model,".")==0)){          for (k=1; k<=cptcovn;k++) {
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          }
   }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   else{          for (k=1; k<=cptcovprod;k++)
     erreur=108;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          
   }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
   /*---------- Health expectancies and variances ------------*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
       
   strcpy(filerest,"t");          for(theta=1; theta <=npar; theta++){
   strcat(filerest,fileres);            for(i=1; i<=npar; i++)
   if((ficrest=fopen(filerest,"w"))==NULL) {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            
             k=0;
             for(i=1; i<= (nlstate); i++){
   strcpy(filerese,"e");              for(j=1; j<=(nlstate+ndeath);j++){
   strcat(filerese,fileres);                k=k+1;
   if((ficreseij=fopen(filerese,"w"))==NULL) {                gp[k]=pmmij[i][j];
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              }
   }            }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            
             for(i=1; i<=npar; i++)
  strcpy(fileresv,"v");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   strcat(fileresv,fileres);      
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            k=0;
   }            for(i=1; i<=(nlstate); i++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              for(j=1; j<=(nlstate+ndeath);j++){
   calagedate=-1;                k=k+1;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                gm[k]=pmmij[i][j];
               }
   k=0;            }
   for(cptcov=1;cptcov<=i1;cptcov++){       
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       k=k+1;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       fprintf(ficrest,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficrest,"******\n");            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
       fprintf(ficreseij,"\n#****** ");          
       for(j=1;j<=cptcoveff;j++)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       fprintf(ficreseij,"******\n");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficresvij,"\n#****** ");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          k=0;
       oldm=oldms;savm=savms;          for(i=1; i<=(nlstate); i++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              mu[k][(int) age]=pmmij[i][j];
       oldm=oldms;savm=savms;            }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          }
              for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                varpij[i][j][(int)age] = doldm[i][j];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          /*printf("\n%d ",(int)age);
       fprintf(ficrest,"\n");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       epj=vector(1,nlstate+1);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       for(age=bage; age <=fage ;age++){            }*/
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {          fprintf(ficresprob,"\n%d ",(int)age);
           for(i=1; i<=nlstate;i++)          fprintf(ficresprobcov,"\n%d ",(int)age);
             prlim[i][i]=probs[(int)age][i][k];          fprintf(ficresprobcor,"\n%d ",(int)age);
         }  
                  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         fprintf(ficrest," %4.0f",age);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          }
           }          i=0;
           epj[nlstate+1] +=epj[j];          for (k=1; k<=(nlstate);k++){
         }            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
         for(i=1, vepp=0.;i <=nlstate;i++)              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           for(j=1;j <=nlstate;j++)              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
             vepp += vareij[i][j][(int)age];              for (j=1; j<=i;j++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         for(j=1;j <=nlstate;j++){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));              }
         }            }
         fprintf(ficrest,"\n");          }/* end of loop for state */
       }        } /* end of loop for age */
     }  
   }        /* Confidence intervalle of pij  */
 free_matrix(mint,1,maxwav,1,n);        /*
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficgp,"\nunset parametric;unset label");
     free_vector(weight,1,n);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   fclose(ficreseij);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fclose(ficresvij);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fclose(ficrest);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   fclose(ficpar);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   free_vector(epj,1,nlstate+1);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          */
   /*------- Variance limit prevalence------*/    
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   strcpy(fileresvpl,"vpl");        first1=1;
   strcat(fileresvpl,fileres);        for (k2=1; k2<=(nlstate);k2++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            if(l2==k2) continue;
     exit(0);            j=(k2-1)*(nlstate+ndeath)+l2;
   }            for (k1=1; k1<=(nlstate);k1++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
   k=0;                i=(k1-1)*(nlstate+ndeath)+l1;
   for(cptcov=1;cptcov<=i1;cptcov++){                if(i<=j) continue;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                for (age=bage; age<=fage; age ++){ 
       k=k+1;                  if ((int)age %5==0){
       fprintf(ficresvpl,"\n#****** ");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       for(j=1;j<=cptcoveff;j++)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficresvpl,"******\n");                    mu1=mu[i][(int) age]/stepm*YEARM ;
                          mu2=mu[j][(int) age]/stepm*YEARM;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                    c12=cv12/sqrt(v1*v2);
       oldm=oldms;savm=savms;                    /* Computing eigen value of matrix of covariance */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
  }                    if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
   fclose(ficresvpl);                      fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
   /*---------- End : free ----------------*/                      lc2=fabs(lc2);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                    }
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    /* Eigen vectors */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                      /*v21=sqrt(1.-v11*v11); *//* error */
                      v21=(lc1-v1)/cv12*v11;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    v12=-v21;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                    v22=v11;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    tnalp=v21/v11;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                    if(first1==1){
                        first1=0;
   free_matrix(matcov,1,npar,1,npar);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   free_vector(delti,1,npar);                    }
   free_matrix(agev,1,maxwav,1,imx);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   if(erreur >0)                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     printf("End of Imach with error or warning %d\n",erreur);                    if(first==1){
   else   printf("End of Imach\n");                      first=0;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                      fprintf(ficgp,"\nset parametric;unset label");
                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /*printf("Total time was %d uSec.\n", total_usecs);*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   /*------ End -----------*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
  end:                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* chdir(pathcd);*/                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  /*system("wgnuplot graph.plt");*/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
  /*system("../gp37mgw/wgnuplot graph.plt");*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  /*system("cd ../gp37mgw");*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  strcpy(plotcmd,GNUPLOTPROGRAM);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  strcat(plotcmd," ");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  strcat(plotcmd,optionfilegnuplot);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  system(plotcmd);                    }else{
                       first=0;
  /*#ifdef windows*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   while (z[0] != 'q') {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     /* chdir(path); */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     scanf("%s",z);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     if (z[0] == 'c') system("./imach");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     else if (z[0] == 'e') system(optionfilehtm);                    }/* if first */
     else if (z[0] == 'g') system(plotcmd);                  } /* age mod 5 */
     else if (z[0] == 'q') exit(0);                } /* end loop age */
   }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*#endif */                first=1;
 }              } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.135


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>