Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.149

version 1.41.2.1, 2003/06/12 10:43:20 version 1.149, 2014/06/18 15:51:14
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.149  2014/06/18 15:51:14  brouard
      Summary: Some fixes in parameter files errors
   This program computes Healthy Life Expectancies from    Author: Nicolas Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.148  2014/06/17 17:38:48  brouard
   interviewed on their health status or degree of disability (in the    Summary: Nothing new
   case of a health survey which is our main interest) -2- at least a    Author: Brouard
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Just a new packaging for OS/X version 0.98nS
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.147  2014/06/16 10:33:11  brouard
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.146  2014/06/16 10:20:28  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: Merge
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Author: Brouard
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Merge, before building revised version.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.145  2014/06/10 21:23:15  brouard
   convergence.    Summary: Debugging with valgrind
     Author: Nicolas Brouard
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Lot of changes in order to output the results with some covariates
   identical for each individual. Also, if a individual missed an    After the Edimburgh REVES conference 2014, it seems mandatory to
   intermediate interview, the information is lost, but taken into    improve the code.
   account using an interpolation or extrapolation.      No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
   hPijx is the probability to be observed in state i at age x+h    Also, decodemodel has been improved. Tricode is still not
   conditional to the observed state i at age x. The delay 'h' can be    optimal. nbcode should be improved. Documentation has been added in
   split into an exact number (nh*stepm) of unobserved intermediate    the source code.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.143  2014/01/26 09:45:38  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   and the contribution of each individual to the likelihood is simply  
   hPijx.    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.142  2014/01/26 03:57:36  brouard
      Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.141  2014/01/26 02:42:01  brouard
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.140  2011/09/02 10:37:54  brouard
   **********************************************************************/    Summary: times.h is ok with mingw32 now.
    
 #include <math.h>    Revision 1.139  2010/06/14 07:50:17  brouard
 #include <stdio.h>    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #include <stdlib.h>    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #include <unistd.h>  
     Revision 1.138  2010/04/30 18:19:40  brouard
 #define MAXLINE 256    *** empty log message ***
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.137  2010/04/29 18:11:38  brouard
 #define FILENAMELENGTH 80    (Module): Checking covariates for more complex models
 /*#define DEBUG*/    than V1+V2. A lot of change to be done. Unstable.
   
 /*#define windows*/    Revision 1.136  2010/04/26 20:30:53  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): merging some libgsl code. Fixing computation
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Some cleaning of code and comments added.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.135  2009/10/29 15:33:14  brouard
 #define NINTERVMAX 8    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.134  2009/10/29 13:18:53  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.133  2009/07/06 10:21:25  brouard
 #define AGESUP 130    just nforces
 #define AGEBASE 40  
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
 int erreur; /* Error number */  
 int nvar;    Revision 1.131  2009/06/20 16:22:47  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Some dimensions resccaled
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.130  2009/05/26 06:44:34  brouard
 int ndeath=1; /* Number of dead states */    (Module): Max Covariate is now set to 20 instead of 8. A
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    lot of cleaning with variables initialized to 0. Trying to make
 int popbased=0;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.129  2007/08/31 13:49:27  lievre
 int maxwav; /* Maxim number of waves */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.128  2006/06/30 13:02:05  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Clarifications on computing e.j
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.127  2006/04/28 18:11:50  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Yes the sum of survivors was wrong since
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    imach-114 because nhstepm was no more computed in the age
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    loop. Now we define nhstepma in the age loop.
 FILE *ficgp,*ficresprob,*ficpop;    (Module): In order to speed up (in case of numerous covariates) we
 FILE *ficreseij;    compute health expectancies (without variances) in a first step
   char filerese[FILENAMELENGTH];    and then all the health expectancies with variances or standard
  FILE  *ficresvij;    deviation (needs data from the Hessian matrices) which slows the
   char fileresv[FILENAMELENGTH];    computation.
  FILE  *ficresvpl;    In the future we should be able to stop the program is only health
   char fileresvpl[FILENAMELENGTH];    expectancies and graph are needed without standard deviations.
   
 #define NR_END 1    Revision 1.126  2006/04/28 17:23:28  brouard
 #define FREE_ARG char*    (Module): Yes the sum of survivors was wrong since
 #define FTOL 1.0e-10    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 #define NRANSI    Version 0.98h
 #define ITMAX 200  
     Revision 1.125  2006/04/04 15:20:31  lievre
 #define TOL 2.0e-4    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.124  2006/03/22 17:13:53  lievre
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.123  2006/03/20 10:52:43  brouard
 #define TINY 1.0e-20    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Module): Weights can have a decimal point as for
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    English (a comma might work with a correct LC_NUMERIC environment,
      otherwise the weight is truncated).
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Modification of warning when the covariates values are not 0 or
 #define rint(a) floor(a+0.5)    1.
     Version 0.98g
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.122  2006/03/20 09:45:41  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 int imx;    otherwise the weight is truncated).
 int stepm;    Modification of warning when the covariates values are not 0 or
 /* Stepm, step in month: minimum step interpolation*/    1.
     Version 0.98g
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    * imach.c (Module): refinements in the computation of lli if
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    status=-2 in order to have more reliable computation if stepm is
 double **pmmij, ***probs, ***mobaverage;    not 1 month. Version 0.98f
 double dateintmean=0;  
     Revision 1.120  2006/03/16 15:10:38  lievre
 double *weight;    (Module): refinements in the computation of lli if
 int **s; /* Status */    status=-2 in order to have more reliable computation if stepm is
 double *agedc, **covar, idx;    not 1 month. Version 0.98f
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.119  2006/03/15 17:42:26  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Bug if status = -2, the loglikelihood was
 double ftolhess; /* Tolerance for computing hessian */    computed as likelihood omitting the logarithm. Version O.98e
   
 /**************** split *************************/    Revision 1.118  2006/03/14 18:20:07  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): varevsij Comments added explaining the second
 {    table of variances if popbased=1 .
    char *s;                             /* pointer */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    int  l1, l2;                         /* length counters */    (Module): Function pstamp added
     (Module): Version 0.98d
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.117  2006/03/14 17:16:22  brouard
 #ifdef windows    (Module): varevsij Comments added explaining the second
    s = strrchr( path, '\\' );           /* find last / */    table of variances if popbased=1 .
 #else    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    s = strrchr( path, '/' );            /* find last / */    (Module): Function pstamp added
 #endif    (Module): Version 0.98d
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.116  2006/03/06 10:29:27  brouard
       extern char       *getwd( );    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.115  2006/02/27 12:17:45  brouard
       extern char       *getcwd( );    (Module): One freematrix added in mlikeli! 0.98c
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.114  2006/02/26 12:57:58  brouard
 #endif    (Module): Some improvements in processing parameter
          return( GLOCK_ERROR_GETCWD );    filename with strsep.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.113  2006/02/24 14:20:24  brouard
    } else {                             /* strip direcotry from path */    (Module): Memory leaks checks with valgrind and:
       s++;                              /* after this, the filename */    datafile was not closed, some imatrix were not freed and on matrix
       l2 = strlen( s );                 /* length of filename */    allocation too.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.112  2006/01/30 09:55:26  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.111  2006/01/25 20:38:18  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Lots of cleaning and bugs added (Gompertz)
 #ifdef windows    (Module): Comments can be added in data file. Missing date values
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    can be a simple dot '.'.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.110  2006/01/25 00:51:50  brouard
 #endif    (Module): Lots of cleaning and bugs added (Gompertz)
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.109  2006/01/24 19:37:15  brouard
    strcpy(ext,s);                       /* save extension */    (Module): Comments (lines starting with a #) are allowed in data.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.108  2006/01/19 18:05:42  lievre
    strncpy( finame, name, l1-l2);    Gnuplot problem appeared...
    finame[l1-l2]= 0;    To be fixed
    return( 0 );                         /* we're done */  
 }    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   
 /******************************************/    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 void replace(char *s, char*t)  
 {    Revision 1.105  2006/01/05 20:23:19  lievre
   int i;    *** empty log message ***
   int lg=20;  
   i=0;    Revision 1.104  2005/09/30 16:11:43  lievre
   lg=strlen(t);    (Module): sump fixed, loop imx fixed, and simplifications.
   for(i=0; i<= lg; i++) {    (Module): If the status is missing at the last wave but we know
     (s[i] = t[i]);    that the person is alive, then we can code his/her status as -2
     if (t[i]== '\\') s[i]='/';    (instead of missing=-1 in earlier versions) and his/her
   }    contributions to the likelihood is 1 - Prob of dying from last
 }    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 int nbocc(char *s, char occ)  
 {    Revision 1.103  2005/09/30 15:54:49  lievre
   int i,j=0;    (Module): sump fixed, loop imx fixed, and simplifications.
   int lg=20;  
   i=0;    Revision 1.102  2004/09/15 17:31:30  brouard
   lg=strlen(s);    Add the possibility to read data file including tab characters.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.101  2004/09/15 10:38:38  brouard
   }    Fix on curr_time
   return j;  
 }    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.99  2004/06/05 08:57:40  brouard
   int i,lg,j,p=0;    *** empty log message ***
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.98  2004/05/16 15:05:56  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    New version 0.97 . First attempt to estimate force of mortality
   }    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   lg=strlen(t);    This is the basic analysis of mortality and should be done before any
   for(j=0; j<p; j++) {    other analysis, in order to test if the mortality estimated from the
     (u[j] = t[j]);    cross-longitudinal survey is different from the mortality estimated
   }    from other sources like vital statistic data.
      u[p]='\0';  
     The same imach parameter file can be used but the option for mle should be -3.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Agnès, who wrote this part of the code, tried to keep most of the
   }    former routines in order to include the new code within the former code.
 }  
     The output is very simple: only an estimate of the intercept and of
 /********************** nrerror ********************/    the slope with 95% confident intervals.
   
 void nrerror(char error_text[])    Current limitations:
 {    A) Even if you enter covariates, i.e. with the
   fprintf(stderr,"ERREUR ...\n");    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   fprintf(stderr,"%s\n",error_text);    B) There is no computation of Life Expectancy nor Life Table.
   exit(1);  
 }    Revision 1.97  2004/02/20 13:25:42  lievre
 /*********************** vector *******************/    Version 0.96d. Population forecasting command line is (temporarily)
 double *vector(int nl, int nh)    suppressed.
 {  
   double *v;    Revision 1.96  2003/07/15 15:38:55  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   if (!v) nrerror("allocation failure in vector");    rewritten within the same printf. Workaround: many printfs.
   return v-nl+NR_END;  
 }    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 /************************ free vector ******************/    (Repository): Using imachwizard code to output a more meaningful covariance
 void free_vector(double*v, int nl, int nh)    matrix (cov(a12,c31) instead of numbers.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.94  2003/06/27 13:00:02  brouard
 }    Just cleaning
   
 /************************ivector *******************************/    Revision 1.93  2003/06/25 16:33:55  brouard
 int *ivector(long nl,long nh)    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   int *v;    (Module): Version 0.96b
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.92  2003/06/25 16:30:45  brouard
   return v-nl+NR_END;    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
   
 /******************free ivector **************************/    Revision 1.91  2003/06/25 15:30:29  brouard
 void free_ivector(int *v, long nl, long nh)    * imach.c (Repository): Duplicated warning errors corrected.
 {    (Repository): Elapsed time after each iteration is now output. It
   free((FREE_ARG)(v+nl-NR_END));    helps to forecast when convergence will be reached. Elapsed time
 }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.90  2003/06/24 12:34:15  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    of the covariance matrix to be input.
   int **m;  
      Revision 1.89  2003/06/24 12:30:52  brouard
   /* allocate pointers to rows */    (Module): Some bugs corrected for windows. Also, when
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!m) nrerror("allocation failure 1 in matrix()");    of the covariance matrix to be input.
   m += NR_END;  
   m -= nrl;    Revision 1.88  2003/06/23 17:54:56  brouard
      * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    
   /* allocate rows and set pointers to them */    Revision 1.87  2003/06/18 12:26:01  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Version 0.96
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.86  2003/06/17 20:04:08  brouard
   m[nrl] -= ncl;    (Module): Change position of html and gnuplot routines and added
      routine fileappend.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.85  2003/06/17 13:12:43  brouard
   /* return pointer to array of pointers to rows */    * imach.c (Repository): Check when date of death was earlier that
   return m;    current date of interview. It may happen when the death was just
 }    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /****************** free_imatrix *************************/    assuming that the date of death was just one stepm after the
 void free_imatrix(m,nrl,nrh,ncl,nch)    interview.
       int **m;    (Repository): Because some people have very long ID (first column)
       long nch,ncl,nrh,nrl;    we changed int to long in num[] and we added a new lvector for
      /* free an int matrix allocated by imatrix() */    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    (Repository): No more line truncation errors.
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 /******************* matrix *******************************/    place. It differs from routine "prevalence" which may be called
 double **matrix(long nrl, long nrh, long ncl, long nch)    many times. Probs is memory consuming and must be used with
 {    parcimony.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   double **m;  
     Revision 1.83  2003/06/10 13:39:11  lievre
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    *** empty log message ***
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.82  2003/06/05 15:57:20  brouard
   m -= nrl;    Add log in  imach.c and  fullversion number is now printed.
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*
   m[nrl] += NR_END;     Interpolated Markov Chain
   m[nrl] -= ncl;  
     Short summary of the programme:
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    
   return m;    This program computes Healthy Life Expectancies from
 }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 /*************************free matrix ************************/    interviewed on their health status or degree of disability (in the
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (if any) in individual health status.  Health expectancies are
   free((FREE_ARG)(m+nrl-NR_END));    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /******************* ma3x *******************************/    simplest model is the multinomial logistic model where pij is the
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   double ***m;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    where the markup *Covariates have to be included here again* invites
   if (!m) nrerror("allocation failure 1 in matrix()");    you to do it.  More covariates you add, slower the
   m += NR_END;    convergence.
   m -= nrl;  
     The advantage of this computer programme, compared to a simple
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    multinomial logistic model, is clear when the delay between waves is not
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    identical for each individual. Also, if a individual missed an
   m[nrl] += NR_END;    intermediate interview, the information is lost, but taken into
   m[nrl] -= ncl;    account using an interpolation or extrapolation.  
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    split into an exact number (nh*stepm) of unobserved intermediate
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    states. This elementary transition (by month, quarter,
   m[nrl][ncl] += NR_END;    semester or year) is modelled as a multinomial logistic.  The hPx
   m[nrl][ncl] -= nll;    matrix is simply the matrix product of nh*stepm elementary matrices
   for (j=ncl+1; j<=nch; j++)    and the contribution of each individual to the likelihood is simply
     m[nrl][j]=m[nrl][j-1]+nlay;    hPijx.
    
   for (i=nrl+1; i<=nrh; i++) {    Also this programme outputs the covariance matrix of the parameters but also
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    of the life expectancies. It also computes the period (stable) prevalence. 
     for (j=ncl+1; j<=nch; j++)    
       m[i][j]=m[i][j-1]+nlay;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   }             Institut national d'études démographiques, Paris.
   return m;    This software have been partly granted by Euro-REVES, a concerted action
 }    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 /*************************free ma3x ************************/    software can be distributed freely for non commercial use. Latest version
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    can be accessed at http://euroreves.ined.fr/imach .
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   free((FREE_ARG)(m+nrl-NR_END));    
 }    **********************************************************************/
   /*
 /***************** f1dim *************************/    main
 extern int ncom;    read parameterfile
 extern double *pcom,*xicom;    read datafile
 extern double (*nrfunc)(double []);    concatwav
      freqsummary
 double f1dim(double x)    if (mle >= 1)
 {      mlikeli
   int j;    print results files
   double f;    if mle==1 
   double *xt;       computes hessian
      read end of parameter file: agemin, agemax, bage, fage, estepm
   xt=vector(1,ncom);        begin-prev-date,...
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    open gnuplot file
   f=(*nrfunc)(xt);    open html file
   free_vector(xt,1,ncom);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   return f;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 }                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       freexexit2 possible for memory heap.
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    h Pij x                         | pij_nom  ficrestpij
 {     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   int iter;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   double a,b,d,etemp;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   double fu,fv,fw,fx;  
   double ftemp;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   double p,q,r,tol1,tol2,u,v,w,x,xm;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   double e=0.0;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   a=(ax < cx ? ax : cx);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    forecasting if prevfcast==1 prevforecast call prevalence()
   fw=fv=fx=(*f)(x);    health expectancies
   for (iter=1;iter<=ITMAX;iter++) {    Variance-covariance of DFLE
     xm=0.5*(a+b);    prevalence()
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     movingaverage()
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    varevsij() 
     printf(".");fflush(stdout);    if popbased==1 varevsij(,popbased)
 #ifdef DEBUG    total life expectancies
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Variance of period (stable) prevalence
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */   end
 #endif  */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  
       return fx;  
     }   
     ftemp=fu;  #include <math.h>
     if (fabs(e) > tol1) {  #include <stdio.h>
       r=(x-w)*(fx-fv);  #include <stdlib.h>
       q=(x-v)*(fx-fw);  #include <string.h>
       p=(x-v)*q-(x-w)*r;  #include <unistd.h>
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #include <limits.h>
       q=fabs(q);  #include <sys/types.h>
       etemp=e;  #include <sys/stat.h>
       e=d;  #include <errno.h>
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  extern int errno;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  #ifdef LINUX
         d=p/q;  #include <time.h>
         u=x+d;  #include "timeval.h"
         if (u-a < tol2 || b-u < tol2)  #else
           d=SIGN(tol1,xm-x);  #include <sys/time.h>
       }  #endif
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #ifdef GSL
     }  #include <gsl/gsl_errno.h>
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #include <gsl/gsl_multimin.h>
     fu=(*f)(u);  #endif
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /* #include <libintl.h> */
       SHFT(v,w,x,u)  /* #define _(String) gettext (String) */
         SHFT(fv,fw,fx,fu)  
         } else {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  #define GNUPLOTPROGRAM "gnuplot"
             v=w;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
             w=u;  #define FILENAMELENGTH 132
             fv=fw;  
             fw=fu;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
           } else if (fu <= fv || v == x || v == w) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
             v=u;  
             fv=fu;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
           }  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
         }  
   }  #define NINTERVMAX 8
   nrerror("Too many iterations in brent");  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   *xmin=x;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   return fx;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 }  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   #define MAXN 20000
 /****************** mnbrak ***********************/  #define YEARM 12. /**< Number of months per year */
   #define AGESUP 130
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define AGEBASE 40
             double (*func)(double))  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   double ulim,u,r,q, dum;  #define DIRSEPARATOR '/'
   double fu;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   *fa=(*func)(*ax);  #else
   *fb=(*func)(*bx);  #define DIRSEPARATOR '\\'
   if (*fb > *fa) {  #define CHARSEPARATOR "\\"
     SHFT(dum,*ax,*bx,dum)  #define ODIRSEPARATOR '/'
       SHFT(dum,*fb,*fa,dum)  #endif
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /* $Id$ */
   *fc=(*func)(*cx);  /* $State$ */
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     q=(*bx-*cx)*(*fb-*fa);  char fullversion[]="$Revision$ $Date$"; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char strstart[80];
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     if ((*bx-u)*(u-*cx) > 0.0) {  int nvar=0, nforce=0; /* Number of variables, number of forces */
       fu=(*func)(u);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       fu=(*func)(u);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       if (fu < *fc) {  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
           SHFT(*fb,*fc,fu,(*func)(u))  int cptcovprodnoage=0; /**< Number of covariate products without age */   
           }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int cptcov=0; /* Working variable */
       u=ulim;  int npar=NPARMAX;
       fu=(*func)(u);  int nlstate=2; /* Number of live states */
     } else {  int ndeath=1; /* Number of dead states */
       u=(*cx)+GOLD*(*cx-*bx);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       fu=(*func)(u);  int popbased=0;
     }  
     SHFT(*ax,*bx,*cx,u)  int *wav; /* Number of waves for this individuual 0 is possible */
       SHFT(*fa,*fb,*fc,fu)  int maxwav=0; /* Maxim number of waves */
       }  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 /*************** linmin ************************/                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
 int ncom;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double *pcom,*xicom;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double (*nrfunc)(double []);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               * wave mi and wave mi+1 is not an exact multiple of stepm. */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  double jmean=1; /* Mean space between 2 waves */
 {  double **matprod2(); /* test */
   double brent(double ax, double bx, double cx,  double **oldm, **newm, **savm; /* Working pointers to matrices */
                double (*f)(double), double tol, double *xmin);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double f1dim(double x);  /*FILE *fic ; */ /* Used in readdata only */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
               double *fc, double (*func)(double));  FILE *ficlog, *ficrespow;
   int j;  int globpr=0; /* Global variable for printing or not */
   double xx,xmin,bx,ax;  double fretone; /* Only one call to likelihood */
   double fx,fb,fa;  long ipmx=0; /* Number of contributions */
    double sw; /* Sum of weights */
   ncom=n;  char filerespow[FILENAMELENGTH];
   pcom=vector(1,n);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   xicom=vector(1,n);  FILE *ficresilk;
   nrfunc=func;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for (j=1;j<=n;j++) {  FILE *ficresprobmorprev;
     pcom[j]=p[j];  FILE *fichtm, *fichtmcov; /* Html File */
     xicom[j]=xi[j];  FILE *ficreseij;
   }  char filerese[FILENAMELENGTH];
   ax=0.0;  FILE *ficresstdeij;
   xx=1.0;  char fileresstde[FILENAMELENGTH];
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  FILE *ficrescveij;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char filerescve[FILENAMELENGTH];
 #ifdef DEBUG  FILE  *ficresvij;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char fileresv[FILENAMELENGTH];
 #endif  FILE  *ficresvpl;
   for (j=1;j<=n;j++) {  char fileresvpl[FILENAMELENGTH];
     xi[j] *= xmin;  char title[MAXLINE];
     p[j] += xi[j];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   free_vector(xicom,1,n);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   free_vector(pcom,1,n);  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /*************** powell ************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   void linmin(double p[], double xi[], int n, double *fret,  char fileregp[FILENAMELENGTH];
               double (*func)(double []));  char popfile[FILENAMELENGTH];
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double fp,fptt;  
   double *xits;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   pt=vector(1,n);  struct timezone tzp;
   ptt=vector(1,n);  extern int gettimeofday();
   xit=vector(1,n);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   xits=vector(1,n);  long time_value;
   *fret=(*func)(p);  extern long time();
   for (j=1;j<=n;j++) pt[j]=p[j];  char strcurr[80], strfor[80];
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  char *endptr;
     ibig=0;  long lval;
     del=0.0;  double dval;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  #define NR_END 1
       printf(" %d %.12f",i, p[i]);  #define FREE_ARG char*
     printf("\n");  #define FTOL 1.0e-10
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define NRANSI 
       fptt=(*fret);  #define ITMAX 200 
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  #define TOL 2.0e-4 
 #endif  
       printf("%d",i);fflush(stdout);  #define CGOLD 0.3819660 
       linmin(p,xit,n,fret,func);  #define ZEPS 1.0e-10 
       if (fabs(fptt-(*fret)) > del) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         del=fabs(fptt-(*fret));  
         ibig=i;  #define GOLD 1.618034 
       }  #define GLIMIT 100.0 
 #ifdef DEBUG  #define TINY 1.0e-20 
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  static double maxarg1,maxarg2;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         printf(" x(%d)=%.12e",j,xit[j]);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       }    
       for(j=1;j<=n;j++)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         printf(" p=%.12e",p[j]);  #define rint(a) floor(a+0.5)
       printf("\n");  
 #endif  static double sqrarg;
     }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #ifdef DEBUG  int agegomp= AGEGOMP;
       int k[2],l;  
       k[0]=1;  int imx; 
       k[1]=-1;  int stepm=1;
       printf("Max: %.12e",(*func)(p));  /* Stepm, step in month: minimum step interpolation*/
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  int estepm;
       printf("\n");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  int m,nb;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  long *num;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double **pmmij, ***probs;
       }  double *ageexmed,*agecens;
 #endif  double dateintmean=0;
   
   double *weight;
       free_vector(xit,1,n);  int **s; /* Status */
       free_vector(xits,1,n);  double *agedc;
       free_vector(ptt,1,n);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       free_vector(pt,1,n);                    * covar=matrix(0,NCOVMAX,1,n); 
       return;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     }  double  idx; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     for (j=1;j<=n;j++) {  int *Ndum; /** Freq of modality (tricode */
       ptt[j]=2.0*p[j]-pt[j];  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       xit[j]=p[j]-pt[j];  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       pt[j]=p[j];  double *lsurv, *lpop, *tpop;
     }  
     fptt=(*func)(ptt);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     if (fptt < fp) {  double ftolhess; /**< Tolerance for computing hessian */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /**************** split *************************/
         linmin(p,xit,n,fret,func);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         for (j=1;j<=n;j++) {  {
           xi[j][ibig]=xi[j][n];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
           xi[j][n]=xit[j];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         }    */ 
 #ifdef DEBUG    char  *ss;                            /* pointer */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    int   l1, l2;                         /* length counters */
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);    l1 = strlen(path );                   /* length of path */
         printf("\n");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #endif    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     }      strcpy( name, path );               /* we got the fullname name because no directory */
   }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /**** Prevalence limit ****************/      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        return( GLOCK_ERROR_GETCWD );
 {      }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      /* got dirc from getcwd*/
      matrix by transitions matrix until convergence is reached */      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
   int i, ii,j,k;      ss++;                               /* after this, the filename */
   double min, max, maxmin, maxmax,sumnew=0.;      l2 = strlen( ss );                  /* length of filename */
   double **matprod2();      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double **out, cov[NCOVMAX], **pmij();      strcpy( name, ss );         /* save file name */
   double **newm;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double agefin, delaymax=50 ; /* Max number of years to converge */      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
   for (ii=1;ii<=nlstate+ndeath;ii++)    }
     for (j=1;j<=nlstate+ndeath;j++){    /* We add a separator at the end of dirc if not exists */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    l1 = strlen( dirc );                  /* length of directory */
     }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
    cov[1]=1.;      dirc[l1+1] = 0; 
        printf(" DIRC3 = %s \n",dirc);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    ss = strrchr( name, '.' );            /* find last / */
     newm=savm;    if (ss >0){
     /* Covariates have to be included here again */      ss++;
      cov[2]=agefin;      strcpy(ext,ss);                     /* save extension */
        l1= strlen( name);
       for (k=1; k<=cptcovn;k++) {      l2= strlen(ss)+1;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      strncpy( finame, name, l1-l2);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      finame[l1-l2]= 0;
       }    }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)    return( 0 );                          /* we're done */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /******************************************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  void replace_back_to_slash(char *s, char*t)
   {
     savm=oldm;    int i;
     oldm=newm;    int lg=0;
     maxmax=0.;    i=0;
     for(j=1;j<=nlstate;j++){    lg=strlen(t);
       min=1.;    for(i=0; i<= lg; i++) {
       max=0.;      (s[i] = t[i]);
       for(i=1; i<=nlstate; i++) {      if (t[i]== '\\') s[i]='/';
         sumnew=0;    }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  char *trimbb(char *out, char *in)
         min=FMIN(min,prlim[i][j]);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       }    char *s;
       maxmin=max-min;    s=out;
       maxmax=FMAX(maxmax,maxmin);    while (*in != '\0'){
     }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     if(maxmax < ftolpl){        in++;
       return prlim;      }
     }      *out++ = *in++;
   }    }
 }    *out='\0';
     return s;
 /*************** transition probabilities ***************/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  char *cutl(char *blocc, char *alocc, char *in, char occ)
 {  {
   double s1, s2;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   /*double t34;*/       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   int i,j,j1, nc, ii, jj;       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
     for(i=1; i<= nlstate; i++){    */
     for(j=1; j<i;j++){    char *s, *t, *bl;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    t=in;s=in;
         /*s2 += param[i][j][nc]*cov[nc];*/    while ((*in != occ) && (*in != '\0')){
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      *alocc++ = *in++;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    }
       }    if( *in == occ){
       ps[i][j]=s2;      *(alocc)='\0';
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      s=++in;
     }    }
     for(j=i+1; j<=nlstate+ndeath;j++){   
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (s == t) {/* occ not found */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      *(alocc-(in-s))='\0';
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      in=s;
       }    }
       ps[i][j]=s2;    while ( *in != '\0'){
     }      *blocc++ = *in++;
   }    }
     /*ps[3][2]=1;*/  
     *blocc='\0';
   for(i=1; i<= nlstate; i++){    return t;
      s1=0;  }
     for(j=1; j<i; j++)  char *cutv(char *blocc, char *alocc, char *in, char occ)
       s1+=exp(ps[i][j]);  {
     for(j=i+1; j<=nlstate+ndeath; j++)    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       s1+=exp(ps[i][j]);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     ps[i][i]=1./(s1+1.);       gives blocc="abcdef2ghi" and alocc="j".
     for(j=1; j<i; j++)       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       ps[i][j]= exp(ps[i][j])*ps[i][i];    */
     for(j=i+1; j<=nlstate+ndeath; j++)    char *s, *t;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    t=in;s=in;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    while (*in != '\0'){
   } /* end i */      while( *in == occ){
         *blocc++ = *in++;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        s=in;
     for(jj=1; jj<= nlstate+ndeath; jj++){      }
       ps[ii][jj]=0;      *blocc++ = *in++;
       ps[ii][ii]=1;    }
     }    if (s == t) /* occ not found */
   }      *(blocc-(in-s))='\0';
     else
       *(blocc-(in-s)-1)='\0';
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    in=s;
     for(jj=1; jj<= nlstate+ndeath; jj++){    while ( *in != '\0'){
      printf("%lf ",ps[ii][jj]);      *alocc++ = *in++;
    }    }
     printf("\n ");  
     }    *alocc='\0';
     printf("\n ");printf("%lf ",cov[2]);*/    return s;
 /*  }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  int nbocc(char *s, char occ)
     return ps;  {
 }    int i,j=0;
     int lg=20;
 /**************** Product of 2 matrices ******************/    i=0;
     lg=strlen(s);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    return j;
   /* in, b, out are matrice of pointers which should have been initialized  }
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /* void cutv(char *u,char *v, char*t, char occ) */
   long i, j, k;  /* { */
   for(i=nrl; i<= nrh; i++)  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for(k=ncolol; k<=ncoloh; k++)  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /*      gives u="abcdef2ghi" and v="j" *\/ */
         out[i][k] +=in[i][j]*b[j][k];  /*   int i,lg,j,p=0; */
   /*   i=0; */
   return out;  /*   lg=strlen(t); */
 }  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
 /************* Higher Matrix Product ***************/  
   /*   for(j=0; j<p; j++) { */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*     (u[j] = t[j]); */
 {  /*   } */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*      u[p]='\0'; */
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*    for(j=0; j<= lg; j++) { */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
      (typically every 2 years instead of every month which is too big).  /*   } */
      Model is determined by parameters x and covariates have to be  /* } */
      included manually here.  
   /********************** nrerror ********************/
      */  
   void nrerror(char error_text[])
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    fprintf(stderr,"ERREUR ...\n");
   double **newm;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  /*********************** vector *******************/
     for (j=1;j<=nlstate+ndeath;j++){  double *vector(int nl, int nh)
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (!v) nrerror("allocation failure in vector");
   for(h=1; h <=nhstepm; h++){    return v-nl+NR_END;
     for(d=1; d <=hstepm; d++){  }
       newm=savm;  
       /* Covariates have to be included here again */  /************************ free vector ******************/
       cov[1]=1.;  void free_vector(double*v, int nl, int nh)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(v+nl-NR_END));
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /************************ivector *******************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int *ivector(long nl,long nh)
   {
     int *v;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    if (!v) nrerror("allocation failure in ivector");
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    return v-nl+NR_END;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  }
       savm=oldm;  
       oldm=newm;  /******************free ivector **************************/
     }  void free_ivector(int *v, long nl, long nh)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    free((FREE_ARG)(v+nl-NR_END));
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /************************lvector *******************************/
       }  long *lvector(long nl,long nh)
   } /* end h */  {
   return po;    long *v;
 }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /******************free lvector **************************/
   int i, ii, j, k, mi, d, kk;  void free_lvector(long *v, long nl, long nh)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    free((FREE_ARG)(v+nl-NR_END));
   double sw; /* Sum of weights */  }
   double lli; /* Individual log likelihood */  
   long ipmx;  /******************* imatrix *******************************/
   /*extern weight */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   /* We are differentiating ll according to initial status */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  { 
   /*for(i=1;i<imx;i++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     printf(" %d\n",s[4][i]);    int **m; 
   */    
   cov[1]=1.;    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    m += NR_END; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    m -= nrl; 
     for(mi=1; mi<= wav[i]-1; mi++){    
       for (ii=1;ii<=nlstate+ndeath;ii++)    
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* allocate rows and set pointers to them */ 
       for(d=0; d<dh[mi][i]; d++){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         newm=savm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    m[nrl] += NR_END; 
         for (kk=1; kk<=cptcovage;kk++) {    m[nrl] -= ncl; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    
         }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
            
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    /* return pointer to array of pointers to rows */ 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    return m; 
         savm=oldm;  } 
         oldm=newm;  
          /****************** free_imatrix *************************/
          void free_imatrix(m,nrl,nrh,ncl,nch)
       } /* end mult */        int **m;
              long nch,ncl,nrh,nrl; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);       /* free an int matrix allocated by imatrix() */ 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  { 
       ipmx +=1;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       sw += weight[i];    free((FREE_ARG) (m+nrl-NR_END)); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  } 
     } /* end of wave */  
   } /* end of individual */  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double **m;
   return -l;  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*********** Maximum Likelihood Estimation ***************/    m -= nrl;
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int i,j, iter;    m[nrl] += NR_END;
   double **xi,*delti;    m[nrl] -= ncl;
   double fret;  
   xi=matrix(1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (i=1;i<=npar;i++)    return m;
     for (j=1;j<=npar;j++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       xi[i][j]=(i==j ? 1.0 : 0.0);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   printf("Powell\n");  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   powell(p,xi,npar,ftol,&iter,&fret,func);     */
   }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /**** Computes Hessian and covariance matrix ***/    free((FREE_ARG)(m+nrl-NR_END));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  }
 {  
   double  **a,**y,*x,pd;  /******************* ma3x *******************************/
   double **hess;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int i, j,jk;  {
   int *indx;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   void lubksb(double **a, int npar, int *indx, double b[]) ;    if (!m) nrerror("allocation failure 1 in matrix()");
   void ludcmp(double **a, int npar, int *indx, double *d) ;    m += NR_END;
     m -= nrl;
   hess=matrix(1,npar,1,npar);  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   printf("\nCalculation of the hessian matrix. Wait...\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (i=1;i<=npar;i++){    m[nrl] += NR_END;
     printf("%d",i);fflush(stdout);    m[nrl] -= ncl;
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     /*printf(" %lf ",hess[i][i]);*/  
   }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for (i=1;i<=npar;i++) {    m[nrl][ncl] += NR_END;
     for (j=1;j<=npar;j++)  {    m[nrl][ncl] -= nll;
       if (j>i) {    for (j=ncl+1; j<=nch; j++) 
         printf(".%d%d",i,j);fflush(stdout);      m[nrl][j]=m[nrl][j-1]+nlay;
         hess[i][j]=hessij(p,delti,i,j);    
         hess[j][i]=hess[i][j];        for (i=nrl+1; i<=nrh; i++) {
         /*printf(" %lf ",hess[i][j]);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
   }    }
   printf("\n");    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
      */
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /*************************free ma3x ************************/
   indx=ivector(1,npar);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   ludcmp(a,npar,indx,&pd);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** function subdirf ***********/
     lubksb(a,npar,indx,x);  char *subdirf(char fileres[])
     for (i=1;i<=npar;i++){  {
       matcov[i][j]=x[i];    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   printf("\n#Hessian matrix#\n");    return tmpout;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
     printf("\n");  {
   }    
     /* Caution optionfilefiname is hidden */
   /* Recompute Inverse */    strcpy(tmpout,optionfilefiname);
   for (i=1;i<=npar;i++)    strcat(tmpout,"/");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    strcat(tmpout,preop);
   ludcmp(a,npar,indx,&pd);    strcat(tmpout,fileres);
     return tmpout;
   /*  printf("\n#Hessian matrix recomputed#\n");  }
   
   for (j=1;j<=npar;j++) {  /*************** function subdirf3 ***********/
     for (i=1;i<=npar;i++) x[i]=0;  char *subdirf3(char fileres[], char *preop, char *preop2)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    
     for (i=1;i<=npar;i++){    /* Caution optionfilefiname is hidden */
       y[i][j]=x[i];    strcpy(tmpout,optionfilefiname);
       printf("%.3e ",y[i][j]);    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     printf("\n");    strcat(tmpout,preop2);
   }    strcat(tmpout,fileres);
   */    return tmpout;
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /***************** f1dim *************************/
   free_vector(x,1,npar);  extern int ncom; 
   free_ivector(indx,1,npar);  extern double *pcom,*xicom;
   free_matrix(hess,1,npar,1,npar);  extern double (*nrfunc)(double []); 
    
   double f1dim(double x) 
 }  { 
     int j; 
 /*************** hessian matrix ****************/    double f;
 double hessii( double x[], double delta, int theta, double delti[])    double *xt; 
 {   
   int i;    xt=vector(1,ncom); 
   int l=1, lmax=20;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double k1,k2;    f=(*nrfunc)(xt); 
   double p2[NPARMAX+1];    free_vector(xt,1,ncom); 
   double res;    return f; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  } 
   double fx;  
   int k=0,kmax=10;  /*****************brent *************************/
   double l1;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
   fx=func(x);    int iter; 
   for (i=1;i<=npar;i++) p2[i]=x[i];    double a,b,d,etemp;
   for(l=0 ; l <=lmax; l++){    double fu,fv,fw,fx;
     l1=pow(10,l);    double ftemp;
     delts=delt;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(k=1 ; k <kmax; k=k+1){    double e=0.0; 
       delt = delta*(l1*k);   
       p2[theta]=x[theta] +delt;    a=(ax < cx ? ax : cx); 
       k1=func(p2)-fx;    b=(ax > cx ? ax : cx); 
       p2[theta]=x[theta]-delt;    x=w=v=bx; 
       k2=func(p2)-fx;    fw=fv=fx=(*f)(x); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    for (iter=1;iter<=ITMAX;iter++) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      xm=0.5*(a+b); 
            tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 #ifdef DEBUG      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      printf(".");fflush(stdout);
 #endif      fprintf(ficlog,".");fflush(ficlog);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #ifdef DEBUG
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         k=kmax;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  #endif
         k=kmax; l=lmax*10.;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       }        *xmin=x; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        return fx; 
         delts=delt;      } 
       }      ftemp=fu;
     }      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
   delti[theta]=delts;        q=(x-v)*(fx-fw); 
   return res;        p=(x-v)*q-(x-w)*r; 
          q=2.0*(q-r); 
 }        if (q > 0.0) p = -p; 
         q=fabs(q); 
 double hessij( double x[], double delti[], int thetai,int thetaj)        etemp=e; 
 {        e=d; 
   int i;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int l=1, l1, lmax=20;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double k1,k2,k3,k4,res,fx;        else { 
   double p2[NPARMAX+1];          d=p/q; 
   int k;          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
   fx=func(x);            d=SIGN(tol1,xm-x); 
   for (k=1; k<=2; k++) {        } 
     for (i=1;i<=npar;i++) p2[i]=x[i];      } else { 
     p2[thetai]=x[thetai]+delti[thetai]/k;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } 
     k1=func(p2)-fx;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
        fu=(*f)(u); 
     p2[thetai]=x[thetai]+delti[thetai]/k;      if (fu <= fx) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        if (u >= x) a=x; else b=x; 
     k2=func(p2)-fx;        SHFT(v,w,x,u) 
            SHFT(fv,fw,fx,fu) 
     p2[thetai]=x[thetai]-delti[thetai]/k;          } else { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            if (u < x) a=u; else b=u; 
     k3=func(p2)-fx;            if (fu <= fw || w == x) { 
                v=w; 
     p2[thetai]=x[thetai]-delti[thetai]/k;              w=u; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;              fv=fw; 
     k4=func(p2)-fx;              fw=fu; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            } else if (fu <= fv || v == x || v == w) { 
 #ifdef DEBUG              v=u; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);              fv=fu; 
 #endif            } 
   }          } 
   return res;    } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /************** Inverse of matrix **************/    return fx; 
 void ludcmp(double **a, int n, int *indx, double *d)  } 
 {  
   int i,imax,j,k;  /****************** mnbrak ***********************/
   double big,dum,sum,temp;  
   double *vv;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                double (*func)(double)) 
   vv=vector(1,n);  { 
   *d=1.0;    double ulim,u,r,q, dum;
   for (i=1;i<=n;i++) {    double fu; 
     big=0.0;   
     for (j=1;j<=n;j++)    *fa=(*func)(*ax); 
       if ((temp=fabs(a[i][j])) > big) big=temp;    *fb=(*func)(*bx); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    if (*fb > *fa) { 
     vv[i]=1.0/big;      SHFT(dum,*ax,*bx,dum) 
   }        SHFT(dum,*fb,*fa,dum) 
   for (j=1;j<=n;j++) {        } 
     for (i=1;i<j;i++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
       sum=a[i][j];    *fc=(*func)(*cx); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    while (*fb > *fc) { 
       a[i][j]=sum;      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
     big=0.0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for (i=j;i<=n;i++) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       sum=a[i][j];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (k=1;k<j;k++)      if ((*bx-u)*(u-*cx) > 0.0) { 
         sum -= a[i][k]*a[k][j];        fu=(*func)(u); 
       a[i][j]=sum;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        fu=(*func)(u); 
         big=dum;        if (fu < *fc) { 
         imax=i;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
     if (j != imax) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (k=1;k<=n;k++) {        u=ulim; 
         dum=a[imax][k];        fu=(*func)(u); 
         a[imax][k]=a[j][k];      } else { 
         a[j][k]=dum;        u=(*cx)+GOLD*(*cx-*bx); 
       }        fu=(*func)(u); 
       *d = -(*d);      } 
       vv[imax]=vv[j];      SHFT(*ax,*bx,*cx,u) 
     }        SHFT(*fa,*fb,*fc,fu) 
     indx[j]=imax;        } 
     if (a[j][j] == 0.0) a[j][j]=TINY;  } 
     if (j != n) {  
       dum=1.0/(a[j][j]);  /*************** linmin ************************/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }  int ncom; 
   }  double *pcom,*xicom;
   free_vector(vv,1,n);  /* Doesn't work */  double (*nrfunc)(double []); 
 ;   
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 void lubksb(double **a, int n, int *indx, double b[])    double brent(double ax, double bx, double cx, 
 {                 double (*f)(double), double tol, double *xmin); 
   int i,ii=0,ip,j;    double f1dim(double x); 
   double sum;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
   for (i=1;i<=n;i++) {    int j; 
     ip=indx[i];    double xx,xmin,bx,ax; 
     sum=b[ip];    double fx,fb,fa;
     b[ip]=b[i];   
     if (ii)    ncom=n; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    pcom=vector(1,n); 
     else if (sum) ii=i;    xicom=vector(1,n); 
     b[i]=sum;    nrfunc=func; 
   }    for (j=1;j<=n;j++) { 
   for (i=n;i>=1;i--) {      pcom[j]=p[j]; 
     sum=b[i];      xicom[j]=xi[j]; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    } 
     b[i]=sum/a[i][i];    ax=0.0; 
   }    xx=1.0; 
 }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 /************ Frequencies ********************/  #ifdef DEBUG
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {  /* Some frequencies */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    for (j=1;j<=n;j++) { 
   double ***freq; /* Frequencies */      xi[j] *= xmin; 
   double *pp;      p[j] += xi[j]; 
   double pos, k2, dateintsum=0,k2cpt=0;    } 
   FILE *ficresp;    free_vector(xicom,1,n); 
   char fileresp[FILENAMELENGTH];    free_vector(pcom,1,n); 
    } 
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  char *asc_diff_time(long time_sec, char ascdiff[])
   strcpy(fileresp,"p");  {
   strcat(fileresp,fileres);    long sec_left, days, hours, minutes;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    days = (time_sec) / (60*60*24);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    sec_left = (time_sec) % (60*60*24);
     exit(0);    hours = (sec_left) / (60*60) ;
   }    sec_left = (sec_left) %(60*60);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    minutes = (sec_left) /60;
   j1=0;    sec_left = (sec_left) % (60);
      sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   j=cptcoveff;    return ascdiff;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
    
   for(k1=1; k1<=j;k1++){  /*************** powell ************************/
     for(i1=1; i1<=ncodemax[k1];i1++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       j1++;              double (*func)(double [])) 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  { 
         scanf("%d", i);*/    void linmin(double p[], double xi[], int n, double *fret, 
       for (i=-1; i<=nlstate+ndeath; i++)                  double (*func)(double [])); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      int i,ibig,j; 
           for(m=agemin; m <= agemax+3; m++)    double del,t,*pt,*ptt,*xit;
             freq[i][jk][m]=0;    double fp,fptt;
          double *xits;
       dateintsum=0;    int niterf, itmp;
       k2cpt=0;  
       for (i=1; i<=imx; i++) {    pt=vector(1,n); 
         bool=1;    ptt=vector(1,n); 
         if  (cptcovn>0) {    xit=vector(1,n); 
           for (z1=1; z1<=cptcoveff; z1++)    xits=vector(1,n); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    *fret=(*func)(p); 
               bool=0;    for (j=1;j<=n;j++) pt[j]=p[j]; 
         }    for (*iter=1;;++(*iter)) { 
         if (bool==1) {      fp=(*fret); 
           for(m=firstpass; m<=lastpass; m++){      ibig=0; 
             k2=anint[m][i]+(mint[m][i]/12.);      del=0.0; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      last_time=curr_time;
               if(agev[m][i]==0) agev[m][i]=agemax+1;      (void) gettimeofday(&curr_time,&tzp);
               if(agev[m][i]==1) agev[m][i]=agemax+2;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
               if (m<lastpass) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];     for (i=1;i<=n;i++) {
               }        printf(" %d %.12f",i, p[i]);
                      fprintf(ficlog," %d %.12lf",i, p[i]);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        fprintf(ficrespow," %.12lf", p[i]);
                 dateintsum=dateintsum+k2;      }
                 k2cpt++;      printf("\n");
               }      fprintf(ficlog,"\n");
             }      fprintf(ficrespow,"\n");fflush(ficrespow);
           }      if(*iter <=3){
         }        tm = *localtime(&curr_time.tv_sec);
       }        strcpy(strcurr,asctime(&tm));
          /*       asctime_r(&tm,strcurr); */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        forecast_time=curr_time; 
         itmp = strlen(strcurr);
       if  (cptcovn>0) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         fprintf(ficresp, "\n#********** Variable ");          strcurr[itmp-1]='\0';
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficresp, "**********\n#");        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        for(niterf=10;niterf<=30;niterf+=10){
       for(i=1; i<=nlstate;i++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          tmf = *localtime(&forecast_time.tv_sec);
       fprintf(ficresp, "\n");  /*      asctime_r(&tmf,strfor); */
                strcpy(strfor,asctime(&tmf));
       for(i=(int)agemin; i <= (int)agemax+3; i++){          itmp = strlen(strfor);
         if(i==(int)agemax+3)          if(strfor[itmp-1]=='\n')
           printf("Total");          strfor[itmp-1]='\0';
         else          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           printf("Age %d", i);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      }
             pp[jk] += freq[jk][m][i];      for (i=1;i<=n;i++) { 
         }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         for(jk=1; jk <=nlstate ; jk++){        fptt=(*fret); 
           for(m=-1, pos=0; m <=0 ; m++)  #ifdef DEBUG
             pos += freq[jk][m][i];        printf("fret=%lf \n",*fret);
           if(pp[jk]>=1.e-10)        fprintf(ficlog,"fret=%lf \n",*fret);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  #endif
           else        printf("%d",i);fflush(stdout);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        fprintf(ficlog,"%d",i);fflush(ficlog);
         }        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
         for(jk=1; jk <=nlstate ; jk++){          del=fabs(fptt-(*fret)); 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ibig=i; 
             pp[jk] += freq[jk][m][i];        } 
         }  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
         for(jk=1,pos=0; jk <=nlstate ; jk++)        fprintf(ficlog,"%d %.12e",i,(*fret));
           pos += pp[jk];        for (j=1;j<=n;j++) {
         for(jk=1; jk <=nlstate ; jk++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           if(pos>=1.e-5)          printf(" x(%d)=%.12e",j,xit[j]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           else        }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=1;j<=n;j++) {
           if( i <= (int) agemax){          printf(" p=%.12e",p[j]);
             if(pos>=1.e-5){          fprintf(ficlog," p=%.12e",p[j]);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        }
               probs[i][jk][j1]= pp[jk]/pos;        printf("\n");
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        fprintf(ficlog,"\n");
             }  #endif
             else      } 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           }  #ifdef DEBUG
         }        int k[2],l;
                k[0]=1;
         for(jk=-1; jk <=nlstate+ndeath; jk++)        k[1]=-1;
           for(m=-1; m <=nlstate+ndeath; m++)        printf("Max: %.12e",(*func)(p));
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         if(i <= (int) agemax)        for (j=1;j<=n;j++) {
           fprintf(ficresp,"\n");          printf(" %.12e",p[j]);
         printf("\n");          fprintf(ficlog," %.12e",p[j]);
       }        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
   dateintmean=dateintsum/k2cpt;        for(l=0;l<=1;l++) {
            for (j=1;j<=n;j++) {
   fclose(ficresp);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   free_vector(pp,1,nlstate);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
   /* End of Freq */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
 /************ Prevalence ********************/  #endif
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  
          free_vector(xit,1,n); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        free_vector(xits,1,n); 
   double ***freq; /* Frequencies */        free_vector(ptt,1,n); 
   double *pp;        free_vector(pt,1,n); 
   double pos, k2;        return; 
       } 
   pp=vector(1,nlstate);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (j=1;j<=n;j++) { 
          ptt[j]=2.0*p[j]-pt[j]; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        xit[j]=p[j]-pt[j]; 
   j1=0;        pt[j]=p[j]; 
        } 
   j=cptcoveff;      fptt=(*func)(ptt); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      if (fptt < fp) { 
          t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
  for(k1=1; k1<=j;k1++){        if (t < 0.0) { 
     for(i1=1; i1<=ncodemax[k1];i1++){          linmin(p,xit,n,fret,func); 
       j1++;          for (j=1;j<=n;j++) { 
              xi[j][ibig]=xi[j][n]; 
       for (i=-1; i<=nlstate+ndeath; i++)              xi[j][n]=xit[j]; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)            }
           for(m=agemin; m <= agemax+3; m++)  #ifdef DEBUG
             freq[i][jk][m]=0;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for (i=1; i<=imx; i++) {          for(j=1;j<=n;j++){
         bool=1;            printf(" %.12e",xit[j]);
         if  (cptcovn>0) {            fprintf(ficlog," %.12e",xit[j]);
           for (z1=1; z1<=cptcoveff; z1++)          }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          printf("\n");
               bool=0;          fprintf(ficlog,"\n");
         }  #endif
         if (bool==1) {        }
           for(m=firstpass; m<=lastpass; m++){      } 
             k2=anint[m][i]+(mint[m][i]/12.);    } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  } 
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /**** Prevalence limit (stable or period prevalence)  ****************/
               if (m<lastpass)  
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
               else  {
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];       matrix by transitions matrix until convergence is reached */
             }  
           }    int i, ii,j,k;
         }    double min, max, maxmin, maxmax,sumnew=0.;
       }    /* double **matprod2(); */ /* test */
         for(i=(int)agemin; i <= (int)agemax+3; i++){    double **out, cov[NCOVMAX+1], **pmij();
           for(jk=1; jk <=nlstate ; jk++){    double **newm;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double agefin, delaymax=50 ; /* Max number of years to converge */
               pp[jk] += freq[jk][m][i];  
           }    for (ii=1;ii<=nlstate+ndeath;ii++)
           for(jk=1; jk <=nlstate ; jk++){      for (j=1;j<=nlstate+ndeath;j++){
             for(m=-1, pos=0; m <=0 ; m++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];      }
         }  
             cov[1]=1.;
          for(jk=1; jk <=nlstate ; jk++){   
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              pp[jk] += freq[jk][m][i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
          }      newm=savm;
                /* Covariates have to be included here again */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      cov[2]=agefin;
       
          for(jk=1; jk <=nlstate ; jk++){                for (k=1; k<=cptcovn;k++) {
            if( i <= (int) agemax){        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              if(pos>=1.e-5){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
                probs[i][jk][j1]= pp[jk]/pos;      }
              }      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
            }      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
          }      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
                
         }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
        /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   free_vector(pp,1,nlstate);      
        savm=oldm;
 }  /* End of Freq */      oldm=newm;
       maxmax=0.;
 /************* Waves Concatenation ***************/      for(j=1;j<=nlstate;j++){
         min=1.;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        max=0.;
 {        for(i=1; i<=nlstate; i++) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          sumnew=0;
      Death is a valid wave (if date is known).          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          prlim[i][j]= newm[i][j]/(1-sumnew);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
      and mw[mi+1][i]. dh depends on stepm.          max=FMAX(max,prlim[i][j]);
      */          min=FMIN(min,prlim[i][j]);
         }
   int i, mi, m;        maxmin=max-min;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        maxmax=FMAX(maxmax,maxmin);
      double sum=0., jmean=0.;*/      }
       if(maxmax < ftolpl){
   int j, k=0,jk, ju, jl;        return prlim;
   double sum=0.;      }
   jmin=1e+5;    }
   jmax=-1;  }
   jmean=0.;  
   for(i=1; i<=imx; i++){  /*************** transition probabilities ***************/ 
     mi=0;  
     m=firstpass;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     while(s[m][i] <= nlstate){  {
       if(s[m][i]>=1)    /* According to parameters values stored in x and the covariate's values stored in cov,
         mw[++mi][i]=m;       computes the probability to be observed in state j being in state i by appying the
       if(m >=lastpass)       model to the ncovmodel covariates (including constant and age).
         break;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
       else       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         m++;       ncth covariate in the global vector x is given by the formula:
     }/* end while */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     if (s[m][i] > nlstate){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       mi++;     /* Death is another wave */       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       /* if(mi==0)  never been interviewed correctly before death */       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
          /* Only death is a correct wave */       Outputs ps[i][j] the probability to be observed in j being in j according to
       mw[mi][i]=m;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     }    */
     double s1, lnpijopii;
     wav[i]=mi;    /*double t34;*/
     if(mi==0)    int i,j,j1, nc, ii, jj;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
   for(i=1; i<=imx; i++){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     for(mi=1; mi<wav[i];mi++){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
       if (stepm <=0)            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         dh[mi][i]=1;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       else{          }
         if (s[mw[mi+1][i]][i] > nlstate) {          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           if (agedc[i] < 2*AGESUP) {  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        }
           if(j==0) j=1;  /* Survives at least one month after exam */        for(j=i+1; j<=nlstate+ndeath;j++){
           k=k+1;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           if (j >= jmax) jmax=j;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           if (j <= jmin) jmin=j;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           sum=sum+j;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          }
           }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }        }
         else{      }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      
           k=k+1;      for(i=1; i<= nlstate; i++){
           if (j >= jmax) jmax=j;        s1=0;
           else if (j <= jmin)jmin=j;        for(j=1; j<i; j++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           sum=sum+j;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }        }
         jk= j/stepm;        for(j=i+1; j<=nlstate+ndeath; j++){
         jl= j -jk*stepm;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         ju= j -(jk+1)*stepm;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         if(jl <= -ju)        }
           dh[mi][i]=jk;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         else        ps[i][i]=1./(s1+1.);
           dh[mi][i]=jk+1;        /* Computing other pijs */
         if(dh[mi][i]==0)        for(j=1; j<i; j++)
           dh[mi][i]=1; /* At least one step */          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        for(j=i+1; j<=nlstate+ndeath; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   jmean=sum/k;      } /* end i */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      
  }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 /*********** Tricode ****************************/        for(jj=1; jj<= nlstate+ndeath; jj++){
 void tricode(int *Tvar, int **nbcode, int imx)          ps[ii][jj]=0;
 {          ps[ii][ii]=1;
   int Ndum[20],ij=1, k, j, i;        }
   int cptcode=0;      }
   cptcoveff=0;      
        
   for (k=0; k<19; k++) Ndum[k]=0;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   for (k=1; k<=7; k++) ncodemax[k]=0;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      /*   } */
     for (i=1; i<=imx; i++) {      /*   printf("\n "); */
       ij=(int)(covar[Tvar[j]][i]);      /* } */
       Ndum[ij]++;      /* printf("\n ");printf("%lf ",cov[2]);*/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      /*
       if (ij > cptcode) cptcode=ij;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }        goto end;*/
       return ps;
     for (i=0; i<=cptcode; i++) {  }
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  /**************** Product of 2 matrices ******************/
     ij=1;  
   double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   {
     for (i=1; i<=ncodemax[j]; i++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (k=0; k<=19; k++) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         if (Ndum[k] != 0) {    /* in, b, out are matrice of pointers which should have been initialized 
           nbcode[Tvar[j]][ij]=k;       before: only the contents of out is modified. The function returns
                 a pointer to pointers identical to out */
           ij++;    int i, j, k;
         }    for(i=nrl; i<= nrh; i++)
         if (ij > ncodemax[j]) break;      for(k=ncolol; k<=ncoloh; k++){
       }          out[i][k]=0.;
     }        for(j=ncl; j<=nch; j++)
   }            out[i][k] +=in[i][j]*b[j][k];
       }
  for (k=0; k<19; k++) Ndum[k]=0;    return out;
   }
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];  
       Ndum[ij]++;  /************* Higher Matrix Product ***************/
     }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
  ij=1;  {
  for (i=1; i<=10; i++) {    /* Computes the transition matrix starting at age 'age' over 
    if((Ndum[i]!=0) && (i<=ncovcol)){       'nhstepm*hstepm*stepm' months (i.e. until
      Tvaraff[ij]=i;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
      ij++;       nhstepm*hstepm matrices. 
    }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
  }       (typically every 2 years instead of every month which is too big 
         for the memory).
     cptcoveff=ij-1;       Model is determined by parameters x and covariates have to be 
 }       included manually here. 
   
 /*********** Health Expectancies ****************/       */
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
 {    double **newm;
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    /* Hstepm could be zero and should return the unit matrix */
   double age, agelim, hf;    for (i=1;i<=nlstate+ndeath;i++)
   double ***p3mat,***varhe;      for (j=1;j<=nlstate+ndeath;j++){
   double **dnewm,**doldm;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double *xp;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double **gp, **gm;      }
   double ***gradg, ***trgradg;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int theta;    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        newm=savm;
   xp=vector(1,npar);        /* Covariates have to be included here again */
   dnewm=matrix(1,nlstate*2,1,npar);        cov[1]=1.;
   doldm=matrix(1,nlstate*2,1,nlstate*2);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) 
   fprintf(ficreseij,"# Health expectancies\n");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fprintf(ficreseij,"# Age");        for (k=1; k<=cptcovage;k++)
   for(i=1; i<=nlstate;i++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fprintf(ficreseij,"\n");  
   
   if(estepm < stepm){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   else  hstepm=estepm;                       pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* We compute the life expectancy from trapezoids spaced every estepm months        savm=oldm;
    * This is mainly to measure the difference between two models: for example        oldm=newm;
    * if stepm=24 months pijx are given only every 2 years and by summing them      }
    * we are calculating an estimate of the Life Expectancy assuming a linear      for(i=1; i<=nlstate+ndeath; i++)
    * progression inbetween and thus overestimating or underestimating according        for(j=1;j<=nlstate+ndeath;j++) {
    * to the curvature of the survival function. If, for the same date, we          po[i][j][h]=newm[i][j];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
    * to compare the new estimate of Life expectancy with the same linear        }
    * hypothesis. A more precise result, taking into account a more precise      /*printf("h=%d ",h);*/
    * curvature will be obtained if estepm is as small as stepm. */    } /* end h */
   /*     printf("\n H=%d \n",h); */
   /* For example we decided to compute the life expectancy with the smallest unit */    return po;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  }
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  /*************** log-likelihood *************/
      and note for a fixed period like estepm months */  double func( double *x)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  {
      survival function given by stepm (the optimization length). Unfortunately it    int i, ii, j, k, mi, d, kk;
      means that if the survival funtion is printed only each two years of age and if    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double **out;
      results. So we changed our mind and took the option of the best precision.    double sw; /* Sum of weights */
   */    double lli; /* Individual log likelihood */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int s1, s2;
     double bbh, survp;
   agelim=AGESUP;    long ipmx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /*extern weight */
     /* nhstepm age range expressed in number of stepm */    /* We are differentiating ll according to initial status */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /*for(i=1;i<imx;i++) 
     /* if (stepm >= YEARM) hstepm=1;*/      printf(" %d\n",s[4][i]);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    cov[1]=1.;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     gm=matrix(0,nhstepm,1,nlstate*2);  
     if(mle==1){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        /* Computes the values of the ncovmodel covariates of the model
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);             depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
             Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */         */
         for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     /* Computing Variances of health expectancies */          cov[2+k]=covar[Tvar[k]][i];
         }
      for(theta=1; theta <=npar; theta++){        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       for(i=1; i<=npar; i++){           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);           has been calculated etc */
       }        for(mi=1; mi<= wav[i]-1; mi++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
       cptj=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate; i++){            }
           cptj=cptj+1;          for(d=0; d<dh[mi][i]; d++){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            newm=savm;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       }            }
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++)            savm=oldm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            oldm=newm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            } /* end mult */
              
       cptj=0;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for(j=1; j<= nlstate; j++){          /* But now since version 0.9 we anticipate for bias at large stepm.
         for(i=1;i<=nlstate;i++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           cptj=cptj+1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){           * the nearest (and in case of equal distance, to the lowest) interval but now
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                 * -stepm/2 to stepm/2 .
               * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
       for(j=1; j<= nlstate*2; j++)           */
         for(h=0; h<=nhstepm-1; h++){          s1=s[mw[mi][i]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
      }           * is higher than the multiple of stepm and negative otherwise.
               */
 /* End theta */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
      for(h=0; h<=nhstepm-1; h++)               die between last step unit time and current  step unit time, 
       for(j=1; j<=nlstate*2;j++)               which is also equal to probability to die before dh 
         for(theta=1; theta <=npar; theta++)               minus probability to die before dh-stepm . 
         trgradg[h][j][theta]=gradg[h][theta][j];               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
      for(i=1;i<=nlstate*2;i++)          and not the date of a change in health state. The former idea was
       for(j=1;j<=nlstate*2;j++)          to consider that at each interview the state was recorded
         varhe[i][j][(int)age] =0.;          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
     for(h=0;h<=nhstepm-1;h++){          the contribution of an exact death to the likelihood. This new
       for(k=0;k<=nhstepm-1;k++){          contribution is smaller and very dependent of the step unit
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          stepm. It is no more the probability to die between last interview
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          and month of death but the probability to survive from last
         for(i=1;i<=nlstate*2;i++)          interview up to one month before death multiplied by the
           for(j=1;j<=nlstate*2;j++)          probability to die within a month. Thanks to Chris
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
     }          which slows down the processing. The difference can be up to 10%
           lower mortality.
                  */
     /* Computing expectancies */            lli=log(out[s1][s2] - savm[s1][s2]);
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          } else if  (s2==-2) {
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            for (j=1,survp=0. ; j<=nlstate; j++) 
                        survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            /*survp += out[s1][j]; */
             lli= log(survp);
         }          }
           
     fprintf(ficreseij,"%3.0f",age );          else if  (s2==-4) { 
     cptj=0;            for (j=3,survp=0. ; j<=nlstate; j++)  
     for(i=1; i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<=nlstate;j++){            lli= log(survp); 
         cptj++;          } 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }          else if  (s2==-5) { 
     fprintf(ficreseij,"\n");            for (j=1,survp=0. ; j<=2; j++)  
                  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     free_matrix(gm,0,nhstepm,1,nlstate*2);            lli= log(survp); 
     free_matrix(gp,0,nhstepm,1,nlstate*2);          } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          else{
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   free_vector(xp,1,npar);          } 
   free_matrix(dnewm,1,nlstate*2,1,npar);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          /*if(lli ==000.0)*/
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 }          ipmx +=1;
           sw += weight[i];
 /************ Variance ******************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        } /* end of wave */
 {      } /* end of individual */
   /* Variance of health expectancies */    }  else if(mle==2){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **newm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **dnewm,**doldm;        for(mi=1; mi<= wav[i]-1; mi++){
   int i, j, nhstepm, hstepm, h, nstepm ;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int k, cptcode;            for (j=1;j<=nlstate+ndeath;j++){
   double *xp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gp, **gm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***gradg, ***trgradg;            }
   double ***p3mat;          for(d=0; d<=dh[mi][i]; d++){
   double age,agelim, hf;            newm=savm;
   int theta;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
    fprintf(ficresvij,"# Covariances of life expectancies\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresvij,"# Age");            }
   for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            savm=oldm;
   fprintf(ficresvij,"\n");            oldm=newm;
           } /* end mult */
   xp=vector(1,npar);        
   dnewm=matrix(1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
   doldm=matrix(1,nlstate,1,nlstate);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   if(estepm < stepm){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     printf ("Problem %d lower than %d\n",estepm, stepm);          ipmx +=1;
   }          sw += weight[i];
   else  hstepm=estepm;            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* For example we decided to compute the life expectancy with the smallest unit */        } /* end of wave */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      } /* end of individual */
      nhstepm is the number of hstepm from age to agelim    }  else if(mle==3){  /* exponential inter-extrapolation */
      nstepm is the number of stepm from age to agelin.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      Look at hpijx to understand the reason of that which relies in memory size        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      and note for a fixed period like k years */        for(mi=1; mi<= wav[i]-1; mi++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for (ii=1;ii<=nlstate+ndeath;ii++)
      survival function given by stepm (the optimization length). Unfortunately it            for (j=1;j<=nlstate+ndeath;j++){
      means that if the survival funtion is printed only each two years of age and if              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      results. So we changed our mind and took the option of the best precision.            }
   */          for(d=0; d<dh[mi][i]; d++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            newm=savm;
   agelim = AGESUP;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (kk=1; kk<=cptcovage;kk++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gp=matrix(0,nhstepm,1,nlstate);            savm=oldm;
     gm=matrix(0,nhstepm,1,nlstate);            oldm=newm;
           } /* end mult */
     for(theta=1; theta <=npar; theta++){        
       for(i=1; i<=npar; i++){ /* Computes gradient */          s1=s[mw[mi][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
           sw += weight[i];
       if (popbased==1) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(i=1; i<=nlstate;i++)        } /* end of wave */
           prlim[i][i]=probs[(int)age][i][ij];      } /* end of individual */
       }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<= nlstate; j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(h=0; h<=nhstepm; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                }
       for(i=1; i<=npar; i++) /* Computes gradient */          for(d=0; d<dh[mi][i]; d++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            newm=savm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (popbased==1) {            }
         for(i=1; i<=nlstate;i++)          
           prlim[i][i]=probs[(int)age][i][ij];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
       for(j=1; j<= nlstate; j++){            oldm=newm;
         for(h=0; h<=nhstepm; h++){          } /* end mult */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
       for(j=1; j<= nlstate; j++)          }else{
         for(h=0; h<=nhstepm; h++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }          ipmx +=1;
     } /* End theta */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
     for(h=0; h<=nhstepm; h++)      } /* end of individual */
       for(j=1; j<=nlstate;j++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for(theta=1; theta <=npar; theta++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           trgradg[h][j][theta]=gradg[h][theta][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1;j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         vareij[i][j][(int)age] =0.;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(h=0;h<=nhstepm;h++){          for(d=0; d<dh[mi][i]; d++){
       for(k=0;k<=nhstepm;k++){            newm=savm;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            for (kk=1; kk<=cptcovage;kk++) {
         for(i=1;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(j=1;j<=nlstate;j++)            }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     fprintf(ficresvij,"%.0f ",age );            oldm=newm;
     for(i=1; i<=nlstate;i++)          } /* end mult */
       for(j=1; j<=nlstate;j++){        
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     fprintf(ficresvij,"\n");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     free_matrix(gp,0,nhstepm,1,nlstate);          ipmx +=1;
     free_matrix(gm,0,nhstepm,1,nlstate);          sw += weight[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end of wave */
   } /* End age */      } /* end of individual */
      } /* End of if */
   free_vector(xp,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   free_matrix(doldm,1,nlstate,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   free_matrix(dnewm,1,nlstate,1,nlstate);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
 }  }
   
 /************ Variance of prevlim ******************/  /*************** log-likelihood *************/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  double funcone( double *x)
 {  {
   /* Variance of prevalence limit */    /* Same as likeli but slower because of a lot of printf and if */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i, ii, j, k, mi, d, kk;
   double **newm;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double **dnewm,**doldm;    double **out;
   int i, j, nhstepm, hstepm;    double lli; /* Individual log likelihood */
   int k, cptcode;    double llt;
   double *xp;    int s1, s2;
   double *gp, *gm;    double bbh, survp;
   double **gradg, **trgradg;    /*extern weight */
   double age,agelim;    /* We are differentiating ll according to initial status */
   int theta;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
        /*for(i=1;i<imx;i++) 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      printf(" %d\n",s[4][i]);
   fprintf(ficresvpl,"# Age");    */
   for(i=1; i<=nlstate;i++)    cov[1]=1.;
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   xp=vector(1,npar);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   dnewm=matrix(1,nlstate,1,npar);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   doldm=matrix(1,nlstate,1,nlstate);      for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=1*YEARM; /* Every year of age */          for (j=1;j<=nlstate+ndeath;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim = AGESUP;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(d=0; d<dh[mi][i]; d++){
     if (stepm >= YEARM) hstepm=1;          newm=savm;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gradg=matrix(1,npar,1,nlstate);          for (kk=1; kk<=cptcovage;kk++) {
     gp=vector(1,nlstate);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     gm=vector(1,nlstate);          }
           /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     for(theta=1; theta <=npar; theta++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++){ /* Computes gradient */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
       }          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          savm=oldm;
       for(i=1;i<=nlstate;i++)          oldm=newm;
         gp[i] = prlim[i][i];        } /* end mult */
            
       for(i=1; i<=npar; i++) /* Computes gradient */        s1=s[mw[mi][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        s2=s[mw[mi+1][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1;i<=nlstate;i++)        /* bias is positive if real duration
         gm[i] = prlim[i][i];         * is higher than the multiple of stepm and negative otherwise.
          */
       for(i=1;i<=nlstate;i++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          lli=log(out[s1][s2] - savm[s1][s2]);
     } /* End theta */        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
     trgradg =matrix(1,nlstate,1,npar);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
     for(j=1; j<=nlstate;j++)        }else if (mle==1){
       for(theta=1; theta <=npar; theta++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         trgradg[j][theta]=gradg[theta][j];        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(i=1;i<=nlstate;i++)        } else if(mle==3){  /* exponential inter-extrapolation */
       varpl[i][(int)age] =0.;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          lli=log(out[s1][s2]); /* Original formula */
     for(i=1;i<=nlstate;i++)        } else{  /* mle=0 back to 1 */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
     fprintf(ficresvpl,"%.0f ",age );        } /* End of if */
     for(i=1; i<=nlstate;i++)        ipmx +=1;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        sw += weight[i];
     fprintf(ficresvpl,"\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_vector(gp,1,nlstate);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     free_vector(gm,1,nlstate);        if(globpr){
     free_matrix(gradg,1,npar,1,nlstate);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     free_matrix(trgradg,1,nlstate,1,npar);   %11.6f %11.6f %11.6f ", \
   } /* End age */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   free_vector(xp,1,npar);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   free_matrix(doldm,1,nlstate,1,npar);            llt +=ll[k]*gipmx/gsw;
   free_matrix(dnewm,1,nlstate,1,nlstate);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
 }          fprintf(ficresilk," %10.6f\n", -llt);
         }
 /************ Variance of one-step probabilities  ******************/      } /* end of wave */
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    } /* end of individual */
 {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int i, j, i1, k1, j1, z1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int k=0, cptcode;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double **dnewm,**doldm;    if(globpr==0){ /* First time we count the contributions and weights */
   double *xp;      gipmx=ipmx;
   double *gp, *gm;      gsw=sw;
   double **gradg, **trgradg;    }
   double age,agelim, cov[NCOVMAX];    return -l;
   int theta;  }
   char fileresprob[FILENAMELENGTH];  
   
   strcpy(fileresprob,"prob");  /*************** function likelione ***********/
   strcat(fileresprob,fileres);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  {
     printf("Problem with resultfile: %s\n", fileresprob);    /* This routine should help understanding what is done with 
   }       the selection of individuals/waves and
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       to check the exact contribution to the likelihood.
         Plotting could be done.
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");     */
   fprintf(ficresprob,"# Age");    int k;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   fprintf(ficresprob,"\n");        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   xp=vector(1,npar);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   cov[1]=1;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   j=cptcoveff;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }
   j1=0;  
   for(k1=1; k1<=1;k1++){    *fretone=(*funcone)(p);
     for(i1=1; i1<=ncodemax[k1];i1++){    if(*globpri !=0){
     j1++;      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     if  (cptcovn>0) {      fflush(fichtm); 
       fprintf(ficresprob, "\n#********** Variable ");    } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    return;
       fprintf(ficresprob, "**********\n#");  }
     }  
      
       for (age=bage; age<=fage; age ++){  /*********** Maximum Likelihood Estimation ***************/
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  {
              int i,j, iter;
         }    double **xi;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double fret;
         for (k=1; k<=cptcovprod;k++)    double fretone; /* Only one call to likelihood */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /*  char filerespow[FILENAMELENGTH];*/
            xi=matrix(1,npar,1,npar);
         gradg=matrix(1,npar,1,9);    for (i=1;i<=npar;i++)
         trgradg=matrix(1,9,1,npar);      for (j=1;j<=npar;j++)
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        xi[i][j]=(i==j ? 1.0 : 0.0);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    printf("Powell\n");  fprintf(ficlog,"Powell\n");
        strcpy(filerespow,"pow"); 
         for(theta=1; theta <=npar; theta++){    strcat(filerespow,fileres);
           for(i=1; i<=npar; i++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("Problem with resultfile: %s\n", filerespow);
                fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
              fprintf(ficrespow,"# Powell\n# iter -2*LL");
           k=0;    for (i=1;i<=nlstate;i++)
           for(i=1; i<= (nlstate+ndeath); i++){      for(j=1;j<=nlstate+ndeath;j++)
             for(j=1; j<=(nlstate+ndeath);j++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
               k=k+1;    fprintf(ficrespow,"\n");
               gp[k]=pmmij[i][j];  
             }    powell(p,xi,npar,ftol,&iter,&fret,func);
           }  
              free_matrix(xi,1,npar,1,npar);
           for(i=1; i<=npar; i++)    fclose(ficrespow);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
        fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           k=0;  
           for(i=1; i<=(nlstate+ndeath); i++){  }
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;  /**** Computes Hessian and covariance matrix ***/
               gm[k]=pmmij[i][j];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             }  {
           }    double  **a,**y,*x,pd;
          double **hess;
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    int i, j,jk;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      int *indx;
         }  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           for(theta=1; theta <=npar; theta++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
             trgradg[j][theta]=gradg[theta][j];    void ludcmp(double **a, int npar, int *indx, double *d) ;
            double gompertz(double p[]);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    hess=matrix(1,npar,1,npar);
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
            printf("\nCalculation of the hessian matrix. Wait...\n");
         pmij(pmmij,cov,ncovmodel,x,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
            for (i=1;i<=npar;i++){
         k=0;      printf("%d",i);fflush(stdout);
         for(i=1; i<=(nlstate+ndeath); i++){      fprintf(ficlog,"%d",i);fflush(ficlog);
           for(j=1; j<=(nlstate+ndeath);j++){     
             k=k+1;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
             gm[k]=pmmij[i][j];      
           }      /*  printf(" %f ",p[i]);
         }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
          }
      /*printf("\n%d ",(int)age);    
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    for (i=1;i<=npar;i++) {
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for (j=1;j<=npar;j++)  {
      }*/        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
         fprintf(ficresprob,"\n%d ",(int)age);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
       }        }
     }      }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    printf("\n");
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficlog,"\n");
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_vector(xp,1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fclose(ficresprob);    
      a=matrix(1,npar,1,npar);
 }    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
 /******************* Printing html file ***********/    indx=ivector(1,npar);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    for (i=1;i<=npar;i++)
  int lastpass, int stepm, int weightopt, char model[],\      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    ludcmp(a,npar,indx,&pd);
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast, int estepm ){    for (j=1;j<=npar;j++) {
   int jj1, k1, i1, cpt;      for (i=1;i<=npar;i++) x[i]=0;
   FILE *fichtm;      x[j]=1;
   /*char optionfilehtm[FILENAMELENGTH];*/      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   strcpy(optionfilehtm,optionfile);        matcov[i][j]=x[i];
   strcat(optionfilehtm,".htm");      }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    }
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    for (i=1;i<=npar;i++) { 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for (j=1;j<=npar;j++) { 
 \n        printf("%.3e ",hess[i][j]);
 Total number of observations=%d <br>\n        fprintf(ficlog,"%.3e ",hess[i][j]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      }
 <hr  size=\"2\" color=\"#EC5E5E\">      printf("\n");
  <ul><li>Outputs files<br>\n      fprintf(ficlog,"\n");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    /* Recompute Inverse */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    for (i=1;i<=npar;i++)
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    ludcmp(a,npar,indx,&pd);
   
  fprintf(fichtm,"\n    /*  printf("\n#Hessian matrix recomputed#\n");
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    for (j=1;j<=npar;j++) {
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      for (i=1;i<=npar;i++) x[i]=0;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      x[j]=1;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
  if(popforecast==1) fprintf(fichtm,"\n        y[i][j]=x[i];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        printf("%.3e ",y[i][j]);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        fprintf(ficlog,"%.3e ",y[i][j]);
         <br>",fileres,fileres,fileres,fileres);      }
  else      printf("\n");
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      fprintf(ficlog,"\n");
 fprintf(fichtm," <li>Graphs</li><p>");    }
     */
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
  jj1=0;    free_vector(x,1,npar);
  for(k1=1; k1<=m;k1++){    free_ivector(indx,1,npar);
    for(i1=1; i1<=ncodemax[k1];i1++){    free_matrix(hess,1,npar,1,npar);
        jj1++;  
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  }
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /*************** hessian matrix ****************/
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
        }  {
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    int i;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        int l=1, lmax=20;
        for(cpt=1; cpt<nlstate;cpt++){    double k1,k2;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    double p2[MAXPARM+1]; /* identical to x */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double res;
        }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     for(cpt=1; cpt<=nlstate;cpt++) {    double fx;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    int k=0,kmax=10;
 interval) in state (%d): v%s%d%d.gif <br>    double l1;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }    fx=func(x);
      for(cpt=1; cpt<=nlstate;cpt++) {    for (i=1;i<=npar;i++) p2[i]=x[i];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      l1=pow(10,l);
      }      delts=delt;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      for(k=1 ; k <kmax; k=k+1){
 health expectancies in states (1) and (2): e%s%d.gif<br>        delt = delta*(l1*k);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        p2[theta]=x[theta] +delt;
 fprintf(fichtm,"\n</body>");        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
    }        p2[theta]=x[theta]-delt;
    }        k2=func(p2)-fx;
 fclose(fichtm);        /*res= (k1-2.0*fx+k2)/delt/delt; */
 }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
 /******************* Gnuplot file **************/  #ifdef DEBUGHESS
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   strcpy(optionfilegnuplot,optionfilefiname);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   strcat(optionfilegnuplot,".gp.txt");          k=kmax;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        }
     printf("Problem with file %s",optionfilegnuplot);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   }          k=kmax; l=lmax*10.;
         }
 #ifdef windows        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     fprintf(ficgp,"cd \"%s\" \n",pathc);          delts=delt;
 #endif        }
 m=pow(2,cptcoveff);      }
      }
  /* 1eme*/    delti[theta]=delts;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    return res; 
    for (k1=1; k1<= m ; k1 ++) {    
   }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int i;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int l=1, l1, lmax=20;
 }    double k1,k2,k3,k4,res,fx;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double p2[MAXPARM+1];
     for (i=1; i<= nlstate ; i ++) {    int k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fx=func(x);
 }    for (k=1; k<=2; k++) {
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (i=1;i<=npar;i++) p2[i]=x[i];
      for (i=1; i<= nlstate ; i ++) {      p2[thetai]=x[thetai]+delti[thetai]/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      k1=func(p2)-fx;
 }      
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      k2=func(p2)-fx;
    }    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   /*2 eme*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
   for (k1=1; k1<= m ; k1 ++) {    
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for (i=1; i<= nlstate+1 ; i ++) {      k4=func(p2)-fx;
       k=2*i;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  #ifdef DEBUG
       for (j=1; j<= nlstate+1 ; j ++) {      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  #endif
 }      }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    return res;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /************** Inverse of matrix **************/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void ludcmp(double **a, int n, int *indx, double *d) 
         else fprintf(ficgp," \%%*lf (\%%*lf)");  { 
 }      int i,imax,j,k; 
       fprintf(ficgp,"\" t\"\" w l 0,");    double big,dum,sum,temp; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double *vv; 
       for (j=1; j<= nlstate+1 ; j ++) {   
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    vv=vector(1,n); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    *d=1.0; 
 }      for (i=1;i<=n;i++) { 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      big=0.0; 
       else fprintf(ficgp,"\" t\"\" w l 0,");      for (j=1;j<=n;j++) 
     }        if ((temp=fabs(a[i][j])) > big) big=temp; 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   }      vv[i]=1.0/big; 
      } 
   /*3eme*/    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
   for (k1=1; k1<= m ; k1 ++) {        sum=a[i][j]; 
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       k=2+nlstate*(2*cpt-2);        a[i][j]=sum; 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      } 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      big=0.0; 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for (i=j;i<=n;i++) { 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        sum=a[i][j]; 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for (k=1;k<j;k++) 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          sum -= a[i][k]*a[k][j]; 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
 */          big=dum; 
       for (i=1; i< nlstate ; i ++) {          imax=i; 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        } 
       } 
       }      if (j != imax) { 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for (k=1;k<=n;k++) { 
     }          dum=a[imax][k]; 
     }          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
   /* CV preval stat */        } 
     for (k1=1; k1<= m ; k1 ++) {        *d = -(*d); 
     for (cpt=1; cpt<nlstate ; cpt ++) {        vv[imax]=vv[j]; 
       k=3;      } 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       for (i=1; i< nlstate ; i ++)      if (j != n) { 
         fprintf(ficgp,"+$%d",k+i+1);        dum=1.0/(a[j][j]); 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
            } 
       l=3+(nlstate+ndeath)*cpt;    } 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    free_vector(vv,1,n);  /* Doesn't work */
       for (i=1; i< nlstate ; i ++) {  ;
         l=3+(nlstate+ndeath)*cpt;  } 
         fprintf(ficgp,"+$%d",l+i+1);  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    { 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    int i,ii=0,ip,j; 
     }    double sum; 
   }     
      for (i=1;i<=n;i++) { 
   /* proba elementaires */      ip=indx[i]; 
    for(i=1,jk=1; i <=nlstate; i++){      sum=b[ip]; 
     for(k=1; k <=(nlstate+ndeath); k++){      b[ip]=b[i]; 
       if (k != i) {      if (ii) 
         for(j=1; j <=ncovmodel; j++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
              else if (sum) ii=i; 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      b[i]=sum; 
           jk++;    } 
           fprintf(ficgp,"\n");    for (i=n;i>=1;i--) { 
         }      sum=b[i]; 
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     }      b[i]=sum/a[i][i]; 
     }    } 
   } 
     for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  void pstamp(FILE *fichier)
    i=1;  {
    for(k2=1; k2<=nlstate; k2++) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
      k3=i;  }
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){  /************ Frequencies ********************/
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 ij=1;  {  /* Some frequencies */
         for(j=3; j <=ncovmodel; j++) {    
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int i, m, jk, k1,i1, j1, bool, z1,j;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    int first;
             ij++;    double ***freq; /* Frequencies */
           }    double *pp, **prop;
           else    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    char fileresp[FILENAMELENGTH];
         }    
           fprintf(ficgp,")/(1");    pp=vector(1,nlstate);
            prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(k1=1; k1 <=nlstate; k1++){      strcpy(fileresp,"p");
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    strcat(fileresp,fileres);
 ij=1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
           for(j=3; j <=ncovmodel; j++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      exit(0);
             ij++;    }
           }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           else    j1=0;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
           }    j=cptcoveff;
           fprintf(ficgp,")");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         }  
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    first=1;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
        }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
      }    /*    j1++;
    }  */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
    }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
              scanf("%d", i);*/
   fclose(ficgp);        for (i=-5; i<=nlstate+ndeath; i++)  
 }  /* end gnuplot */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
 /*************** Moving average **************/        
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   int i, cpt, cptcod;            prop[i][m]=0;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        
       for (i=1; i<=nlstate;i++)        dateintsum=0;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        k2cpt=0;
           mobaverage[(int)agedeb][i][cptcod]=0.;        for (i=1; i<=imx; i++) {
              bool=1;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
       for (i=1; i<=nlstate;i++){            for (z1=1; z1<=cptcoveff; z1++)       
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           for (cpt=0;cpt<=4;cpt++){                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                bool=0;
           }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
       }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     }              } 
              }
 }   
           if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
 /************** Forecasting ******************/              k2=anint[m][i]+(mint[m][i]/12.);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int *popage;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                if (m<lastpass) {
   double *popeffectif,*popcount;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double ***p3mat;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   char fileresf[FILENAMELENGTH];                }
                 
  agelim=AGESUP;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;                  dateintsum=dateintsum+k2;
                   k2cpt++;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                }
                  /*}*/
              }
   strcpy(fileresf,"f");          }
   strcat(fileresf,fileres);        } /* end i */
   if((ficresf=fopen(fileresf,"w"))==NULL) {         
     printf("Problem with forecast resultfile: %s\n", fileresf);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   }        pstamp(ficresp);
   printf("Computing forecasting: result on file '%s' \n", fileresf);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
   if (mobilav==1) {          fprintf(ficlog, "\n#********** Variable "); 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     movingaverage(agedeb, fage, ageminpar, mobaverage);          fprintf(ficlog, "**********\n#");
   }        }
         for(i=1; i<=nlstate;i++) 
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   if (stepm<=12) stepsize=1;        fprintf(ficresp, "\n");
          
   agelim=AGESUP;        for(i=iagemin; i <= iagemax+3; i++){
            if(i==iagemax+3){
   hstepm=1;            fprintf(ficlog,"Total");
   hstepm=hstepm/stepm;          }else{
   yp1=modf(dateintmean,&yp);            if(first==1){
   anprojmean=yp;              first=0;
   yp2=modf((yp1*12),&yp);              printf("See log file for details...\n");
   mprojmean=yp;            }
   yp1=modf((yp2*30.5),&yp);            fprintf(ficlog,"Age %d", i);
   jprojmean=yp;          }
   if(jprojmean==0) jprojmean=1;          for(jk=1; jk <=nlstate ; jk++){
   if(mprojmean==0) jprojmean=1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                pp[jk] += freq[jk][m][i]; 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          }
            for(jk=1; jk <=nlstate ; jk++){
   for(cptcov=1;cptcov<=i2;cptcov++){            for(m=-1, pos=0; m <=0 ; m++)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              pos += freq[jk][m][i];
       k=k+1;            if(pp[jk]>=1.e-10){
       fprintf(ficresf,"\n#******");              if(first==1){
       for(j=1;j<=cptcoveff;j++) {                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              }
       }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficresf,"******\n");            }else{
       fprintf(ficresf,"# StartingAge FinalAge");              if(first==1)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          }
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              pp[jk] += freq[jk][m][i];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }       
           nhstepm = nhstepm/hstepm;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                      pos += pp[jk];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            posprop += prop[jk][i];
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(jk=1; jk <=nlstate ; jk++){
                    if(pos>=1.e-5){
           for (h=0; h<=nhstepm; h++){              if(first==1)
             if (h==(int) (calagedate+YEARM*cpt)) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }            }else{
             for(j=1; j<=nlstate+ndeath;j++) {              if(first==1)
               kk1=0.;kk2=0;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               for(i=1; i<=nlstate;i++) {                            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                 if (mobilav==1)            }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            if( i <= iagemax){
                 else {              if(pos>=1.e-5){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }              }
               if (h==(int)(calagedate+12*cpt)){              else
                 fprintf(ficresf," %.3f", kk1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                                    }
               }          }
             }          
           }          for(jk=-1; jk <=nlstate+ndeath; jk++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
     }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                      }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(i <= iagemax)
             fprintf(ficresp,"\n");
   fclose(ficresf);          if(first==1)
 }            printf("Others in log...\n");
 /************** Forecasting ******************/          fprintf(ficlog,"\n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        }
          /*}*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }
   int *popage;    dateintmean=dateintsum/k2cpt; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   
   double *popeffectif,*popcount;    fclose(ficresp);
   double ***p3mat,***tabpop,***tabpopprev;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   char filerespop[FILENAMELENGTH];    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* End of Freq */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  /************ Prevalence ********************/
    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcpy(filerespop,"pop");       We still use firstpass and lastpass as another selection.
   strcat(filerespop,fileres);    */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {   
     printf("Problem with forecast resultfile: %s\n", filerespop);    int i, m, jk, k1, i1, j1, bool, z1,j;
   }    double ***freq; /* Frequencies */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    double *pp, **prop;
     double pos,posprop; 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double  y2; /* in fractional years */
     int iagemin, iagemax;
   if (mobilav==1) {    int first; /** to stop verbosity which is redirected to log file */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   if (stepm<=12) stepsize=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      j1=0;
   agelim=AGESUP;    
      /*j=cptcoveff;*/
   hstepm=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   hstepm=hstepm/stepm;    
      first=1;
   if (popforecast==1) {    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     if((ficpop=fopen(popfile,"r"))==NULL) {      /*for(i1=1; i1<=ncodemax[k1];i1++){
       printf("Problem with population file : %s\n",popfile);exit(0);        j1++;*/
     }        
     popage=ivector(0,AGESUP);        for (i=1; i<=nlstate; i++)  
     popeffectif=vector(0,AGESUP);          for(m=iagemin; m <= iagemax+3; m++)
     popcount=vector(0,AGESUP);            prop[i][m]=0.0;
           
     i=1;          for (i=1; i<=imx; i++) { /* Each individual */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          bool=1;
              if  (cptcovn>0) {
     imx=i;            for (z1=1; z1<=cptcoveff; z1++) 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   }                bool=0;
           } 
   for(cptcov=1;cptcov<=i2;cptcov++){          if (bool==1) { 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       k=k+1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficrespop,"\n#******");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for(j=1;j<=cptcoveff;j++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fprintf(ficrespop,"******\n");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficrespop,"# Age");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       if (popforecast==1)  fprintf(ficrespop," [Population]");                  prop[s[m][i]][iagemax+3] += weight[i]; 
                      } 
       for (cpt=0; cpt<=0;cpt++) {              }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              } /* end selection of waves */
                  }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(i=iagemin; i <= iagemax+3; i++){  
           nhstepm = nhstepm/hstepm;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                      posprop += prop[jk][i]; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } 
           oldm=oldms;savm=savms;          
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(jk=1; jk <=nlstate ; jk++){     
                    if( i <=  iagemax){ 
           for (h=0; h<=nhstepm; h++){              if(posprop>=1.e-5){ 
             if (h==(int) (calagedate+YEARM*cpt)) {                probs[i][jk][j1]= prop[jk][i]/posprop;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              } else{
             }                if(first==1){
             for(j=1; j<=nlstate+ndeath;j++) {                  first=0;
               kk1=0.;kk2=0;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
               for(i=1; i<=nlstate;i++) {                              }
                 if (mobilav==1)              }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            } 
                 else {          }/* end jk */ 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }/* end i */ 
                 }      /*} *//* end i1 */
               }    } /* end j1 */
               if (h==(int)(calagedate+12*cpt)){    
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   /*fprintf(ficrespop," %.3f", kk1);    /*free_vector(pp,1,nlstate);*/
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
               }  }  /* End of prevalence */
             }  
             for(i=1; i<=nlstate;i++){  /************* Waves Concatenation ***************/
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  {
                 }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       Death is a valid wave (if date is known).
             }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)       and mw[mi+1][i]. dh depends on stepm.
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, mi, m;
         }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       }       double sum=0., jmean=0.;*/
      int first;
   /******/    int j, k=0,jk, ju, jl;
     double sum=0.;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    first=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      jmin=1e+5;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    jmax=-1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    jmean=0.;
           nhstepm = nhstepm/hstepm;    for(i=1; i<=imx; i++){
                mi=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      m=firstpass;
           oldm=oldms;savm=savms;      while(s[m][i] <= nlstate){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           for (h=0; h<=nhstepm; h++){          mw[++mi][i]=m;
             if (h==(int) (calagedate+YEARM*cpt)) {        if(m >=lastpass)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          break;
             }        else
             for(j=1; j<=nlstate+ndeath;j++) {          m++;
               kk1=0.;kk2=0;      }/* end while */
               for(i=1; i<=nlstate;i++) {                    if (s[m][i] > nlstate){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            mi++;     /* Death is another wave */
               }        /* if(mi==0)  never been interviewed correctly before death */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);           /* Only death is a correct wave */
             }        mw[mi][i]=m;
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      wav[i]=mi;
       }      if(mi==0){
    }        nbwarn++;
   }        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          first=1;
         }
   if (popforecast==1) {        if(first==1){
     free_ivector(popage,0,AGESUP);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     free_vector(popeffectif,0,AGESUP);        }
     free_vector(popcount,0,AGESUP);      } /* end mi==0 */
   }    } /* End individuals */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=imx; i++){
   fclose(ficrespop);      for(mi=1; mi<wav[i];mi++){
 }        if (stepm <=0)
           dh[mi][i]=1;
 /***********************************************/        else{
 /**************** Main Program *****************/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 /***********************************************/            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 int main(int argc, char *argv[])              if(j==0) j=1;  /* Survives at least one month after exam */
 {              else if(j<0){
                 nberr++;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double agedeb, agefin,hf;                j=1; /* Temporary Dangerous patch */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double fret;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   double **xi,tmp,delta;              }
               k=k+1;
   double dum; /* Dummy variable */              if (j >= jmax){
   double ***p3mat;                jmax=j;
   int *indx;                ijmax=i;
   char line[MAXLINE], linepar[MAXLINE];              }
   char title[MAXLINE];              if (j <= jmin){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];                jmin=j;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];                ijmin=i;
                }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   char filerest[FILENAMELENGTH];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   char fileregp[FILENAMELENGTH];            }
   char popfile[FILENAMELENGTH];          }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          else{
   int firstobs=1, lastobs=10;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   int sdeb, sfin; /* Status at beginning and end */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   int c,  h , cpt,l;  
   int ju,jl, mi;            k=k+1;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            if (j >= jmax) {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              jmax=j;
   int mobilav=0,popforecast=0;              ijmax=i;
   int hstepm, nhstepm;            }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            else if (j <= jmin){
               jmin=j;
   double bage, fage, age, agelim, agebase;              ijmin=i;
   double ftolpl=FTOL;            }
   double **prlim;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double *severity;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double ***param; /* Matrix of parameters */            if(j<0){
   double  *p;              nberr++;
   double **matcov; /* Matrix of covariance */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double ***delti3; /* Scale */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double *delti; /* Scale */            }
   double ***eij, ***vareij;            sum=sum+j;
   double **varpl; /* Variances of prevalence limits by age */          }
   double *epj, vepp;          jk= j/stepm;
   double kk1, kk2;          jl= j -jk*stepm;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";              dh[mi][i]=jk;
   char *alph[]={"a","a","b","c","d","e"}, str[4];              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
   char z[1]="c", occ;              dh[mi][i]=jk+1;
 #include <sys/time.h>              bh[mi][i]=ju;
 #include <time.h>            }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          }else{
              if(jl <= -ju){
   /* long total_usecs;              dh[mi][i]=jk;
   struct timeval start_time, end_time;              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                                   */
   getcwd(pathcd, size);            }
             else{
   printf("\n%s",version);              dh[mi][i]=jk+1;
   if(argc <=1){              bh[mi][i]=ju;
     printf("\nEnter the parameter file name: ");            }
     scanf("%s",pathtot);            if(dh[mi][i]==0){
   }              dh[mi][i]=1; /* At least one step */
   else{              bh[mi][i]=ju; /* At least one step */
     strcpy(pathtot,argv[1]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   }            }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          } /* end if mle */
   /*cygwin_split_path(pathtot,path,optionfile);        }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      } /* end wave */
   /* cutv(path,optionfile,pathtot,'\\');*/    }
     jmean=sum/k;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   chdir(path);   }
   replace(pathc,path);  
   /*********** Tricode ****************************/
 /*-------- arguments in the command line --------*/  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
   strcpy(fileres,"r");    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   strcat(fileres, optionfilefiname);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   strcat(fileres,".txt");    /* Other files have txt extension */    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   /*---------arguments file --------*/    /* nbcode[Tvar[j]][1]= 
     */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     goto end;    int modmaxcovj=0; /* Modality max of covariates j */
   }    int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
   strcpy(filereso,"o");  
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    cptcoveff=0; 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;   
   }    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    /* Loop on covariates without age and products */
     ungetc(c,ficpar);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     fgets(line, MAXLINE, ficpar);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
     puts(line);                                 modality of this covariate Vj*/ 
     fputs(line,ficparo);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   }                                      * If product of Vn*Vm, still boolean *:
   ungetc(c,ficpar);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                       * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                                        modality of the nth covariate of individual i. */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        if (ij > modmaxcovj)
 while((c=getc(ficpar))=='#' && c!= EOF){          modmaxcovj=ij; 
     ungetc(c,ficpar);        else if (ij < modmincovj) 
     fgets(line, MAXLINE, ficpar);          modmincovj=ij; 
     puts(line);        if ((ij < -1) && (ij > NCOVMAX)){
     fputs(line,ficparo);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   }          exit(1);
   ungetc(c,ficpar);        }else
          Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
            /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   covar=matrix(0,NCOVMAX,1,n);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   cptcovn=0;        /* getting the maximum value of the modality of the covariate
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
   ncovmodel=2+cptcovn;      }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
        cptcode=modmaxcovj;
   /* Read guess parameters */      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   /* Reads comments: lines beginning with '#' */     /*for (i=0; i<=cptcode; i++) {*/
   while((c=getc(ficpar))=='#' && c!= EOF){      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     ungetc(c,ficpar);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     fgets(line, MAXLINE, ficpar);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     puts(line);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     fputs(line,ficparo);        }
   }        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   ungetc(c,ficpar);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
        } /* Ndum[-1] number of undefined modalities */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     for(j=1; j <=nlstate+ndeath-1; j++){      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
       fscanf(ficpar,"%1d%1d",&i1,&j1);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
       fprintf(ficparo,"%1d%1d",i1,j1);         modmincovj=3; modmaxcovj = 7;
       printf("%1d%1d",i,j);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
       for(k=1; k<=ncovmodel;k++){         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
         fscanf(ficpar," %lf",&param[i][j][k]);         variables V1_1 and V1_2.
         printf(" %lf",param[i][j][k]);         nbcode[Tvar[j]][ij]=k;
         fprintf(ficparo," %lf",param[i][j][k]);         nbcode[Tvar[j]][1]=0;
       }         nbcode[Tvar[j]][2]=1;
       fscanf(ficpar,"\n");         nbcode[Tvar[j]][3]=2;
       printf("\n");      */
       fprintf(ficparo,"\n");      ij=1; /* ij is similar to i but can jumps over null modalities */
     }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
          for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   p=param[1][1];            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                         k is a modality. If we have model=V1+V1*sex 
   /* Reads comments: lines beginning with '#' */                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   while((c=getc(ficpar))=='#' && c!= EOF){            ij++;
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);          if (ij > ncodemax[j]) break; 
     puts(line);        }  /* end of loop on */
     fputs(line,ficparo);      } /* end of loop on modality */ 
   }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   ungetc(c,ficpar);    
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   for(i=1; i <=nlstate; i++){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     for(j=1; j <=nlstate+ndeath-1; j++){     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);     Ndum[ij]++; 
       printf("%1d%1d",i,j);   } 
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){   ij=1;
         fscanf(ficpar,"%le",&delti3[i][j][k]);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         printf(" %le",delti3[i][j][k]);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         fprintf(ficparo," %le",delti3[i][j][k]);     if((Ndum[i]!=0) && (i<=ncovcol)){
       }       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
       fscanf(ficpar,"\n");       Tvaraff[ij]=i; /*For printing (unclear) */
       printf("\n");       ij++;
       fprintf(ficparo,"\n");     }else
     }         Tvaraff[ij]=0;
   }   }
   delti=delti3[1][1];   ij--;
     cptcoveff=ij; /*Number of total covariates*/
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*********** Health Expectancies ****************/
     fputs(line,ficparo);  
   }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   ungetc(c,ficpar);  
    {
   matcov=matrix(1,npar,1,npar);    /* Health expectancies, no variances */
   for(i=1; i <=npar; i++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     fscanf(ficpar,"%s",&str);    int nhstepma, nstepma; /* Decreasing with age */
     printf("%s",str);    double age, agelim, hf;
     fprintf(ficparo,"%s",str);    double ***p3mat;
     for(j=1; j <=i; j++){    double eip;
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);    pstamp(ficreseij);
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     }    fprintf(ficreseij,"# Age");
     fscanf(ficpar,"\n");    for(i=1; i<=nlstate;i++){
     printf("\n");      for(j=1; j<=nlstate;j++){
     fprintf(ficparo,"\n");        fprintf(ficreseij," e%1d%1d ",i,j);
   }      }
   for(i=1; i <=npar; i++)      fprintf(ficreseij," e%1d. ",i);
     for(j=i+1;j<=npar;j++)    }
       matcov[i][j]=matcov[j][i];    fprintf(ficreseij,"\n");
      
   printf("\n");    
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     /*-------- Rewriting paramater file ----------*/    }
      strcpy(rfileres,"r");    /* "Rparameterfile */    else  hstepm=estepm;   
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    /* We compute the life expectancy from trapezoids spaced every estepm months
      strcat(rfileres,".");    /* */     * This is mainly to measure the difference between two models: for example
      strcat(rfileres,optionfilext);    /* Other files have txt extension */     * if stepm=24 months pijx are given only every 2 years and by summing them
     if((ficres =fopen(rfileres,"w"))==NULL) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
     fprintf(ficres,"#%s\n",version);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
     /*-------- data file ----------*/     * hypothesis. A more precise result, taking into account a more precise
     if((fic=fopen(datafile,"r"))==NULL)    {     * curvature will be obtained if estepm is as small as stepm. */
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     n= lastobs;       nhstepm is the number of hstepm from age to agelim 
     severity = vector(1,maxwav);       nstepm is the number of stepm from age to agelin. 
     outcome=imatrix(1,maxwav+1,1,n);       Look at hpijx to understand the reason of that which relies in memory size
     num=ivector(1,n);       and note for a fixed period like estepm months */
     moisnais=vector(1,n);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     annais=vector(1,n);       survival function given by stepm (the optimization length). Unfortunately it
     moisdc=vector(1,n);       means that if the survival funtion is printed only each two years of age and if
     andc=vector(1,n);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     agedc=vector(1,n);       results. So we changed our mind and took the option of the best precision.
     cod=ivector(1,n);    */
     weight=vector(1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);    agelim=AGESUP;
     anint=matrix(1,maxwav,1,n);    /* If stepm=6 months */
     s=imatrix(1,maxwav+1,1,n);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     adl=imatrix(1,maxwav+1,1,n);             in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     tab=ivector(1,NCOVMAX);      
     ncodemax=ivector(1,8);  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     i=1;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     while (fgets(line, MAXLINE, fic) != NULL)    {    /* if (stepm >= YEARM) hstepm=1;*/
       if ((i >= firstobs) && (i <=lastobs)) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    for (age=bage; age<=fage; age ++){ 
           strcpy(line,stra);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /* if (stepm >= YEARM) hstepm=1;*/
         }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      /* If stepm=6 months */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (j=ncovcol;j>=1;j--){      
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("%d|",(int)age);fflush(stdout);
         }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         num[i]=atol(stra);      
              /* Computing expectancies */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      for(i=1; i<=nlstate;i++)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         i=i+1;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }            
     }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/          }
   imx=i-1; /* Number of individuals */  
       fprintf(ficreseij,"%3.0f",age );
   /* for (i=1; i<=imx; i++){      for(i=1; i<=nlstate;i++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        eip=0;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(j=1; j<=nlstate;j++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          eip +=eij[i][j][(int)age];
     }*/          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
    /*  for (i=1; i<=imx; i++){        }
      if (s[4][i]==9)  s[4][i]=-1;        fprintf(ficreseij,"%9.4f", eip );
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      }
        fprintf(ficreseij,"\n");
        
   /* Calculation of the number of parameter from char model*/    }
   Tvar=ivector(1,15);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   Tprod=ivector(1,15);    printf("\n");
   Tvaraff=ivector(1,15);    fprintf(ficlog,"\n");
   Tvard=imatrix(1,15,1,2);    
   Tage=ivector(1,15);        }
      
   if (strlen(model) >1){  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');  {
     j1=nbocc(model,'*');    /* Covariances of health expectancies eij and of total life expectancies according
     cptcovn=j+1;     to initial status i, ei. .
     cptcovprod=j1;    */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     strcpy(modelsav,model);    int nhstepma, nstepma; /* Decreasing with age */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    double age, agelim, hf;
       printf("Error. Non available option model=%s ",model);    double ***p3matp, ***p3matm, ***varhe;
       goto end;    double **dnewm,**doldm;
     }    double *xp, *xm;
        double **gp, **gm;
     for(i=(j+1); i>=1;i--){    double ***gradg, ***trgradg;
       cutv(stra,strb,modelsav,'+');    int theta;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    double eip, vip;
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         cutv(strd,strc,strb,'*');    xp=vector(1,npar);
         if (strcmp(strc,"age")==0) {    xm=vector(1,npar);
           cptcovprod--;    dnewm=matrix(1,nlstate*nlstate,1,npar);
           cutv(strb,stre,strd,'V');    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           Tvar[i]=atoi(stre);    
           cptcovage++;    pstamp(ficresstdeij);
             Tage[cptcovage]=i;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
             /*printf("stre=%s ", stre);*/    fprintf(ficresstdeij,"# Age");
         }    for(i=1; i<=nlstate;i++){
         else if (strcmp(strd,"age")==0) {      for(j=1; j<=nlstate;j++)
           cptcovprod--;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           cutv(strb,stre,strc,'V');      fprintf(ficresstdeij," e%1d. ",i);
           Tvar[i]=atoi(stre);    }
           cptcovage++;    fprintf(ficresstdeij,"\n");
           Tage[cptcovage]=i;  
         }    pstamp(ficrescveij);
         else {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           cutv(strb,stre,strc,'V');    fprintf(ficrescveij,"# Age");
           Tvar[i]=ncovcol+k1;    for(i=1; i<=nlstate;i++)
           cutv(strb,strc,strd,'V');      for(j=1; j<=nlstate;j++){
           Tprod[k1]=i;        cptj= (j-1)*nlstate+i;
           Tvard[k1][1]=atoi(strc);        for(i2=1; i2<=nlstate;i2++)
           Tvard[k1][2]=atoi(stre);          for(j2=1; j2<=nlstate;j2++){
           Tvar[cptcovn+k2]=Tvard[k1][1];            cptj2= (j2-1)*nlstate+i2;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            if(cptj2 <= cptj)
           for (k=1; k<=lastobs;k++)              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          }
           k1++;      }
           k2=k2+2;    fprintf(ficrescveij,"\n");
         }    
       }    if(estepm < stepm){
       else {      printf ("Problem %d lower than %d\n",estepm, stepm);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    }
        /*  scanf("%d",i);*/    else  hstepm=estepm;   
       cutv(strd,strc,strb,'V');    /* We compute the life expectancy from trapezoids spaced every estepm months
       Tvar[i]=atoi(strc);     * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
       strcpy(modelsav,stra);       * we are calculating an estimate of the Life Expectancy assuming a linear 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);     * progression in between and thus overestimating or underestimating according
         scanf("%d",i);*/     * to the curvature of the survival function. If, for the same date, we 
     }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 }     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);     * curvature will be obtained if estepm is as small as stepm. */
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/    /* For example we decided to compute the life expectancy with the smallest unit */
     fclose(fic);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
     /*  if(mle==1){*/       nstepm is the number of stepm from age to agelin. 
     if (weightopt != 1) { /* Maximisation without weights*/       Look at hpijx to understand the reason of that which relies in memory size
       for(i=1;i<=n;i++) weight[i]=1.0;       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     /*-calculation of age at interview from date of interview and age at death -*/       survival function given by stepm (the optimization length). Unfortunately it
     agev=matrix(1,maxwav,1,imx);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (i=1; i<=imx; i++) {       results. So we changed our mind and took the option of the best precision.
       for(m=2; (m<= maxwav); m++) {    */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          anint[m][i]=9999;  
          s[m][i]=-1;    /* If stepm=6 months */
        }    /* nhstepm age range expressed in number of stepm */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    agelim=AGESUP;
       }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     for (i=1; i<=imx; i++)  {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    
       for(m=1; (m<= maxwav); m++){    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         if(s[m][i] >0){    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           if (s[m][i] >= nlstate+1) {    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             if(agedc[i]>0)    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               if(moisdc[i]!=99 && andc[i]!=9999)    gp=matrix(0,nhstepm,1,nlstate*nlstate);
                 agev[m][i]=agedc[i];    gm=matrix(0,nhstepm,1,nlstate*nlstate);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {    for (age=bage; age<=fage; age ++){ 
               if (andc[i]!=9999){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               agev[m][i]=-1;      /* if (stepm >= YEARM) hstepm=1;*/
               }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
             }  
           }      /* If stepm=6 months */
           else if(s[m][i] !=9){ /* Should no more exist */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
             if(mint[m][i]==99 || anint[m][i]==9999)      
               agev[m][i]=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      /* Computing  Variances of health expectancies */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
             }         decrease memory allocation */
             else if(agev[m][i] >agemax){      for(theta=1; theta <=npar; theta++){
               agemax=agev[m][i];        for(i=1; i<=npar; i++){ 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
             /*agev[m][i]=anint[m][i]-annais[i];*/        }
             /*   agev[m][i] = age[i]+2*m;*/        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           else { /* =9 */    
             agev[m][i]=1;        for(j=1; j<= nlstate; j++){
             s[m][i]=-1;          for(i=1; i<=nlstate; i++){
           }            for(h=0; h<=nhstepm-1; h++){
         }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         else /*= 0 Unknown */              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           agev[m][i]=1;            }
       }          }
            }
     }       
     for (i=1; i<=imx; i++)  {        for(ij=1; ij<= nlstate*nlstate; ij++)
       for(m=1; (m<= maxwav); m++){          for(h=0; h<=nhstepm-1; h++){
         if (s[m][i] > (nlstate+ndeath)) {            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           printf("Error: Wrong value in nlstate or ndeath\n");            }
           goto end;      }/* End theta */
         }      
       }      
     }      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
     free_vector(severity,1,maxwav);      
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);       for(ij=1;ij<=nlstate*nlstate;ij++)
     free_vector(annais,1,n);        for(ji=1;ji<=nlstate*nlstate;ji++)
     /* free_matrix(mint,1,maxwav,1,n);          varhe[ij][ji][(int)age] =0.;
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);       printf("%d|",(int)age);fflush(stdout);
     free_vector(andc,1,n);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
            for(k=0;k<=nhstepm-1;k++){
     wav=ivector(1,imx);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          for(ij=1;ij<=nlstate*nlstate;ij++)
                for(ji=1;ji<=nlstate*nlstate;ji++)
     /* Concatenates waves */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
       }
   
       Tcode=ivector(1,100);      /* Computing expectancies */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       ncodemax[1]=1;      for(i=1; i<=nlstate;i++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for(j=1; j<=nlstate;j++)
                for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
    codtab=imatrix(1,100,1,10);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
    h=0;            
    m=pow(2,cptcoveff);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
    for(k=1;k<=cptcoveff; k++){          }
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){      fprintf(ficresstdeij,"%3.0f",age );
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      for(i=1; i<=nlstate;i++){
            h++;        eip=0.;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        vip=0.;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        for(j=1; j<=nlstate;j++){
          }          eip += eij[i][j][(int)age];
        }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
      }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
    }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        }
       codtab[1][2]=1;codtab[2][2]=2; */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
    /* for(i=1; i <=m ;i++){      }
       for(k=1; k <=cptcovn; k++){      fprintf(ficresstdeij,"\n");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }      fprintf(ficrescveij,"%3.0f",age );
       printf("\n");      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++){
       scanf("%d",i);*/          cptj= (j-1)*nlstate+i;
              for(i2=1; i2<=nlstate;i2++)
    /* Calculates basic frequencies. Computes observed prevalence at single age            for(j2=1; j2<=nlstate;j2++){
        and prints on file fileres'p'. */              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                    fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficrescveij,"\n");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
          free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     /* For Powell, parameters are in a vector p[] starting at p[1]    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if(mle==1){    printf("\n");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(ficlog,"\n");
     }  
        free_vector(xm,1,npar);
     /*--------- results files --------------*/    free_vector(xp,1,npar);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    jk=1;  }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /************ Variance ******************/
    for(i=1,jk=1; i <=nlstate; i++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
      for(k=1; k <=(nlstate+ndeath); k++){  {
        if (k != i)    /* Variance of health expectancies */
          {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
            printf("%d%d ",i,k);    /* double **newm;*/
            fprintf(ficres,"%1d%1d ",i,k);    double **dnewm,**doldm;
            for(j=1; j <=ncovmodel; j++){    double **dnewmp,**doldmp;
              printf("%f ",p[jk]);    int i, j, nhstepm, hstepm, h, nstepm ;
              fprintf(ficres,"%f ",p[jk]);    int k, cptcode;
              jk++;    double *xp;
            }    double **gp, **gm;  /* for var eij */
            printf("\n");    double ***gradg, ***trgradg; /*for var eij */
            fprintf(ficres,"\n");    double **gradgp, **trgradgp; /* for var p point j */
          }    double *gpp, *gmp; /* for var p point j */
      }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
    }    double ***p3mat;
  if(mle==1){    double age,agelim, hf;
     /* Computing hessian and covariance matrix */    double ***mobaverage;
     ftolhess=ftol; /* Usually correct */    int theta;
     hesscov(matcov, p, npar, delti, ftolhess, func);    char digit[4];
  }    char digitp[25];
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");    char fileresprobmorprev[FILENAMELENGTH];
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    if(popbased==1){
         if (j!=i) {      if(mobilav!=0)
           fprintf(ficres,"%1d%1d",i,j);        strcpy(digitp,"-populbased-mobilav-");
           printf("%1d%1d",i,j);      else strcpy(digitp,"-populbased-nomobil-");
           for(k=1; k<=ncovmodel;k++){    }
             printf(" %.5e",delti[jk]);    else 
             fprintf(ficres," %.5e",delti[jk]);      strcpy(digitp,"-stablbased-");
             jk++;  
           }    if (mobilav!=0) {
           printf("\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficres,"\n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      }      }
        }
     k=1;  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    strcpy(fileresprobmorprev,"prmorprev"); 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    sprintf(digit,"%-d",ij);
     for(i=1;i<=npar;i++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       /*  if (k>nlstate) k=1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       i1=(i-1)/(ncovmodel*nlstate)+1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    strcat(fileresprobmorprev,fileres);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       fprintf(ficres,"%3d",i);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       printf("%3d",i);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       for(j=1; j<=i;j++){    }
         fprintf(ficres," %.5e",matcov[i][j]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         printf(" %.5e",matcov[i][j]);   
       }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficres,"\n");    pstamp(ficresprobmorprev);
       printf("\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       k++;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," p.%-d SE",j);
     while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
       ungetc(c,ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       fgets(line, MAXLINE, ficpar);    }  
       puts(line);    fprintf(ficresprobmorprev,"\n");
       fputs(line,ficparo);    fprintf(ficgp,"\n# Routine varevsij");
     }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     estepm=0;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  /*   } */
     if (estepm==0 || estepm < stepm) estepm=stepm;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (fage <= 2) {    pstamp(ficresvij);
       bage = ageminpar;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       fage = agemaxpar;    if(popbased==1)
     }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
        else
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(ficresvij,"# Age");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
     while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     ungetc(c,ficpar);    fprintf(ficresvij,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    xp=vector(1,npar);
     fputs(line,ficparo);    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
   ungetc(c,ficpar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    gpp=vector(nlstate+1,nlstate+ndeath);
          gmp=vector(nlstate+1,nlstate+ndeath);
   while((c=getc(ficpar))=='#' && c!= EOF){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    if(estepm < stepm){
     puts(line);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fputs(line,ficparo);    }
   }    else  hstepm=estepm;   
   ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       nstepm is the number of stepm from age to agelin. 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fscanf(ficpar,"pop_based=%d\n",&popbased);       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficparo,"pop_based=%d\n",popbased);         means that if the survival funtion is printed every two years of age and if
   fprintf(ficres,"pop_based=%d\n",popbased);         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   while((c=getc(ficpar))=='#' && c!= EOF){    */
     ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fgets(line, MAXLINE, ficpar);    agelim = AGESUP;
     puts(line);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fputs(line,ficparo);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   ungetc(c,ficpar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      gp=matrix(0,nhstepm,1,nlstate);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      gm=matrix(0,nhstepm,1,nlstate);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
   
       for(theta=1; theta <=npar; theta++){
 while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     ungetc(c,ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fputs(line,ficparo);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }  
   ungetc(c,ficpar);        if (popbased==1) {
           if(mobilav ==0){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              prlim[i][i]=probs[(int)age][i][ij];
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
 /*------------ gnuplot -------------*/        }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    
          for(j=1; j<= nlstate; j++){
 /*------------ free_vector  -------------*/          for(h=0; h<=nhstepm; h++){
  chdir(path);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  free_ivector(wav,1,imx);          }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          /* This for computing probability of death (h=1 means
  free_ivector(num,1,n);           computed over hstepm matrices product = hstepm*stepm months) 
  free_vector(agedc,1,n);           as a weighted average of prlim.
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        */
  fclose(ficparo);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  fclose(ficres);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
 /*--------- index.htm --------*/        }    
         /* end probability of death */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /*--------------- Prevalence limit --------------*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcpy(filerespl,"pl");   
   strcat(filerespl,fileres);        if (popbased==1) {
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          if(mobilav ==0){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          }else{ /* mobilav */ 
   fprintf(ficrespl,"#Prevalence limit\n");            for(i=1; i<=nlstate;i++)
   fprintf(ficrespl,"#Age ");              prlim[i][i]=mobaverage[(int)age][i][ij];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          }
   fprintf(ficrespl,"\n");        }
    
   prlim=matrix(1,nlstate,1,nlstate);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(h=0; h<=nhstepm; h++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }
   k=0;        /* This for computing probability of death (h=1 means
   agebase=ageminpar;           computed over hstepm matrices product = hstepm*stepm months) 
   agelim=agemaxpar;           as a weighted average of prlim.
   ftolpl=1.e-10;        */
   i1=cptcoveff;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (cptcovn < 1){i1=1;}          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   for(cptcov=1;cptcov<=i1;cptcov++){        }    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* end probability of death */
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(j=1; j<= nlstate; j++) /* vareij */
         fprintf(ficrespl,"\n#******");          for(h=0; h<=nhstepm; h++){
         for(j=1;j<=cptcoveff;j++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         fprintf(ficrespl,"******\n");  
                for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         for (age=agebase; age<=agelim; age++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)      } /* End theta */
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         }  
       }      for(h=0; h<=nhstepm; h++) /* veij */
     }        for(j=1; j<=nlstate;j++)
   fclose(ficrespl);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   /*------------- h Pij x at various ages ------------*/  
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        for(theta=1; theta <=npar; theta++)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          trgradgp[j][theta]=gradgp[theta][j];
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1;j<=nlstate;j++)
   /*if (stepm<=24) stepsize=2;*/          vareij[i][j][(int)age] =0.;
   
   agelim=AGESUP;      for(h=0;h<=nhstepm;h++){
   hstepm=stepsize*YEARM; /* Every year of age */        for(k=0;k<=nhstepm;k++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   k=0;          for(i=1;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){            for(j=1;j<=nlstate;j++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       k=k+1;        }
         fprintf(ficrespij,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* pptj */
         fprintf(ficrespij,"******\n");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
              matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          varppt[j][i]=doldmp[j][i];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* end ppptj */
           oldm=oldms;savm=savms;      /*  x centered again */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficrespij,"# Age");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           for(i=1; i<=nlstate;i++)   
             for(j=1; j<=nlstate+ndeath;j++)      if (popbased==1) {
               fprintf(ficrespij," %1d-%1d",i,j);        if(mobilav ==0){
           fprintf(ficrespij,"\n");          for(i=1; i<=nlstate;i++)
            for (h=0; h<=nhstepm; h++){            prlim[i][i]=probs[(int)age][i][ij];
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)          for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)            prlim[i][i]=mobaverage[(int)age][i][ij];
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        }
             fprintf(ficrespij,"\n");      }
              }               
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* This for computing probability of death (h=1 means
           fprintf(ficrespij,"\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         }         as a weighted average of prlim.
     }      */
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   fclose(ficrespij);      /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   /*---------- Forecasting ------------------*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if((stepm == 1) && (strcmp(model,".")==0)){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        for(i=1; i<=nlstate;i++){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   }        }
   else{      } 
     erreur=108;      fprintf(ficresprobmorprev,"\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   /*---------- Health expectancies and variances ------------*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   strcpy(filerest,"t");      fprintf(ficresvij,"\n");
   strcat(filerest,fileres);      free_matrix(gp,0,nhstepm,1,nlstate);
   if((ficrest=fopen(filerest,"w"))==NULL) {      free_matrix(gm,0,nhstepm,1,nlstate);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
   strcpy(filerese,"e");    free_vector(gmp,nlstate+1,nlstate+ndeath);
   strcat(filerese,fileres);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
   }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
  strcpy(fileresv,"v");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   strcat(fileresv,fileres);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   calagedate=-1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   k=0;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    free_vector(xp,1,npar);
       fprintf(ficrest,"\n#****** ");    free_matrix(doldm,1,nlstate,1,nlstate);
       for(j=1;j<=cptcoveff;j++)    free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficrest,"******\n");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficreseij,"\n#****** ");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1;j<=cptcoveff;j++)    fclose(ficresprobmorprev);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fflush(ficgp);
       fprintf(ficreseij,"******\n");    fflush(fichtm); 
   }  /* end varevsij */
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /************ Variance of prevlim ******************/
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       fprintf(ficresvij,"******\n");  {
     /* Variance of prevalence limit */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       oldm=oldms;savm=savms;    double **newm;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int k, cptcode;
       oldm=oldms;savm=savms;    double *xp;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    double *gp, *gm;
        double **gradg, **trgradg;
     double age,agelim;
      int theta;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    pstamp(ficresvpl);
       fprintf(ficrest,"\n");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
       epj=vector(1,nlstate+1);    for(i=1; i<=nlstate;i++)
       for(age=bage; age <=fage ;age++){        fprintf(ficresvpl," %1d-%1d",i,i);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficresvpl,"\n");
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)    xp=vector(1,npar);
             prlim[i][i]=probs[(int)age][i][k];    dnewm=matrix(1,nlstate,1,npar);
         }    doldm=matrix(1,nlstate,1,nlstate);
            
         fprintf(ficrest," %4.0f",age);    hstepm=1*YEARM; /* Every year of age */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    agelim = AGESUP;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           }      if (stepm >= YEARM) hstepm=1;
           epj[nlstate+1] +=epj[j];      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         }      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
         for(i=1, vepp=0.;i <=nlstate;i++)      gm=vector(1,nlstate);
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];      for(theta=1; theta <=npar; theta++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        for(i=1; i<=npar; i++){ /* Computes gradient */
         for(j=1;j <=nlstate;j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        }
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficrest,"\n");        for(i=1;i<=nlstate;i++)
       }          gp[i] = prlim[i][i];
     }      
   }        for(i=1; i<=npar; i++) /* Computes gradient */
 free_matrix(mint,1,maxwav,1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_vector(weight,1,n);        for(i=1;i<=nlstate;i++)
   fclose(ficreseij);          gm[i] = prlim[i][i];
   fclose(ficresvij);  
   fclose(ficrest);        for(i=1;i<=nlstate;i++)
   fclose(ficpar);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   free_vector(epj,1,nlstate+1);      } /* End theta */
    
   /*------- Variance limit prevalence------*/        trgradg =matrix(1,nlstate,1,npar);
   
   strcpy(fileresvpl,"vpl");      for(j=1; j<=nlstate;j++)
   strcat(fileresvpl,fileres);        for(theta=1; theta <=npar; theta++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          trgradg[j][theta]=gradg[theta][j];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   k=0;      for(i=1;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;      fprintf(ficresvpl,"%.0f ",age );
       fprintf(ficresvpl,"\n#****** ");      for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficresvpl,"\n");
       fprintf(ficresvpl,"******\n");      free_vector(gp,1,nlstate);
            free_vector(gm,1,nlstate);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      free_matrix(gradg,1,npar,1,nlstate);
       oldm=oldms;savm=savms;      free_matrix(trgradg,1,nlstate,1,npar);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    } /* End age */
     }  
  }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   fclose(ficresvpl);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   /*---------- End : free ----------------*/  }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
    /************ Variance of one-step probabilities  ******************/
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  {
      int i, j=0,  i1, k1, l1, t, tj;
      int k2, l2, j1,  z1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    int k=0,l, cptcode;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    int first=1, first1, first2;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    double **dnewm,**doldm;
      double *xp;
   free_matrix(matcov,1,npar,1,npar);    double *gp, *gm;
   free_vector(delti,1,npar);    double **gradg, **trgradg;
   free_matrix(agev,1,maxwav,1,imx);    double **mu;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if(erreur >0)    int theta;
     printf("End of Imach with error or warning %d\n",erreur);    char fileresprob[FILENAMELENGTH];
   else   printf("End of Imach\n");    char fileresprobcov[FILENAMELENGTH];
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    char fileresprobcor[FILENAMELENGTH];
      double ***varpij;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    strcpy(fileresprob,"prob"); 
   /*------ End -----------*/    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
  end:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   /* chdir(pathcd);*/    }
  /*system("wgnuplot graph.plt");*/    strcpy(fileresprobcov,"probcov"); 
  /*system("../gp37mgw/wgnuplot graph.plt");*/    strcat(fileresprobcov,fileres);
  /*system("cd ../gp37mgw");*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      printf("Problem with resultfile: %s\n", fileresprobcov);
  strcpy(plotcmd,GNUPLOTPROGRAM);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
  strcat(plotcmd," ");    }
  strcat(plotcmd,optionfilegnuplot);    strcpy(fileresprobcor,"probcor"); 
  system(plotcmd);    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  /*#ifdef windows*/      printf("Problem with resultfile: %s\n", fileresprobcor);
   while (z[0] != 'q') {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     /* chdir(path); */    }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     scanf("%s",z);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     if (z[0] == 'c') system("./imach");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     else if (z[0] == 'e') system(optionfilehtm);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     else if (z[0] == 'g') system(plotcmd);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     else if (z[0] == 'q') exit(0);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   }    pstamp(ficresprob);
   /*#endif */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 }    fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.149


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>