Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.83

version 1.41.2.1, 2003/06/12 10:43:20 version 1.83, 2003/06/10 13:39:11
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.82  2003/06/05 15:57:20  brouard
   first survey ("cross") where individuals from different ages are    Add log in  imach.c and  fullversion number is now printed.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a  */
   second wave of interviews ("longitudinal") which measure each change  /*
   (if any) in individual health status.  Health expectancies are     Interpolated Markov Chain
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Short summary of the programme:
   Maximum Likelihood of the parameters involved in the model.  The    
   simplest model is the multinomial logistic model where pij is the    This program computes Healthy Life Expectancies from
   probability to be observed in state j at the second wave    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   conditional to be observed in state i at the first wave. Therefore    first survey ("cross") where individuals from different ages are
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    interviewed on their health status or degree of disability (in the
   'age' is age and 'sex' is a covariate. If you want to have a more    case of a health survey which is our main interest) -2- at least a
   complex model than "constant and age", you should modify the program    second wave of interviews ("longitudinal") which measure each change
   where the markup *Covariates have to be included here again* invites    (if any) in individual health status.  Health expectancies are
   you to do it.  More covariates you add, slower the    computed from the time spent in each health state according to a
   convergence.    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
   The advantage of this computer programme, compared to a simple    simplest model is the multinomial logistic model where pij is the
   multinomial logistic model, is clear when the delay between waves is not    probability to be observed in state j at the second wave
   identical for each individual. Also, if a individual missed an    conditional to be observed in state i at the first wave. Therefore
   intermediate interview, the information is lost, but taken into    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   account using an interpolation or extrapolation.      'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   hPijx is the probability to be observed in state i at age x+h    where the markup *Covariates have to be included here again* invites
   conditional to the observed state i at age x. The delay 'h' can be    you to do it.  More covariates you add, slower the
   split into an exact number (nh*stepm) of unobserved intermediate    convergence.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    The advantage of this computer programme, compared to a simple
   matrix is simply the matrix product of nh*stepm elementary matrices    multinomial logistic model, is clear when the delay between waves is not
   and the contribution of each individual to the likelihood is simply    identical for each individual. Also, if a individual missed an
   hPijx.    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    split into an exact number (nh*stepm) of unobserved intermediate
            Institut national d'études démographiques, Paris.    states. This elementary transition (by month, quarter,
   This software have been partly granted by Euro-REVES, a concerted action    semester or year) is modelled as a multinomial logistic.  The hPx
   from the European Union.    matrix is simply the matrix product of nh*stepm elementary matrices
   It is copyrighted identically to a GNU software product, ie programme and    and the contribution of each individual to the likelihood is simply
   software can be distributed freely for non commercial use. Latest version    hPijx.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the stable prevalence. 
 #include <math.h>    
 #include <stdio.h>    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <stdlib.h>             Institut national d'études démographiques, Paris.
 #include <unistd.h>    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define MAXLINE 256    It is copyrighted identically to a GNU software product, ie programme and
 #define GNUPLOTPROGRAM "wgnuplot"    software can be distributed freely for non commercial use. Latest version
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /*#define windows*/    
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    **********************************************************************/
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  /*
     main
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    read parameterfile
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    read datafile
     concatwav
 #define NINTERVMAX 8    if (mle >= 1)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */      mlikeli
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    print results files
 #define NCOVMAX 8 /* Maximum number of covariates */    if mle==1 
 #define MAXN 20000       computes hessian
 #define YEARM 12. /* Number of months per year */    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define AGESUP 130        begin-prev-date,...
 #define AGEBASE 40    open gnuplot file
     open html file
     stable prevalence
 int erreur; /* Error number */     for age prevalim()
 int nvar;    h Pij x
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    variance of p varprob
 int npar=NPARMAX;    forecasting if prevfcast==1 prevforecast call prevalence()
 int nlstate=2; /* Number of live states */    health expectancies
 int ndeath=1; /* Number of dead states */    Variance-covariance of DFLE
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    prevalence()
 int popbased=0;     movingaverage()
     varevsij() 
 int *wav; /* Number of waves for this individuual 0 is possible */    if popbased==1 varevsij(,popbased)
 int maxwav; /* Maxim number of waves */    total life expectancies
 int jmin, jmax; /* min, max spacing between 2 waves */    Variance of stable prevalence
 int mle, weightopt;   end
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */   
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #include <math.h>
 FILE *ficgp,*ficresprob,*ficpop;  #include <stdio.h>
 FILE *ficreseij;  #include <stdlib.h>
   char filerese[FILENAMELENGTH];  #include <unistd.h>
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];  #define MAXLINE 256
  FILE  *ficresvpl;  #define GNUPLOTPROGRAM "gnuplot"
   char fileresvpl[FILENAMELENGTH];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 80
 #define NR_END 1  /*#define DEBUG*/
 #define FREE_ARG char*  #define windows
 #define FTOL 1.0e-10  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define NRANSI  
 #define ITMAX 200  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define TOL 2.0e-4  
   #define NINTERVMAX 8
 #define CGOLD 0.3819660  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define ZEPS 1.0e-10  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 #define GOLD 1.618034  #define YEARM 12. /* Number of months per year */
 #define GLIMIT 100.0  #define AGESUP 130
 #define TINY 1.0e-20  #define AGEBASE 40
   #ifdef windows
 static double maxarg1,maxarg2;  #define DIRSEPARATOR '\\'
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define ODIRSEPARATOR '/'
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #else
    #define DIRSEPARATOR '/'
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define ODIRSEPARATOR '\\'
 #define rint(a) floor(a+0.5)  #endif
   
 static double sqrarg;  /* $Id$ */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /* $State$ */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 int imx;  char fullversion[]="$Revision$ $Date$"; 
 int stepm;  int erreur; /* Error number */
 /* Stepm, step in month: minimum step interpolation*/  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int estepm;  int npar=NPARMAX;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 int m,nb;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int popbased=0;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  int *wav; /* Number of waves for this individuual 0 is possible */
 double dateintmean=0;  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 double *weight;  int mle, weightopt;
 int **s; /* Status */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double *agedc, **covar, idx;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double jmean; /* Mean space between 2 waves */
 double ftolhess; /* Tolerance for computing hessian */  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /**************** split *************************/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE *ficlog, *ficrespow;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    char *s;                             /* pointer */  FILE *ficresprobmorprev;
    int  l1, l2;                         /* length counters */  FILE *fichtm; /* Html File */
   FILE *ficreseij;
    l1 = strlen( path );                 /* length of path */  char filerese[FILENAMELENGTH];
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE  *ficresvij;
 #ifdef windows  char fileresv[FILENAMELENGTH];
    s = strrchr( path, '\\' );           /* find last / */  FILE  *ficresvpl;
 #else  char fileresvpl[FILENAMELENGTH];
    s = strrchr( path, '/' );            /* find last / */  char title[MAXLINE];
 #endif  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    if ( s == NULL ) {                   /* no directory, so use current */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
       if ( getwd( dirc ) == NULL ) {  char filerest[FILENAMELENGTH];
 #else  char fileregp[FILENAMELENGTH];
       extern char       *getcwd( );  char popfile[FILENAMELENGTH];
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 #endif  
          return( GLOCK_ERROR_GETCWD );  #define NR_END 1
       }  #define FREE_ARG char*
       strcpy( name, path );             /* we've got it */  #define FTOL 1.0e-10
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  #define NRANSI 
       l2 = strlen( s );                 /* length of filename */  #define ITMAX 200 
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  #define TOL 2.0e-4 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define CGOLD 0.3819660 
    }  #define ZEPS 1.0e-10 
    l1 = strlen( dirc );                 /* length of directory */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define GOLD 1.618034 
 #else  #define GLIMIT 100.0 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define TINY 1.0e-20 
 #endif  
    s = strrchr( name, '.' );            /* find last / */  static double maxarg1,maxarg2;
    s++;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    strcpy(ext,s);                       /* save extension */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    l1= strlen( name);    
    l2= strlen( s)+1;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    strncpy( finame, name, l1-l2);  #define rint(a) floor(a+0.5)
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   
 /******************************************/  int imx; 
   int stepm;
 void replace(char *s, char*t)  /* Stepm, step in month: minimum step interpolation*/
 {  
   int i;  int estepm;
   int lg=20;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   i=0;  
   lg=strlen(t);  int m,nb;
   for(i=0; i<= lg; i++) {  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
     (s[i] = t[i]);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if (t[i]== '\\') s[i]='/';  double **pmmij, ***probs;
   }  double dateintmean=0;
 }  
   double *weight;
 int nbocc(char *s, char occ)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   int i,j=0;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int lg=20;  
   i=0;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   lg=strlen(s);  double ftolhess; /* Tolerance for computing hessian */
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   return j;  {
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 void cutv(char *u,char *v, char*t, char occ)  
 {    l1 = strlen(path );                   /* length of path */
   int i,lg,j,p=0;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   i=0;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for(j=0; j<=strlen(t)-1; j++) {    if ( ss == NULL ) {                   /* no directory, so use current */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   lg=strlen(t);      /*    extern  char* getcwd ( char *buf , int len);*/
   for(j=0; j<p; j++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     (u[j] = t[j]);        return( GLOCK_ERROR_GETCWD );
   }      }
      u[p]='\0';      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
    for(j=0; j<= lg; j++) {      ss++;                               /* after this, the filename */
     if (j>=(p+1))(v[j-p-1] = t[j]);      l2 = strlen( ss );                  /* length of filename */
   }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /********************** nrerror ********************/      dirc[l1-l2] = 0;                    /* add zero */
     }
 void nrerror(char error_text[])    l1 = strlen( dirc );                  /* length of directory */
 {  #ifdef windows
   fprintf(stderr,"ERREUR ...\n");    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   fprintf(stderr,"%s\n",error_text);  #else
   exit(1);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 }  #endif
 /*********************** vector *******************/    ss = strrchr( name, '.' );            /* find last / */
 double *vector(int nl, int nh)    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   double *v;    l1= strlen( name);
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    l2= strlen(ss)+1;
   if (!v) nrerror("allocation failure in vector");    strncpy( finame, name, l1-l2);
   return v-nl+NR_END;    finame[l1-l2]= 0;
 }    return( 0 );                          /* we're done */
   }
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  
 {  /******************************************/
   free((FREE_ARG)(v+nl-NR_END));  
 }  void replace(char *s, char*t)
   {
 /************************ivector *******************************/    int i;
 int *ivector(long nl,long nh)    int lg=20;
 {    i=0;
   int *v;    lg=strlen(t);
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    for(i=0; i<= lg; i++) {
   if (!v) nrerror("allocation failure in ivector");      (s[i] = t[i]);
   return v-nl+NR_END;      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  int nbocc(char *s, char occ)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    int i,j=0;
 }    int lg=20;
     i=0;
 /******************* imatrix *******************************/    lg=strlen(s);
 int **imatrix(long nrl, long nrh, long ncl, long nch)    for(i=0; i<= lg; i++) {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    if  (s[i] == occ ) j++;
 {    }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    return j;
   int **m;  }
    
   /* allocate pointers to rows */  void cutv(char *u,char *v, char*t, char occ)
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    /* cuts string t into u and v where u is ended by char occ excluding it
   m += NR_END;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m -= nrl;       gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
      i=0;
   /* allocate rows and set pointers to them */    for(j=0; j<=strlen(t)-1; j++) {
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    lg=strlen(t);
      for(j=0; j<p; j++) {
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      (u[j] = t[j]);
      }
   /* return pointer to array of pointers to rows */       u[p]='\0';
   return m;  
 }     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /****************** free_imatrix *************************/    }
 void free_imatrix(m,nrl,nrh,ncl,nch)  }
       int **m;  
       long nch,ncl,nrh,nrl;  /********************** nrerror ********************/
      /* free an int matrix allocated by imatrix() */  
 {  void nrerror(char error_text[])
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  {
   free((FREE_ARG) (m+nrl-NR_END));    fprintf(stderr,"ERREUR ...\n");
 }    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  /*********************** vector *******************/
 {  double *vector(int nl, int nh)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if (!v) nrerror("allocation failure in vector");
   if (!m) nrerror("allocation failure 1 in matrix()");    return v-nl+NR_END;
   m += NR_END;  }
   m -= nrl;  
   /************************ free vector ******************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  void free_vector(double*v, int nl, int nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    free((FREE_ARG)(v+nl-NR_END));
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /************************ivector *******************************/
   return m;  char *cvector(long nl,long nh)
 }  {
     char *v;
 /*************************free matrix ************************/    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if (!v) nrerror("allocation failure in cvector");
 {    return v-nl+NR_END;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /******************free ivector **************************/
   void free_cvector(char *v, long nl, long nh)
 /******************* ma3x *******************************/  {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    int *v;
   m += NR_END;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m -= nrl;    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /******************free ivector **************************/
   m[nrl] -= ncl;  void free_ivector(int *v, long nl, long nh)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    free((FREE_ARG)(v+nl-NR_END));
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /******************* imatrix *******************************/
   m[nrl][ncl] += NR_END;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   m[nrl][ncl] -= nll;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (j=ncl+1; j<=nch; j++)  { 
     m[nrl][j]=m[nrl][j-1]+nlay;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
      int **m; 
   for (i=nrl+1; i<=nrh; i++) {    
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    /* allocate pointers to rows */ 
     for (j=ncl+1; j<=nch; j++)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       m[i][j]=m[i][j-1]+nlay;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
   return m;    m -= nrl; 
 }    
     
 /*************************free ma3x ************************/    /* allocate rows and set pointers to them */ 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m[nrl] += NR_END; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl] -= ncl; 
   free((FREE_ARG)(m+nrl-NR_END));    
 }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 /***************** f1dim *************************/    /* return pointer to array of pointers to rows */ 
 extern int ncom;    return m; 
 extern double *pcom,*xicom;  } 
 extern double (*nrfunc)(double []);  
    /****************** free_imatrix *************************/
 double f1dim(double x)  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   int j;        long nch,ncl,nrh,nrl; 
   double f;       /* free an int matrix allocated by imatrix() */ 
   double *xt;  { 
      free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   xt=vector(1,ncom);    free((FREE_ARG) (m+nrl-NR_END)); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  } 
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /******************* matrix *******************************/
   return f;  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*****************brent *************************/    double **m;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int iter;    if (!m) nrerror("allocation failure 1 in matrix()");
   double a,b,d,etemp;    m += NR_END;
   double fu,fv,fw,fx;    m -= nrl;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double e=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   a=(ax < cx ? ax : cx);    m[nrl] -= ncl;
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   fw=fv=fx=(*f)(x);    return m;
   for (iter=1;iter<=ITMAX;iter++) {    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
     xm=0.5*(a+b);     */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /*************************free matrix ************************/
 #ifdef DEBUG  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /******************* ma3x *******************************/
     }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       r=(x-w)*(fx-fv);    double ***m;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       q=2.0*(q-r);    if (!m) nrerror("allocation failure 1 in matrix()");
       if (q > 0.0) p = -p;    m += NR_END;
       q=fabs(q);    m -= nrl;
       etemp=e;  
       e=d;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] += NR_END;
       else {    m[nrl] -= ncl;
         d=p/q;  
         u=x+d;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     } else {    m[nrl][ncl] += NR_END;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      m[nrl][j]=m[nrl][j-1]+nlay;
     fu=(*f)(u);    
     if (fu <= fx) {    for (i=nrl+1; i<=nrh; i++) {
       if (u >= x) a=x; else b=x;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       SHFT(v,w,x,u)      for (j=ncl+1; j<=nch; j++) 
         SHFT(fv,fw,fx,fu)        m[i][j]=m[i][j-1]+nlay;
         } else {    }
           if (u < x) a=u; else b=u;    return m; 
           if (fu <= fw || w == x) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             v=w;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
             w=u;    */
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /*************************free ma3x ************************/
             v=u;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
             fv=fu;  {
           }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
 /****************** mnbrak ***********************/  extern double (*nrfunc)(double []); 
    
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double f1dim(double x) 
             double (*func)(double))  { 
 {    int j; 
   double ulim,u,r,q, dum;    double f;
   double fu;    double *xt; 
     
   *fa=(*func)(*ax);    xt=vector(1,ncom); 
   *fb=(*func)(*bx);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   if (*fb > *fa) {    f=(*nrfunc)(xt); 
     SHFT(dum,*ax,*bx,dum)    free_vector(xt,1,ncom); 
       SHFT(dum,*fb,*fa,dum)    return f; 
       }  } 
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /*****************brent *************************/
   while (*fb > *fc) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     r=(*bx-*ax)*(*fb-*fc);  { 
     q=(*bx-*cx)*(*fb-*fa);    int iter; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    double a,b,d,etemp;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    double fu,fv,fw,fx;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    double ftemp;
     if ((*bx-u)*(u-*cx) > 0.0) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       fu=(*func)(u);    double e=0.0; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {   
       fu=(*func)(u);    a=(ax < cx ? ax : cx); 
       if (fu < *fc) {    b=(ax > cx ? ax : cx); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    x=w=v=bx; 
           SHFT(*fb,*fc,fu,(*func)(u))    fw=fv=fx=(*f)(x); 
           }    for (iter=1;iter<=ITMAX;iter++) { 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      xm=0.5*(a+b); 
       u=ulim;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       fu=(*func)(u);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     } else {      printf(".");fflush(stdout);
       u=(*cx)+GOLD*(*cx-*bx);      fprintf(ficlog,".");fflush(ficlog);
       fu=(*func)(u);  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     SHFT(*ax,*bx,*cx,u)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       SHFT(*fa,*fb,*fc,fu)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 /*************** linmin ************************/        return fx; 
       } 
 int ncom;      ftemp=fu;
 double *pcom,*xicom;      if (fabs(e) > tol1) { 
 double (*nrfunc)(double []);        r=(x-w)*(fx-fv); 
          q=(x-v)*(fx-fw); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        p=(x-v)*q-(x-w)*r; 
 {        q=2.0*(q-r); 
   double brent(double ax, double bx, double cx,        if (q > 0.0) p = -p; 
                double (*f)(double), double tol, double *xmin);        q=fabs(q); 
   double f1dim(double x);        etemp=e; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        e=d; 
               double *fc, double (*func)(double));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int j;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double xx,xmin,bx,ax;        else { 
   double fx,fb,fa;          d=p/q; 
            u=x+d; 
   ncom=n;          if (u-a < tol2 || b-u < tol2) 
   pcom=vector(1,n);            d=SIGN(tol1,xm-x); 
   xicom=vector(1,n);        } 
   nrfunc=func;      } else { 
   for (j=1;j<=n;j++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     pcom[j]=p[j];      } 
     xicom[j]=xi[j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   }      fu=(*f)(u); 
   ax=0.0;      if (fu <= fx) { 
   xx=1.0;        if (u >= x) a=x; else b=x; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        SHFT(v,w,x,u) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);          SHFT(fv,fw,fx,fu) 
 #ifdef DEBUG          } else { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);            if (u < x) a=u; else b=u; 
 #endif            if (fu <= fw || w == x) { 
   for (j=1;j<=n;j++) {              v=w; 
     xi[j] *= xmin;              w=u; 
     p[j] += xi[j];              fv=fw; 
   }              fw=fu; 
   free_vector(xicom,1,n);            } else if (fu <= fv || v == x || v == w) { 
   free_vector(pcom,1,n);              v=u; 
 }              fv=fu; 
             } 
 /*************** powell ************************/          } 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    } 
             double (*func)(double []))    nrerror("Too many iterations in brent"); 
 {    *xmin=x; 
   void linmin(double p[], double xi[], int n, double *fret,    return fx; 
               double (*func)(double []));  } 
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /****************** mnbrak ***********************/
   double fp,fptt;  
   double *xits;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   pt=vector(1,n);              double (*func)(double)) 
   ptt=vector(1,n);  { 
   xit=vector(1,n);    double ulim,u,r,q, dum;
   xits=vector(1,n);    double fu; 
   *fret=(*func)(p);   
   for (j=1;j<=n;j++) pt[j]=p[j];    *fa=(*func)(*ax); 
   for (*iter=1;;++(*iter)) {    *fb=(*func)(*bx); 
     fp=(*fret);    if (*fb > *fa) { 
     ibig=0;      SHFT(dum,*ax,*bx,dum) 
     del=0.0;        SHFT(dum,*fb,*fa,dum) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        } 
     for (i=1;i<=n;i++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       printf(" %d %.12f",i, p[i]);    *fc=(*func)(*cx); 
     printf("\n");    while (*fb > *fc) { 
     for (i=1;i<=n;i++) {      r=(*bx-*ax)*(*fb-*fc); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      q=(*bx-*cx)*(*fb-*fa); 
       fptt=(*fret);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #ifdef DEBUG        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       printf("fret=%lf \n",*fret);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 #endif      if ((*bx-u)*(u-*cx) > 0.0) { 
       printf("%d",i);fflush(stdout);        fu=(*func)(u); 
       linmin(p,xit,n,fret,func);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       if (fabs(fptt-(*fret)) > del) {        fu=(*func)(u); 
         del=fabs(fptt-(*fret));        if (fu < *fc) { 
         ibig=i;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }            SHFT(*fb,*fc,fu,(*func)(u)) 
 #ifdef DEBUG            } 
       printf("%d %.12e",i,(*fret));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (j=1;j<=n;j++) {        u=ulim; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        fu=(*func)(u); 
         printf(" x(%d)=%.12e",j,xit[j]);      } else { 
       }        u=(*cx)+GOLD*(*cx-*bx); 
       for(j=1;j<=n;j++)        fu=(*func)(u); 
         printf(" p=%.12e",p[j]);      } 
       printf("\n");      SHFT(*ax,*bx,*cx,u) 
 #endif        SHFT(*fa,*fb,*fc,fu) 
     }        } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  } 
 #ifdef DEBUG  
       int k[2],l;  /*************** linmin ************************/
       k[0]=1;  
       k[1]=-1;  int ncom; 
       printf("Max: %.12e",(*func)(p));  double *pcom,*xicom;
       for (j=1;j<=n;j++)  double (*nrfunc)(double []); 
         printf(" %.12e",p[j]);   
       printf("\n");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for(l=0;l<=1;l++) {  { 
         for (j=1;j<=n;j++) {    double brent(double ax, double bx, double cx, 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];                 double (*f)(double), double tol, double *xmin); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double f1dim(double x); 
         }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));                double *fc, double (*func)(double)); 
       }    int j; 
 #endif    double xx,xmin,bx,ax; 
     double fx,fb,fa;
    
       free_vector(xit,1,n);    ncom=n; 
       free_vector(xits,1,n);    pcom=vector(1,n); 
       free_vector(ptt,1,n);    xicom=vector(1,n); 
       free_vector(pt,1,n);    nrfunc=func; 
       return;    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      xicom[j]=xi[j]; 
     for (j=1;j<=n;j++) {    } 
       ptt[j]=2.0*p[j]-pt[j];    ax=0.0; 
       xit[j]=p[j]-pt[j];    xx=1.0; 
       pt[j]=p[j];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     fptt=(*func)(ptt);  #ifdef DEBUG
     if (fptt < fp) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       if (t < 0.0) {  #endif
         linmin(p,xit,n,fret,func);    for (j=1;j<=n;j++) { 
         for (j=1;j<=n;j++) {      xi[j] *= xmin; 
           xi[j][ibig]=xi[j][n];      p[j] += xi[j]; 
           xi[j][n]=xit[j];    } 
         }    free_vector(xicom,1,n); 
 #ifdef DEBUG    free_vector(pcom,1,n); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  } 
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************** powell ************************/
         printf("\n");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 #endif              double (*func)(double [])) 
       }  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
 }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 /**** Prevalence limit ****************/    double fp,fptt;
     double *xits;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    pt=vector(1,n); 
 {    ptt=vector(1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    xit=vector(1,n); 
      matrix by transitions matrix until convergence is reached */    xits=vector(1,n); 
     *fret=(*func)(p); 
   int i, ii,j,k;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double min, max, maxmin, maxmax,sumnew=0.;    for (*iter=1;;++(*iter)) { 
   double **matprod2();      fp=(*fret); 
   double **out, cov[NCOVMAX], **pmij();      ibig=0; 
   double **newm;      del=0.0; 
   double agefin, delaymax=50 ; /* Max number of years to converge */      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     for (j=1;j<=nlstate+ndeath;j++){      for (i=1;i<=n;i++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
    cov[1]=1.;      }
        printf("\n");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"\n");
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficrespow,"\n");
     newm=savm;      for (i=1;i<=n;i++) { 
     /* Covariates have to be included here again */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
      cov[2]=agefin;        fptt=(*fret); 
    #ifdef DEBUG
       for (k=1; k<=cptcovn;k++) {        printf("fret=%lf \n",*fret);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fprintf(ficlog,"fret=%lf \n",*fret);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #endif
       }        printf("%d",i);fflush(stdout);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fprintf(ficlog,"%d",i);fflush(ficlog);
       for (k=1; k<=cptcovprod;k++)        linmin(p,xit,n,fret,func); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          ibig=i; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        } 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #ifdef DEBUG
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
     savm=oldm;        for (j=1;j<=n;j++) {
     oldm=newm;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     maxmax=0.;          printf(" x(%d)=%.12e",j,xit[j]);
     for(j=1;j<=nlstate;j++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       min=1.;        }
       max=0.;        for(j=1;j<=n;j++) {
       for(i=1; i<=nlstate; i++) {          printf(" p=%.12e",p[j]);
         sumnew=0;          fprintf(ficlog," p=%.12e",p[j]);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        }
         prlim[i][j]= newm[i][j]/(1-sumnew);        printf("\n");
         max=FMAX(max,prlim[i][j]);        fprintf(ficlog,"\n");
         min=FMIN(min,prlim[i][j]);  #endif
       }      } 
       maxmin=max-min;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       maxmax=FMAX(maxmax,maxmin);  #ifdef DEBUG
     }        int k[2],l;
     if(maxmax < ftolpl){        k[0]=1;
       return prlim;        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
   }        fprintf(ficlog,"Max: %.12e",(*func)(p));
 }        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 /*************** transition probabilities ***************/          fprintf(ficlog," %.12e",p[j]);
         }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        printf("\n");
 {        fprintf(ficlog,"\n");
   double s1, s2;        for(l=0;l<=1;l++) {
   /*double t34;*/          for (j=1;j<=n;j++) {
   int i,j,j1, nc, ii, jj;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(i=1; i<= nlstate; i++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(j=1; j<i;j++){          }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*s2 += param[i][j][nc]*cov[nc];*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #endif
       }  
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        free_vector(xit,1,n); 
     }        free_vector(xits,1,n); 
     for(j=i+1; j<=nlstate+ndeath;j++){        free_vector(ptt,1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        free_vector(pt,1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        return; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      } 
       }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       ps[i][j]=s2;      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
     /*ps[3][2]=1;*/        pt[j]=p[j]; 
       } 
   for(i=1; i<= nlstate; i++){      fptt=(*func)(ptt); 
      s1=0;      if (fptt < fp) { 
     for(j=1; j<i; j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       s1+=exp(ps[i][j]);        if (t < 0.0) { 
     for(j=i+1; j<=nlstate+ndeath; j++)          linmin(p,xit,n,fret,func); 
       s1+=exp(ps[i][j]);          for (j=1;j<=n;j++) { 
     ps[i][i]=1./(s1+1.);            xi[j][ibig]=xi[j][n]; 
     for(j=1; j<i; j++)            xi[j][n]=xit[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          }
     for(j=i+1; j<=nlstate+ndeath; j++)  #ifdef DEBUG
       ps[i][j]= exp(ps[i][j])*ps[i][i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   } /* end i */          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            fprintf(ficlog," %.12e",xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          }
       ps[ii][jj]=0;          printf("\n");
       ps[ii][ii]=1;          fprintf(ficlog,"\n");
     }  #endif
   }        }
       } 
     } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /**** Prevalence limit (stable prevalence)  ****************/
    }  
     printf("\n ");  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 /*       matrix by transitions matrix until convergence is reached */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/    int i, ii,j,k;
     return ps;    double min, max, maxmin, maxmax,sumnew=0.;
 }    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 /**************** Product of 2 matrices ******************/    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      for (j=1;j<=nlstate+ndeath;j++){
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* in, b, out are matrice of pointers which should have been initialized      }
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */     cov[1]=1.;
   long i, j, k;   
   for(i=nrl; i<= nrh; i++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(k=ncolol; k<=ncoloh; k++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      newm=savm;
         out[i][k] +=in[i][j]*b[j][k];      /* Covariates have to be included here again */
        cov[2]=agefin;
   return out;    
 }        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 /************* Higher Matrix Product ***************/        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      (typically every 2 years instead of every month which is too big).      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
      Model is determined by parameters x and covariates have to be  
      included manually here.      savm=oldm;
       oldm=newm;
      */      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   int i, j, d, h, k;        min=1.;
   double **out, cov[NCOVMAX];        max=0.;
   double **newm;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   /* Hstepm could be zero and should return the unit matrix */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (i=1;i<=nlstate+ndeath;i++)          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (j=1;j<=nlstate+ndeath;j++){          max=FMAX(max,prlim[i][j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          min=FMIN(min,prlim[i][j]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        }
     }        maxmin=max-min;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        maxmax=FMAX(maxmax,maxmin);
   for(h=1; h <=nhstepm; h++){      }
     for(d=1; d <=hstepm; d++){      if(maxmax < ftolpl){
       newm=savm;        return prlim;
       /* Covariates have to be included here again */      }
       cov[1]=1.;    }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /*************** transition probabilities ***************/ 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     double s1, s2;
     /*double t34;*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    int i,j,j1, nc, ii, jj;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      for(i=1; i<= nlstate; i++){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      for(j=1; j<i;j++){
       savm=oldm;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       oldm=newm;          /*s2 += param[i][j][nc]*cov[nc];*/
     }          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for(i=1; i<=nlstate+ndeath; i++)          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       for(j=1;j<=nlstate+ndeath;j++) {        }
         po[i][j][h]=newm[i][j];        ps[i][j]=s2;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
          */      }
       }      for(j=i+1; j<=nlstate+ndeath;j++){
   } /* end h */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return po;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
         ps[i][j]=s2;
 /*************** log-likelihood *************/      }
 double func( double *x)    }
 {      /*ps[3][2]=1;*/
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for(i=1; i<= nlstate; i++){
   double **out;       s1=0;
   double sw; /* Sum of weights */      for(j=1; j<i; j++)
   double lli; /* Individual log likelihood */        s1+=exp(ps[i][j]);
   long ipmx;      for(j=i+1; j<=nlstate+ndeath; j++)
   /*extern weight */        s1+=exp(ps[i][j]);
   /* We are differentiating ll according to initial status */      ps[i][i]=1./(s1+1.);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for(j=1; j<i; j++)
   /*for(i=1;i<imx;i++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
     printf(" %d\n",s[4][i]);      for(j=i+1; j<=nlstate+ndeath; j++)
   */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   cov[1]=1.;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for(jj=1; jj<= nlstate+ndeath; jj++){
     for(mi=1; mi<= wav[i]-1; mi++){        ps[ii][jj]=0;
       for (ii=1;ii<=nlstate+ndeath;ii++)        ps[ii][ii]=1;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      }
       for(d=0; d<dh[mi][i]; d++){    }
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for(jj=1; jj<= nlstate+ndeath; jj++){
         }       printf("%lf ",ps[ii][jj]);
             }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      printf("\n ");
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
         savm=oldm;      printf("\n ");printf("%lf ",cov[2]);*/
         oldm=newm;  /*
            for(i=1; i<= npar; i++) printf("%f ",x[i]);
            goto end;*/
       } /* end mult */      return ps;
        }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /**************** Product of 2 matrices ******************/
       ipmx +=1;  
       sw += weight[i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  {
     } /* end of wave */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   } /* end of individual */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];       before: only the contents of out is modified. The function returns
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       a pointer to pointers identical to out */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    long i, j, k;
   return -l;    for(i=nrl; i<= nrh; i++)
 }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
 /*********** Maximum Likelihood Estimation ***************/  
     return out;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  }
 {  
   int i,j, iter;  
   double **xi,*delti;  /************* Higher Matrix Product ***************/
   double fret;  
   xi=matrix(1,npar,1,npar);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++)    /* Computes the transition matrix starting at age 'age' over 
       xi[i][j]=(i==j ? 1.0 : 0.0);       'nhstepm*hstepm*stepm' months (i.e. until
   printf("Powell\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   powell(p,xi,npar,ftol,&iter,&fret,func);       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       (typically every 2 years instead of every month which is too big 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       for the memory).
        Model is determined by parameters x and covariates have to be 
 }       included manually here. 
   
 /**** Computes Hessian and covariance matrix ***/       */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    int i, j, d, h, k;
   double  **a,**y,*x,pd;    double **out, cov[NCOVMAX];
   double **hess;    double **newm;
   int i, j,jk;  
   int *indx;    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   double hessii(double p[], double delta, int theta, double delti[]);      for (j=1;j<=nlstate+ndeath;j++){
   double hessij(double p[], double delti[], int i, int j);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   void ludcmp(double **a, int npar, int *indx, double *d) ;      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   hess=matrix(1,npar,1,npar);    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   printf("\nCalculation of the hessian matrix. Wait...\n");        newm=savm;
   for (i=1;i<=npar;i++){        /* Covariates have to be included here again */
     printf("%d",i);fflush(stdout);        cov[1]=1.;
     hess[i][i]=hessii(p,ftolhess,i,delti);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     /*printf(" %f ",p[i]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     /*printf(" %lf ",hess[i][i]);*/        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=npar;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         hess[i][j]=hessij(p,delti,i,j);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         hess[j][i]=hess[i][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         /*printf(" %lf ",hess[i][j]);*/                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       }        savm=oldm;
     }        oldm=newm;
   }      }
   printf("\n");      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          po[i][j][h]=newm[i][j];
            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   a=matrix(1,npar,1,npar);           */
   y=matrix(1,npar,1,npar);        }
   x=vector(1,npar);    } /* end h */
   indx=ivector(1,npar);    return po;
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  
   /*************** log-likelihood *************/
   for (j=1;j<=npar;j++) {  double func( double *x)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    int i, ii, j, k, mi, d, kk;
     lubksb(a,npar,indx,x);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for (i=1;i<=npar;i++){    double **out;
       matcov[i][j]=x[i];    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
   }    int s1, s2;
     double bbh, survp;
   printf("\n#Hessian matrix#\n");    long ipmx;
   for (i=1;i<=npar;i++) {    /*extern weight */
     for (j=1;j<=npar;j++) {    /* We are differentiating ll according to initial status */
       printf("%.3e ",hess[i][j]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
     printf("\n");      printf(" %d\n",s[4][i]);
   }    */
     cov[1]=1.;
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*  printf("\n#Hessian matrix recomputed#\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   for (j=1;j<=npar;j++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<=npar;i++) x[i]=0;            for (j=1;j<=nlstate+ndeath;j++){
     x[j]=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     lubksb(a,npar,indx,x);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++){            }
       y[i][j]=x[i];          for(d=0; d<dh[mi][i]; d++){
       printf("%.3e ",y[i][j]);            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("\n");            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   */            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(a,1,npar,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(y,1,npar,1,npar);            savm=oldm;
   free_vector(x,1,npar);            oldm=newm;
   free_ivector(indx,1,npar);          } /* end mult */
   free_matrix(hess,1,npar,1,npar);        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
 }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
 /*************** hessian matrix ****************/           * the nearest (and in case of equal distance, to the lowest) interval but now
 double hessii( double x[], double delta, int theta, double delti[])           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   int i;           * probability in order to take into account the bias as a fraction of the way
   int l=1, lmax=20;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double k1,k2;           * -stepm/2 to stepm/2 .
   double p2[NPARMAX+1];           * For stepm=1 the results are the same as for previous versions of Imach.
   double res;           * For stepm > 1 the results are less biased than in previous versions. 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           */
   double fx;          s1=s[mw[mi][i]][i];
   int k=0,kmax=10;          s2=s[mw[mi+1][i]][i];
   double l1;          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
   fx=func(x);           * is higher than the multiple of stepm and negative otherwise.
   for (i=1;i<=npar;i++) p2[i]=x[i];           */
   for(l=0 ; l <=lmax; l++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     l1=pow(10,l);          if( s2 > nlstate){ 
     delts=delt;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     for(k=1 ; k <kmax; k=k+1){               to the likelihood is the probability to die between last step unit time and current 
       delt = delta*(l1*k);               step unit time, which is also the differences between probability to die before dh 
       p2[theta]=x[theta] +delt;               and probability to die before dh-stepm . 
       k1=func(p2)-fx;               In version up to 0.92 likelihood was computed
       p2[theta]=x[theta]-delt;          as if date of death was unknown. Death was treated as any other
       k2=func(p2)-fx;          health state: the date of the interview describes the actual state
       /*res= (k1-2.0*fx+k2)/delt/delt; */          and not the date of a change in health state. The former idea was
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          to consider that at each interview the state was recorded
                (healthy, disable or death) and IMaCh was corrected; but when we
 #ifdef DEBUG          introduced the exact date of death then we should have modified
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          the contribution of an exact death to the likelihood. This new
 #endif          contribution is smaller and very dependent of the step unit
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          stepm. It is no more the probability to die between last interview
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          and month of death but the probability to survive from last
         k=kmax;          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          Jackson for correcting this bug.  Former versions increased
         k=kmax; l=lmax*10.;          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          lower mortality.
         delts=delt;            */
       }            lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   delti[theta]=delts;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   return res;          } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 double hessij( double x[], double delti[], int thetai,int thetaj)          ipmx +=1;
 {          sw += weight[i];
   int i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int l=1, l1, lmax=20;        } /* end of wave */
   double k1,k2,k3,k4,res,fx;      } /* end of individual */
   double p2[NPARMAX+1];    }  else if(mle==2){
   int k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fx=func(x);        for(mi=1; mi<= wav[i]-1; mi++){
   for (k=1; k<=2; k++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<=npar;i++) p2[i]=x[i];            for (j=1;j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]+delti[thetai]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     k1=func(p2)-fx;            }
            for(d=0; d<=dh[mi][i]; d++){
     p2[thetai]=x[thetai]+delti[thetai]/k;            newm=savm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     k2=func(p2)-fx;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p2[thetai]=x[thetai]-delti[thetai]/k;            }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     k3=func(p2)-fx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
     p2[thetai]=x[thetai]-delti[thetai]/k;            oldm=newm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          } /* end mult */
     k4=func(p2)-fx;        
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 #ifdef DEBUG          /* But now since version 0.9 we anticipate for bias and large stepm.
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 #endif           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   return res;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 /************** Inverse of matrix **************/           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 void ludcmp(double **a, int n, int *indx, double *d)           * -stepm/2 to stepm/2 .
 {           * For stepm=1 the results are the same as for previous versions of Imach.
   int i,imax,j,k;           * For stepm > 1 the results are less biased than in previous versions. 
   double big,dum,sum,temp;           */
   double *vv;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   vv=vector(1,n);          bbh=(double)bh[mi][i]/(double)stepm; 
   *d=1.0;          /* bias is positive if real duration
   for (i=1;i<=n;i++) {           * is higher than the multiple of stepm and negative otherwise.
     big=0.0;           */
     for (j=1;j<=n;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       if ((temp=fabs(a[i][j])) > big) big=temp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     vv[i]=1.0/big;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
   for (j=1;j<=n;j++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for (i=1;i<j;i++) {          ipmx +=1;
       sum=a[i][j];          sw += weight[i];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       a[i][j]=sum;        } /* end of wave */
     }      } /* end of individual */
     big=0.0;    }  else if(mle==3){  /* exponential inter-extrapolation */
     for (i=j;i<=n;i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       sum=a[i][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (k=1;k<j;k++)        for(mi=1; mi<= wav[i]-1; mi++){
         sum -= a[i][k]*a[k][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
       a[i][j]=sum;            for (j=1;j<=nlstate+ndeath;j++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         big=dum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         imax=i;            }
       }          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     if (j != imax) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (k=1;k<=n;k++) {            for (kk=1; kk<=cptcovage;kk++) {
         dum=a[imax][k];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         a[imax][k]=a[j][k];            }
         a[j][k]=dum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       *d = -(*d);            savm=oldm;
       vv[imax]=vv[j];            oldm=newm;
     }          } /* end mult */
     indx[j]=imax;        
     if (a[j][j] == 0.0) a[j][j]=TINY;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if (j != n) {          /* But now since version 0.9 we anticipate for bias and large stepm.
       dum=1.0/(a[j][j]);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   free_vector(vv,1,n);  /* Doesn't work */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 ;           * probability in order to take into account the bias as a fraction of the way
 }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 void lubksb(double **a, int n, int *indx, double b[])           * For stepm=1 the results are the same as for previous versions of Imach.
 {           * For stepm > 1 the results are less biased than in previous versions. 
   int i,ii=0,ip,j;           */
   double sum;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   for (i=1;i<=n;i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
     ip=indx[i];          /* bias is positive if real duration
     sum=b[ip];           * is higher than the multiple of stepm and negative otherwise.
     b[ip]=b[i];           */
     if (ii)          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     else if (sum) ii=i;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     b[i]=sum;          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (i=n;i>=1;i--) {          ipmx +=1;
     sum=b[i];          sw += weight[i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     b[i]=sum/a[i][i];        } /* end of wave */
   }      } /* end of individual */
 }    }else{  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /************ Frequencies ********************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for(mi=1; mi<= wav[i]-1; mi++){
 {  /* Some frequencies */          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *pp;            }
   double pos, k2, dateintsum=0,k2cpt=0;          for(d=0; d<dh[mi][i]; d++){
   FILE *ficresp;            newm=savm;
   char fileresp[FILENAMELENGTH];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   pp=vector(1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   strcpy(fileresp,"p");          
   strcat(fileresp,fileres);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if((ficresp=fopen(fileresp,"w"))==NULL) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("Problem with prevalence resultfile: %s\n", fileresp);            savm=oldm;
     exit(0);            oldm=newm;
   }          } /* end mult */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        
   j1=0;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            ipmx +=1;
   j=cptcoveff;          sw += weight[i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   for(k1=1; k1<=j;k1++){      } /* end of individual */
     for(i1=1; i1<=ncodemax[k1];i1++){    } /* End of if */
       j1++;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         scanf("%d", i);*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for (i=-1; i<=nlstate+ndeath; i++)      return -l;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    }
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  
        /*********** Maximum Likelihood Estimation ***************/
       dateintsum=0;  
       k2cpt=0;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for (i=1; i<=imx; i++) {  {
         bool=1;    int i,j, iter;
         if  (cptcovn>0) {    double **xi;
           for (z1=1; z1<=cptcoveff; z1++)    double fret;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    char filerespow[FILENAMELENGTH];
               bool=0;    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
         if (bool==1) {      for (j=1;j<=npar;j++)
           for(m=firstpass; m<=lastpass; m++){        xi[i][j]=(i==j ? 1.0 : 0.0);
             k2=anint[m][i]+(mint[m][i]/12.);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    strcpy(filerespow,"pow"); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    strcat(filerespow,fileres);
               if(agev[m][i]==1) agev[m][i]=agemax+2;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
               if (m<lastpass) {      printf("Problem with resultfile: %s\n", filerespow);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    }
               }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
                  for (i=1;i<=nlstate;i++)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      for(j=1;j<=nlstate+ndeath;j++)
                 dateintsum=dateintsum+k2;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                 k2cpt++;    fprintf(ficrespow,"\n");
               }    powell(p,xi,npar,ftol,&iter,&fret,func);
             }  
           }    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
            fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
   }
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");  /**** Computes Hessian and covariance matrix ***/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         fprintf(ficresp, "**********\n#");  {
       }    double  **a,**y,*x,pd;
       for(i=1; i<=nlstate;i++)    double **hess;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    int i, j,jk;
       fprintf(ficresp, "\n");    int *indx;
        
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double hessii(double p[], double delta, int theta, double delti[]);
         if(i==(int)agemax+3)    double hessij(double p[], double delti[], int i, int j);
           printf("Total");    void lubksb(double **a, int npar, int *indx, double b[]) ;
         else    void ludcmp(double **a, int npar, int *indx, double *d) ;
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){    hess=matrix(1,npar,1,npar);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++){
           for(m=-1, pos=0; m <=0 ; m++)      printf("%d",i);fflush(stdout);
             pos += freq[jk][m][i];      fprintf(ficlog,"%d",i);fflush(ficlog);
           if(pp[jk]>=1.e-10)      hess[i][i]=hessii(p,ftolhess,i,delti);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      /*printf(" %f ",p[i]);*/
           else      /*printf(" %lf ",hess[i][i]);*/
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }
         }    
     for (i=1;i<=npar;i++) {
         for(jk=1; jk <=nlstate ; jk++){      for (j=1;j<=npar;j++)  {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        if (j>i) { 
             pp[jk] += freq[jk][m][i];          printf(".%d%d",i,j);fflush(stdout);
         }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j);
         for(jk=1,pos=0; jk <=nlstate ; jk++)          hess[j][i]=hess[i][j];    
           pos += pp[jk];          /*printf(" %lf ",hess[i][j]);*/
         for(jk=1; jk <=nlstate ; jk++){        }
           if(pos>=1.e-5)      }
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    }
           else    printf("\n");
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    fprintf(ficlog,"\n");
           if( i <= (int) agemax){  
             if(pos>=1.e-5){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
               probs[i][jk][j1]= pp[jk]/pos;    
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    a=matrix(1,npar,1,npar);
             }    y=matrix(1,npar,1,npar);
             else    x=vector(1,npar);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    indx=ivector(1,npar);
           }    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
            ludcmp(a,npar,indx,&pd);
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)    for (j=1;j<=npar;j++) {
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      for (i=1;i<=npar;i++) x[i]=0;
         if(i <= (int) agemax)      x[j]=1;
           fprintf(ficresp,"\n");      lubksb(a,npar,indx,x);
         printf("\n");      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
     }      }
   }    }
   dateintmean=dateintsum/k2cpt;  
      printf("\n#Hessian matrix#\n");
   fclose(ficresp);    fprintf(ficlog,"\n#Hessian matrix#\n");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for (i=1;i<=npar;i++) { 
   free_vector(pp,1,nlstate);      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
   /* End of Freq */        fprintf(ficlog,"%.3e ",hess[i][j]);
 }      }
       printf("\n");
 /************ Prevalence ********************/      fprintf(ficlog,"\n");
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    }
 {  /* Some frequencies */  
      /* Recompute Inverse */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for (i=1;i<=npar;i++)
   double ***freq; /* Frequencies */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double *pp;    ludcmp(a,npar,indx,&pd);
   double pos, k2;  
     /*  printf("\n#Hessian matrix recomputed#\n");
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      x[j]=1;
   j1=0;      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
   j=cptcoveff;        y[i][j]=x[i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        printf("%.3e ",y[i][j]);
          fprintf(ficlog,"%.3e ",y[i][j]);
  for(k1=1; k1<=j;k1++){      }
     for(i1=1; i1<=ncodemax[k1];i1++){      printf("\n");
       j1++;      fprintf(ficlog,"\n");
      }
       for (i=-1; i<=nlstate+ndeath; i++)      */
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    free_matrix(a,1,npar,1,npar);
             freq[i][jk][m]=0;    free_matrix(y,1,npar,1,npar);
          free_vector(x,1,npar);
       for (i=1; i<=imx; i++) {    free_ivector(indx,1,npar);
         bool=1;    free_matrix(hess,1,npar,1,npar);
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  }
               bool=0;  
         }  /*************** hessian matrix ****************/
         if (bool==1) {  double hessii( double x[], double delta, int theta, double delti[])
           for(m=firstpass; m<=lastpass; m++){  {
             k2=anint[m][i]+(mint[m][i]/12.);    int i;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    int l=1, lmax=20;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double k1,k2;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double p2[NPARMAX+1];
               if (m<lastpass)    double res;
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
               else    double fx;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int k=0,kmax=10;
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    double l1;
             }  
           }    fx=func(x);
         }    for (i=1;i<=npar;i++) p2[i]=x[i];
       }    for(l=0 ; l <=lmax; l++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){      l1=pow(10,l);
           for(jk=1; jk <=nlstate ; jk++){      delts=delt;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for(k=1 ; k <kmax; k=k+1){
               pp[jk] += freq[jk][m][i];        delt = delta*(l1*k);
           }        p2[theta]=x[theta] +delt;
           for(jk=1; jk <=nlstate ; jk++){        k1=func(p2)-fx;
             for(m=-1, pos=0; m <=0 ; m++)        p2[theta]=x[theta]-delt;
             pos += freq[jk][m][i];        k2=func(p2)-fx;
         }        /*res= (k1-2.0*fx+k2)/delt/delt; */
                res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          for(jk=1; jk <=nlstate ; jk++){        
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  #ifdef DEBUG
              pp[jk] += freq[jk][m][i];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            #endif
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
          for(jk=1; jk <=nlstate ; jk++){                    k=kmax;
            if( i <= (int) agemax){        }
              if(pos>=1.e-5){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                probs[i][jk][j1]= pp[jk]/pos;          k=kmax; l=lmax*10.;
              }        }
            }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
          }          delts=delt;
                  }
         }      }
     }    }
   }    delti[theta]=delts;
     return res; 
      
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  }
   free_vector(pp,1,nlstate);  
    double hessij( double x[], double delti[], int thetai,int thetaj)
 }  /* End of Freq */  {
     int i;
 /************* Waves Concatenation ***************/    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double p2[NPARMAX+1];
 {    int k;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).    fx=func(x);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    for (k=1; k<=2; k++) {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      for (i=1;i<=npar;i++) p2[i]=x[i];
      and mw[mi+1][i]. dh depends on stepm.      p2[thetai]=x[thetai]+delti[thetai]/k;
      */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   int i, mi, m;    
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      p2[thetai]=x[thetai]+delti[thetai]/k;
      double sum=0., jmean=0.;*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
   int j, k=0,jk, ju, jl;    
   double sum=0.;      p2[thetai]=x[thetai]-delti[thetai]/k;
   jmin=1e+5;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   jmax=-1;      k3=func(p2)-fx;
   jmean=0.;    
   for(i=1; i<=imx; i++){      p2[thetai]=x[thetai]-delti[thetai]/k;
     mi=0;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     m=firstpass;      k4=func(p2)-fx;
     while(s[m][i] <= nlstate){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       if(s[m][i]>=1)  #ifdef DEBUG
         mw[++mi][i]=m;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       if(m >=lastpass)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         break;  #endif
       else    }
         m++;    return res;
     }/* end while */  }
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  /************** Inverse of matrix **************/
       /* if(mi==0)  never been interviewed correctly before death */  void ludcmp(double **a, int n, int *indx, double *d) 
          /* Only death is a correct wave */  { 
       mw[mi][i]=m;    int i,imax,j,k; 
     }    double big,dum,sum,temp; 
     double *vv; 
     wav[i]=mi;   
     if(mi==0)    vv=vector(1,n); 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    *d=1.0; 
   }    for (i=1;i<=n;i++) { 
       big=0.0; 
   for(i=1; i<=imx; i++){      for (j=1;j<=n;j++) 
     for(mi=1; mi<wav[i];mi++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (stepm <=0)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         dh[mi][i]=1;      vv[i]=1.0/big; 
       else{    } 
         if (s[mw[mi+1][i]][i] > nlstate) {    for (j=1;j<=n;j++) { 
           if (agedc[i] < 2*AGESUP) {      for (i=1;i<j;i++) { 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        sum=a[i][j]; 
           if(j==0) j=1;  /* Survives at least one month after exam */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           k=k+1;        a[i][j]=sum; 
           if (j >= jmax) jmax=j;      } 
           if (j <= jmin) jmin=j;      big=0.0; 
           sum=sum+j;      for (i=j;i<=n;i++) { 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        sum=a[i][j]; 
           }        for (k=1;k<j;k++) 
         }          sum -= a[i][k]*a[k][j]; 
         else{        a[i][j]=sum; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           k=k+1;          big=dum; 
           if (j >= jmax) jmax=j;          imax=i; 
           else if (j <= jmin)jmin=j;        } 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      } 
           sum=sum+j;      if (j != imax) { 
         }        for (k=1;k<=n;k++) { 
         jk= j/stepm;          dum=a[imax][k]; 
         jl= j -jk*stepm;          a[imax][k]=a[j][k]; 
         ju= j -(jk+1)*stepm;          a[j][k]=dum; 
         if(jl <= -ju)        } 
           dh[mi][i]=jk;        *d = -(*d); 
         else        vv[imax]=vv[j]; 
           dh[mi][i]=jk+1;      } 
         if(dh[mi][i]==0)      indx[j]=imax; 
           dh[mi][i]=1; /* At least one step */      if (a[j][j] == 0.0) a[j][j]=TINY; 
       }      if (j != n) { 
     }        dum=1.0/(a[j][j]); 
   }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   jmean=sum/k;      } 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    } 
  }    free_vector(vv,1,n);  /* Doesn't work */
 /*********** Tricode ****************************/  ;
 void tricode(int *Tvar, int **nbcode, int imx)  } 
 {  
   int Ndum[20],ij=1, k, j, i;  void lubksb(double **a, int n, int *indx, double b[]) 
   int cptcode=0;  { 
   cptcoveff=0;    int i,ii=0,ip,j; 
      double sum; 
   for (k=0; k<19; k++) Ndum[k]=0;   
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      sum=b[ip]; 
     for (i=1; i<=imx; i++) {      b[ip]=b[i]; 
       ij=(int)(covar[Tvar[j]][i]);      if (ii) 
       Ndum[ij]++;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      else if (sum) ii=i; 
       if (ij > cptcode) cptcode=ij;      b[i]=sum; 
     }    } 
     for (i=n;i>=1;i--) { 
     for (i=0; i<=cptcode; i++) {      sum=b[i]; 
       if(Ndum[i]!=0) ncodemax[j]++;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     }      b[i]=sum/a[i][i]; 
     ij=1;    } 
   } 
   
     for (i=1; i<=ncodemax[j]; i++) {  /************ Frequencies ********************/
       for (k=0; k<=19; k++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
         if (Ndum[k] != 0) {  {  /* Some frequencies */
           nbcode[Tvar[j]][ij]=k;    
              int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           ij++;    int first;
         }    double ***freq; /* Frequencies */
         if (ij > ncodemax[j]) break;    double *pp, **prop;
       }      double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }    FILE *ficresp;
   }      char fileresp[FILENAMELENGTH];
     
  for (k=0; k<19; k++) Ndum[k]=0;    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
  for (i=1; i<=ncovmodel-2; i++) {    strcpy(fileresp,"p");
       ij=Tvar[i];    strcat(fileresp,fileres);
       Ndum[ij]++;    if((ficresp=fopen(fileresp,"w"))==NULL) {
     }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
  ij=1;      exit(0);
  for (i=1; i<=10; i++) {    }
    if((Ndum[i]!=0) && (i<=ncovcol)){    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
      Tvaraff[ij]=i;    j1=0;
      ij++;    
    }    j=cptcoveff;
  }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
     cptcoveff=ij-1;    first=1;
 }  
     for(k1=1; k1<=j;k1++){
 /*********** Health Expectancies ****************/      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
 {        for (i=-1; i<=nlstate+ndeath; i++)  
   /* Health expectancies */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            for(m=iagemin; m <= iagemax+3; m++)
   double age, agelim, hf;              freq[i][jk][m]=0;
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;      for (i=1; i<=nlstate; i++)  
   double *xp;        for(m=iagemin; m <= iagemax+3; m++)
   double **gp, **gm;          prop[i][m]=0;
   double ***gradg, ***trgradg;        
   int theta;        dateintsum=0;
         k2cpt=0;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        for (i=1; i<=imx; i++) {
   xp=vector(1,npar);          bool=1;
   dnewm=matrix(1,nlstate*2,1,npar);          if  (cptcovn>0) {
   doldm=matrix(1,nlstate*2,1,nlstate*2);            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fprintf(ficreseij,"# Health expectancies\n");                bool=0;
   fprintf(ficreseij,"# Age");          }
   for(i=1; i<=nlstate;i++)          if (bool==1){
     for(j=1; j<=nlstate;j++)            for(m=firstpass; m<=lastpass; m++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficreseij,"\n");              if ((k2>=dateprev1) && (k2<=dateprev2)) {
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if(estepm < stepm){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     printf ("Problem %d lower than %d\n",estepm, stepm);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
   else  hstepm=estepm;                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /* We compute the life expectancy from trapezoids spaced every estepm months                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
    * This is mainly to measure the difference between two models: for example                }
    * if stepm=24 months pijx are given only every 2 years and by summing them                
    * we are calculating an estimate of the Life Expectancy assuming a linear                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
    * progression inbetween and thus overestimating or underestimating according                  dateintsum=dateintsum+k2;
    * to the curvature of the survival function. If, for the same date, we                  k2cpt++;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                }
    * to compare the new estimate of Life expectancy with the same linear              }
    * hypothesis. A more precise result, taking into account a more precise            }
    * curvature will be obtained if estepm is as small as stepm. */          }
         }
   /* For example we decided to compute the life expectancy with the smallest unit */         
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.        if  (cptcovn>0) {
      Look at hpijx to understand the reason of that which relies in memory size          fprintf(ficresp, "\n#********** Variable "); 
      and note for a fixed period like estepm months */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          fprintf(ficresp, "**********\n#");
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if        for(i=1; i<=nlstate;i++) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      results. So we changed our mind and took the option of the best precision.        fprintf(ficresp, "\n");
   */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
   agelim=AGESUP;            fprintf(ficlog,"Total");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }else{
     /* nhstepm age range expressed in number of stepm */            if(first==1){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);              first=0;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */              printf("See log file for details...\n");
     /* if (stepm >= YEARM) hstepm=1;*/            }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            fprintf(ficlog,"Age %d", i);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          for(jk=1; jk <=nlstate ; jk++){
     gp=matrix(0,nhstepm,1,nlstate*2);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     gm=matrix(0,nhstepm,1,nlstate*2);              pp[jk] += freq[jk][m][i]; 
           }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          for(jk=1; jk <=nlstate ; jk++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            for(m=-1, pos=0; m <=0 ; m++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
               if(first==1){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     /* Computing Variances of health expectancies */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
      for(theta=1; theta <=npar; theta++){              if(first==1)
       for(i=1; i<=npar; i++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
    
       cptj=0;          for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         for(i=1; i<=nlstate; i++){              pp[jk] += freq[jk][m][i];
           cptj=cptj+1;          }       
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            pos += pp[jk];
           }            posprop += prop[jk][i];
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
                  if(pos>=1.e-5){
                    if(first==1)
       for(i=1; i<=npar; i++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }else{
                    if(first==1)
       cptj=0;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j<= nlstate; j++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(i=1;i<=nlstate;i++){            }
           cptj=cptj+1;            if( i <= iagemax){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){              if(pos>=1.e-5){
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           }                probs[i][jk][j1]= pp[jk]/pos;
         }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
                    else
                    fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
       for(j=1; j<= nlstate*2; j++)          }
         for(h=0; h<=nhstepm-1; h++){          
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for(jk=-1; jk <=nlstate+ndeath; jk++)
         }            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
      }              if(first==1)
                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 /* End theta */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          if(i <= iagemax)
             fprintf(ficresp,"\n");
      for(h=0; h<=nhstepm-1; h++)          if(first==1)
       for(j=1; j<=nlstate*2;j++)            printf("Others in log...\n");
         for(theta=1; theta <=npar; theta++)          fprintf(ficlog,"\n");
         trgradg[h][j][theta]=gradg[h][theta][j];        }
       }
     }
      for(i=1;i<=nlstate*2;i++)    dateintmean=dateintsum/k2cpt; 
       for(j=1;j<=nlstate*2;j++)   
         varhe[i][j][(int)age] =0.;    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     for(h=0;h<=nhstepm-1;h++){    free_vector(pp,1,nlstate);
       for(k=0;k<=nhstepm-1;k++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    /* End of Freq */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  }
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)  /************ Prevalence ********************/
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       }  {  
     }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
             We still use firstpass and lastpass as another selection.
     /* Computing expectancies */    */
     for(i=1; i<=nlstate;i++)   
       for(j=1; j<=nlstate;j++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double ***freq; /* Frequencies */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double *pp, **prop;
              double pos,posprop; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double  y2; /* in fractional years */
     int iagemin, iagemax;
         }  
     iagemin= (int) agemin;
     fprintf(ficreseij,"%3.0f",age );    iagemax= (int) agemax;
     cptj=0;    /*pp=vector(1,nlstate);*/
     for(i=1; i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       for(j=1; j<=nlstate;j++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         cptj++;    j1=0;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    
       }    j=cptcoveff;
     fprintf(ficreseij,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
     free_matrix(gm,0,nhstepm,1,nlstate*2);    for(k1=1; k1<=j;k1++){
     free_matrix(gp,0,nhstepm,1,nlstate*2);      for(i1=1; i1<=ncodemax[k1];i1++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        j1++;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
   free_vector(xp,1,npar);            prop[i][m]=0.0;
   free_matrix(dnewm,1,nlstate*2,1,npar);       
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        for (i=1; i<=imx; i++) { /* Each individual */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          bool=1;
 }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
 /************ Variance ******************/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)                bool=0;
 {          } 
   /* Variance of health expectancies */          if (bool==1) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   double **newm;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   double **dnewm,**doldm;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   int i, j, nhstepm, hstepm, h, nstepm ;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int k, cptcode;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double *xp;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   double **gp, **gm;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   double ***gradg, ***trgradg;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   double ***p3mat;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double age,agelim, hf;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   int theta;                } 
               }
    fprintf(ficresvij,"# Covariances of life expectancies\n");            } /* end selection of waves */
   fprintf(ficresvij,"# Age");          }
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=nlstate;j++)        for(i=iagemin; i <= iagemax+3; i++){  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          
   fprintf(ficresvij,"\n");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   xp=vector(1,npar);          } 
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){     
              if( i <=  iagemax){ 
   if(estepm < stepm){              if(posprop>=1.e-5){ 
     printf ("Problem %d lower than %d\n",estepm, stepm);                probs[i][jk][j1]= prop[jk][i]/posprop;
   }              } 
   else  hstepm=estepm;              } 
   /* For example we decided to compute the life expectancy with the smallest unit */          }/* end jk */ 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        }/* end i */ 
      nhstepm is the number of hstepm from age to agelim      } /* end i1 */
      nstepm is the number of stepm from age to agelin.    } /* end k1 */
      Look at hpijx to understand the reason of that which relies in memory size    
      and note for a fixed period like k years */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /*free_vector(pp,1,nlstate);*/
      survival function given by stepm (the optimization length). Unfortunately it    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      means that if the survival funtion is printed only each two years of age and if  }  /* End of prevalence */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  /************* Waves Concatenation ***************/
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   agelim = AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       Death is a valid wave (if date is known).
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);       and mw[mi+1][i]. dh depends on stepm.
     gp=matrix(0,nhstepm,1,nlstate);       */
     gm=matrix(0,nhstepm,1,nlstate);  
     int i, mi, m;
     for(theta=1; theta <=npar; theta++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for(i=1; i<=npar; i++){ /* Computes gradient */       double sum=0., jmean=0.;*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int first;
       }    int j, k=0,jk, ju, jl;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double sum=0.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    first=0;
     jmin=1e+5;
       if (popbased==1) {    jmax=-1;
         for(i=1; i<=nlstate;i++)    jmean=0.;
           prlim[i][i]=probs[(int)age][i][ij];    for(i=1; i<=imx; i++){
       }      mi=0;
        m=firstpass;
       for(j=1; j<= nlstate; j++){      while(s[m][i] <= nlstate){
         for(h=0; h<=nhstepm; h++){        if(s[m][i]>=1)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          mw[++mi][i]=m;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        if(m >=lastpass)
         }          break;
       }        else
              m++;
       for(i=1; i<=npar; i++) /* Computes gradient */      }/* end while */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      if (s[m][i] > nlstate){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          mi++;     /* Death is another wave */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
       if (popbased==1) {        mw[mi][i]=m;
         for(i=1; i<=nlstate;i++)      }
           prlim[i][i]=probs[(int)age][i][ij];  
       }      wav[i]=mi;
       if(mi==0){
       for(j=1; j<= nlstate; j++){        if(first==0){
         for(h=0; h<=nhstepm; h++){          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          first=1;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        }
         }        if(first==1){
       }          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
         }
       for(j=1; j<= nlstate; j++)      } /* end mi==0 */
         for(h=0; h<=nhstepm; h++){    } /* End individuals */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    for(i=1; i<=imx; i++){
     } /* End theta */      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          dh[mi][i]=1;
         else{
     for(h=0; h<=nhstepm; h++)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(j=1; j<=nlstate;j++)            if (agedc[i] < 2*AGESUP) {
         for(theta=1; theta <=npar; theta++)            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           trgradg[h][j][theta]=gradg[h][theta][j];            if(j==0) j=1;  /* Survives at least one month after exam */
             k=k+1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            if (j >= jmax) jmax=j;
     for(i=1;i<=nlstate;i++)            if (j <= jmin) jmin=j;
       for(j=1;j<=nlstate;j++)            sum=sum+j;
         vareij[i][j][(int)age] =0.;            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for(h=0;h<=nhstepm;h++){            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(k=0;k<=nhstepm;k++){            }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          else{
         for(i=1;i<=nlstate;i++)            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           for(j=1;j<=nlstate;j++)            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            k=k+1;
       }            if (j >= jmax) jmax=j;
     }            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fprintf(ficresvij,"%.0f ",age );            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(i=1; i<=nlstate;i++)            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(j=1; j<=nlstate;j++){            sum=sum+j;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }
       }          jk= j/stepm;
     fprintf(ficresvij,"\n");          jl= j -jk*stepm;
     free_matrix(gp,0,nhstepm,1,nlstate);          ju= j -(jk+1)*stepm;
     free_matrix(gm,0,nhstepm,1,nlstate);          if(mle <=1){ 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            if(jl==0){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              dh[mi][i]=jk;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              bh[mi][i]=0;
   } /* End age */            }else{ /* We want a negative bias in order to only have interpolation ie
                      * at the price of an extra matrix product in likelihood */
   free_vector(xp,1,npar);              dh[mi][i]=jk+1;
   free_matrix(doldm,1,nlstate,1,npar);              bh[mi][i]=ju;
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
           }else{
 }            if(jl <= -ju){
               dh[mi][i]=jk;
 /************ Variance of prevlim ******************/              bh[mi][i]=jl;       /* bias is positive if real duration
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                                   * is higher than the multiple of stepm and negative otherwise.
 {                                   */
   /* Variance of prevalence limit */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            else{
   double **newm;              dh[mi][i]=jk+1;
   double **dnewm,**doldm;              bh[mi][i]=ju;
   int i, j, nhstepm, hstepm;            }
   int k, cptcode;            if(dh[mi][i]==0){
   double *xp;              dh[mi][i]=1; /* At least one step */
   double *gp, *gm;              bh[mi][i]=ju; /* At least one step */
   double **gradg, **trgradg;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   double age,agelim;            }
   int theta;          }
            } /* end if mle */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      } /* end wave */
   fprintf(ficresvpl,"# Age");    }
   for(i=1; i<=nlstate;i++)    jmean=sum/k;
       fprintf(ficresvpl," %1d-%1d",i,i);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fprintf(ficresvpl,"\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  /*********** Tricode ****************************/
   doldm=matrix(1,nlstate,1,nlstate);  void tricode(int *Tvar, int **nbcode, int imx)
    {
   hstepm=1*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    int Ndum[20],ij=1, k, j, i, maxncov=19;
   agelim = AGESUP;    int cptcode=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    cptcoveff=0; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
     if (stepm >= YEARM) hstepm=1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (k=1; k<=7; k++) ncodemax[k]=0;
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     gm=vector(1,nlstate);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
     for(theta=1; theta <=npar; theta++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for(i=1; i<=npar; i++){ /* Computes gradient */        Ndum[ij]++; /*store the modality */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                                         Tvar[j]. If V=sex and male is 0 and 
       for(i=1;i<=nlstate;i++)                                         female is 1, then  cptcode=1.*/
         gp[i] = prlim[i][i];      }
      
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=0; i<=cptcode; i++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
       for(i=1;i<=nlstate;i++)        for (k=0; k<= maxncov; k++) {
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          if (Ndum[k] != 0) {
     } /* End theta */            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     trgradg =matrix(1,nlstate,1,npar);            
             ij++;
     for(j=1; j<=nlstate;j++)          }
       for(theta=1; theta <=npar; theta++)          if (ij > ncodemax[j]) break; 
         trgradg[j][theta]=gradg[theta][j];        }  
       } 
     for(i=1;i<=nlstate;i++)    }  
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)   for (i=1; i<=ncovmodel-2; i++) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
     fprintf(ficresvpl,"%.0f ",age );     Ndum[ij]++;
     for(i=1; i<=nlstate;i++)   }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");   ij=1;
     free_vector(gp,1,nlstate);   for (i=1; i<= maxncov; i++) {
     free_vector(gm,1,nlstate);     if((Ndum[i]!=0) && (i<=ncovcol)){
     free_matrix(gradg,1,npar,1,nlstate);       Tvaraff[ij]=i; /*For printing */
     free_matrix(trgradg,1,nlstate,1,npar);       ij++;
   } /* End age */     }
    }
   free_vector(xp,1,npar);   
   free_matrix(doldm,1,nlstate,1,npar);   cptcoveff=ij-1; /*Number of simple covariates*/
   free_matrix(dnewm,1,nlstate,1,nlstate);  }
   
 }  /*********** Health Expectancies ****************/
   
 /************ Variance of one-step probabilities  ******************/  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {  {
   int i, j, i1, k1, j1, z1;    /* Health expectancies */
   int k=0, cptcode;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   double **dnewm,**doldm;    double age, agelim, hf;
   double *xp;    double ***p3mat,***varhe;
   double *gp, *gm;    double **dnewm,**doldm;
   double **gradg, **trgradg;    double *xp;
   double age,agelim, cov[NCOVMAX];    double **gp, **gm;
   int theta;    double ***gradg, ***trgradg;
   char fileresprob[FILENAMELENGTH];    int theta;
   
   strcpy(fileresprob,"prob");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   strcat(fileresprob,fileres);    xp=vector(1,npar);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
     printf("Problem with resultfile: %s\n", fileresprob);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   }    
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    fprintf(ficreseij,"# Health expectancies\n");
      fprintf(ficreseij,"# Age");
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    for(i=1; i<=nlstate;i++)
   fprintf(ficresprob,"# Age");      for(j=1; j<=nlstate;j++)
   for(i=1; i<=nlstate;i++)        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     for(j=1; j<=(nlstate+ndeath);j++)    fprintf(ficreseij,"\n");
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficresprob,"\n");    }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   xp=vector(1,npar);     * This is mainly to measure the difference between two models: for example
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     * if stepm=24 months pijx are given only every 2 years and by summing them
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
   cov[1]=1;     * to the curvature of the survival function. If, for the same date, we 
   j=cptcoveff;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   if (cptcovn<1) {j=1;ncodemax[1]=1;}     * to compare the new estimate of Life expectancy with the same linear 
   j1=0;     * hypothesis. A more precise result, taking into account a more precise
   for(k1=1; k1<=1;k1++){     * curvature will be obtained if estepm is as small as stepm. */
     for(i1=1; i1<=ncodemax[k1];i1++){  
     j1++;    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     if  (cptcovn>0) {       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficresprob, "\n#********** Variable ");       nstepm is the number of stepm from age to agelin. 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficresprob, "**********\n#");       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           survival function given by stepm (the optimization length). Unfortunately it
       for (age=bage; age<=fage; age ++){       means that if the survival funtion is printed only each two years of age and if
         cov[2]=age;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         for (k=1; k<=cptcovn;k++) {       results. So we changed our mind and took the option of the best precision.
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    */
              hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    agelim=AGESUP;
         for (k=1; k<=cptcovprod;k++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /* nhstepm age range expressed in number of stepm */
              nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         gradg=matrix(1,npar,1,9);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         trgradg=matrix(1,9,1,npar);      /* if (stepm >= YEARM) hstepm=1;*/
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         for(theta=1; theta <=npar; theta++){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           for(i=1; i<=npar; i++)      gm=matrix(0,nhstepm,1,nlstate*nlstate);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  
                /* Computed by stepm unit matrices, product of hstepm matrices, stored
           pmij(pmmij,cov,ncovmodel,xp,nlstate);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           k=0;   
           for(i=1; i<= (nlstate+ndeath); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               k=k+1;  
               gp[k]=pmmij[i][j];      /* Computing Variances of health expectancies */
             }  
           }       for(theta=1; theta <=npar; theta++){
                  for(i=1; i<=npar; i++){ 
           for(i=1; i<=npar; i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    
           k=0;        cptj=0;
           for(i=1; i<=(nlstate+ndeath); i++){        for(j=1; j<= nlstate; j++){
             for(j=1; j<=(nlstate+ndeath);j++){          for(i=1; i<=nlstate; i++){
               k=k+1;            cptj=cptj+1;
               gm[k]=pmmij[i][j];            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
             }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           }            }
                }
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         
         }       
         for(i=1; i<=npar; i++) 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           for(theta=1; theta <=npar; theta++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             trgradg[j][theta]=gradg[theta][j];        
                cptj=0;
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        for(j=1; j<= nlstate; j++){
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          for(i=1;i<=nlstate;i++){
                    cptj=cptj+1;
         pmij(pmmij,cov,ncovmodel,x,nlstate);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
          
         k=0;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for(i=1; i<=(nlstate+ndeath); i++){            }
           for(j=1; j<=(nlstate+ndeath);j++){          }
             k=k+1;        }
             gm[k]=pmmij[i][j];        for(j=1; j<= nlstate*nlstate; j++)
           }          for(h=0; h<=nhstepm-1; h++){
         }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                }
      /*printf("\n%d ",(int)age);       } 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){     
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /* End theta */
      }*/  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficresprob,"\n%d ",(int)age);  
        for(h=0; h<=nhstepm-1; h++)
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        for(j=1; j<=nlstate*nlstate;j++)
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
       }       
     }  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));       for(i=1;i<=nlstate*nlstate;i++)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        for(j=1;j<=nlstate*nlstate;j++)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          varhe[i][j][(int)age] =0.;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }       printf("%d|",(int)age);fflush(stdout);
   free_vector(xp,1,npar);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fclose(ficresprob);       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
 }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 /******************* Printing html file ***********/          for(i=1;i<=nlstate*nlstate;i++)
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            for(j=1;j<=nlstate*nlstate;j++)
  int lastpass, int stepm, int weightopt, char model[],\              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      }
  char version[], int popforecast, int estepm ){      /* Computing expectancies */
   int jj1, k1, i1, cpt;      for(i=1; i<=nlstate;i++)
   FILE *fichtm;        for(j=1; j<=nlstate;j++)
   /*char optionfilehtm[FILENAMELENGTH];*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   strcpy(optionfilehtm,optionfile);            
   strcat(optionfilehtm,".htm");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);          }
   }  
       fprintf(ficreseij,"%3.0f",age );
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      cptj=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for(i=1; i<=nlstate;i++)
 \n        for(j=1; j<=nlstate;j++){
 Total number of observations=%d <br>\n          cptj++;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 <hr  size=\"2\" color=\"#EC5E5E\">        }
  <ul><li>Outputs files<br>\n      fprintf(ficreseij,"\n");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n     
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
  fprintf(fichtm,"\n    printf("\n");
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    fprintf(ficlog,"\n");
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    free_vector(xp,1,npar);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  if(popforecast==1) fprintf(fichtm,"\n  }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  /************ Variance ******************/
         <br>",fileres,fileres,fileres,fileres);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
  else  {
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    /* Variance of health expectancies */
 fprintf(fichtm," <li>Graphs</li><p>");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
  m=cptcoveff;    double **dnewm,**doldm;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
  jj1=0;    int k, cptcode;
  for(k1=1; k1<=m;k1++){    double *xp;
    for(i1=1; i1<=ncodemax[k1];i1++){    double **gp, **gm;  /* for var eij */
        jj1++;    double ***gradg, ***trgradg; /*for var eij */
        if (cptcovn > 0) {    double **gradgp, **trgradgp; /* for var p point j */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double *gpp, *gmp; /* for var p point j */
          for (cpt=1; cpt<=cptcoveff;cpt++)    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double ***p3mat;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double age,agelim, hf;
        }    double ***mobaverage;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    int theta;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        char digit[4];
        for(cpt=1; cpt<nlstate;cpt++){    char digitp[25];
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    char fileresprobmorprev[FILENAMELENGTH];
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {    if(popbased==1){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      if(mobilav!=0)
 interval) in state (%d): v%s%d%d.gif <br>        strcpy(digitp,"-populbased-mobilav-");
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        else strcpy(digitp,"-populbased-nomobil-");
      }    }
      for(cpt=1; cpt<=nlstate;cpt++) {    else 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      strcpy(digitp,"-stablbased-");
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }    if (mobilav!=0) {
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 health expectancies in states (1) and (2): e%s%d.gif<br>      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 fprintf(fichtm,"\n</body>");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    }      }
    }    }
 fclose(fichtm);  
 }    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
 /******************* Gnuplot file **************/    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   strcpy(optionfilegnuplot,optionfilefiname);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   strcat(optionfilegnuplot,".gp.txt");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    }
     printf("Problem with file %s",optionfilegnuplot);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 #ifdef windows    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 #endif      fprintf(ficresprobmorprev," p.%-d SE",j);
 m=pow(2,cptcoveff);      for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  /* 1eme*/    }  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficresprobmorprev,"\n");
    for (k1=1; k1<= m ; k1 ++) {    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
 for (i=1; i<= nlstate ; i ++) {    }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficgp,"\n# Routine varevsij");
 }    }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     for (i=1; i<= nlstate ; i ++) {      printf("Problem with html file: %s\n", optionfilehtm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      exit(0);
 }    }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    else{
      for (i=1; i<= nlstate ; i ++) {      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficresvij,"# Age");
    }    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
   /*2 eme*/        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    xp=vector(1,npar);
        dnewm=matrix(1,nlstate,1,npar);
     for (i=1; i<= nlstate+1 ; i ++) {    doldm=matrix(1,nlstate,1,nlstate);
       k=2*i;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    gpp=vector(nlstate+1,nlstate+ndeath);
 }      gmp=vector(nlstate+1,nlstate+ndeath);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    if(estepm < stepm){
       for (j=1; j<= nlstate+1 ; j ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
         else fprintf(ficgp," \%%*lf (\%%*lf)");    else  hstepm=estepm;   
 }      /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficgp,"\" t\"\" w l 0,");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);       nhstepm is the number of hstepm from age to agelim 
       for (j=1; j<= nlstate+1 ; j ++) {       nstepm is the number of stepm from age to agelin. 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       Look at hpijx to understand the reason of that which relies in memory size
   else fprintf(ficgp," \%%*lf (\%%*lf)");       and note for a fixed period like k years */
 }      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       survival function given by stepm (the optimization length). Unfortunately it
       else fprintf(ficgp,"\" t\"\" w l 0,");       means that if the survival funtion is printed every two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);       results. So we changed our mind and took the option of the best precision.
   }    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*3eme*/    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   for (k1=1; k1<= m ; k1 ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for (cpt=1; cpt<= nlstate ; cpt ++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       k=2+nlstate*(2*cpt-2);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      gp=matrix(0,nhstepm,1,nlstate);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      gm=matrix(0,nhstepm,1,nlstate);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for(theta=1; theta <=npar; theta++){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
 */        }
       for (i=1; i< nlstate ; i ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
       }        if (popbased==1) {
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   /* CV preval stat */            for(i=1; i<=nlstate;i++)
     for (k1=1; k1<= m ; k1 ++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
     for (cpt=1; cpt<nlstate ; cpt ++) {          }
       k=3;        }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    
         for(j=1; j<= nlstate; j++){
       for (i=1; i< nlstate ; i ++)          for(h=0; h<=nhstepm; h++){
         fprintf(ficgp,"+$%d",k+i+1);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                }
       l=3+(nlstate+ndeath)*cpt;        }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        /* This for computing probability of death (h=1 means
       for (i=1; i< nlstate ; i ++) {           computed over hstepm matrices product = hstepm*stepm months) 
         l=3+(nlstate+ndeath)*cpt;           as a weighted average of prlim.
         fprintf(ficgp,"+$%d",l+i+1);        */
       }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
   }          /* end probability of death */
    
   /* proba elementaires */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
    for(i=1,jk=1; i <=nlstate; i++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(k=1; k <=(nlstate+ndeath); k++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       if (k != i) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(j=1; j <=ncovmodel; j++){   
                if (popbased==1) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          if(mobilav ==0){
           jk++;            for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"\n");              prlim[i][i]=probs[(int)age][i][ij];
         }          }else{ /* mobilav */ 
       }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=mobaverage[(int)age][i][ij];
     }          }
         }
     for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(j=1; j<= nlstate; j++){
    i=1;          for(h=0; h<=nhstepm; h++){
    for(k2=1; k2<=nlstate; k2++) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
      k3=i;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
      for(k=1; k<=(nlstate+ndeath); k++) {          }
        if (k != k2){        }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        /* This for computing probability of death (h=1 means
 ij=1;           computed over hstepm matrices product = hstepm*stepm months) 
         for(j=3; j <=ncovmodel; j++) {           as a weighted average of prlim.
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             ij++;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           else        }    
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        /* end probability of death */
         }  
           fprintf(ficgp,")/(1");        for(j=1; j<= nlstate; j++) /* vareij */
                  for(h=0; h<=nhstepm; h++){
         for(k1=1; k1 <=nlstate; k1++){              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          }
 ij=1;  
           for(j=3; j <=ncovmodel; j++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
             ij++;  
           }      } /* End theta */
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           }  
           fprintf(ficgp,")");      for(h=0; h<=nhstepm; h++) /* veij */
         }        for(j=1; j<=nlstate;j++)
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          for(theta=1; theta <=npar; theta++)
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            trgradg[h][j][theta]=gradg[h][theta][j];
         i=i+ncovmodel;  
        }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      }        for(theta=1; theta <=npar; theta++)
    }          trgradgp[j][theta]=gradgp[theta][j];
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    
    }  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fclose(ficgp);      for(i=1;i<=nlstate;i++)
 }  /* end gnuplot */        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
 /*************** Moving average **************/      for(h=0;h<=nhstepm;h++){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   int i, cpt, cptcod;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          for(i=1;i<=nlstate;i++)
       for (i=1; i<=nlstate;i++)            for(j=1;j<=nlstate;j++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           mobaverage[(int)agedeb][i][cptcod]=0.;        }
          }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    
       for (i=1; i<=nlstate;i++){      /* pptj */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           for (cpt=0;cpt<=4;cpt++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          varppt[j][i]=doldmp[j][i];
         }      /* end ppptj */
       }      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 }   
       if (popbased==1) {
         if(mobilav ==0){
 /************** Forecasting ******************/          for(i=1; i<=nlstate;i++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          for(i=1; i<=nlstate;i++)
   int *popage;            prlim[i][i]=mobaverage[(int)age][i][ij];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;      }
   double ***p3mat;               
   char fileresf[FILENAMELENGTH];      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
  agelim=AGESUP;         as a weighted average of prlim.
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
   strcpy(fileresf,"f");      /* end probability of death */
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     printf("Problem with forecast resultfile: %s\n", fileresf);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   printf("Computing forecasting: result on file '%s' \n", fileresf);        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }
       } 
   if (mobilav==1) {      fprintf(ficresprobmorprev,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficresvij,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   if (stepm<=12) stepsize=1;        }
        fprintf(ficresvij,"\n");
   agelim=AGESUP;      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
   hstepm=1;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   hstepm=hstepm/stepm;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   yp1=modf(dateintmean,&yp);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   anprojmean=yp;    } /* End age */
   yp2=modf((yp1*12),&yp);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   mprojmean=yp;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   yp1=modf((yp2*30.5),&yp);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   jprojmean=yp;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if(jprojmean==0) jprojmean=1;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   if(mprojmean==0) jprojmean=1;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   for(cptcov=1;cptcov<=i2;cptcov++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
       k=k+1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
       fprintf(ficresf,"\n#******");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
       for(j=1;j<=cptcoveff;j++) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
       }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       fprintf(ficresf,"******\n");  */
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
          free_vector(xp,1,npar);
          free_matrix(doldm,1,nlstate,1,nlstate);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficresf,"\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fclose(ficresprobmorprev);
           nhstepm = nhstepm/hstepm;    fclose(ficgp);
              fclose(fichtm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }  
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /************ Variance of prevlim ******************/
          void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
           for (h=0; h<=nhstepm; h++){  {
             if (h==(int) (calagedate+YEARM*cpt)) {    /* Variance of prevalence limit */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             }    double **newm;
             for(j=1; j<=nlstate+ndeath;j++) {    double **dnewm,**doldm;
               kk1=0.;kk2=0;    int i, j, nhstepm, hstepm;
               for(i=1; i<=nlstate;i++) {                  int k, cptcode;
                 if (mobilav==1)    double *xp;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double *gp, *gm;
                 else {    double **gradg, **trgradg;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double age,agelim;
                 }    int theta;
                     
               }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficresvpl,"# Age");
                 fprintf(ficresf," %.3f", kk1);    for(i=1; i<=nlstate;i++)
                                fprintf(ficresvpl," %1d-%1d",i,i);
               }    fprintf(ficresvpl,"\n");
             }  
           }    xp=vector(1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    dnewm=matrix(1,nlstate,1,npar);
         }    doldm=matrix(1,nlstate,1,nlstate);
       }    
     }    hstepm=1*YEARM; /* Every year of age */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
            agelim = AGESUP;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fclose(ficresf);      if (stepm >= YEARM) hstepm=1;
 }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 /************** Forecasting ******************/      gradg=matrix(1,npar,1,nlstate);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      gp=vector(1,nlstate);
        gm=vector(1,nlstate);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;      for(theta=1; theta <=npar; theta++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for(i=1; i<=npar; i++){ /* Computes gradient */
   double *popeffectif,*popcount;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double ***p3mat,***tabpop,***tabpopprev;        }
   char filerespop[FILENAMELENGTH];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gp[i] = prlim[i][i];
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   agelim=AGESUP;        for(i=1; i<=npar; i++) /* Computes gradient */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
    
   strcpy(filerespop,"pop");        for(i=1;i<=nlstate;i++)
   strcat(filerespop,fileres);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      } /* End theta */
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }      trgradg =matrix(1,nlstate,1,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
       for(j=1; j<=nlstate;j++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1;i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);        varpl[i][(int)age] =0.;
   }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i=1;i<=nlstate;i++)
   if (stepm<=12) stepsize=1;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   agelim=AGESUP;      fprintf(ficresvpl,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   hstepm=1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   hstepm=hstepm/stepm;      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
   if (popforecast==1) {      free_vector(gm,1,nlstate);
     if((ficpop=fopen(popfile,"r"))==NULL) {      free_matrix(gradg,1,npar,1,nlstate);
       printf("Problem with population file : %s\n",popfile);exit(0);      free_matrix(trgradg,1,nlstate,1,npar);
     }    } /* End age */
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    free_vector(xp,1,npar);
     popcount=vector(0,AGESUP);    free_matrix(doldm,1,nlstate,1,npar);
        free_matrix(dnewm,1,nlstate,1,nlstate);
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  }
      
     imx=i;  /************ Variance of one-step probabilities  ******************/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   }  {
     int i, j=0,  i1, k1, l1, t, tj;
   for(cptcov=1;cptcov<=i2;cptcov++){    int k2, l2, j1,  z1;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int k=0,l, cptcode;
       k=k+1;    int first=1, first1;
       fprintf(ficrespop,"\n#******");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       for(j=1;j<=cptcoveff;j++) {    double **dnewm,**doldm;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *xp;
       }    double *gp, *gm;
       fprintf(ficrespop,"******\n");    double **gradg, **trgradg;
       fprintf(ficrespop,"# Age");    double **mu;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double age,agelim, cov[NCOVMAX];
       if (popforecast==1)  fprintf(ficrespop," [Population]");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
          int theta;
       for (cpt=0; cpt<=0;cpt++) {    char fileresprob[FILENAMELENGTH];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      char fileresprobcov[FILENAMELENGTH];
            char fileresprobcor[FILENAMELENGTH];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double ***varpij;
           nhstepm = nhstepm/hstepm;  
              strcpy(fileresprob,"prob"); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprob,fileres);
           oldm=oldms;savm=savms;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with resultfile: %s\n", fileresprob);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    strcpy(fileresprobcov,"probcov"); 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    strcat(fileresprobcov,fileres);
             }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
             for(j=1; j<=nlstate+ndeath;j++) {      printf("Problem with resultfile: %s\n", fileresprobcov);
               kk1=0.;kk2=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    strcpy(fileresprobcor,"probcor"); 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    strcat(fileresprobcor,fileres);
                 else {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      printf("Problem with resultfile: %s\n", fileresprobcor);
                 }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
               }    }
               if (h==(int)(calagedate+12*cpt)){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   /*fprintf(ficrespop," %.3f", kk1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             for(i=1; i<=nlstate;i++){    
               kk1=0.;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                 for(j=1; j<=nlstate;j++){    fprintf(ficresprob,"# Age");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                 }    fprintf(ficresprobcov,"# Age");
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             }    fprintf(ficresprobcov,"# Age");
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    for(i=1; i<=nlstate;i++)
           }      for(j=1; j<=(nlstate+ndeath);j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
        }  
   /******/   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficresprobcor,"\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   xp=vector(1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           nhstepm = nhstepm/hstepm;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
              mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           oldm=oldms;savm=savms;    first=1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           for (h=0; h<=nhstepm; h++){      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
             if (h==(int) (calagedate+YEARM*cpt)) {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      exit(0);
             }    }
             for(j=1; j<=nlstate+ndeath;j++) {    else{
               kk1=0.;kk2=0;      fprintf(ficgp,"\n# Routine varprob");
               for(i=1; i<=nlstate;i++) {                  }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
               }      printf("Problem with html file: %s\n", optionfilehtm);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
             }      exit(0);
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    else{
         }      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       }      fprintf(fichtm,"\n");
    }  
   }      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
        fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
   if (popforecast==1) {    }
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);    cov[1]=1;
     free_vector(popcount,0,AGESUP);    tj=cptcoveff;
   }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    j1=0;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(t=1; t<=tj;t++){
   fclose(ficrespop);      for(i1=1; i1<=ncodemax[t];i1++){ 
 }        j1++;
         if  (cptcovn>0) {
 /***********************************************/          fprintf(ficresprob, "\n#********** Variable "); 
 /**************** Main Program *****************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /***********************************************/          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
 int main(int argc, char *argv[])          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 {          fprintf(ficresprobcov, "**********\n#\n");
           
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          fprintf(ficgp, "\n#********** Variable "); 
   double agedeb, agefin,hf;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          fprintf(ficgp, "**********\n#\n");
           
   double fret;          
   double **xi,tmp,delta;          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double dum; /* Dummy variable */          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   double ***p3mat;          
   int *indx;          fprintf(ficresprobcor, "\n#********** Variable ");    
   char line[MAXLINE], linepar[MAXLINE];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char title[MAXLINE];          fprintf(ficresprobcor, "**********\n#");    
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        }
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        
          for (age=bage; age<=fage; age ++){ 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   char filerest[FILENAMELENGTH];            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   char fileregp[FILENAMELENGTH];          }
   char popfile[FILENAMELENGTH];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          for (k=1; k<=cptcovprod;k++)
   int firstobs=1, lastobs=10;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int sdeb, sfin; /* Status at beginning and end */          
   int c,  h , cpt,l;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   int ju,jl, mi;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          gm=vector(1,(nlstate)*(nlstate+ndeath));
   int mobilav=0,popforecast=0;      
   int hstepm, nhstepm;          for(theta=1; theta <=npar; theta++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   double bage, fage, age, agelim, agebase;            
   double ftolpl=FTOL;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   double **prlim;            
   double *severity;            k=0;
   double ***param; /* Matrix of parameters */            for(i=1; i<= (nlstate); i++){
   double  *p;              for(j=1; j<=(nlstate+ndeath);j++){
   double **matcov; /* Matrix of covariance */                k=k+1;
   double ***delti3; /* Scale */                gp[k]=pmmij[i][j];
   double *delti; /* Scale */              }
   double ***eij, ***vareij;            }
   double **varpl; /* Variances of prevalence limits by age */            
   double *epj, vepp;            for(i=1; i<=npar; i++)
   double kk1, kk2;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";            for(i=1; i<=(nlstate); i++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
   char z[1]="c", occ;              }
 #include <sys/time.h>            }
 #include <time.h>       
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   /* long total_usecs;          }
   struct timeval start_time, end_time;  
            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            for(theta=1; theta <=npar; theta++)
   getcwd(pathcd, size);              trgradg[j][theta]=gradg[theta][j];
           
   printf("\n%s",version);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   if(argc <=1){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     printf("\nEnter the parameter file name: ");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     scanf("%s",pathtot);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   else{          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     strcpy(pathtot,argv[1]);  
   }          pmij(pmmij,cov,ncovmodel,x,nlstate);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          
   /*cygwin_split_path(pathtot,path,optionfile);          k=0;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for(i=1; i<=(nlstate); i++){
   /* cutv(path,optionfile,pathtot,'\\');*/            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              mu[k][(int) age]=pmmij[i][j];
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            }
   chdir(path);          }
   replace(pathc,path);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 /*-------- arguments in the command line --------*/              varpij[i][j][(int)age] = doldm[i][j];
   
   strcpy(fileres,"r");          /*printf("\n%d ",(int)age);
   strcat(fileres, optionfilefiname);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcat(fileres,".txt");    /* Other files have txt extension */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /*---------arguments file --------*/            }*/
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          fprintf(ficresprob,"\n%d ",(int)age);
     printf("Problem with optionfile %s\n",optionfile);          fprintf(ficresprobcov,"\n%d ",(int)age);
     goto end;          fprintf(ficresprobcor,"\n%d ",(int)age);
   }  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   strcpy(filereso,"o");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   strcat(filereso,fileres);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if((ficparo=fopen(filereso,"w"))==NULL) {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   }          }
           i=0;
   /* Reads comments: lines beginning with '#' */          for (k=1; k<=(nlstate);k++){
   while((c=getc(ficpar))=='#' && c!= EOF){            for (l=1; l<=(nlstate+ndeath);l++){ 
     ungetc(c,ficpar);              i=i++;
     fgets(line, MAXLINE, ficpar);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     puts(line);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     fputs(line,ficparo);              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   ungetc(c,ficpar);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          }/* end of loop for state */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        } /* end of loop for age */
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        /* Confidence intervalle of pij  */
     fgets(line, MAXLINE, ficpar);        /*
     puts(line);          fprintf(ficgp,"\nset noparametric;unset label");
     fputs(line,ficparo);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   ungetc(c,ficpar);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   covar=matrix(0,NCOVMAX,1,n);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   cptcovn=0;        */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   ncovmodel=2+cptcovn;        first1=1;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        for (k2=1; k2<=(nlstate);k2++){
            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   /* Read guess parameters */            if(l2==k2) continue;
   /* Reads comments: lines beginning with '#' */            j=(k2-1)*(nlstate+ndeath)+l2;
   while((c=getc(ficpar))=='#' && c!= EOF){            for (k1=1; k1<=(nlstate);k1++){
     ungetc(c,ficpar);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     fgets(line, MAXLINE, ficpar);                if(l1==k1) continue;
     puts(line);                i=(k1-1)*(nlstate+ndeath)+l1;
     fputs(line,ficparo);                if(i<=j) continue;
   }                for (age=bage; age<=fage; age ++){ 
   ungetc(c,ficpar);                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     for(i=1; i <=nlstate; i++)                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     for(j=1; j <=nlstate+ndeath-1; j++){                    mu1=mu[i][(int) age]/stepm*YEARM ;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    mu2=mu[j][(int) age]/stepm*YEARM;
       fprintf(ficparo,"%1d%1d",i1,j1);                    c12=cv12/sqrt(v1*v2);
       printf("%1d%1d",i,j);                    /* Computing eigen value of matrix of covariance */
       for(k=1; k<=ncovmodel;k++){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         fscanf(ficpar," %lf",&param[i][j][k]);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         printf(" %lf",param[i][j][k]);                    /* Eigen vectors */
         fprintf(ficparo," %lf",param[i][j][k]);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       }                    /*v21=sqrt(1.-v11*v11); *//* error */
       fscanf(ficpar,"\n");                    v21=(lc1-v1)/cv12*v11;
       printf("\n");                    v12=-v21;
       fprintf(ficparo,"\n");                    v22=v11;
     }                    tnalp=v21/v11;
                      if(first1==1){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   p=param[1][1];                    }
                      fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   /* Reads comments: lines beginning with '#' */                    /*printf(fignu*/
   while((c=getc(ficpar))=='#' && c!= EOF){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     ungetc(c,ficpar);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     fgets(line, MAXLINE, ficpar);                    if(first==1){
     puts(line);                      first=0;
     fputs(line,ficparo);                      fprintf(ficgp,"\nset parametric;unset label");
   }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   ungetc(c,ficpar);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   for(i=1; i <=nlstate; i++){                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
     for(j=1; j <=nlstate+ndeath-1; j++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fscanf(ficpar,"%1d%1d",&i1,&j1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       printf("%1d%1d",i,j);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficparo,"%1d%1d",i1,j1);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(k=1; k<=ncovmodel;k++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fscanf(ficpar,"%le",&delti3[i][j][k]);                    }else{
         printf(" %le",delti3[i][j][k]);                      first=0;
         fprintf(ficparo," %le",delti3[i][j][k]);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fscanf(ficpar,"\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       printf("\n");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficparo,"\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                    }/* if first */
   delti=delti3[1][1];                  } /* age mod 5 */
                  } /* end loop age */
   /* Reads comments: lines beginning with '#' */                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
   while((c=getc(ficpar))=='#' && c!= EOF){                first=1;
     ungetc(c,ficpar);              } /*l12 */
     fgets(line, MAXLINE, ficpar);            } /* k12 */
     puts(line);          } /*l1 */
     fputs(line,ficparo);        }/* k1 */
   }      } /* loop covariates */
   ungetc(c,ficpar);    }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   matcov=matrix(1,npar,1,npar);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   for(i=1; i <=npar; i++){    free_vector(xp,1,npar);
     fscanf(ficpar,"%s",&str);    fclose(ficresprob);
     printf("%s",str);    fclose(ficresprobcov);
     fprintf(ficparo,"%s",str);    fclose(ficresprobcor);
     for(j=1; j <=i; j++){    fclose(ficgp);
       fscanf(ficpar," %le",&matcov[i][j]);    fclose(fichtm);
       printf(" %.5le",matcov[i][j]);  }
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }  
     fscanf(ficpar,"\n");  /******************* Printing html file ***********/
     printf("\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     fprintf(ficparo,"\n");                    int lastpass, int stepm, int weightopt, char model[],\
   }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   for(i=1; i <=npar; i++)                    int popforecast, int estepm ,\
     for(j=i+1;j<=npar;j++)                    double jprev1, double mprev1,double anprev1, \
       matcov[i][j]=matcov[j][i];                    double jprev2, double mprev2,double anprev2){
        int jj1, k1, i1, cpt;
   printf("\n");    /*char optionfilehtm[FILENAMELENGTH];*/
     if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     /*-------- Rewriting paramater file ----------*/      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
      strcpy(rfileres,"r");    /* "Rparameterfile */    }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
      strcat(rfileres,optionfilext);    /* Other files have txt extension */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
     if((ficres =fopen(rfileres,"w"))==NULL) {   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
       printf("Problem writing new parameter file: %s\n", fileres);goto end;   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     }   - Life expectancies by age and initial health status (estepm=%2d months): 
     fprintf(ficres,"#%s\n",version);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
        jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     n= lastobs;  
     severity = vector(1,maxwav);   jj1=0;
     outcome=imatrix(1,maxwav+1,1,n);   for(k1=1; k1<=m;k1++){
     num=ivector(1,n);     for(i1=1; i1<=ncodemax[k1];i1++){
     moisnais=vector(1,n);       jj1++;
     annais=vector(1,n);       if (cptcovn > 0) {
     moisdc=vector(1,n);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     andc=vector(1,n);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     agedc=vector(1,n);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     cod=ivector(1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     weight=vector(1,n);       }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       /* Pij */
     mint=matrix(1,maxwav,1,n);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
     anint=matrix(1,maxwav,1,n);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
     s=imatrix(1,maxwav+1,1,n);       /* Quasi-incidences */
     adl=imatrix(1,maxwav+1,1,n);           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
     tab=ivector(1,NCOVMAX);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
     ncodemax=ivector(1,8);         /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
     i=1;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
     while (fgets(line, MAXLINE, fic) != NULL)    {  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       if ((i >= firstobs) && (i <=lastobs)) {         }
               for(cpt=1; cpt<=nlstate;cpt++) {
         for (j=maxwav;j>=1;j--){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
           strcpy(line,stra);       }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       fprintf(fichtm,"\n<br>- Total life expectancy by age and
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  health expectancies in states (1) and (2): e%s%d.png<br>
         }  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
             } /* end i1 */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   }/* End k1 */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);   fprintf(fichtm,"</ul>");
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
         for (j=ncovcol;j>=1;j--){   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
         }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
         num[i]=atol(stra);   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
           - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         i=i+1;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       }  /*      <br>",fileres,fileres,fileres,fileres); */
     }  /*  else  */
     /* printf("ii=%d", ij);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
        scanf("%d",i);*/  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   imx=i-1; /* Number of individuals */  
    m=cptcoveff;
   /* for (i=1; i<=imx; i++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   jj1=0;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;   for(k1=1; k1<=m;k1++){
     }*/     for(i1=1; i1<=ncodemax[k1];i1++){
    /*  for (i=1; i<=imx; i++){       jj1++;
      if (s[4][i]==9)  s[4][i]=-1;       if (cptcovn > 0) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /* Calculation of the number of parameter from char model*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   Tvar=ivector(1,15);       }
   Tprod=ivector(1,15);       for(cpt=1; cpt<=nlstate;cpt++) {
   Tvaraff=ivector(1,15);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
   Tvard=imatrix(1,15,1,2);  interval) in state (%d): v%s%d%d.png <br>
   Tage=ivector(1,15);        <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
           }
   if (strlen(model) >1){     } /* end i1 */
     j=0, j1=0, k1=1, k2=1;   }/* End k1 */
     j=nbocc(model,'+');   fprintf(fichtm,"</ul>");
     j1=nbocc(model,'*');  fclose(fichtm);
     cptcovn=j+1;  }
     cptcovprod=j1;  
      /******************* Gnuplot file **************/
     strcpy(modelsav,model);  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       goto end;    int ng;
     }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
          printf("Problem with file %s",optionfilegnuplot);
     for(i=(j+1); i>=1;i--){      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
       cutv(stra,strb,modelsav,'+');    }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /*#ifdef windows */
       /*scanf("%d",i);*/      fprintf(ficgp,"cd \"%s\" \n",pathc);
       if (strchr(strb,'*')) {      /*#endif */
         cutv(strd,strc,strb,'*');  m=pow(2,cptcoveff);
         if (strcmp(strc,"age")==0) {    
           cptcovprod--;   /* 1eme*/
           cutv(strb,stre,strd,'V');    for (cpt=1; cpt<= nlstate ; cpt ++) {
           Tvar[i]=atoi(stre);     for (k1=1; k1<= m ; k1 ++) {
           cptcovage++;       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
             Tage[cptcovage]=i;       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
             /*printf("stre=%s ", stre);*/  
         }       for (i=1; i<= nlstate ; i ++) {
         else if (strcmp(strd,"age")==0) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           cptcovprod--;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           cutv(strb,stre,strc,'V');       }
           Tvar[i]=atoi(stre);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
           cptcovage++;       for (i=1; i<= nlstate ; i ++) {
           Tage[cptcovage]=i;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         }         else fprintf(ficgp," \%%*lf (\%%*lf)");
         else {       } 
           cutv(strb,stre,strc,'V');       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
           Tvar[i]=ncovcol+k1;       for (i=1; i<= nlstate ; i ++) {
           cutv(strb,strc,strd,'V');         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           Tprod[k1]=i;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           Tvard[k1][1]=atoi(strc);       }  
           Tvard[k1][2]=atoi(stre);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
           Tvar[cptcovn+k2]=Tvard[k1][1];     }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    }
           for (k=1; k<=lastobs;k++)    /*2 eme*/
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    
           k1++;    for (k1=1; k1<= m ; k1 ++) { 
           k2=k2+2;      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
         }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       }      
       else {      for (i=1; i<= nlstate+1 ; i ++) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        k=2*i;
        /*  scanf("%d",i);*/        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
       cutv(strd,strc,strb,'V');        for (j=1; j<= nlstate+1 ; j ++) {
       Tvar[i]=atoi(strc);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       }          else fprintf(ficgp," \%%*lf (\%%*lf)");
       strcpy(modelsav,stra);          }   
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         scanf("%d",i);*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
 }        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   printf("cptcovprod=%d ", cptcovprod);        }   
   scanf("%d ",i);*/        fprintf(ficgp,"\" t\"\" w l 0,");
     fclose(fic);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
     /*  if(mle==1){*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     if (weightopt != 1) { /* Maximisation without weights*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(i=1;i<=n;i++) weight[i]=1.0;        }   
     }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     /*-calculation of age at interview from date of interview and age at death -*/        else fprintf(ficgp,"\" t\"\" w l 0,");
     agev=matrix(1,maxwav,1,imx);      }
     }
     for (i=1; i<=imx; i++) {    
       for(m=2; (m<= maxwav); m++) {    /*3eme*/
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    
          anint[m][i]=9999;    for (k1=1; k1<= m ; k1 ++) { 
          s[m][i]=-1;      for (cpt=1; cpt<= nlstate ; cpt ++) {
        }        k=2+nlstate*(2*cpt-2);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       }        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
     }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     for (i=1; i<=imx; i++)  {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       for(m=1; (m<= maxwav); m++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         if(s[m][i] >0){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           if (s[m][i] >= nlstate+1) {          
             if(agedc[i]>0)        */
               if(moisdc[i]!=99 && andc[i]!=9999)        for (i=1; i< nlstate ; i ++) {
                 agev[m][i]=agedc[i];          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          
            else {        } 
               if (andc[i]!=9999){      }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    }
               agev[m][i]=-1;    
               }    /* CV preval stable (period) */
             }    for (k1=1; k1<= m ; k1 ++) { 
           }      for (cpt=1; cpt<=nlstate ; cpt ++) {
           else if(s[m][i] !=9){ /* Should no more exist */        k=3;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
             if(mint[m][i]==99 || anint[m][i]==9999)        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
               agev[m][i]=1;        
             else if(agev[m][i] <agemin){        for (i=1; i< nlstate ; i ++)
               agemin=agev[m][i];          fprintf(ficgp,"+$%d",k+i+1);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
             }        
             else if(agev[m][i] >agemax){        l=3+(nlstate+ndeath)*cpt;
               agemax=agev[m][i];        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        for (i=1; i< nlstate ; i ++) {
             }          l=3+(nlstate+ndeath)*cpt;
             /*agev[m][i]=anint[m][i]-annais[i];*/          fprintf(ficgp,"+$%d",l+i+1);
             /*   agev[m][i] = age[i]+2*m;*/        }
           }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
           else { /* =9 */      } 
             agev[m][i]=1;    }  
             s[m][i]=-1;    
           }    /* proba elementaires */
         }    for(i=1,jk=1; i <=nlstate; i++){
         else /*= 0 Unknown */      for(k=1; k <=(nlstate+ndeath); k++){
           agev[m][i]=1;        if (k != i) {
       }          for(j=1; j <=ncovmodel; j++){
                fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     }            jk++; 
     for (i=1; i<=imx; i++)  {            fprintf(ficgp,"\n");
       for(m=1; (m<= maxwav); m++){          }
         if (s[m][i] > (nlstate+ndeath)) {        }
           printf("Error: Wrong value in nlstate or ndeath\n");        }
           goto end;     }
         }  
       }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     }       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     free_vector(severity,1,maxwav);         else
     free_imatrix(outcome,1,maxwav+1,1,n);           fprintf(ficgp,"\nset title \"Probability\"\n");
     free_vector(moisnais,1,n);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     free_vector(annais,1,n);         i=1;
     /* free_matrix(mint,1,maxwav,1,n);         for(k2=1; k2<=nlstate; k2++) {
        free_matrix(anint,1,maxwav,1,n);*/           k3=i;
     free_vector(moisdc,1,n);           for(k=1; k<=(nlstate+ndeath); k++) {
     free_vector(andc,1,n);             if (k != k2){
                if(ng==2)
                     fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     wav=ivector(1,imx);               else
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);               ij=1;
                   for(j=3; j <=ncovmodel; j++) {
     /* Concatenates waves */                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
       Tcode=ivector(1,100);                 else
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       ncodemax[1]=1;               }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);               fprintf(ficgp,")/(1");
                     
    codtab=imatrix(1,100,1,10);               for(k1=1; k1 <=nlstate; k1++){   
    h=0;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
    m=pow(2,cptcoveff);                 ij=1;
                   for(j=3; j <=ncovmodel; j++){
    for(k=1;k<=cptcoveff; k++){                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
      for(i=1; i <=(m/pow(2,k));i++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
        for(j=1; j <= ncodemax[k]; j++){                     ij++;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                   }
            h++;                   else
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                 }
          }                 fprintf(ficgp,")");
        }               }
      }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
    }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);               i=i+ncovmodel;
       codtab[1][2]=1;codtab[2][2]=2; */             }
    /* for(i=1; i <=m ;i++){           } /* end k */
       for(k=1; k <=cptcovn; k++){         } /* end k2 */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       } /* end jk */
       }     } /* end ng */
       printf("\n");     fclose(ficgp); 
       }  }  /* end gnuplot */
       scanf("%d",i);*/  
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*************** Moving average **************/
        and prints on file fileres'p'. */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
        int i, cpt, cptcod;
        int modcovmax =1;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int mobilavrange, mob;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double age;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                             a covariate has 2 modalities */
          if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
     if(mle==1){      for (age=bage; age<=fage; age++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for (i=1; i<=nlstate;i++)
     }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
                mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     /*--------- results files --------------*/      /* We keep the original values on the extreme ages bage, fage and for 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
       */ 
    jk=1;      for (mob=3;mob <=mobilavrange;mob=mob+2){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for (i=1; i<=nlstate;i++){
    for(i=1,jk=1; i <=nlstate; i++){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
      for(k=1; k <=(nlstate+ndeath); k++){              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
        if (k != i)                for (cpt=1;cpt<=(mob-1)/2;cpt++){
          {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
            printf("%d%d ",i,k);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
            fprintf(ficres,"%1d%1d ",i,k);                }
            for(j=1; j <=ncovmodel; j++){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              printf("%f ",p[jk]);            }
              fprintf(ficres,"%f ",p[jk]);          }
              jk++;        }/* end age */
            }      }/* end mob */
            printf("\n");    }else return -1;
            fprintf(ficres,"\n");    return 0;
          }  }/* End movingaverage */
      }  
    }  
  if(mle==1){  /************** Forecasting ******************/
     /* Computing hessian and covariance matrix */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     ftolhess=ftol; /* Usually correct */    /* proj1, year, month, day of starting projection 
     hesscov(matcov, p, npar, delti, ftolhess, func);       agemin, agemax range of age
  }       dateprev1 dateprev2 range of dates during which prevalence is computed
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");       anproj2 year of en of projection (same day and month as proj1).
     printf("# Scales (for hessian or gradient estimation)\n");    */
      for(i=1,jk=1; i <=nlstate; i++){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       for(j=1; j <=nlstate+ndeath; j++){    int *popage;
         if (j!=i) {    double agec; /* generic age */
           fprintf(ficres,"%1d%1d",i,j);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           printf("%1d%1d",i,j);    double *popeffectif,*popcount;
           for(k=1; k<=ncovmodel;k++){    double ***p3mat;
             printf(" %.5e",delti[jk]);    double ***mobaverage;
             fprintf(ficres," %.5e",delti[jk]);    char fileresf[FILENAMELENGTH];
             jk++;  
           }    agelim=AGESUP;
           printf("\n");    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           fprintf(ficres,"\n");   
         }    strcpy(fileresf,"f"); 
       }    strcat(fileresf,fileres);
      }    if((ficresf=fopen(fileresf,"w"))==NULL) {
          printf("Problem with forecast resultfile: %s\n", fileresf);
     k=1;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    printf("Computing forecasting: result on file '%s' \n", fileresf);
     for(i=1;i<=npar;i++){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/    if (mobilav!=0) {
       fprintf(ficres,"%3d",i);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("%3d",i);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       for(j=1; j<=i;j++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficres," %.5e",matcov[i][j]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         printf(" %.5e",matcov[i][j]);      }
       }    }
       fprintf(ficres,"\n");  
       printf("\n");    stepsize=(int) (stepm+YEARM-1)/YEARM;
       k++;    if (stepm<=12) stepsize=1;
     }    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     while((c=getc(ficpar))=='#' && c!= EOF){    }
       ungetc(c,ficpar);    else  hstepm=estepm;   
       fgets(line, MAXLINE, ficpar);  
       puts(line);    hstepm=hstepm/stepm; 
       fputs(line,ficparo);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     }                                 fractional in yp1 */
     ungetc(c,ficpar);    anprojmean=yp;
     estepm=0;    yp2=modf((yp1*12),&yp);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    mprojmean=yp;
     if (estepm==0 || estepm < stepm) estepm=stepm;    yp1=modf((yp2*30.5),&yp);
     if (fage <= 2) {    jprojmean=yp;
       bage = ageminpar;    if(jprojmean==0) jprojmean=1;
       fage = agemaxpar;    if(mprojmean==0) jprojmean=1;
     }  
        i1=cptcoveff;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    if (cptcovn < 1){i1=1;}
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
      
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresf,"#****** Routine prevforecast **\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /*            if (h==(int)(YEARM*yearp)){ */
     puts(line);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     fputs(line,ficparo);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   }        k=k+1;
   ungetc(c,ficpar);        fprintf(ficresf,"\n#******");
          for(j=1;j<=cptcoveff;j++) {
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficresf,"******\n");
              fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate+ndeath;j++){ 
     ungetc(c,ficpar);          for(i=1; i<=nlstate;i++)              
     fgets(line, MAXLINE, ficpar);            fprintf(ficresf," p%d%d",i,j);
     puts(line);          fprintf(ficresf," p.%d",j);
     fputs(line,ficparo);        }
   }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   ungetc(c,ficpar);          fprintf(ficresf,"\n");
            fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          for (agec=fage; agec>=(ageminpar-1); agec--){ 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   fscanf(ficpar,"pop_based=%d\n",&popbased);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"pop_based=%d\n",popbased);              oldm=oldms;savm=savms;
   fprintf(ficres,"pop_based=%d\n",popbased);              hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
            
   while((c=getc(ficpar))=='#' && c!= EOF){            for (h=0; h<=nhstepm; h++){
     ungetc(c,ficpar);              if (h*hstepm/YEARM*stepm ==yearp) {
     fgets(line, MAXLINE, ficpar);                fprintf(ficresf,"\n");
     puts(line);                for(j=1;j<=cptcoveff;j++) 
     fputs(line,ficparo);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   ungetc(c,ficpar);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                ppij=0.;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                for(i=1; i<=nlstate;i++) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                  if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
 while((c=getc(ficpar))=='#' && c!= EOF){                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     ungetc(c,ficpar);                  }
     fgets(line, MAXLINE, ficpar);                  if (h*hstepm/YEARM*stepm== yearp) {
     puts(line);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     fputs(line,ficparo);                  }
   }                } /* end i */
   ungetc(c,ficpar);                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              }/* end j */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          } /* end agec */
         } /* end yearp */
 /*------------ gnuplot -------------*/      } /* end cptcod */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    } /* end  cptcov */
           
 /*------------ free_vector  -------------*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  chdir(path);  
      fclose(ficresf);
  free_ivector(wav,1,imx);  }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    /************** Forecasting *****not tested NB*************/
  free_ivector(num,1,n);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
  free_vector(agedc,1,n);    
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
  fclose(ficparo);    int *popage;
  fclose(ficres);    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
 /*--------- index.htm --------*/    double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    char filerespop[FILENAMELENGTH];
   
      tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*--------------- Prevalence limit --------------*/    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      agelim=AGESUP;
   strcpy(filerespl,"pl");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   strcat(filerespl,fileres);    
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    
   }    
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    strcpy(filerespop,"pop"); 
   fprintf(ficrespl,"#Prevalence limit\n");    strcat(filerespop,fileres);
   fprintf(ficrespl,"#Age ");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      printf("Problem with forecast resultfile: %s\n", filerespop);
   fprintf(ficrespl,"\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
      }
   prlim=matrix(1,nlstate,1,nlstate);    printf("Computing forecasting: result on file '%s' \n", filerespop);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if (mobilav!=0) {
   k=0;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   agebase=ageminpar;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   agelim=agemaxpar;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   ftolpl=1.e-10;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   i1=cptcoveff;      }
   if (cptcovn < 1){i1=1;}    }
   
   for(cptcov=1;cptcov<=i1;cptcov++){    stepsize=(int) (stepm+YEARM-1)/YEARM;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if (stepm<=12) stepsize=1;
         k=k+1;    
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    agelim=AGESUP;
         fprintf(ficrespl,"\n#******");    
         for(j=1;j<=cptcoveff;j++)    hstepm=1;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=hstepm/stepm; 
         fprintf(ficrespl,"******\n");    
            if (popforecast==1) {
         for (age=agebase; age<=agelim; age++){      if((ficpop=fopen(popfile,"r"))==NULL) {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        printf("Problem with population file : %s\n",popfile);exit(0);
           fprintf(ficrespl,"%.0f",age );        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
           for(i=1; i<=nlstate;i++)      } 
           fprintf(ficrespl," %.5f", prlim[i][i]);      popage=ivector(0,AGESUP);
           fprintf(ficrespl,"\n");      popeffectif=vector(0,AGESUP);
         }      popcount=vector(0,AGESUP);
       }      
     }      i=1;   
   fclose(ficrespl);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
   /*------------- h Pij x at various ages ------------*/      imx=i;
        for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   }     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   printf("Computing pij: result on file '%s' \n", filerespij);        k=k+1;
          fprintf(ficrespop,"\n#******");
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1;j<=cptcoveff;j++) {
   /*if (stepm<=24) stepsize=2;*/          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   agelim=AGESUP;        fprintf(ficrespop,"******\n");
   hstepm=stepsize*YEARM; /* Every year of age */        fprintf(ficrespop,"# Age");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
          if (popforecast==1)  fprintf(ficrespop," [Population]");
   k=0;        
   for(cptcov=1;cptcov<=i1;cptcov++){        for (cpt=0; cpt<=0;cpt++) { 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       k=k+1;          
         fprintf(ficrespij,"\n#****** ");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
         for(j=1;j<=cptcoveff;j++)            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm = nhstepm/hstepm; 
         fprintf(ficrespij,"******\n");            
                    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            oldm=oldms;savm=savms;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (h=0; h<=nhstepm; h++){
           oldm=oldms;savm=savms;              if (h==(int) (calagedatem+YEARM*cpt)) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           fprintf(ficrespij,"# Age");              } 
           for(i=1; i<=nlstate;i++)              for(j=1; j<=nlstate+ndeath;j++) {
             for(j=1; j<=nlstate+ndeath;j++)                kk1=0.;kk2=0;
               fprintf(ficrespij," %1d-%1d",i,j);                for(i=1; i<=nlstate;i++) {              
           fprintf(ficrespij,"\n");                  if (mobilav==1) 
            for (h=0; h<=nhstepm; h++){                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                  else {
             for(i=1; i<=nlstate;i++)                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
               for(j=1; j<=nlstate+ndeath;j++)                  }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                }
             fprintf(ficrespij,"\n");                if (h==(int)(calagedatem+12*cpt)){
              }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    /*fprintf(ficrespop," %.3f", kk1);
           fprintf(ficrespij,"\n");                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
         }                }
     }              }
   }              for(i=1; i<=nlstate;i++){
                 kk1=0.;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   fclose(ficrespij);                  }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else{          }
     erreur=108;        }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   
   }    /******/
    
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   /*---------- Health expectancies and variances ------------*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   strcpy(filerest,"t");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   strcat(filerest,fileres);            nhstepm = nhstepm/hstepm; 
   if((ficrest=fopen(filerest,"w"))==NULL) {            
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   strcpy(filerese,"e");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   strcat(filerese,fileres);              } 
   if((ficreseij=fopen(filerese,"w"))==NULL) {              for(j=1; j<=nlstate+ndeath;j++) {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
  strcpy(fileresv,"v");                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   strcat(fileresv,fileres);              }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
   calagedate=-1;     } 
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    }
    
   k=0;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if (popforecast==1) {
       k=k+1;      free_ivector(popage,0,AGESUP);
       fprintf(ficrest,"\n#****** ");      free_vector(popeffectif,0,AGESUP);
       for(j=1;j<=cptcoveff;j++)      free_vector(popcount,0,AGESUP);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficrest,"******\n");    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficreseij,"\n#****** ");    fclose(ficrespop);
       for(j=1;j<=cptcoveff;j++)  }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");  /***********************************************/
   /**************** Main Program *****************/
       fprintf(ficresvij,"\n#****** ");  /***********************************************/
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  int main(int argc, char *argv[])
       fprintf(ficresvij,"******\n");  {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
       oldm=oldms;savm=savms;    double agedeb, agefin,hf;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double fret;
       oldm=oldms;savm=savms;    double **xi,tmp,delta;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
        double dum; /* Dummy variable */
     double ***p3mat;
      double ***mobaverage;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    int *indx;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    char line[MAXLINE], linepar[MAXLINE];
       fprintf(ficrest,"\n");    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
       epj=vector(1,nlstate+1);    int sdeb, sfin; /* Status at beginning and end */
       for(age=bage; age <=fage ;age++){    int c,  h , cpt,l;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    int ju,jl, mi;
         if (popbased==1) {    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
           for(i=1; i<=nlstate;i++)    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
             prlim[i][i]=probs[(int)age][i][k];    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         }    int mobilav=0,popforecast=0;
            int hstepm, nhstepm;
         fprintf(ficrest," %4.0f",age);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    double bage, fage, age, agelim, agebase;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    double ftolpl=FTOL;
           }    double **prlim;
           epj[nlstate+1] +=epj[j];    double *severity;
         }    double ***param; /* Matrix of parameters */
     double  *p;
         for(i=1, vepp=0.;i <=nlstate;i++)    double **matcov; /* Matrix of covariance */
           for(j=1;j <=nlstate;j++)    double ***delti3; /* Scale */
             vepp += vareij[i][j][(int)age];    double *delti; /* Scale */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    double ***eij, ***vareij;
         for(j=1;j <=nlstate;j++){    double **varpl; /* Variances of prevalence limits by age */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double *epj, vepp;
         }    double kk1, kk2;
         fprintf(ficrest,"\n");    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       }  
     }    char *alph[]={"a","a","b","c","d","e"}, str[4];
   }  
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    char z[1]="c", occ;
     free_vector(weight,1,n);  #include <sys/time.h>
   fclose(ficreseij);  #include <time.h>
   fclose(ficresvij);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   fclose(ficrest);   
   fclose(ficpar);    /* long total_usecs;
   free_vector(epj,1,nlstate+1);       struct timeval start_time, end_time;
      
   /*------- Variance limit prevalence------*/         gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    printf("\n%s\n%s",version,fullversion);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    if(argc <=1){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      printf("\nEnter the parameter file name: ");
     exit(0);      scanf("%s",pathtot);
   }    }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    else{
       strcpy(pathtot,argv[1]);
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*cygwin_split_path(pathtot,path,optionfile);
       k=k+1;      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
       fprintf(ficresvpl,"\n#****** ");    /* cutv(path,optionfile,pathtot,'\\');*/
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       fprintf(ficresvpl,"******\n");    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
          chdir(path);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    replace(pathc,path);
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    /*-------- arguments in the command line --------*/
     }  
  }    /* Log file */
     strcat(filelog, optionfilefiname);
   fclose(ficresvpl);    strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
   /*---------- End : free ----------------*/      printf("Problem with logfile %s\n",filelog);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      goto end;
      }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"Log filename:%s\n",filelog);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"\n%s",version);
      fprintf(ficlog,"\nEnter the parameter file name: ");
      fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fflush(ficlog);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    strcpy(fileres,"r");
      strcat(fileres, optionfilefiname);
   free_matrix(matcov,1,npar,1,npar);    strcat(fileres,".txt");    /* Other files have txt extension */
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);    /*---------arguments file --------*/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
   if(erreur >0)      printf("Problem with optionfile %s\n",optionfile);
     printf("End of Imach with error or warning %d\n",erreur);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   else   printf("End of Imach\n");      goto end;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    }
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    strcpy(filereso,"o");
   /*printf("Total time was %d uSec.\n", total_usecs);*/    strcat(filereso,fileres);
   /*------ End -----------*/    if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
  end:      goto end;
   /* chdir(pathcd);*/    }
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/    /* Reads comments: lines beginning with '#' */
  /*system("cd ../gp37mgw");*/    while((c=getc(ficpar))=='#' && c!= EOF){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      ungetc(c,ficpar);
  strcpy(plotcmd,GNUPLOTPROGRAM);      fgets(line, MAXLINE, ficpar);
  strcat(plotcmd," ");      puts(line);
  strcat(plotcmd,optionfilegnuplot);      fputs(line,ficparo);
  system(plotcmd);    }
     ungetc(c,ficpar);
  /*#ifdef windows*/  
   while (z[0] != 'q') {    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     /* chdir(path); */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     scanf("%s",z);    while((c=getc(ficpar))=='#' && c!= EOF){
     if (z[0] == 'c') system("./imach");      ungetc(c,ficpar);
     else if (z[0] == 'e') system(optionfilehtm);      fgets(line, MAXLINE, ficpar);
     else if (z[0] == 'g') system(plotcmd);      puts(line);
     else if (z[0] == 'q') exit(0);      fputs(line,ficparo);
   }    }
   /*#endif */    ungetc(c,ficpar);
 }    
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.83


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>