Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.89

version 1.41.2.1, 2003/06/12 10:43:20 version 1.89, 2003/06/24 12:30:52
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.89  2003/06/24 12:30:52  brouard
      (Module): Some bugs corrected for windows. Also, when
   This program computes Healthy Life Expectancies from    mle=-1 a template is output in file "or"mypar.txt with the design
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    of the covariance matrix to be input.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.88  2003/06/23 17:54:56  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.87  2003/06/18 12:26:01  brouard
   computed from the time spent in each health state according to a    Version 0.96
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.86  2003/06/17 20:04:08  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Change position of html and gnuplot routines and added
   probability to be observed in state j at the second wave    routine fileappend.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.85  2003/06/17 13:12:43  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    * imach.c (Repository): Check when date of death was earlier that
   complex model than "constant and age", you should modify the program    current date of interview. It may happen when the death was just
   where the markup *Covariates have to be included here again* invites    prior to the death. In this case, dh was negative and likelihood
   you to do it.  More covariates you add, slower the    was wrong (infinity). We still send an "Error" but patch by
   convergence.    assuming that the date of death was just one stepm after the
     interview.
   The advantage of this computer programme, compared to a simple    (Repository): Because some people have very long ID (first column)
   multinomial logistic model, is clear when the delay between waves is not    we changed int to long in num[] and we added a new lvector for
   identical for each individual. Also, if a individual missed an    memory allocation. But we also truncated to 8 characters (left
   intermediate interview, the information is lost, but taken into    truncation)
   account using an interpolation or extrapolation.      (Repository): No more line truncation errors.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.84  2003/06/13 21:44:43  brouard
   conditional to the observed state i at age x. The delay 'h' can be    * imach.c (Repository): Replace "freqsummary" at a correct
   split into an exact number (nh*stepm) of unobserved intermediate    place. It differs from routine "prevalence" which may be called
   states. This elementary transition (by month or quarter trimester,    many times. Probs is memory consuming and must be used with
   semester or year) is model as a multinomial logistic.  The hPx    parcimony.
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.  */
   This software have been partly granted by Euro-REVES, a concerted action  /*
   from the European Union.     Interpolated Markov Chain
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Short summary of the programme:
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <math.h>    first survey ("cross") where individuals from different ages are
 #include <stdio.h>    interviewed on their health status or degree of disability (in the
 #include <stdlib.h>    case of a health survey which is our main interest) -2- at least a
 #include <unistd.h>    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define MAXLINE 256    computed from the time spent in each health state according to a
 #define GNUPLOTPROGRAM "wgnuplot"    model. More health states you consider, more time is necessary to reach the
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Maximum Likelihood of the parameters involved in the model.  The
 #define FILENAMELENGTH 80    simplest model is the multinomial logistic model where pij is the
 /*#define DEBUG*/    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /*#define windows*/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    'age' is age and 'sex' is a covariate. If you want to have a more
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    you to do it.  More covariates you add, slower the
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    convergence.
   
 #define NINTERVMAX 8    The advantage of this computer programme, compared to a simple
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    multinomial logistic model, is clear when the delay between waves is not
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    identical for each individual. Also, if a individual missed an
 #define NCOVMAX 8 /* Maximum number of covariates */    intermediate interview, the information is lost, but taken into
 #define MAXN 20000    account using an interpolation or extrapolation.  
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    hPijx is the probability to be observed in state i at age x+h
 #define AGEBASE 40    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 int erreur; /* Error number */    semester or year) is modelled as a multinomial logistic.  The hPx
 int nvar;    matrix is simply the matrix product of nh*stepm elementary matrices
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    and the contribution of each individual to the likelihood is simply
 int npar=NPARMAX;    hPijx.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Also this programme outputs the covariance matrix of the parameters but also
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    of the life expectancies. It also computes the stable prevalence. 
 int popbased=0;    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int *wav; /* Number of waves for this individuual 0 is possible */             Institut national d'études démographiques, Paris.
 int maxwav; /* Maxim number of waves */    This software have been partly granted by Euro-REVES, a concerted action
 int jmin, jmax; /* min, max spacing between 2 waves */    from the European Union.
 int mle, weightopt;    It is copyrighted identically to a GNU software product, ie programme and
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    software can be distributed freely for non commercial use. Latest version
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    can be accessed at http://euroreves.ined.fr/imach .
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    
 FILE *ficgp,*ficresprob,*ficpop;    **********************************************************************/
 FILE *ficreseij;  /*
   char filerese[FILENAMELENGTH];    main
  FILE  *ficresvij;    read parameterfile
   char fileresv[FILENAMELENGTH];    read datafile
  FILE  *ficresvpl;    concatwav
   char fileresvpl[FILENAMELENGTH];    freqsummary
     if (mle >= 1)
 #define NR_END 1      mlikeli
 #define FREE_ARG char*    print results files
 #define FTOL 1.0e-10    if mle==1 
        computes hessian
 #define NRANSI    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define ITMAX 200        begin-prev-date,...
     open gnuplot file
 #define TOL 2.0e-4    open html file
     stable prevalence
 #define CGOLD 0.3819660     for age prevalim()
 #define ZEPS 1.0e-10    h Pij x
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 #define GOLD 1.618034    health expectancies
 #define GLIMIT 100.0    Variance-covariance of DFLE
 #define TINY 1.0e-20    prevalence()
      movingaverage()
 static double maxarg1,maxarg2;    varevsij() 
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    if popbased==1 varevsij(,popbased)
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    total life expectancies
      Variance of stable prevalence
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))   end
 #define rint(a) floor(a+0.5)  */
   
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   
   #include <math.h>
 int imx;  #include <stdio.h>
 int stepm;  #include <stdlib.h>
 /* Stepm, step in month: minimum step interpolation*/  #include <unistd.h>
   
 int estepm;  #include <sys/time.h>
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #include <time.h>
   #include "timeval.h"
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define MAXLINE 256
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define GNUPLOTPROGRAM "gnuplot"
 double **pmmij, ***probs, ***mobaverage;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double dateintmean=0;  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 double *weight;  /*#define windows*/
 int **s; /* Status */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double *agedc, **covar, idx;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double ftolhess; /* Tolerance for computing hessian */  
   #define NINTERVMAX 8
 /**************** split *************************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
    char *s;                             /* pointer */  #define MAXN 20000
    int  l1, l2;                         /* length counters */  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
    l1 = strlen( path );                 /* length of path */  #define AGEBASE 40
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #ifdef unix
 #ifdef windows  #define DIRSEPARATOR '/'
    s = strrchr( path, '\\' );           /* find last / */  #define ODIRSEPARATOR '\\'
 #else  #else
    s = strrchr( path, '/' );            /* find last / */  #define DIRSEPARATOR '\\'
 #endif  #define ODIRSEPARATOR '/'
    if ( s == NULL ) {                   /* no directory, so use current */  #endif
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  /* $Id$ */
   /* $State$ */
       if ( getwd( dirc ) == NULL ) {  
 #else  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
       extern char       *getcwd( );  char fullversion[]="$Revision$ $Date$"; 
   int erreur; /* Error number */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int nvar;
 #endif  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
          return( GLOCK_ERROR_GETCWD );  int npar=NPARMAX;
       }  int nlstate=2; /* Number of live states */
       strcpy( name, path );             /* we've got it */  int ndeath=1; /* Number of dead states */
    } else {                             /* strip direcotry from path */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       s++;                              /* after this, the filename */  int popbased=0;
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int *wav; /* Number of waves for this individuual 0 is possible */
       strcpy( name, s );                /* save file name */  int maxwav; /* Maxim number of waves */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int jmin, jmax; /* min, max spacing between 2 waves */
       dirc[l1-l2] = 0;                  /* add zero */  int gipmx, gsw; /* Global variables on the number of contributions 
    }                     to the likelihood and the sum of weights (done by funcone)*/
    l1 = strlen( dirc );                 /* length of directory */  int mle, weightopt;
 #ifdef windows  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #else  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #endif  double jmean; /* Mean space between 2 waves */
    s = strrchr( name, '.' );            /* find last / */  double **oldm, **newm, **savm; /* Working pointers to matrices */
    s++;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    strcpy(ext,s);                       /* save extension */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    l1= strlen( name);  FILE *ficlog, *ficrespow;
    l2= strlen( s)+1;  int globpr; /* Global variable for printing or not */
    strncpy( finame, name, l1-l2);  double fretone; /* Only one call to likelihood */
    finame[l1-l2]= 0;  long ipmx; /* Number of contributions */
    return( 0 );                         /* we're done */  double sw; /* Sum of weights */
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /******************************************/  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
 void replace(char *s, char*t)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   int i;  FILE  *ficresvij;
   int lg=20;  char fileresv[FILENAMELENGTH];
   i=0;  FILE  *ficresvpl;
   lg=strlen(t);  char fileresvpl[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char title[MAXLINE];
     (s[i] = t[i]);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   }  char tmpout[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 int nbocc(char *s, char occ)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int i,j=0;  char lfileres[FILENAMELENGTH];
   int lg=20;  char filelog[FILENAMELENGTH]; /* Log file */
   i=0;  char filerest[FILENAMELENGTH];
   lg=strlen(s);  char fileregp[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char popfile[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   return j;  
 }  #define NR_END 1
   #define FREE_ARG char*
 void cutv(char *u,char *v, char*t, char occ)  #define FTOL 1.0e-10
 {  
   int i,lg,j,p=0;  #define NRANSI 
   i=0;  #define ITMAX 200 
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define TOL 2.0e-4 
   }  
   #define CGOLD 0.3819660 
   lg=strlen(t);  #define ZEPS 1.0e-10 
   for(j=0; j<p; j++) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     (u[j] = t[j]);  
   }  #define GOLD 1.618034 
      u[p]='\0';  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  static double maxarg1,maxarg2;
   }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /********************** nrerror ********************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 void nrerror(char error_text[])  
 {  static double sqrarg;
   fprintf(stderr,"ERREUR ...\n");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   fprintf(stderr,"%s\n",error_text);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   exit(1);  
 }  int imx; 
 /*********************** vector *******************/  int stepm;
 double *vector(int nl, int nh)  /* Stepm, step in month: minimum step interpolation*/
 {  
   double *v;  int estepm;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 /************************ free vector ******************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void free_vector(double*v, int nl, int nh)  double **pmmij, ***probs;
 {  double dateintmean=0;
   free((FREE_ARG)(v+nl-NR_END));  
 }  double *weight;
   int **s; /* Status */
 /************************ivector *******************************/  double *agedc, **covar, idx;
 int *ivector(long nl,long nh)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  
   int *v;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double ftolhess; /* Tolerance for computing hessian */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /******************free ivector **************************/    char  *ss;                            /* pointer */
 void free_ivector(int *v, long nl, long nh)    int   l1, l2;                         /* length counters */
 {  
   free((FREE_ARG)(v+nl-NR_END));    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /******************* imatrix *******************************/    if ( ss == NULL ) {                   /* no directory, so use current */
 int **imatrix(long nrl, long nrh, long ncl, long nch)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      /*    extern  char* getcwd ( char *buf , int len);*/
   int **m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
   /* allocate pointers to rows */      }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      strcpy( name, path );               /* we've got it */
   if (!m) nrerror("allocation failure 1 in matrix()");    } else {                              /* strip direcotry from path */
   m += NR_END;      ss++;                               /* after this, the filename */
   m -= nrl;      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
   /* allocate rows and set pointers to them */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      dirc[l1-l2] = 0;                    /* add zero */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;    l1 = strlen( dirc );                  /* length of directory */
   m[nrl] -= ncl;    /*#ifdef windows
      if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #else
      if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   /* return pointer to array of pointers to rows */  #endif
   return m;    */
 }    ss = strrchr( name, '.' );            /* find last / */
     ss++;
 /****************** free_imatrix *************************/    strcpy(ext,ss);                       /* save extension */
 void free_imatrix(m,nrl,nrh,ncl,nch)    l1= strlen( name);
       int **m;    l2= strlen(ss)+1;
       long nch,ncl,nrh,nrl;    strncpy( finame, name, l1-l2);
      /* free an int matrix allocated by imatrix() */    finame[l1-l2]= 0;
 {    return( 0 );                          /* we're done */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  }
   free((FREE_ARG) (m+nrl-NR_END));  
 }  
   /******************************************/
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  void replace_back_to_slash(char *s, char*t)
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    int i;
   double **m;    int lg=0;
     i=0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    lg=strlen(t);
   if (!m) nrerror("allocation failure 1 in matrix()");    for(i=0; i<= lg; i++) {
   m += NR_END;      (s[i] = t[i]);
   m -= nrl;      if (t[i]== '\\') s[i]='/';
     }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int nbocc(char *s, char occ)
   m[nrl] -= ncl;  {
     int i,j=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int lg=20;
   return m;    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /*************************free matrix ************************/    if  (s[i] == occ ) j++;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    }
 {    return j;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  void cutv(char *u,char *v, char*t, char occ)
   {
 /******************* ma3x *******************************/    /* cuts string t into u and v where u is ended by char occ excluding it
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 {       gives u="abcedf" and v="ghi2j" */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    int i,lg,j,p=0;
   double ***m;    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!m) nrerror("allocation failure 1 in matrix()");    }
   m += NR_END;  
   m -= nrl;    lg=strlen(t);
     for(j=0; j<p; j++) {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      (u[j] = t[j]);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;       u[p]='\0';
   m[nrl] -= ncl;  
      for(j=0; j<= lg; j++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /********************** nrerror ********************/
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  void nrerror(char error_text[])
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      fprintf(stderr,"ERREUR ...\n");
   for (i=nrl+1; i<=nrh; i++) {    fprintf(stderr,"%s\n",error_text);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    exit(EXIT_FAILURE);
     for (j=ncl+1; j<=nch; j++)  }
       m[i][j]=m[i][j-1]+nlay;  /*********************** vector *******************/
   }  double *vector(int nl, int nh)
   return m;  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /*************************free ma3x ************************/    if (!v) nrerror("allocation failure in vector");
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    return v-nl+NR_END;
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /************************ free vector ******************/
   free((FREE_ARG)(m+nrl-NR_END));  void free_vector(double*v, int nl, int nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /***************** f1dim *************************/  }
 extern int ncom;  
 extern double *pcom,*xicom;  /************************ivector *******************************/
 extern double (*nrfunc)(double []);  int *ivector(long nl,long nh)
    {
 double f1dim(double x)    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   int j;    if (!v) nrerror("allocation failure in ivector");
   double f;    return v-nl+NR_END;
   double *xt;  }
    
   xt=vector(1,ncom);  /******************free ivector **************************/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  void free_ivector(int *v, long nl, long nh)
   f=(*nrfunc)(xt);  {
   free_vector(xt,1,ncom);    free((FREE_ARG)(v+nl-NR_END));
   return f;  }
 }  
   /************************lvector *******************************/
 /*****************brent *************************/  long *lvector(long nl,long nh)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    long *v;
   int iter;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double a,b,d,etemp;    if (!v) nrerror("allocation failure in ivector");
   double fu,fv,fw,fx;    return v-nl+NR_END;
   double ftemp;  }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  /******************free lvector **************************/
    void free_lvector(long *v, long nl, long nh)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    free((FREE_ARG)(v+nl-NR_END));
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /******************* imatrix *******************************/
     xm=0.5*(a+b);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  { 
     printf(".");fflush(stdout);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #ifdef DEBUG    int **m; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    /* allocate pointers to rows */ 
 #endif    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    if (!m) nrerror("allocation failure 1 in matrix()"); 
       *xmin=x;    m += NR_END; 
       return fx;    m -= nrl; 
     }    
     ftemp=fu;    
     if (fabs(e) > tol1) {    /* allocate rows and set pointers to them */ 
       r=(x-w)*(fx-fv);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       q=(x-v)*(fx-fw);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       p=(x-v)*q-(x-w)*r;    m[nrl] += NR_END; 
       q=2.0*(q-r);    m[nrl] -= ncl; 
       if (q > 0.0) p = -p;    
       q=fabs(q);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       etemp=e;    
       e=d;    /* return pointer to array of pointers to rows */ 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    return m; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  } 
       else {  
         d=p/q;  /****************** free_imatrix *************************/
         u=x+d;  void free_imatrix(m,nrl,nrh,ncl,nch)
         if (u-a < tol2 || b-u < tol2)        int **m;
           d=SIGN(tol1,xm-x);        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
     } else {  { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  } 
     fu=(*f)(u);  
     if (fu <= fx) {  /******************* matrix *******************************/
       if (u >= x) a=x; else b=x;  double **matrix(long nrl, long nrh, long ncl, long nch)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         } else {    double **m;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             v=w;    if (!m) nrerror("allocation failure 1 in matrix()");
             w=u;    m += NR_END;
             fv=fw;    m -= nrl;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             v=u;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             fv=fu;    m[nrl] += NR_END;
           }    m[nrl] -= ncl;
         }  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   nrerror("Too many iterations in brent");    return m;
   *xmin=x;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   return fx;     */
 }  }
   
 /****************** mnbrak ***********************/  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   double ulim,u,r,q, dum;  }
   double fu;  
    /******************* ma3x *******************************/
   *fa=(*func)(*ax);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     SHFT(dum,*ax,*bx,dum)    double ***m;
       SHFT(dum,*fb,*fa,dum)  
       }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!m) nrerror("allocation failure 1 in matrix()");
   *fc=(*func)(*cx);    m += NR_END;
   while (*fb > *fc) {    m -= nrl;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m[nrl] += NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] -= ncl;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       if (fu < *fc) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m[nrl][ncl] += NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))    m[nrl][ncl] -= nll;
           }    for (j=ncl+1; j<=nch; j++) 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      m[nrl][j]=m[nrl][j-1]+nlay;
       u=ulim;    
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) {
     } else {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       u=(*cx)+GOLD*(*cx-*bx);      for (j=ncl+1; j<=nch; j++) 
       fu=(*func)(u);        m[i][j]=m[i][j-1]+nlay;
     }    }
     SHFT(*ax,*bx,*cx,u)    return m; 
       SHFT(*fa,*fb,*fc,fu)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 }    */
   }
 /*************** linmin ************************/  
   /*************************free ma3x ************************/
 int ncom;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /***************** f1dim *************************/
   double f1dim(double x);  extern int ncom; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  extern double *pcom,*xicom;
               double *fc, double (*func)(double));  extern double (*nrfunc)(double []); 
   int j;   
   double xx,xmin,bx,ax;  double f1dim(double x) 
   double fx,fb,fa;  { 
      int j; 
   ncom=n;    double f;
   pcom=vector(1,n);    double *xt; 
   xicom=vector(1,n);   
   nrfunc=func;    xt=vector(1,ncom); 
   for (j=1;j<=n;j++) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     pcom[j]=p[j];    f=(*nrfunc)(xt); 
     xicom[j]=xi[j];    free_vector(xt,1,ncom); 
   }    return f; 
   ax=0.0;  } 
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /*****************brent *************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 #ifdef DEBUG  { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int iter; 
 #endif    double a,b,d,etemp;
   for (j=1;j<=n;j++) {    double fu,fv,fw,fx;
     xi[j] *= xmin;    double ftemp;
     p[j] += xi[j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   }    double e=0.0; 
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);    a=(ax < cx ? ax : cx); 
 }    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 /*************** powell ************************/    fw=fv=fx=(*f)(x); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for (iter=1;iter<=ITMAX;iter++) { 
             double (*func)(double []))      xm=0.5*(a+b); 
 {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   void linmin(double p[], double xi[], int n, double *fret,      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
               double (*func)(double []));      printf(".");fflush(stdout);
   int i,ibig,j;      fprintf(ficlog,".");fflush(ficlog);
   double del,t,*pt,*ptt,*xit;  #ifdef DEBUG
   double fp,fptt;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double *xits;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   pt=vector(1,n);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   ptt=vector(1,n);  #endif
   xit=vector(1,n);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   xits=vector(1,n);        *xmin=x; 
   *fret=(*func)(p);        return fx; 
   for (j=1;j<=n;j++) pt[j]=p[j];      } 
   for (*iter=1;;++(*iter)) {      ftemp=fu;
     fp=(*fret);      if (fabs(e) > tol1) { 
     ibig=0;        r=(x-w)*(fx-fv); 
     del=0.0;        q=(x-v)*(fx-fw); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        p=(x-v)*q-(x-w)*r; 
     for (i=1;i<=n;i++)        q=2.0*(q-r); 
       printf(" %d %.12f",i, p[i]);        if (q > 0.0) p = -p; 
     printf("\n");        q=fabs(q); 
     for (i=1;i<=n;i++) {        etemp=e; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        e=d; 
       fptt=(*fret);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 #ifdef DEBUG          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       printf("fret=%lf \n",*fret);        else { 
 #endif          d=p/q; 
       printf("%d",i);fflush(stdout);          u=x+d; 
       linmin(p,xit,n,fret,func);          if (u-a < tol2 || b-u < tol2) 
       if (fabs(fptt-(*fret)) > del) {            d=SIGN(tol1,xm-x); 
         del=fabs(fptt-(*fret));        } 
         ibig=i;      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #ifdef DEBUG      } 
       printf("%d %.12e",i,(*fret));      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       for (j=1;j<=n;j++) {      fu=(*f)(u); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      if (fu <= fx) { 
         printf(" x(%d)=%.12e",j,xit[j]);        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
       for(j=1;j<=n;j++)          SHFT(fv,fw,fx,fu) 
         printf(" p=%.12e",p[j]);          } else { 
       printf("\n");            if (u < x) a=u; else b=u; 
 #endif            if (fu <= fw || w == x) { 
     }              v=w; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {              w=u; 
 #ifdef DEBUG              fv=fw; 
       int k[2],l;              fw=fu; 
       k[0]=1;            } else if (fu <= fv || v == x || v == w) { 
       k[1]=-1;              v=u; 
       printf("Max: %.12e",(*func)(p));              fv=fu; 
       for (j=1;j<=n;j++)            } 
         printf(" %.12e",p[j]);          } 
       printf("\n");    } 
       for(l=0;l<=1;l++) {    nrerror("Too many iterations in brent"); 
         for (j=1;j<=n;j++) {    *xmin=x; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return fx; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  } 
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /****************** mnbrak ***********************/
       }  
 #endif  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   { 
       free_vector(xit,1,n);    double ulim,u,r,q, dum;
       free_vector(xits,1,n);    double fu; 
       free_vector(ptt,1,n);   
       free_vector(pt,1,n);    *fa=(*func)(*ax); 
       return;    *fb=(*func)(*bx); 
     }    if (*fb > *fa) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      SHFT(dum,*ax,*bx,dum) 
     for (j=1;j<=n;j++) {        SHFT(dum,*fb,*fa,dum) 
       ptt[j]=2.0*p[j]-pt[j];        } 
       xit[j]=p[j]-pt[j];    *cx=(*bx)+GOLD*(*bx-*ax); 
       pt[j]=p[j];    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
     fptt=(*func)(ptt);      r=(*bx-*ax)*(*fb-*fc); 
     if (fptt < fp) {      q=(*bx-*cx)*(*fb-*fa); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       if (t < 0.0) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         linmin(p,xit,n,fret,func);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         for (j=1;j<=n;j++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
           xi[j][ibig]=xi[j][n];        fu=(*func)(u); 
           xi[j][n]=xit[j];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         }        fu=(*func)(u); 
 #ifdef DEBUG        if (fu < *fc) { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         for(j=1;j<=n;j++)            SHFT(*fb,*fc,fu,(*func)(u)) 
           printf(" %.12e",xit[j]);            } 
         printf("\n");      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 #endif        u=ulim; 
       }        fu=(*func)(u); 
     }      } else { 
   }        u=(*cx)+GOLD*(*cx-*bx); 
 }        fu=(*func)(u); 
       } 
 /**** Prevalence limit ****************/      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        } 
 {  } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*************** linmin ************************/
   
   int i, ii,j,k;  int ncom; 
   double min, max, maxmin, maxmax,sumnew=0.;  double *pcom,*xicom;
   double **matprod2();  double (*nrfunc)(double []); 
   double **out, cov[NCOVMAX], **pmij();   
   double **newm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double agefin, delaymax=50 ; /* Max number of years to converge */  { 
     double brent(double ax, double bx, double cx, 
   for (ii=1;ii<=nlstate+ndeath;ii++)                 double (*f)(double), double tol, double *xmin); 
     for (j=1;j<=nlstate+ndeath;j++){    double f1dim(double x); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     }                double *fc, double (*func)(double)); 
     int j; 
    cov[1]=1.;    double xx,xmin,bx,ax; 
      double fx,fb,fa;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */   
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    ncom=n; 
     newm=savm;    pcom=vector(1,n); 
     /* Covariates have to be included here again */    xicom=vector(1,n); 
      cov[2]=agefin;    nrfunc=func; 
      for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovn;k++) {      pcom[j]=p[j]; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      xicom[j]=xi[j]; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    } 
       }    ax=0.0; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    xx=1.0; 
       for (k=1; k<=cptcovprod;k++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #endif
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
     savm=oldm;      p[j] += xi[j]; 
     oldm=newm;    } 
     maxmax=0.;    free_vector(xicom,1,n); 
     for(j=1;j<=nlstate;j++){    free_vector(pcom,1,n); 
       min=1.;  } 
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /*************** powell ************************/
         sumnew=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];              double (*func)(double [])) 
         prlim[i][j]= newm[i][j]/(1-sumnew);  { 
         max=FMAX(max,prlim[i][j]);    void linmin(double p[], double xi[], int n, double *fret, 
         min=FMIN(min,prlim[i][j]);                double (*func)(double [])); 
       }    int i,ibig,j; 
       maxmin=max-min;    double del,t,*pt,*ptt,*xit;
       maxmax=FMAX(maxmax,maxmin);    double fp,fptt;
     }    double *xits;
     if(maxmax < ftolpl){    pt=vector(1,n); 
       return prlim;    ptt=vector(1,n); 
     }    xit=vector(1,n); 
   }    xits=vector(1,n); 
 }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 /*************** transition probabilities ***************/    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      ibig=0; 
 {      del=0.0; 
   double s1, s2;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   /*double t34;*/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   int i,j,j1, nc, ii, jj;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       for (i=1;i<=n;i++) {
     for(i=1; i<= nlstate; i++){        printf(" %d %.12f",i, p[i]);
     for(j=1; j<i;j++){        fprintf(ficlog," %d %.12lf",i, p[i]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficrespow," %.12lf", p[i]);
         /*s2 += param[i][j][nc]*cov[nc];*/      }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      printf("\n");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      fprintf(ficlog,"\n");
       }      fprintf(ficrespow,"\n");
       ps[i][j]=s2;      for (i=1;i<=n;i++) { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
     for(j=i+1; j<=nlstate+ndeath;j++){  #ifdef DEBUG
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("fret=%lf \n",*fret);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog,"fret=%lf \n",*fret);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #endif
       }        printf("%d",i);fflush(stdout);
       ps[i][j]=s2;        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
     /*ps[3][2]=1;*/          del=fabs(fptt-(*fret)); 
           ibig=i; 
   for(i=1; i<= nlstate; i++){        } 
      s1=0;  #ifdef DEBUG
     for(j=1; j<i; j++)        printf("%d %.12e",i,(*fret));
       s1+=exp(ps[i][j]);        fprintf(ficlog,"%d %.12e",i,(*fret));
     for(j=i+1; j<=nlstate+ndeath; j++)        for (j=1;j<=n;j++) {
       s1+=exp(ps[i][j]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     ps[i][i]=1./(s1+1.);          printf(" x(%d)=%.12e",j,xit[j]);
     for(j=1; j<i; j++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        }
     for(j=i+1; j<=nlstate+ndeath; j++)        for(j=1;j<=n;j++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];          printf(" p=%.12e",p[j]);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          fprintf(ficlog," p=%.12e",p[j]);
   } /* end i */        }
         printf("\n");
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog,"\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){  #endif
       ps[ii][jj]=0;      } 
       ps[ii][ii]=1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     }  #ifdef DEBUG
   }        int k[2],l;
         k[0]=1;
         k[1]=-1;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        printf("Max: %.12e",(*func)(p));
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
      printf("%lf ",ps[ii][jj]);        for (j=1;j<=n;j++) {
    }          printf(" %.12e",p[j]);
     printf("\n ");          fprintf(ficlog," %.12e",p[j]);
     }        }
     printf("\n ");printf("%lf ",cov[2]);*/        printf("\n");
 /*        fprintf(ficlog,"\n");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        for(l=0;l<=1;l++) {
   goto end;*/          for (j=1;j<=n;j++) {
     return ps;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /**************** Product of 2 matrices ******************/          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #endif
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns        free_vector(xit,1,n); 
      a pointer to pointers identical to out */        free_vector(xits,1,n); 
   long i, j, k;        free_vector(ptt,1,n); 
   for(i=nrl; i<= nrh; i++)        free_vector(pt,1,n); 
     for(k=ncolol; k<=ncoloh; k++)        return; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      } 
         out[i][k] +=in[i][j]*b[j][k];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   return out;        ptt[j]=2.0*p[j]-pt[j]; 
 }        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
       } 
 /************* Higher Matrix Product ***************/      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 {        if (t < 0.0) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          linmin(p,xit,n,fret,func); 
      duration (i.e. until          for (j=1;j<=n;j++) { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            xi[j][ibig]=xi[j][n]; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            xi[j][n]=xit[j]; 
      (typically every 2 years instead of every month which is too big).          }
      Model is determined by parameters x and covariates have to be  #ifdef DEBUG
      included manually here.          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      */          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   int i, j, d, h, k;            fprintf(ficlog," %.12e",xit[j]);
   double **out, cov[NCOVMAX];          }
   double **newm;          printf("\n");
           fprintf(ficlog,"\n");
   /* Hstepm could be zero and should return the unit matrix */  #endif
   for (i=1;i<=nlstate+ndeath;i++)        }
     for (j=1;j<=nlstate+ndeath;j++){      } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  } 
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /**** Prevalence limit (stable prevalence)  ****************/
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       newm=savm;  {
       /* Covariates have to be included here again */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       cov[1]=1.;       matrix by transitions matrix until convergence is reached */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    int i, ii,j,k;
       for (k=1; k<=cptcovage;k++)    double min, max, maxmin, maxmax,sumnew=0.;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double **matprod2();
       for (k=1; k<=cptcovprod;k++)    double **out, cov[NCOVMAX], **pmij();
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      for (j=1;j<=nlstate+ndeath;j++){
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      }
       savm=oldm;  
       oldm=newm;     cov[1]=1.;
     }   
     for(i=1; i<=nlstate+ndeath; i++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(j=1;j<=nlstate+ndeath;j++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         po[i][j][h]=newm[i][j];      newm=savm;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      /* Covariates have to be included here again */
          */       cov[2]=agefin;
       }    
   } /* end h */        for (k=1; k<=cptcovn;k++) {
   return po;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /*************** log-likelihood *************/        for (k=1; k<=cptcovprod;k++)
 double func( double *x)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  
   int i, ii, j, k, mi, d, kk;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double **out;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double sw; /* Sum of weights */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double lli; /* Individual log likelihood */  
   long ipmx;      savm=oldm;
   /*extern weight */      oldm=newm;
   /* We are differentiating ll according to initial status */      maxmax=0.;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for(j=1;j<=nlstate;j++){
   /*for(i=1;i<imx;i++)        min=1.;
     printf(" %d\n",s[4][i]);        max=0.;
   */        for(i=1; i<=nlstate; i++) {
   cov[1]=1.;          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for(k=1; k<=nlstate; k++) ll[k]=0.;          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          max=FMAX(max,prlim[i][j]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          min=FMIN(min,prlim[i][j]);
     for(mi=1; mi<= wav[i]-1; mi++){        }
       for (ii=1;ii<=nlstate+ndeath;ii++)        maxmin=max-min;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        maxmax=FMAX(maxmax,maxmin);
       for(d=0; d<dh[mi][i]; d++){      }
         newm=savm;      if(maxmax < ftolpl){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        return prlim;
         for (kk=1; kk<=cptcovage;kk++) {      }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }
         }  }
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** transition probabilities ***************/ 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         oldm=newm;  {
            double s1, s2;
            /*double t34;*/
       } /* end mult */    int i,j,j1, nc, ii, jj;
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      for(i=1; i<= nlstate; i++){
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for(j=1; j<i;j++){
       ipmx +=1;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       sw += weight[i];          /*s2 += param[i][j][nc]*cov[nc];*/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     } /* end of wave */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   } /* end of individual */        }
         ps[i][j]=s2;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      for(j=i+1; j<=nlstate+ndeath;j++){
   return -l;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
 /*********** Maximum Likelihood Estimation ***************/        ps[i][j]=s2;
       }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }
 {      /*ps[3][2]=1;*/
   int i,j, iter;  
   double **xi,*delti;    for(i=1; i<= nlstate; i++){
   double fret;       s1=0;
   xi=matrix(1,npar,1,npar);      for(j=1; j<i; j++)
   for (i=1;i<=npar;i++)        s1+=exp(ps[i][j]);
     for (j=1;j<=npar;j++)      for(j=i+1; j<=nlstate+ndeath; j++)
       xi[i][j]=(i==j ? 1.0 : 0.0);        s1+=exp(ps[i][j]);
   printf("Powell\n");      ps[i][i]=1./(s1+1.);
   powell(p,xi,npar,ftol,&iter,&fret,func);      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(j=i+1; j<=nlstate+ndeath; j++)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 }    } /* end i */
   
 /**** Computes Hessian and covariance matrix ***/    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for(jj=1; jj<= nlstate+ndeath; jj++){
 {        ps[ii][jj]=0;
   double  **a,**y,*x,pd;        ps[ii][ii]=1;
   double **hess;      }
   int i, j,jk;    }
   int *indx;  
   
   double hessii(double p[], double delta, int theta, double delti[]);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   double hessij(double p[], double delti[], int i, int j);      for(jj=1; jj<= nlstate+ndeath; jj++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;       printf("%lf ",ps[ii][jj]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;     }
       printf("\n ");
   hess=matrix(1,npar,1,npar);      }
       printf("\n ");printf("%lf ",cov[2]);*/
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*
   for (i=1;i<=npar;i++){    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     printf("%d",i);fflush(stdout);    goto end;*/
     hess[i][i]=hessii(p,ftolhess,i,delti);      return ps;
     /*printf(" %f ",p[i]);*/  }
     /*printf(" %lf ",hess[i][i]);*/  
   }  /**************** Product of 2 matrices ******************/
    
   for (i=1;i<=npar;i++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (j=1;j<=npar;j++)  {  {
       if (j>i) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         printf(".%d%d",i,j);fflush(stdout);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         hess[i][j]=hessij(p,delti,i,j);    /* in, b, out are matrice of pointers which should have been initialized 
         hess[j][i]=hess[i][j];           before: only the contents of out is modified. The function returns
         /*printf(" %lf ",hess[i][j]);*/       a pointer to pointers identical to out */
       }    long i, j, k;
     }    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
   printf("\n");        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
      return out;
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  
   indx=ivector(1,npar);  /************* Higher Matrix Product ***************/
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   ludcmp(a,npar,indx,&pd);  {
     /* Computes the transition matrix starting at age 'age' over 
   for (j=1;j<=npar;j++) {       'nhstepm*hstepm*stepm' months (i.e. until
     for (i=1;i<=npar;i++) x[i]=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     x[j]=1;       nhstepm*hstepm matrices. 
     lubksb(a,npar,indx,x);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for (i=1;i<=npar;i++){       (typically every 2 years instead of every month which is too big 
       matcov[i][j]=x[i];       for the memory).
     }       Model is determined by parameters x and covariates have to be 
   }       included manually here. 
   
   printf("\n#Hessian matrix#\n");       */
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {    int i, j, d, h, k;
       printf("%.3e ",hess[i][j]);    double **out, cov[NCOVMAX];
     }    double **newm;
     printf("\n");  
   }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   /* Recompute Inverse */      for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        po[i][j][0]=(i==j ? 1.0 : 0.0);
   ludcmp(a,npar,indx,&pd);      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /*  printf("\n#Hessian matrix recomputed#\n");    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   for (j=1;j<=npar;j++) {        newm=savm;
     for (i=1;i<=npar;i++) x[i]=0;        /* Covariates have to be included here again */
     x[j]=1;        cov[1]=1.;
     lubksb(a,npar,indx,x);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (i=1;i<=npar;i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       y[i][j]=x[i];        for (k=1; k<=cptcovage;k++)
       printf("%.3e ",y[i][j]);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }        for (k=1; k<=cptcovprod;k++)
     printf("\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   */  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   free_matrix(a,1,npar,1,npar);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_matrix(y,1,npar,1,npar);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   free_vector(x,1,npar);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_ivector(indx,1,npar);        savm=oldm;
   free_matrix(hess,1,npar,1,npar);        oldm=newm;
       }
       for(i=1; i<=nlstate+ndeath; i++)
 }        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
 /*************** hessian matrix ****************/          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 double hessii( double x[], double delta, int theta, double delti[])           */
 {        }
   int i;    } /* end h */
   int l=1, lmax=20;    return po;
   double k1,k2;  }
   double p2[NPARMAX+1];  
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*************** log-likelihood *************/
   double fx;  double func( double *x)
   int k=0,kmax=10;  {
   double l1;    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   fx=func(x);    double **out;
   for (i=1;i<=npar;i++) p2[i]=x[i];    double sw; /* Sum of weights */
   for(l=0 ; l <=lmax; l++){    double lli; /* Individual log likelihood */
     l1=pow(10,l);    int s1, s2;
     delts=delt;    double bbh, survp;
     for(k=1 ; k <kmax; k=k+1){    long ipmx;
       delt = delta*(l1*k);    /*extern weight */
       p2[theta]=x[theta] +delt;    /* We are differentiating ll according to initial status */
       k1=func(p2)-fx;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       p2[theta]=x[theta]-delt;    /*for(i=1;i<imx;i++) 
       k2=func(p2)-fx;      printf(" %d\n",s[4][i]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */    */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    cov[1]=1.;
        
 #ifdef DEBUG    for(k=1; k<=nlstate; k++) ll[k]=0.;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif    if(mle==1){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         k=kmax;        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            for (j=1;j<=nlstate+ndeath;j++){
         k=kmax; l=lmax*10.;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            }
         delts=delt;          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   delti[theta]=delts;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   return res;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 double hessij( double x[], double delti[], int thetai,int thetaj)            oldm=newm;
 {          } /* end mult */
   int i;        
   int l=1, l1, lmax=20;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double k1,k2,k3,k4,res,fx;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double p2[NPARMAX+1];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int k;           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
   fx=func(x);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (k=1; k<=2; k++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for (i=1;i<=npar;i++) p2[i]=x[i];           * probability in order to take into account the bias as a fraction of the way
     p2[thetai]=x[thetai]+delti[thetai]/k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * -stepm/2 to stepm/2 .
     k1=func(p2)-fx;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetai]=x[thetai]+delti[thetai]/k;           */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          s1=s[mw[mi][i]][i];
     k2=func(p2)-fx;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetai]=x[thetai]-delti[thetai]/k;          /* bias is positive if real duration
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * is higher than the multiple of stepm and negative otherwise.
     k3=func(p2)-fx;           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p2[thetai]=x[thetai]-delti[thetai]/k;          if( s2 > nlstate){ 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     k4=func(p2)-fx;               to the likelihood is the probability to die between last step unit time and current 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */               step unit time, which is also the differences between probability to die before dh 
 #ifdef DEBUG               and probability to die before dh-stepm . 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);               In version up to 0.92 likelihood was computed
 #endif          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
   return res;          and not the date of a change in health state. The former idea was
 }          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
 /************** Inverse of matrix **************/          introduced the exact date of death then we should have modified
 void ludcmp(double **a, int n, int *indx, double *d)          the contribution of an exact death to the likelihood. This new
 {          contribution is smaller and very dependent of the step unit
   int i,imax,j,k;          stepm. It is no more the probability to die between last interview
   double big,dum,sum,temp;          and month of death but the probability to survive from last
   double *vv;          interview up to one month before death multiplied by the
            probability to die within a month. Thanks to Chris
   vv=vector(1,n);          Jackson for correcting this bug.  Former versions increased
   *d=1.0;          mortality artificially. The bad side is that we add another loop
   for (i=1;i<=n;i++) {          which slows down the processing. The difference can be up to 10%
     big=0.0;          lower mortality.
     for (j=1;j<=n;j++)            */
       if ((temp=fabs(a[i][j])) > big) big=temp;            lli=log(out[s1][s2] - savm[s1][s2]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          }else{
     vv[i]=1.0/big;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for (j=1;j<=n;j++) {          } 
     for (i=1;i<j;i++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       sum=a[i][j];          /*if(lli ==000.0)*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       a[i][j]=sum;          ipmx +=1;
     }          sw += weight[i];
     big=0.0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=j;i<=n;i++) {        } /* end of wave */
       sum=a[i][j];      } /* end of individual */
       for (k=1;k<j;k++)    }  else if(mle==2){
         sum -= a[i][k]*a[k][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       a[i][j]=sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(mi=1; mi<= wav[i]-1; mi++){
         big=dum;          for (ii=1;ii<=nlstate+ndeath;ii++)
         imax=i;            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (j != imax) {            }
       for (k=1;k<=n;k++) {          for(d=0; d<=dh[mi][i]; d++){
         dum=a[imax][k];            newm=savm;
         a[imax][k]=a[j][k];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         a[j][k]=dum;            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       *d = -(*d);            }
       vv[imax]=vv[j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     indx[j]=imax;            savm=oldm;
     if (a[j][j] == 0.0) a[j][j]=TINY;            oldm=newm;
     if (j != n) {          } /* end mult */
       dum=1.0/(a[j][j]);        
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias and large stepm.
   }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   free_vector(vv,1,n);  /* Doesn't work */           * (in months) between two waves is not a multiple of stepm, we rounded to 
 ;           * the nearest (and in case of equal distance, to the lowest) interval but now
 }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 void lubksb(double **a, int n, int *indx, double b[])           * probability in order to take into account the bias as a fraction of the way
 {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   int i,ii=0,ip,j;           * -stepm/2 to stepm/2 .
   double sum;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   for (i=1;i<=n;i++) {           */
     ip=indx[i];          s1=s[mw[mi][i]][i];
     sum=b[ip];          s2=s[mw[mi+1][i]][i];
     b[ip]=b[i];          bbh=(double)bh[mi][i]/(double)stepm; 
     if (ii)          /* bias is positive if real duration
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * is higher than the multiple of stepm and negative otherwise.
     else if (sum) ii=i;           */
     b[i]=sum;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for (i=n;i>=1;i--) {          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     sum=b[i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /*if(lli ==000.0)*/
     b[i]=sum/a[i][i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /************ Frequencies ********************/        } /* end of wave */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      } /* end of individual */
 {  /* Some frequencies */    }  else if(mle==3){  /* exponential inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***freq; /* Frequencies */        for(mi=1; mi<= wav[i]-1; mi++){
   double *pp;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double pos, k2, dateintsum=0,k2cpt=0;            for (j=1;j<=nlstate+ndeath;j++){
   FILE *ficresp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileresp[FILENAMELENGTH];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   pp=vector(1,nlstate);          for(d=0; d<dh[mi][i]; d++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            newm=savm;
   strcpy(fileresp,"p");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcat(fileresp,fileres);            for (kk=1; kk<=cptcovage;kk++) {
   if((ficresp=fopen(fileresp,"w"))==NULL) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("Problem with prevalence resultfile: %s\n", fileresp);            }
     exit(0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            savm=oldm;
   j1=0;            oldm=newm;
            } /* end mult */
   j=cptcoveff;        
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
   for(k1=1; k1<=j;k1++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(i1=1; i1<=ncodemax[k1];i1++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       j1++;           * the nearest (and in case of equal distance, to the lowest) interval but now
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         scanf("%d", i);*/           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       for (i=-1; i<=nlstate+ndeath; i++)             * probability in order to take into account the bias as a fraction of the way
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
           for(m=agemin; m <= agemax+3; m++)           * -stepm/2 to stepm/2 .
             freq[i][jk][m]=0;           * For stepm=1 the results are the same as for previous versions of Imach.
                 * For stepm > 1 the results are less biased than in previous versions. 
       dateintsum=0;           */
       k2cpt=0;          s1=s[mw[mi][i]][i];
       for (i=1; i<=imx; i++) {          s2=s[mw[mi+1][i]][i];
         bool=1;          bbh=(double)bh[mi][i]/(double)stepm; 
         if  (cptcovn>0) {          /* bias is positive if real duration
           for (z1=1; z1<=cptcoveff; z1++)           * is higher than the multiple of stepm and negative otherwise.
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           */
               bool=0;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if (bool==1) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=firstpass; m<=lastpass; m++){          /*if(lli ==000.0)*/
             k2=anint[m][i]+(mint[m][i]/12.);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ipmx +=1;
               if(agev[m][i]==0) agev[m][i]=agemax+1;          sw += weight[i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if (m<lastpass) {        } /* end of wave */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      } /* end of individual */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for(mi=1; mi<= wav[i]-1; mi++){
                 dateintsum=dateintsum+k2;          for (ii=1;ii<=nlstate+ndeath;ii++)
                 k2cpt++;            for (j=1;j<=nlstate+ndeath;j++){
               }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if  (cptcovn>0) {            }
         fprintf(ficresp, "\n#********** Variable ");          
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresp, "**********\n#");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       for(i=1; i<=nlstate;i++)            oldm=newm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          } /* end mult */
       fprintf(ficresp, "\n");        
                s1=s[mw[mi][i]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){          s2=s[mw[mi+1][i]][i];
         if(i==(int)agemax+3)          if( s2 > nlstate){ 
           printf("Total");            lli=log(out[s1][s2] - savm[s1][s2]);
         else          }else{
           printf("Age %d", i);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ipmx +=1;
             pp[jk] += freq[jk][m][i];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1; jk <=nlstate ; jk++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(m=-1, pos=0; m <=0 ; m++)        } /* end of wave */
             pos += freq[jk][m][i];      } /* end of individual */
           if(pp[jk]>=1.e-10)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];            }
         }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
         for(jk=1,pos=0; jk <=nlstate ; jk++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           pos += pp[jk];            for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if(pos>=1.e-5)            }
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          
           else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if( i <= (int) agemax){            savm=oldm;
             if(pos>=1.e-5){            oldm=newm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          } /* end mult */
               probs[i][jk][j1]= pp[jk]/pos;        
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
             else          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } /* end of wave */
           for(m=-1; m <=nlstate+ndeath; m++)      } /* end of individual */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    } /* End of if */
         if(i <= (int) agemax)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           fprintf(ficresp,"\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         printf("\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    return -l;
     }  }
   }  
   dateintmean=dateintsum/k2cpt;  /*************** log-likelihood *************/
    double funcone( double *x)
   fclose(ficresp);  {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* Same as likeli but slower because of a lot of printf and if */
   free_vector(pp,1,nlstate);    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   /* End of Freq */    double **out;
 }    double lli; /* Individual log likelihood */
     double llt;
 /************ Prevalence ********************/    int s1, s2;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    double bbh, survp;
 {  /* Some frequencies */    /*extern weight */
      /* We are differentiating ll according to initial status */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double ***freq; /* Frequencies */    /*for(i=1;i<imx;i++) 
   double *pp;      printf(" %d\n",s[4][i]);
   double pos, k2;    */
     cov[1]=1.;
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   j1=0;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   j=cptcoveff;        for (ii=1;ii<=nlstate+ndeath;ii++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for(k1=1; k1<=j;k1++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){          }
       j1++;        for(d=0; d<dh[mi][i]; d++){
            newm=savm;
       for (i=-1; i<=nlstate+ndeath; i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for (kk=1; kk<=cptcovage;kk++) {
           for(m=agemin; m <= agemax+3; m++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             freq[i][jk][m]=0;          }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (i=1; i<=imx; i++) {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         bool=1;          savm=oldm;
         if  (cptcovn>0) {          oldm=newm;
           for (z1=1; z1<=cptcoveff; z1++)        } /* end mult */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        
               bool=0;        s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
         if (bool==1) {        bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=firstpass; m<=lastpass; m++){        /* bias is positive if real duration
             k2=anint[m][i]+(mint[m][i]/12.);         * is higher than the multiple of stepm and negative otherwise.
             if ((k2>=dateprev1) && (k2<=dateprev2)) {         */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          lli=log(out[s1][s2] - savm[s1][s2]);
               if (m<lastpass)        } else if (mle==1){
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               else        } else if(mle==2){
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        } else if(mle==3){  /* exponential inter-extrapolation */
             }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         }          lli=log(out[s1][s2]); /* Original formula */
       }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for(i=(int)agemin; i <= (int)agemax+3; i++){          lli=log(out[s1][s2]); /* Original formula */
           for(jk=1; jk <=nlstate ; jk++){        } /* End of if */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        ipmx +=1;
               pp[jk] += freq[jk][m][i];        sw += weight[i];
           }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(jk=1; jk <=nlstate ; jk++){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             for(m=-1, pos=0; m <=0 ; m++)        if(globpr){
             pos += freq[jk][m][i];          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         }   %10.6f %10.6f %10.6f ", \
                          num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
          for(jk=1; jk <=nlstate ; jk++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
              pp[jk] += freq[jk][m][i];            llt +=ll[k]*gipmx/gsw;
          }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                    }
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          fprintf(ficresilk," %10.6f\n", -llt);
         }
          for(jk=1; jk <=nlstate ; jk++){                } /* end of wave */
            if( i <= (int) agemax){    } /* end of individual */
              if(pos>=1.e-5){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                probs[i][jk][j1]= pp[jk]/pos;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
              }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
            }    if(globpr==0){ /* First time we count the contributions and weights */
          }      gipmx=ipmx;
                gsw=sw;
         }    }
     }    return -l;
   }  }
   
    char *subdirf(char fileres[])
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  {
   free_vector(pp,1,nlstate);    
      strcpy(tmpout,optionfilefiname);
 }  /* End of Freq */    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
 /************* Waves Concatenation ***************/    return tmpout;
   }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  char *subdirf2(char fileres[], char *preop)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  {
      Death is a valid wave (if date is known).    
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    strcpy(tmpout,optionfilefiname);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    strcat(tmpout,"/");
      and mw[mi+1][i]. dh depends on stepm.    strcat(tmpout,preop);
      */    strcat(tmpout,fileres);
     return tmpout;
   int i, mi, m;  }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  char *subdirf3(char fileres[], char *preop, char *preop2)
      double sum=0., jmean=0.;*/  {
     
   int j, k=0,jk, ju, jl;    strcpy(tmpout,optionfilefiname);
   double sum=0.;    strcat(tmpout,"/");
   jmin=1e+5;    strcat(tmpout,preop);
   jmax=-1;    strcat(tmpout,preop2);
   jmean=0.;    strcat(tmpout,fileres);
   for(i=1; i<=imx; i++){    return tmpout;
     mi=0;  }
     m=firstpass;  
     while(s[m][i] <= nlstate){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       if(s[m][i]>=1)  {
         mw[++mi][i]=m;    /* This routine should help understanding what is done with 
       if(m >=lastpass)       the selection of individuals/waves and
         break;       to check the exact contribution to the likelihood.
       else       Plotting could be done.
         m++;     */
     }/* end while */    int k;
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */    if(*globpri !=0){ /* Just counts and sums, no printings */
       /* if(mi==0)  never been interviewed correctly before death */      strcpy(fileresilk,"ilk"); 
          /* Only death is a correct wave */      strcat(fileresilk,fileres);
       mw[mi][i]=m;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     }        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     wav[i]=mi;      }
     if(mi==0)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
   for(i=1; i<=imx; i++){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for(mi=1; mi<wav[i];mi++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       if (stepm <=0)    }
         dh[mi][i]=1;  
       else{    *fretone=(*funcone)(p);
         if (s[mw[mi+1][i]][i] > nlstate) {    if(*globpri !=0){
           if (agedc[i] < 2*AGESUP) {      fclose(ficresilk);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           if(j==0) j=1;  /* Survives at least one month after exam */      fflush(fichtm); 
           k=k+1;    } 
           if (j >= jmax) jmax=j;    return;
           if (j <= jmin) jmin=j;  }
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }  /*********** Maximum Likelihood Estimation ***************/
         }  
         else{  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  {
           k=k+1;    int i,j, iter;
           if (j >= jmax) jmax=j;    double **xi;
           else if (j <= jmin)jmin=j;    double fret;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double fretone; /* Only one call to likelihood */
           sum=sum+j;    char filerespow[FILENAMELENGTH];
         }    xi=matrix(1,npar,1,npar);
         jk= j/stepm;    for (i=1;i<=npar;i++)
         jl= j -jk*stepm;      for (j=1;j<=npar;j++)
         ju= j -(jk+1)*stepm;        xi[i][j]=(i==j ? 1.0 : 0.0);
         if(jl <= -ju)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
           dh[mi][i]=jk;    strcpy(filerespow,"pow"); 
         else    strcat(filerespow,fileres);
           dh[mi][i]=jk+1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         if(dh[mi][i]==0)      printf("Problem with resultfile: %s\n", filerespow);
           dh[mi][i]=1; /* At least one step */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }    }
     }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   }    for (i=1;i<=nlstate;i++)
   jmean=sum/k;      for(j=1;j<=nlstate+ndeath;j++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
  }    fprintf(ficrespow,"\n");
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)    powell(p,xi,npar,ftol,&iter,&fret,func);
 {  
   int Ndum[20],ij=1, k, j, i;    fclose(ficrespow);
   int cptcode=0;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   cptcoveff=0;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  }
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /**** Computes Hessian and covariance matrix ***/
     for (i=1; i<=imx; i++) {  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       ij=(int)(covar[Tvar[j]][i]);  {
       Ndum[ij]++;    double  **a,**y,*x,pd;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double **hess;
       if (ij > cptcode) cptcode=ij;    int i, j,jk;
     }    int *indx;
   
     for (i=0; i<=cptcode; i++) {    double hessii(double p[], double delta, int theta, double delti[]);
       if(Ndum[i]!=0) ncodemax[j]++;    double hessij(double p[], double delti[], int i, int j);
     }    void lubksb(double **a, int npar, int *indx, double b[]) ;
     ij=1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   
     hess=matrix(1,npar,1,npar);
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {    printf("\nCalculation of the hessian matrix. Wait...\n");
         if (Ndum[k] != 0) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           nbcode[Tvar[j]][ij]=k;    for (i=1;i<=npar;i++){
                printf("%d",i);fflush(stdout);
           ij++;      fprintf(ficlog,"%d",i);fflush(ficlog);
         }      hess[i][i]=hessii(p,ftolhess,i,delti);
         if (ij > ncodemax[j]) break;      /*printf(" %f ",p[i]);*/
       }        /*printf(" %lf ",hess[i][i]);*/
     }    }
   }      
     for (i=1;i<=npar;i++) {
  for (k=0; k<19; k++) Ndum[k]=0;      for (j=1;j<=npar;j++)  {
         if (j>i) { 
  for (i=1; i<=ncovmodel-2; i++) {          printf(".%d%d",i,j);fflush(stdout);
       ij=Tvar[i];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       Ndum[ij]++;          hess[i][j]=hessij(p,delti,i,j);
     }          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
  ij=1;        }
  for (i=1; i<=10; i++) {      }
    if((Ndum[i]!=0) && (i<=ncovcol)){    }
      Tvaraff[ij]=i;    printf("\n");
      ij++;    fprintf(ficlog,"\n");
    }  
  }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     cptcoveff=ij-1;    
 }    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
 /*********** Health Expectancies ****************/    x=vector(1,npar);
     indx=ivector(1,npar);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 {    ludcmp(a,npar,indx,&pd);
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    for (j=1;j<=npar;j++) {
   double age, agelim, hf;      for (i=1;i<=npar;i++) x[i]=0;
   double ***p3mat,***varhe;      x[j]=1;
   double **dnewm,**doldm;      lubksb(a,npar,indx,x);
   double *xp;      for (i=1;i<=npar;i++){ 
   double **gp, **gm;        matcov[i][j]=x[i];
   double ***gradg, ***trgradg;      }
   int theta;    }
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    printf("\n#Hessian matrix#\n");
   xp=vector(1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   dnewm=matrix(1,nlstate*2,1,npar);    for (i=1;i<=npar;i++) { 
   doldm=matrix(1,nlstate*2,1,nlstate*2);      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
   fprintf(ficreseij,"# Health expectancies\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
   fprintf(ficreseij,"# Age");      }
   for(i=1; i<=nlstate;i++)      printf("\n");
     for(j=1; j<=nlstate;j++)      fprintf(ficlog,"\n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    }
   fprintf(ficreseij,"\n");  
     /* Recompute Inverse */
   if(estepm < stepm){    for (i=1;i<=npar;i++)
     printf ("Problem %d lower than %d\n",estepm, stepm);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   }    ludcmp(a,npar,indx,&pd);
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    /*  printf("\n#Hessian matrix recomputed#\n");
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    for (j=1;j<=npar;j++) {
    * we are calculating an estimate of the Life Expectancy assuming a linear      for (i=1;i<=npar;i++) x[i]=0;
    * progression inbetween and thus overestimating or underestimating according      x[j]=1;
    * to the curvature of the survival function. If, for the same date, we      lubksb(a,npar,indx,x);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      for (i=1;i<=npar;i++){ 
    * to compare the new estimate of Life expectancy with the same linear        y[i][j]=x[i];
    * hypothesis. A more precise result, taking into account a more precise        printf("%.3e ",y[i][j]);
    * curvature will be obtained if estepm is as small as stepm. */        fprintf(ficlog,"%.3e ",y[i][j]);
       }
   /* For example we decided to compute the life expectancy with the smallest unit */      printf("\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficlog,"\n");
      nhstepm is the number of hstepm from age to agelim    }
      nstepm is the number of stepm from age to agelin.    */
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */    free_matrix(a,1,npar,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    free_matrix(y,1,npar,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    free_vector(x,1,npar);
      means that if the survival funtion is printed only each two years of age and if    free_ivector(indx,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    free_matrix(hess,1,npar,1,npar);
      results. So we changed our mind and took the option of the best precision.  
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  }
   
   agelim=AGESUP;  /*************** hessian matrix ****************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  double hessii( double x[], double delta, int theta, double delti[])
     /* nhstepm age range expressed in number of stepm */  {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int i;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    int l=1, lmax=20;
     /* if (stepm >= YEARM) hstepm=1;*/    double k1,k2;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double p2[NPARMAX+1];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double res;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     gp=matrix(0,nhstepm,1,nlstate*2);    double fx;
     gm=matrix(0,nhstepm,1,nlstate*2);    int k=0,kmax=10;
     double l1;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    fx=func(x);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
     /* Computing Variances of health expectancies */        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
      for(theta=1; theta <=npar; theta++){        k1=func(p2)-fx;
       for(i=1; i<=npar; i++){        p2[theta]=x[theta]-delt;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        k2=func(p2)-fx;
       }        /*res= (k1-2.0*fx+k2)/delt/delt; */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          
       cptj=0;  #ifdef DEBUG
       for(j=1; j<= nlstate; j++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(i=1; i<=nlstate; i++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           cptj=cptj+1;  #endif
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           }          k=kmax;
         }        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                k=kmax; l=lmax*10.;
              }
       for(i=1; i<=npar; i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          delts=delt;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
            }
       cptj=0;    }
       for(j=1; j<= nlstate; j++){    delti[theta]=delts;
         for(i=1;i<=nlstate;i++){    return res; 
           cptj=cptj+1;    
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  double hessij( double x[], double delti[], int thetai,int thetaj)
         }  {
       }    int i;
          int l=1, l1, lmax=20;
        double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
       for(j=1; j<= nlstate*2; j++)    int k;
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fx=func(x);
         }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
      }      p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 /* End theta */      k1=func(p2)-fx;
     
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      for(h=0; h<=nhstepm-1; h++)      k2=func(p2)-fx;
       for(j=1; j<=nlstate*2;j++)    
         for(theta=1; theta <=npar; theta++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         trgradg[h][j][theta]=gradg[h][theta][j];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
     
      for(i=1;i<=nlstate*2;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1;j<=nlstate*2;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         varhe[i][j][(int)age] =0.;      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(h=0;h<=nhstepm-1;h++){  #ifdef DEBUG
       for(k=0;k<=nhstepm-1;k++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  #endif
         for(i=1;i<=nlstate*2;i++)    }
           for(j=1;j<=nlstate*2;j++)    return res;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  }
       }  
     }  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
        { 
     /* Computing expectancies */    int i,imax,j,k; 
     for(i=1; i<=nlstate;i++)    double big,dum,sum,temp; 
       for(j=1; j<=nlstate;j++)    double *vv; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){   
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    vv=vector(1,n); 
              *d=1.0; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (i=1;i<=n;i++) { 
       big=0.0; 
         }      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
     fprintf(ficreseij,"%3.0f",age );      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     cptj=0;      vv[i]=1.0/big; 
     for(i=1; i<=nlstate;i++)    } 
       for(j=1; j<=nlstate;j++){    for (j=1;j<=n;j++) { 
         cptj++;      for (i=1;i<j;i++) { 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        sum=a[i][j]; 
       }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     fprintf(ficreseij,"\n");        a[i][j]=sum; 
          } 
     free_matrix(gm,0,nhstepm,1,nlstate*2);      big=0.0; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);      for (i=j;i<=n;i++) { 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        sum=a[i][j]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        for (k=1;k<j;k++) 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
   free_vector(xp,1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   free_matrix(dnewm,1,nlstate*2,1,npar);          big=dum; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          imax=i; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        } 
 }      } 
       if (j != imax) { 
 /************ Variance ******************/        for (k=1;k<=n;k++) { 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          dum=a[imax][k]; 
 {          a[imax][k]=a[j][k]; 
   /* Variance of health expectancies */          a[j][k]=dum; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } 
   double **newm;        *d = -(*d); 
   double **dnewm,**doldm;        vv[imax]=vv[j]; 
   int i, j, nhstepm, hstepm, h, nstepm ;      } 
   int k, cptcode;      indx[j]=imax; 
   double *xp;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double **gp, **gm;      if (j != n) { 
   double ***gradg, ***trgradg;        dum=1.0/(a[j][j]); 
   double ***p3mat;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double age,agelim, hf;      } 
   int theta;    } 
     free_vector(vv,1,n);  /* Doesn't work */
    fprintf(ficresvij,"# Covariances of life expectancies\n");  ;
   fprintf(ficresvij,"# Age");  } 
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  void lubksb(double **a, int n, int *indx, double b[]) 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  { 
   fprintf(ficresvij,"\n");    int i,ii=0,ip,j; 
     double sum; 
   xp=vector(1,npar);   
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
   doldm=matrix(1,nlstate,1,nlstate);      ip=indx[i]; 
        sum=b[ip]; 
   if(estepm < stepm){      b[ip]=b[i]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);      if (ii) 
   }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   else  hstepm=estepm;        else if (sum) ii=i; 
   /* For example we decided to compute the life expectancy with the smallest unit */      b[i]=sum; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    } 
      nhstepm is the number of hstepm from age to agelim    for (i=n;i>=1;i--) { 
      nstepm is the number of stepm from age to agelin.      sum=b[i]; 
      Look at hpijx to understand the reason of that which relies in memory size      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      and note for a fixed period like k years */      b[i]=sum/a[i][i]; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    } 
      survival function given by stepm (the optimization length). Unfortunately it  } 
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  /************ Frequencies ********************/
      results. So we changed our mind and took the option of the best precision.  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   */  {  /* Some frequencies */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
   agelim = AGESUP;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int first;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double ***freq; /* Frequencies */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double *pp, **prop;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    FILE *ficresp;
     gp=matrix(0,nhstepm,1,nlstate);    char fileresp[FILENAMELENGTH];
     gm=matrix(0,nhstepm,1,nlstate);    
     pp=vector(1,nlstate);
     for(theta=1; theta <=npar; theta++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(i=1; i<=npar; i++){ /* Computes gradient */    strcpy(fileresp,"p");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    strcat(fileresp,fileres);
       }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf("Problem with prevalence resultfile: %s\n", fileresp);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
           prlim[i][i]=probs[(int)age][i][ij];    j1=0;
       }    
      j=cptcoveff;
       for(j=1; j<= nlstate; j++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    first=1;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
       for(i=1; i<=npar; i++) /* Computes gradient */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          scanf("%d", i);*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (i=-1; i<=nlstate+ndeath; i++)  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
       if (popbased==1) {              freq[i][jk][m]=0;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];      for (i=1; i<=nlstate; i++)  
       }        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
       for(j=1; j<= nlstate; j++){        
         for(h=0; h<=nhstepm; h++){        dateintsum=0;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        k2cpt=0;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        for (i=1; i<=imx; i++) {
         }          bool=1;
       }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
       for(j=1; j<= nlstate; j++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(h=0; h<=nhstepm; h++){                bool=0;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }          if (bool==1){
     } /* End theta */            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(h=0; h<=nhstepm; h++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(j=1; j<=nlstate;j++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for(theta=1; theta <=npar; theta++)                if (m<lastpass) {
           trgradg[h][j][theta]=gradg[h][theta][j];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                }
     for(i=1;i<=nlstate;i++)                
       for(j=1;j<=nlstate;j++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         vareij[i][j][(int)age] =0.;                  dateintsum=dateintsum+k2;
                   k2cpt++;
     for(h=0;h<=nhstepm;h++){                }
       for(k=0;k<=nhstepm;k++){                /*}*/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          }
         for(i=1;i<=nlstate;i++)        }
           for(j=1;j<=nlstate;j++)         
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }  
     }        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     fprintf(ficresvij,"%.0f ",age );          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(i=1; i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
       for(j=1; j<=nlstate;j++){        }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        for(i=1; i<=nlstate;i++) 
       }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficresvij,"\n");        fprintf(ficresp, "\n");
     free_matrix(gp,0,nhstepm,1,nlstate);        
     free_matrix(gm,0,nhstepm,1,nlstate);        for(i=iagemin; i <= iagemax+3; i++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          if(i==iagemax+3){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            fprintf(ficlog,"Total");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{
   } /* End age */            if(first==1){
                first=0;
   free_vector(xp,1,npar);              printf("See log file for details...\n");
   free_matrix(doldm,1,nlstate,1,npar);            }
   free_matrix(dnewm,1,nlstate,1,nlstate);            fprintf(ficlog,"Age %d", i);
           }
 }          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 /************ Variance of prevlim ******************/              pp[jk] += freq[jk][m][i]; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          }
 {          for(jk=1; jk <=nlstate ; jk++){
   /* Variance of prevalence limit */            for(m=-1, pos=0; m <=0 ; m++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              pos += freq[jk][m][i];
   double **newm;            if(pp[jk]>=1.e-10){
   double **dnewm,**doldm;              if(first==1){
   int i, j, nhstepm, hstepm;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int k, cptcode;              }
   double *xp;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double *gp, *gm;            }else{
   double **gradg, **trgradg;              if(first==1)
   double age,agelim;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int theta;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          }
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresvpl," %1d-%1d",i,i);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fprintf(ficresvpl,"\n");              pp[jk] += freq[jk][m][i];
           }       
   xp=vector(1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   dnewm=matrix(1,nlstate,1,npar);            pos += pp[jk];
   doldm=matrix(1,nlstate,1,nlstate);            posprop += prop[jk][i];
            }
   hstepm=1*YEARM; /* Every year of age */          for(jk=1; jk <=nlstate ; jk++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            if(pos>=1.e-5){
   agelim = AGESUP;              if(first==1)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     if (stepm >= YEARM) hstepm=1;            }else{
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              if(first==1)
     gradg=matrix(1,npar,1,nlstate);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     gp=vector(1,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     gm=vector(1,nlstate);            }
             if( i <= iagemax){
     for(theta=1; theta <=npar; theta++){              if(pos>=1.e-5){
       for(i=1; i<=npar; i++){ /* Computes gradient */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              }
       for(i=1;i<=nlstate;i++)              else
         gp[i] = prlim[i][i];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                }
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=-1; jk <=nlstate+ndeath; jk++)
       for(i=1;i<=nlstate;i++)            for(m=-1; m <=nlstate+ndeath; m++)
         gm[i] = prlim[i][i];              if(freq[jk][m][i] !=0 ) {
               if(first==1)
       for(i=1;i<=nlstate;i++)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     } /* End theta */              }
           if(i <= iagemax)
     trgradg =matrix(1,nlstate,1,npar);            fprintf(ficresp,"\n");
           if(first==1)
     for(j=1; j<=nlstate;j++)            printf("Others in log...\n");
       for(theta=1; theta <=npar; theta++)          fprintf(ficlog,"\n");
         trgradg[j][theta]=gradg[theta][j];        }
       }
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;    dateintmean=dateintsum/k2cpt; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);   
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    fclose(ficresp);
     for(i=1;i<=nlstate;i++)    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     fprintf(ficresvpl,"%.0f ",age );    /* End of Freq */
     for(i=1; i<=nlstate;i++)  }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  /************ Prevalence ********************/
     free_vector(gp,1,nlstate);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     free_vector(gm,1,nlstate);  {  
     free_matrix(gradg,1,npar,1,nlstate);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     free_matrix(trgradg,1,nlstate,1,npar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   } /* End age */       We still use firstpass and lastpass as another selection.
     */
   free_vector(xp,1,npar);   
   free_matrix(doldm,1,nlstate,1,npar);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double ***freq; /* Frequencies */
     double *pp, **prop;
 }    double pos,posprop; 
     double  y2; /* in fractional years */
 /************ Variance of one-step probabilities  ******************/    int iagemin, iagemax;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {    iagemin= (int) agemin;
   int i, j, i1, k1, j1, z1;    iagemax= (int) agemax;
   int k=0, cptcode;    /*pp=vector(1,nlstate);*/
   double **dnewm,**doldm;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double *xp;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double *gp, *gm;    j1=0;
   double **gradg, **trgradg;    
   double age,agelim, cov[NCOVMAX];    j=cptcoveff;
   int theta;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   char fileresprob[FILENAMELENGTH];    
     for(k1=1; k1<=j;k1++){
   strcpy(fileresprob,"prob");      for(i1=1; i1<=ncodemax[k1];i1++){
   strcat(fileresprob,fileres);        j1++;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        
     printf("Problem with resultfile: %s\n", fileresprob);        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            prop[i][m]=0.0;
         
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        for (i=1; i<=imx; i++) { /* Each individual */
   fprintf(ficresprob,"# Age");          bool=1;
   for(i=1; i<=nlstate;i++)          if  (cptcovn>0) {
     for(j=1; j<=(nlstate+ndeath);j++)            for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
           } 
   fprintf(ficresprob,"\n");          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   xp=vector(1,npar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   cov[1]=1;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   j=cptcoveff;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   j1=0;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   for(k1=1; k1<=1;k1++){                } 
     for(i1=1; i1<=ncodemax[k1];i1++){              }
     j1++;            } /* end selection of waves */
           }
     if  (cptcovn>0) {        }
       fprintf(ficresprob, "\n#********** Variable ");        for(i=iagemin; i <= iagemax+3; i++){  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          
       fprintf(ficresprob, "**********\n#");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     }            posprop += prop[jk][i]; 
              } 
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;          for(jk=1; jk <=nlstate ; jk++){     
         for (k=1; k<=cptcovn;k++) {            if( i <=  iagemax){ 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              if(posprop>=1.e-5){ 
                          probs[i][jk][j1]= prop[jk][i]/posprop;
         }              } 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            } 
         for (k=1; k<=cptcovprod;k++)          }/* end jk */ 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }/* end i */ 
              } /* end i1 */
         gradg=matrix(1,npar,1,9);    } /* end k1 */
         trgradg=matrix(1,9,1,npar);    
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    /*free_vector(pp,1,nlstate);*/
        free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         for(theta=1; theta <=npar; theta++){  }  /* End of prevalence */
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  /************* Waves Concatenation ***************/
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
            {
           k=0;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           for(i=1; i<= (nlstate+ndeath); i++){       Death is a valid wave (if date is known).
             for(j=1; j<=(nlstate+ndeath);j++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               k=k+1;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
               gp[k]=pmmij[i][j];       and mw[mi+1][i]. dh depends on stepm.
             }       */
           }  
              int i, mi, m;
           for(i=1; i<=npar; i++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);       double sum=0., jmean=0.;*/
        int first;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    int j, k=0,jk, ju, jl;
           k=0;    double sum=0.;
           for(i=1; i<=(nlstate+ndeath); i++){    first=0;
             for(j=1; j<=(nlstate+ndeath);j++){    jmin=1e+5;
               k=k+1;    jmax=-1;
               gm[k]=pmmij[i][j];    jmean=0.;
             }    for(i=1; i<=imx; i++){
           }      mi=0;
            m=firstpass;
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      while(s[m][i] <= nlstate){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          if(s[m][i]>=1)
         }          mw[++mi][i]=m;
         if(m >=lastpass)
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          break;
           for(theta=1; theta <=npar; theta++)        else
             trgradg[j][theta]=gradg[theta][j];          m++;
              }/* end while */
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      if (s[m][i] > nlstate){
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        mi++;     /* Death is another wave */
                /* if(mi==0)  never been interviewed correctly before death */
         pmij(pmmij,cov,ncovmodel,x,nlstate);           /* Only death is a correct wave */
                mw[mi][i]=m;
         k=0;      }
         for(i=1; i<=(nlstate+ndeath); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){      wav[i]=mi;
             k=k+1;      if(mi==0){
             gm[k]=pmmij[i][j];        if(first==0){
           }          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }          first=1;
              }
      /*printf("\n%d ",(int)age);        if(first==1){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        }
      }*/      } /* end mi==0 */
     } /* End individuals */
         fprintf(ficresprob,"\n%d ",(int)age);  
     for(i=1; i<=imx; i++){
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      for(mi=1; mi<wav[i];mi++){
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        if (stepm <=0)
            dh[mi][i]=1;
       }        else{
     }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            if (agedc[i] < 2*AGESUP) {
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if(j==0) j=1;  /* Survives at least one month after exam */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              else if(j<0){
   }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_vector(xp,1,npar);                j=1; /* Careful Patch */
   fclose(ficresprob);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               }
 /******************* Printing html file ***********/              k=k+1;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              if (j >= jmax) jmax=j;
  int lastpass, int stepm, int weightopt, char model[],\              if (j <= jmin) jmin=j;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              sum=sum+j;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  char version[], int popforecast, int estepm ){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   int jj1, k1, i1, cpt;            }
   FILE *fichtm;          }
   /*char optionfilehtm[FILENAMELENGTH];*/          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   strcpy(optionfilehtm,optionfile);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   strcat(optionfilehtm,".htm");            k=k+1;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            if (j >= jmax) jmax=j;
     printf("Problem with %s \n",optionfilehtm), exit(0);            else if (j <= jmin)jmin=j;
   }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            if(j<0){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 \n              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 Total number of observations=%d <br>\n            }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            sum=sum+j;
 <hr  size=\"2\" color=\"#EC5E5E\">          }
  <ul><li>Outputs files<br>\n          jk= j/stepm;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          jl= j -jk*stepm;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          ju= j -(jk+1)*stepm;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n            if(jl==0){
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n              dh[mi][i]=jk;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
  fprintf(fichtm,"\n                    * at the price of an extra matrix product in likelihood */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n              dh[mi][i]=jk+1;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              bh[mi][i]=ju;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          }else{
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            if(jl <= -ju){
               dh[mi][i]=jk;
  if(popforecast==1) fprintf(fichtm,"\n              bh[mi][i]=jl;       /* bias is positive if real duration
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                                   * is higher than the multiple of stepm and negative otherwise.
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                                   */
         <br>",fileres,fileres,fileres,fileres);            }
  else            else{
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              dh[mi][i]=jk+1;
 fprintf(fichtm," <li>Graphs</li><p>");              bh[mi][i]=ju;
             }
  m=cptcoveff;            if(dh[mi][i]==0){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
  jj1=0;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
  for(k1=1; k1<=m;k1++){            }
    for(i1=1; i1<=ncodemax[k1];i1++){          } /* end if mle */
        jj1++;        }
        if (cptcovn > 0) {      } /* end wave */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
          for (cpt=1; cpt<=cptcoveff;cpt++)    jmean=sum/k;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        }   }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      /*********** Tricode ****************************/
        for(cpt=1; cpt<nlstate;cpt++){  void tricode(int *Tvar, int **nbcode, int imx)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  {
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
        }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     for(cpt=1; cpt<=nlstate;cpt++) {    int cptcode=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    cptcoveff=0; 
 interval) in state (%d): v%s%d%d.gif <br>   
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (k=0; k<maxncov; k++) Ndum[k]=0;
      }    for (k=1; k<=7; k++) ncodemax[k]=0;
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
      }                                 modality*/ 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 health expectancies in states (1) and (2): e%s%d.gif<br>        Ndum[ij]++; /*store the modality */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 fprintf(fichtm,"\n</body>");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
    }                                         Tvar[j]. If V=sex and male is 0 and 
    }                                         female is 1, then  cptcode=1.*/
 fclose(fichtm);      }
 }  
       for (i=0; i<=cptcode; i++) {
 /******************* Gnuplot file **************/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      }
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
   strcpy(optionfilegnuplot,optionfilefiname);        for (k=0; k<= maxncov; k++) {
   strcat(optionfilegnuplot,".gp.txt");          if (Ndum[k] != 0) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            nbcode[Tvar[j]][ij]=k; 
     printf("Problem with file %s",optionfilegnuplot);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   }            
             ij++;
 #ifdef windows          }
     fprintf(ficgp,"cd \"%s\" \n",pathc);          if (ij > ncodemax[j]) break; 
 #endif        }  
 m=pow(2,cptcoveff);      } 
      }  
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
    for (k1=1; k1<= m ; k1 ++) {  
    for (i=1; i<=ncovmodel-2; i++) { 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
 for (i=1; i<= nlstate ; i ++) {     Ndum[ij]++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }   ij=1;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);   for (i=1; i<= maxncov; i++) {
     for (i=1; i<= nlstate ; i ++) {     if((Ndum[i]!=0) && (i<=ncovcol)){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       Tvaraff[ij]=i; /*For printing */
   else fprintf(ficgp," \%%*lf (\%%*lf)");       ij++;
 }     }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);   }
      for (i=1; i<= nlstate ; i ++) {   
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   cptcoveff=ij-1; /*Number of simple covariates*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  /*********** Health Expectancies ****************/
   
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
    }  
   }  {
   /*2 eme*/    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   for (k1=1; k1<= m ; k1 ++) {    double age, agelim, hf;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    double ***p3mat,***varhe;
        double **dnewm,**doldm;
     for (i=1; i<= nlstate+1 ; i ++) {    double *xp;
       k=2*i;    double **gp, **gm;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double ***gradg, ***trgradg;
       for (j=1; j<= nlstate+1 ; j ++) {    int theta;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 }      xp=vector(1,npar);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    dnewm=matrix(1,nlstate*nlstate,1,npar);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficreseij,"# Health expectancies\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"# Age");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficreseij,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if(estepm < stepm){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf ("Problem %d lower than %d\n",estepm, stepm);
 }      }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    else  hstepm=estepm;   
       else fprintf(ficgp,"\" t\"\" w l 0,");    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
   /*3eme*/     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   for (k1=1; k1<= m ; k1 ++) {     * to compare the new estimate of Life expectancy with the same linear 
     for (cpt=1; cpt<= nlstate ; cpt ++) {     * hypothesis. A more precise result, taking into account a more precise
       k=2+nlstate*(2*cpt-2);     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /* For example we decided to compute the life expectancy with the smallest unit */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       nhstepm is the number of hstepm from age to agelim 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       nstepm is the number of stepm from age to agelin. 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       Look at hpijx to understand the reason of that which relies in memory size
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 */       survival function given by stepm (the optimization length). Unfortunately it
       for (i=1; i< nlstate ; i ++) {       means that if the survival funtion is printed only each two years of age and if
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
       }    */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }  
     }    agelim=AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* CV preval stat */      /* nhstepm age range expressed in number of stepm */
     for (k1=1; k1<= m ; k1 ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     for (cpt=1; cpt<nlstate ; cpt ++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       k=3;      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (i=1; i< nlstate ; i ++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficgp,"+$%d",k+i+1);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
        
       l=3+(nlstate+ndeath)*cpt;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for (i=1; i< nlstate ; i ++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         l=3+(nlstate+ndeath)*cpt;   
         fprintf(ficgp,"+$%d",l+i+1);  
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      /* Computing Variances of health expectancies */
     }  
   }         for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
   /* proba elementaires */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){        cptj=0;
                for(j=1; j<= nlstate; j++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(i=1; i<=nlstate; i++){
           jk++;            cptj=cptj+1;
           fprintf(ficgp,"\n");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       }            }
     }          }
     }        }
        
     for(jk=1; jk <=m; jk++) {       
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(i=1; i<=npar; i++) 
    i=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    for(k2=1; k2<=nlstate; k2++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      k3=i;        
      for(k=1; k<=(nlstate+ndeath); k++) {        cptj=0;
        if (k != k2){        for(j=1; j<= nlstate; j++){
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          for(i=1;i<=nlstate;i++){
 ij=1;            cptj=cptj+1;
         for(j=3; j <=ncovmodel; j++) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             ij++;            }
           }          }
           else        }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(j=1; j<= nlstate*nlstate; j++)
         }          for(h=0; h<=nhstepm-1; h++){
           fprintf(ficgp,")/(1");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                  }
         for(k1=1; k1 <=nlstate; k1++){         } 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);     
 ij=1;  /* End theta */
           for(j=3; j <=ncovmodel; j++){  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;       for(h=0; h<=nhstepm-1; h++)
           }        for(j=1; j<=nlstate*nlstate;j++)
           else          for(theta=1; theta <=npar; theta++)
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            trgradg[h][j][theta]=gradg[h][theta][j];
           }       
           fprintf(ficgp,")");  
         }       for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for(j=1;j<=nlstate*nlstate;j++)
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          varhe[i][j][(int)age] =0.;
         i=i+ncovmodel;  
        }       printf("%d|",(int)age);fflush(stdout);
      }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    }       for(h=0;h<=nhstepm-1;h++){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        for(k=0;k<=nhstepm-1;k++){
    }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fclose(ficgp);          for(i=1;i<=nlstate*nlstate;i++)
 }  /* end gnuplot */            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
 /*************** Moving average **************/      }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   int i, cpt, cptcod;        for(j=1; j<=nlstate;j++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for (i=1; i<=nlstate;i++)            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            
           mobaverage[(int)agedeb][i][cptcod]=0.;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          }
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficreseij,"%3.0f",age );
           for (cpt=0;cpt<=4;cpt++){      cptj=0;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for(i=1; i<=nlstate;i++)
           }        for(j=1; j<=nlstate;j++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          cptj++;
         }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       }        }
     }      fprintf(ficreseij,"\n");
         
 }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 /************** Forecasting ******************/      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    printf("\n");
   int *popage;    fprintf(ficlog,"\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    free_vector(xp,1,npar);
   double ***p3mat;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   char fileresf[FILENAMELENGTH];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  agelim=AGESUP;  }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
   /************ Variance ******************/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
    {
      /* Variance of health expectancies */
   strcpy(fileresf,"f");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   strcat(fileresf,fileres);    /* double **newm;*/
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with forecast resultfile: %s\n", fileresf);    double **dnewmp,**doldmp;
   }    int i, j, nhstepm, hstepm, h, nstepm ;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    int k, cptcode;
     double *xp;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   if (mobilav==1) {    double **gradgp, **trgradgp; /* for var p point j */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *gpp, *gmp; /* for var p point j */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }    double ***p3mat;
     double age,agelim, hf;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***mobaverage;
   if (stepm<=12) stepsize=1;    int theta;
      char digit[4];
   agelim=AGESUP;    char digitp[25];
    
   hstepm=1;    char fileresprobmorprev[FILENAMELENGTH];
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);    if(popbased==1){
   anprojmean=yp;      if(mobilav!=0)
   yp2=modf((yp1*12),&yp);        strcpy(digitp,"-populbased-mobilav-");
   mprojmean=yp;      else strcpy(digitp,"-populbased-nomobil-");
   yp1=modf((yp2*30.5),&yp);    }
   jprojmean=yp;    else 
   if(jprojmean==0) jprojmean=1;      strcpy(digitp,"-stablbased-");
   if(mprojmean==0) jprojmean=1;  
      if (mobilav!=0) {
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   for(cptcov=1;cptcov<=i2;cptcov++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       k=k+1;      }
       fprintf(ficresf,"\n#******");    }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(fileresprobmorprev,"prmorprev"); 
       }    sprintf(digit,"%-d",ij);
       fprintf(ficresf,"******\n");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fprintf(ficresf,"# StartingAge FinalAge");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
          strcat(fileresprobmorprev,fileres);
          if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficresf,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           nhstepm = nhstepm/hstepm;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
              for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresprobmorprev," p.%-d SE",j);
           oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
            }  
           for (h=0; h<=nhstepm; h++){    fprintf(ficresprobmorprev,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficgp,"\n# Routine varevsij");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             for(j=1; j<=nlstate+ndeath;j++) {  /*   } */
               kk1=0.;kk2=0;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficresvij,"# Age");
                 else {    for(i=1; i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for(j=1; j<=nlstate;j++)
                 }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                    fprintf(ficresvij,"\n");
               }  
               if (h==(int)(calagedate+12*cpt)){    xp=vector(1,npar);
                 fprintf(ficresf," %.3f", kk1);    dnewm=matrix(1,nlstate,1,npar);
                            doldm=matrix(1,nlstate,1,nlstate);
               }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         }    gpp=vector(nlstate+1,nlstate+ndeath);
       }    gmp=vector(nlstate+1,nlstate+ndeath);
     }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    
            if(estepm < stepm){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   fclose(ficresf);    else  hstepm=estepm;   
 }    /* For example we decided to compute the life expectancy with the smallest unit */
 /************** Forecasting ******************/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       Look at hpijx to understand the reason of that which relies in memory size
   int *popage;       and note for a fixed period like k years */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double *popeffectif,*popcount;       survival function given by stepm (the optimization length). Unfortunately it
   double ***p3mat,***tabpop,***tabpopprev;       means that if the survival funtion is printed every two years of age and if
   char filerespop[FILENAMELENGTH];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   agelim=AGESUP;    agelim = AGESUP;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   strcpy(filerespop,"pop");      gp=matrix(0,nhstepm,1,nlstate);
   strcat(filerespop,fileres);      gm=matrix(0,nhstepm,1,nlstate);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }      for(theta=1; theta <=npar; theta++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (mobilav==1) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);        if (popbased==1) {
   }          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;              prlim[i][i]=probs[(int)age][i][ij];
   if (stepm<=12) stepsize=1;          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   agelim=AGESUP;              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   hstepm=1;        }
   hstepm=hstepm/stepm;    
          for(j=1; j<= nlstate; j++){
   if (popforecast==1) {          for(h=0; h<=nhstepm; h++){
     if((ficpop=fopen(popfile,"r"))==NULL) {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       printf("Problem with population file : %s\n",popfile);exit(0);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
     popage=ivector(0,AGESUP);        }
     popeffectif=vector(0,AGESUP);        /* This for computing probability of death (h=1 means
     popcount=vector(0,AGESUP);           computed over hstepm matrices product = hstepm*stepm months) 
               as a weighted average of prlim.
     i=1;          */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gpp[j]=0.; i<= nlstate; i++)
     imx=i;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        }    
   }        /* end probability of death */
   
   for(cptcov=1;cptcov<=i2;cptcov++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       k=k+1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficrespop,"\n#******");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=1;j<=cptcoveff;j++) {   
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (popbased==1) {
       }          if(mobilav ==0){
       fprintf(ficrespop,"******\n");            for(i=1; i<=nlstate;i++)
       fprintf(ficrespop,"# Age");              prlim[i][i]=probs[(int)age][i][ij];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          }else{ /* mobilav */ 
       if (popforecast==1)  fprintf(ficrespop," [Population]");            for(i=1; i<=nlstate;i++)
                    prlim[i][i]=mobaverage[(int)age][i][ij];
       for (cpt=0; cpt<=0;cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=1; j<= nlstate; j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(h=0; h<=nhstepm; h++){
           nhstepm = nhstepm/hstepm;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                        gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /* This for computing probability of death (h=1 means
                   computed over hstepm matrices product = hstepm*stepm months) 
           for (h=0; h<=nhstepm; h++){           as a weighted average of prlim.
             if (h==(int) (calagedate+YEARM*cpt)) {        */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             for(j=1; j<=nlstate+ndeath;j++) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
               kk1=0.;kk2=0;        }    
               for(i=1; i<=nlstate;i++) {                      /* end probability of death */
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(j=1; j<= nlstate; j++) /* vareij */
                 else {          for(h=0; h<=nhstepm; h++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                 }          }
               }  
               if (h==(int)(calagedate+12*cpt)){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   /*fprintf(ficrespop," %.3f", kk1);        }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }      } /* End theta */
             }  
             for(i=1; i<=nlstate;i++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){      for(h=0; h<=nhstepm; h++) /* veij */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        for(j=1; j<=nlstate;j++)
                 }          for(theta=1; theta <=npar; theta++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];            trgradg[h][j][theta]=gradg[h][theta][j];
             }  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        for(theta=1; theta <=npar; theta++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          trgradgp[j][theta]=gradgp[theta][j];
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   /******/          vareij[i][j][(int)age] =0.;
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      for(h=0;h<=nhstepm;h++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(k=0;k<=nhstepm;k++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           nhstepm = nhstepm/hstepm;          for(i=1;i<=nlstate;i++)
                      for(j=1;j<=nlstate;j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {      /* pptj */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             for(j=1; j<=nlstate+ndeath;j++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
               kk1=0.;kk2=0;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
               for(i=1; i<=nlstate;i++) {                        varppt[j][i]=doldmp[j][i];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          /* end ppptj */
               }      /*  x centered again */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           }   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (popbased==1) {
         }        if(mobilav ==0){
       }          for(i=1; i<=nlstate;i++)
    }            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   if (popforecast==1) {      }
     free_ivector(popage,0,AGESUP);               
     free_vector(popeffectif,0,AGESUP);      /* This for computing probability of death (h=1 means
     free_vector(popcount,0,AGESUP);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   }         as a weighted average of prlim.
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fclose(ficrespop);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
 /***********************************************/      /* end probability of death */
 /**************** Main Program *****************/  
 /***********************************************/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 int main(int argc, char *argv[])        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 {        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        }
   double agedeb, agefin,hf;      } 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      fprintf(ficresprobmorprev,"\n");
   
   double fret;      fprintf(ficresvij,"%.0f ",age );
   double **xi,tmp,delta;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   double dum; /* Dummy variable */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   double ***p3mat;        }
   int *indx;      fprintf(ficresvij,"\n");
   char line[MAXLINE], linepar[MAXLINE];      free_matrix(gp,0,nhstepm,1,nlstate);
   char title[MAXLINE];      free_matrix(gm,0,nhstepm,1,nlstate);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
   char filerest[FILENAMELENGTH];    free_vector(gmp,nlstate+1,nlstate+ndeath);
   char fileregp[FILENAMELENGTH];    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   char popfile[FILENAMELENGTH];    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   int firstobs=1, lastobs=10;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   int c,  h , cpt,l;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   int ju,jl, mi;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   int mobilav=0,popforecast=0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   int hstepm, nhstepm;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double bage, fage, age, agelim, agebase;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   double ftolpl=FTOL;  */
   double **prlim;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   double *severity;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double ***param; /* Matrix of parameters */  
   double  *p;    free_vector(xp,1,npar);
   double **matcov; /* Matrix of covariance */    free_matrix(doldm,1,nlstate,1,nlstate);
   double ***delti3; /* Scale */    free_matrix(dnewm,1,nlstate,1,npar);
   double *delti; /* Scale */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double ***eij, ***vareij;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   double **varpl; /* Variances of prevalence limits by age */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double *epj, vepp;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double kk1, kk2;    fclose(ficresprobmorprev);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    fflush(ficgp);
      fflush(fichtm); 
   }  /* end varevsij */
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
   char z[1]="c", occ;    /* Variance of prevalence limit */
 #include <sys/time.h>    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 #include <time.h>    double **newm;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
   /* long total_usecs;    int k, cptcode;
   struct timeval start_time, end_time;    double *xp;
      double *gp, *gm;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double **gradg, **trgradg;
   getcwd(pathcd, size);    double age,agelim;
     int theta;
   printf("\n%s",version);     
   if(argc <=1){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     printf("\nEnter the parameter file name: ");    fprintf(ficresvpl,"# Age");
     scanf("%s",pathtot);    for(i=1; i<=nlstate;i++)
   }        fprintf(ficresvpl," %1d-%1d",i,i);
   else{    fprintf(ficresvpl,"\n");
     strcpy(pathtot,argv[1]);  
   }    xp=vector(1,npar);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    dnewm=matrix(1,nlstate,1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    doldm=matrix(1,nlstate,1,nlstate);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    
   /* cutv(path,optionfile,pathtot,'\\');*/    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    agelim = AGESUP;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   chdir(path);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   replace(pathc,path);      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 /*-------- arguments in the command line --------*/      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   strcpy(fileres,"r");      gm=vector(1,nlstate);
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   /*---------arguments file --------*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     printf("Problem with optionfile %s\n",optionfile);        for(i=1;i<=nlstate;i++)
     goto end;          gp[i] = prlim[i][i];
   }      
         for(i=1; i<=npar; i++) /* Computes gradient */
   strcpy(filereso,"o");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   strcat(filereso,fileres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((ficparo=fopen(filereso,"w"))==NULL) {        for(i=1;i<=nlstate;i++)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          gm[i] = prlim[i][i];
   }  
         for(i=1;i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   while((c=getc(ficpar))=='#' && c!= EOF){      } /* End theta */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      trgradg =matrix(1,nlstate,1,npar);
     puts(line);  
     fputs(line,ficparo);      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
   ungetc(c,ficpar);          trgradg[j][theta]=gradg[theta][j];
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      for(i=1;i<=nlstate;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        varpl[i][(int)age] =0.;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 while((c=getc(ficpar))=='#' && c!= EOF){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     puts(line);  
     fputs(line,ficparo);      fprintf(ficresvpl,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
          free_vector(gp,1,nlstate);
   covar=matrix(0,NCOVMAX,1,n);      free_vector(gm,1,nlstate);
   cptcovn=0;      free_matrix(gradg,1,npar,1,nlstate);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   /* Read guess parameters */    free_matrix(dnewm,1,nlstate,1,nlstate);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************ Variance of one-step probabilities  ******************/
     puts(line);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     fputs(line,ficparo);  {
   }    int i, j=0,  i1, k1, l1, t, tj;
   ungetc(c,ficpar);    int k2, l2, j1,  z1;
      int k=0,l, cptcode;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int first=1, first1;
     for(i=1; i <=nlstate; i++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     for(j=1; j <=nlstate+ndeath-1; j++){    double **dnewm,**doldm;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double *xp;
       fprintf(ficparo,"%1d%1d",i1,j1);    double *gp, *gm;
       printf("%1d%1d",i,j);    double **gradg, **trgradg;
       for(k=1; k<=ncovmodel;k++){    double **mu;
         fscanf(ficpar," %lf",&param[i][j][k]);    double age,agelim, cov[NCOVMAX];
         printf(" %lf",param[i][j][k]);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         fprintf(ficparo," %lf",param[i][j][k]);    int theta;
       }    char fileresprob[FILENAMELENGTH];
       fscanf(ficpar,"\n");    char fileresprobcov[FILENAMELENGTH];
       printf("\n");    char fileresprobcor[FILENAMELENGTH];
       fprintf(ficparo,"\n");  
     }    double ***varpij;
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   p=param[1][1];    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    strcpy(fileresprobcov,"probcov"); 
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobcov,fileres);
     puts(line);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     fputs(line,ficparo);      printf("Problem with resultfile: %s\n", fileresprobcov);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   ungetc(c,ficpar);    }
     strcpy(fileresprobcor,"probcor"); 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcat(fileresprobcor,fileres);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   for(i=1; i <=nlstate; i++){      printf("Problem with resultfile: %s\n", fileresprobcor);
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       printf("%1d%1d",i,j);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for(k=1; k<=ncovmodel;k++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         printf(" %le",delti3[i][j][k]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    
       fscanf(ficpar,"\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       printf("\n");    fprintf(ficresprob,"# Age");
       fprintf(ficparo,"\n");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     }    fprintf(ficresprobcov,"# Age");
   }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   delti=delti3[1][1];    fprintf(ficresprobcov,"# Age");
    
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);      for(j=1; j<=(nlstate+ndeath);j++){
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     puts(line);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     fputs(line,ficparo);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   }      }  
   ungetc(c,ficpar);   /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
   matcov=matrix(1,npar,1,npar);    fprintf(ficresprobcor,"\n");
   for(i=1; i <=npar; i++){   */
     fscanf(ficpar,"%s",&str);   xp=vector(1,npar);
     printf("%s",str);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fprintf(ficparo,"%s",str);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     for(j=1; j <=i; j++){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fscanf(ficpar," %le",&matcov[i][j]);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       printf(" %.5le",matcov[i][j]);    first=1;
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(ficgp,"\n# Routine varprob");
     }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fscanf(ficpar,"\n");    fprintf(fichtm,"\n");
     printf("\n");  
     fprintf(ficparo,"\n");    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   }    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   for(i=1; i <=npar; i++)    fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    cov[1]=1;
        tj=cptcoveff;
   printf("\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
     /*-------- Rewriting paramater file ----------*/      for(i1=1; i1<=ncodemax[t];i1++){ 
      strcpy(rfileres,"r");    /* "Rparameterfile */        j1++;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        if  (cptcovn>0) {
      strcat(rfileres,".");    /* */          fprintf(ficresprob, "\n#********** Variable "); 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if((ficres =fopen(rfileres,"w"))==NULL) {          fprintf(ficresprob, "**********\n#\n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          fprintf(ficresprobcov, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficres,"#%s\n",version);          fprintf(ficresprobcov, "**********\n#\n");
              
     /*-------- data file ----------*/          fprintf(ficgp, "\n#********** Variable "); 
     if((fic=fopen(datafile,"r"))==NULL)    {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("Problem with datafile: %s\n", datafile);goto end;          fprintf(ficgp, "**********\n#\n");
     }          
           
     n= lastobs;          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     severity = vector(1,maxwav);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     num=ivector(1,n);          
     moisnais=vector(1,n);          fprintf(ficresprobcor, "\n#********** Variable ");    
     annais=vector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     moisdc=vector(1,n);          fprintf(ficresprobcor, "**********\n#");    
     andc=vector(1,n);        }
     agedc=vector(1,n);        
     cod=ivector(1,n);        for (age=bage; age<=fage; age ++){ 
     weight=vector(1,n);          cov[2]=age;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          for (k=1; k<=cptcovn;k++) {
     mint=matrix(1,maxwav,1,n);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     anint=matrix(1,maxwav,1,n);          }
     s=imatrix(1,maxwav+1,1,n);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     adl=imatrix(1,maxwav+1,1,n);              for (k=1; k<=cptcovprod;k++)
     tab=ivector(1,NCOVMAX);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     ncodemax=ivector(1,8);          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     i=1;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {          gp=vector(1,(nlstate)*(nlstate+ndeath));
       if ((i >= firstobs) && (i <=lastobs)) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
              
         for (j=maxwav;j>=1;j--){          for(theta=1; theta <=npar; theta++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for(i=1; i<=npar; i++)
           strcpy(line,stra);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         }            
                    k=0;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<= (nlstate); i++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                gp[k]=pmmij[i][j];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              }
             }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            
         for (j=ncovcol;j>=1;j--){            for(i=1; i<=npar; i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         }      
         num[i]=atol(stra);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                    k=0;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            for(i=1; i<=(nlstate); i++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
         i=i+1;                gm[k]=pmmij[i][j];
       }              }
     }            }
     /* printf("ii=%d", ij);       
        scanf("%d",i);*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   imx=i-1; /* Number of individuals */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            for(theta=1; theta <=npar; theta++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              trgradg[j][theta]=gradg[theta][j];
     }*/          
    /*  for (i=1; i<=imx; i++){          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
      if (s[4][i]==9)  s[4][i]=-1;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /* Calculation of the number of parameter from char model*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   Tvaraff=ivector(1,15);          
   Tvard=imatrix(1,15,1,2);          k=0;
   Tage=ivector(1,15);                for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
   if (strlen(model) >1){              k=k+1;
     j=0, j1=0, k1=1, k2=1;              mu[k][(int) age]=pmmij[i][j];
     j=nbocc(model,'+');            }
     j1=nbocc(model,'*');          }
     cptcovn=j+1;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     cptcovprod=j1;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                  varpij[i][j][(int)age] = doldm[i][j];
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          /*printf("\n%d ",(int)age);
       printf("Error. Non available option model=%s ",model);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       goto end;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                }*/
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');          fprintf(ficresprob,"\n%d ",(int)age);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          fprintf(ficresprobcov,"\n%d ",(int)age);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          fprintf(ficresprobcor,"\n%d ",(int)age);
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         cutv(strd,strc,strb,'*');            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         if (strcmp(strc,"age")==0) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           cptcovprod--;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           cutv(strb,stre,strd,'V');            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           Tvar[i]=atoi(stre);          }
           cptcovage++;          i=0;
             Tage[cptcovage]=i;          for (k=1; k<=(nlstate);k++){
             /*printf("stre=%s ", stre);*/            for (l=1; l<=(nlstate+ndeath);l++){ 
         }              i=i++;
         else if (strcmp(strd,"age")==0) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           cptcovprod--;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           cutv(strb,stre,strc,'V');              for (j=1; j<=i;j++){
           Tvar[i]=atoi(stre);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           cptcovage++;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           Tage[cptcovage]=i;              }
         }            }
         else {          }/* end of loop for state */
           cutv(strb,stre,strc,'V');        } /* end of loop for age */
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');        /* Confidence intervalle of pij  */
           Tprod[k1]=i;        /*
           Tvard[k1][1]=atoi(strc);          fprintf(ficgp,"\nset noparametric;unset label");
           Tvard[k1][2]=atoi(stre);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           Tvar[cptcovn+k2]=Tvard[k1][1];          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           for (k=1; k<=lastobs;k++)          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           k1++;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           k2=k2+2;        */
         }  
       }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       else {        first1=1;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for (k2=1; k2<=(nlstate);k2++){
        /*  scanf("%d",i);*/          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       cutv(strd,strc,strb,'V');            if(l2==k2) continue;
       Tvar[i]=atoi(strc);            j=(k2-1)*(nlstate+ndeath)+l2;
       }            for (k1=1; k1<=(nlstate);k1++){
       strcpy(modelsav,stra);                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                if(l1==k1) continue;
         scanf("%d",i);*/                i=(k1-1)*(nlstate+ndeath)+l1;
     }                if(i<=j) continue;
 }                for (age=bage; age<=fage; age ++){ 
                    if ((int)age %5==0){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   printf("cptcovprod=%d ", cptcovprod);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   scanf("%d ",i);*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fclose(fic);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
     /*  if(mle==1){*/                    c12=cv12/sqrt(v1*v2);
     if (weightopt != 1) { /* Maximisation without weights*/                    /* Computing eigen value of matrix of covariance */
       for(i=1;i<=n;i++) weight[i]=1.0;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     /*-calculation of age at interview from date of interview and age at death -*/                    /* Eigen vectors */
     agev=matrix(1,maxwav,1,imx);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
     for (i=1; i<=imx; i++) {                    v21=(lc1-v1)/cv12*v11;
       for(m=2; (m<= maxwav); m++) {                    v12=-v21;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                    v22=v11;
          anint[m][i]=9999;                    tnalp=v21/v11;
          s[m][i]=-1;                    if(first1==1){
        }                      first1=0;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    }
     }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
     for (i=1; i<=imx; i++)  {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       for(m=1; (m<= maxwav); m++){                    if(first==1){
         if(s[m][i] >0){                      first=0;
           if (s[m][i] >= nlstate+1) {                      fprintf(ficgp,"\nset parametric;unset label");
             if(agedc[i]>0)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
               if(moisdc[i]!=99 && andc[i]!=9999)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                 agev[m][i]=agedc[i];                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
            else {  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
               if (andc[i]!=9999){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               agev[m][i]=-1;                      fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               }                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
             }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           else if(s[m][i] !=9){ /* Should no more exist */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             if(mint[m][i]==99 || anint[m][i]==9999)                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               agev[m][i]=1;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             else if(agev[m][i] <agemin){                    }else{
               agemin=agev[m][i];                      first=0;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
             }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             else if(agev[m][i] >agemax){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               agemax=agev[m][i];                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             /*agev[m][i]=anint[m][i]-annais[i];*/                    }/* if first */
             /*   agev[m][i] = age[i]+2*m;*/                  } /* age mod 5 */
           }                } /* end loop age */
           else { /* =9 */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             agev[m][i]=1;                first=1;
             s[m][i]=-1;              } /*l12 */
           }            } /* k12 */
         }          } /*l1 */
         else /*= 0 Unknown */        }/* k1 */
           agev[m][i]=1;      } /* loop covariates */
       }    }
        free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     for (i=1; i<=imx; i++)  {    free_vector(xp,1,npar);
       for(m=1; (m<= maxwav); m++){    fclose(ficresprob);
         if (s[m][i] > (nlstate+ndeath)) {    fclose(ficresprobcov);
           printf("Error: Wrong value in nlstate or ndeath\n");      fclose(ficresprobcor);
           goto end;    /*  fclose(ficgp);*/
         }  }
       }  
     }  
   /******************* Printing html file ***********/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
     free_vector(severity,1,maxwav);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     free_imatrix(outcome,1,maxwav+1,1,n);                    int popforecast, int estepm ,\
     free_vector(moisnais,1,n);                    double jprev1, double mprev1,double anprev1, \
     free_vector(annais,1,n);                    double jprev2, double mprev2,double anprev2){
     /* free_matrix(mint,1,maxwav,1,n);    int jj1, k1, i1, cpt;
        free_matrix(anint,1,maxwav,1,n);*/    /*char optionfilehtm[FILENAMELENGTH];*/
     free_vector(moisdc,1,n);  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
     free_vector(andc,1,n);  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
      /*   } */
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
       - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
     /* Concatenates waves */   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
       Tcode=ivector(1,100);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
       ncodemax[1]=1;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
        fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    codtab=imatrix(1,100,1,10);  
    h=0;   m=cptcoveff;
    m=pow(2,cptcoveff);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
    for(k=1;k<=cptcoveff; k++){   jj1=0;
      for(i=1; i <=(m/pow(2,k));i++){   for(k1=1; k1<=m;k1++){
        for(j=1; j <= ncodemax[k]; j++){     for(i1=1; i1<=ncodemax[k1];i1++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){       jj1++;
            h++;       if (cptcovn > 0) {
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
          }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
        }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      }       }
    }       /* Pij */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       codtab[1][2]=1;codtab[2][2]=2; */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
    /* for(i=1; i <=m ;i++){       /* Quasi-incidences */
       for(k=1; k <=cptcovn; k++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
       }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       printf("\n");         /* Stable prevalence in each health state */
       }         for(cpt=1; cpt<nlstate;cpt++){
       scanf("%d",i);*/           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
      <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
    /* Calculates basic frequencies. Computes observed prevalence at single age         }
        and prints on file fileres'p'. */       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
      <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  health expectancies in states (1) and (2): %s%d.png<br>\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end i1 */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   }/* End k1 */
         fprintf(fichtm,"</ul>");
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
     if(mle==1){   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
       - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
     /*--------- results files --------------*/   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
    jk=1;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
    for(i=1,jk=1; i <=nlstate; i++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
      for(k=1; k <=(nlstate+ndeath); k++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
        if (k != i)  
          {  /*  if(popforecast==1) fprintf(fichtm,"\n */
            printf("%d%d ",i,k);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
            fprintf(ficres,"%1d%1d ",i,k);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
            for(j=1; j <=ncovmodel; j++){  /*      <br>",fileres,fileres,fileres,fileres); */
              printf("%f ",p[jk]);  /*  else  */
              fprintf(ficres,"%f ",p[jk]);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
              jk++;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
            }  
            printf("\n");   m=cptcoveff;
            fprintf(ficres,"\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
          }  
      }   jj1=0;
    }   for(k1=1; k1<=m;k1++){
  if(mle==1){     for(i1=1; i1<=ncodemax[k1];i1++){
     /* Computing hessian and covariance matrix */       jj1++;
     ftolhess=ftol; /* Usually correct */       if (cptcovn > 0) {
     hesscov(matcov, p, npar, delti, ftolhess, func);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  }         for (cpt=1; cpt<=cptcoveff;cpt++) 
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     printf("# Scales (for hessian or gradient estimation)\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      for(i=1,jk=1; i <=nlstate; i++){       }
       for(j=1; j <=nlstate+ndeath; j++){       for(cpt=1; cpt<=nlstate;cpt++) {
         if (j!=i) {         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
           fprintf(ficres,"%1d%1d",i,j);  interval) in state (%d): %s%d%d.png <br>\
           printf("%1d%1d",i,j);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"vr"),cpt,jj1,subdirf2(optionfilefiname,"vr"),cpt,jj1);  
           for(k=1; k<=ncovmodel;k++){       }
             printf(" %.5e",delti[jk]);     } /* end i1 */
             fprintf(ficres," %.5e",delti[jk]);   }/* End k1 */
             jk++;   fprintf(fichtm,"</ul>");
           }   fflush(fichtm);
           printf("\n");  }
           fprintf(ficres,"\n");  
         }  /******************* Gnuplot file **************/
       }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      }  
        char dirfileres[132],optfileres[132];
     k=1;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    int ng;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     for(i=1;i<=npar;i++){  /*     printf("Problem with file %s",optionfilegnuplot); */
       /*  if (k>nlstate) k=1;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       i1=(i-1)/(ncovmodel*nlstate)+1;  /*   } */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/    /*#ifdef windows */
       fprintf(ficres,"%3d",i);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       printf("%3d",i);      /*#endif */
       for(j=1; j<=i;j++){    m=pow(2,cptcoveff);
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);    strcpy(dirfileres,optionfilefiname);
       }    strcpy(optfileres,"vpl");
       fprintf(ficres,"\n");   /* 1eme*/
       printf("\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
       k++;     for (k1=1; k1<= m ; k1 ++) {
     }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"set xlabel \"Age\" \n\
       ungetc(c,ficpar);  set ylabel \"Probability\" \n\
       fgets(line, MAXLINE, ficpar);  set ter png small\n\
       puts(line);  set size 0.65,0.65\n\
       fputs(line,ficparo);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     }  
     ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
     estepm=0;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     if (estepm==0 || estepm < stepm) estepm=stepm;       }
     if (fage <= 2) {       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       bage = ageminpar;       for (i=1; i<= nlstate ; i ++) {
       fage = agemaxpar;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           } 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       for (i=1; i<= nlstate ; i ++) {
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
     while((c=getc(ficpar))=='#' && c!= EOF){       }  
     ungetc(c,ficpar);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     fgets(line, MAXLINE, ficpar);     }
     puts(line);    }
     fputs(line,ficparo);    /*2 eme*/
   }    
   ungetc(c,ficpar);    for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for (i=1; i<= nlstate+1 ; i ++) {
              k=2*i;
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     ungetc(c,ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
     fgets(line, MAXLINE, ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     puts(line);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fputs(line,ficparo);        }   
   }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   ungetc(c,ficpar);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   fscanf(ficpar,"pop_based=%d\n",&popbased);        fprintf(ficgp,"\" t\"\" w l 0,");
   fprintf(ficparo,"pop_based=%d\n",popbased);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fprintf(ficres,"pop_based=%d\n",popbased);          for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     ungetc(c,ficpar);        }   
     fgets(line, MAXLINE, ficpar);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     puts(line);        else fprintf(ficgp,"\" t\"\" w l 0,");
     fputs(line,ficparo);      }
   }    }
   ungetc(c,ficpar);    
     /*3eme*/
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    for (k1=1; k1<= m ; k1 ++) { 
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,"set ter png small\n\
     ungetc(c,ficpar);  set size 0.65,0.65\n\
     fgets(line, MAXLINE, ficpar);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     puts(line);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fputs(line,ficparo);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   ungetc(c,ficpar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        */
         for (i=1; i< nlstate ; i ++) {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
 /*------------ gnuplot -------------*/        } 
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      }
      }
 /*------------ free_vector  -------------*/    
  chdir(path);    /* CV preval stable (period) */
      for (k1=1; k1<= m ; k1 ++) { 
  free_ivector(wav,1,imx);      for (cpt=1; cpt<=nlstate ; cpt ++) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        k=3;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
  free_ivector(num,1,n);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
  free_vector(agedc,1,n);  set ter png small\nset size 0.65,0.65\n\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  unset log y\n\
  fclose(ficparo);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
  fclose(ficres);        
         for (i=1; i< nlstate ; i ++)
 /*--------- index.htm --------*/          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);        
         l=3+(nlstate+ndeath)*cpt;
          fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   /*--------------- Prevalence limit --------------*/        for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
   strcpy(filerespl,"pl");          fprintf(ficgp,"+$%d",l+i+1);
   strcat(filerespl,fileres);        }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      } 
   }    }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    
   fprintf(ficrespl,"#Prevalence limit\n");    /* proba elementaires */
   fprintf(ficrespl,"#Age ");    for(i=1,jk=1; i <=nlstate; i++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for(k=1; k <=(nlstate+ndeath); k++){
   fprintf(ficrespl,"\n");        if (k != i) {
            for(j=1; j <=ncovmodel; j++){
   prlim=matrix(1,nlstate,1,nlstate);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            jk++; 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficgp,"\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      }
   k=0;     }
   agebase=ageminpar;  
   agelim=agemaxpar;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   ftolpl=1.e-10;       for(jk=1; jk <=m; jk++) {
   i1=cptcoveff;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   if (cptcovn < 1){i1=1;}         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){         else
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           fprintf(ficgp,"\nset title \"Probability\"\n");
         k=k+1;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         i=1;
         fprintf(ficrespl,"\n#******");         for(k2=1; k2<=nlstate; k2++) {
         for(j=1;j<=cptcoveff;j++)           k3=i;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           for(k=1; k<=(nlstate+ndeath); k++) {
         fprintf(ficrespl,"******\n");             if (k != k2){
                       if(ng==2)
         for (age=agebase; age<=agelim; age++){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);               else
           fprintf(ficrespl,"%.0f",age );                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           for(i=1; i<=nlstate;i++)               ij=1;
           fprintf(ficrespl," %.5f", prlim[i][i]);               for(j=3; j <=ncovmodel; j++) {
           fprintf(ficrespl,"\n");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       }                   ij++;
     }                 }
   fclose(ficrespl);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   /*------------- h Pij x at various ages ------------*/               }
                 fprintf(ficgp,")/(1");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);               
   if((ficrespij=fopen(filerespij,"w"))==NULL) {               for(k1=1; k1 <=nlstate; k1++){   
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   }                 ij=1;
   printf("Computing pij: result on file '%s' \n", filerespij);                 for(j=3; j <=ncovmodel; j++){
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   /*if (stepm<=24) stepsize=2;*/                     ij++;
                    }
   agelim=AGESUP;                   else
   hstepm=stepsize*YEARM; /* Every year of age */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                 }
                   fprintf(ficgp,")");
   k=0;               }
   for(cptcov=1;cptcov<=i1;cptcov++){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       k=k+1;               i=i+ncovmodel;
         fprintf(ficrespij,"\n#****** ");             }
         for(j=1;j<=cptcoveff;j++)           } /* end k */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         } /* end k2 */
         fprintf(ficrespij,"******\n");       } /* end jk */
             } /* end ng */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     fflush(ficgp); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  }  /* end gnuplot */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  /*************** Moving average **************/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)    int i, cpt, cptcod;
             for(j=1; j<=nlstate+ndeath;j++)    int modcovmax =1;
               fprintf(ficrespij," %1d-%1d",i,j);    int mobilavrange, mob;
           fprintf(ficrespij,"\n");    double age;
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
             for(i=1; i<=nlstate;i++)                             a covariate has 2 modalities */
               for(j=1; j<=nlstate+ndeath;j++)    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
              }      if(mobilav==1) mobilavrange=5; /* default */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      else mobilavrange=mobilav;
           fprintf(ficrespij,"\n");      for (age=bage; age<=fage; age++)
         }        for (i=1; i<=nlstate;i++)
     }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
   fclose(ficrespij);      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   /*---------- Forecasting ------------------*/          for (i=1; i<=nlstate;i++){
   if((stepm == 1) && (strcmp(model,".")==0)){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   else{                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     erreur=108;                }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   }            }
            }
         }/* end age */
   /*---------- Health expectancies and variances ------------*/      }/* end mob */
     }else return -1;
   strcpy(filerest,"t");    return 0;
   strcat(filerest,fileres);  }/* End movingaverage */
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }  /************** Forecasting ******************/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
   strcpy(filerese,"e");       dateprev1 dateprev2 range of dates during which prevalence is computed
   strcat(filerese,fileres);       anproj2 year of en of projection (same day and month as proj1).
   if((ficreseij=fopen(filerese,"w"))==NULL) {    */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   }    int *popage;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
  strcpy(fileresv,"v");    double *popeffectif,*popcount;
   strcat(fileresv,fileres);    double ***p3mat;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double ***mobaverage;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    char fileresf[FILENAMELENGTH];
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    agelim=AGESUP;
   calagedate=-1;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   
     strcpy(fileresf,"f"); 
   k=0;    strcat(fileresf,fileres);
   for(cptcov=1;cptcov<=i1;cptcov++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("Problem with forecast resultfile: %s\n", fileresf);
       k=k+1;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficrest,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    printf("Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       fprintf(ficrest,"******\n");  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    if (mobilav!=0) {
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficreseij,"******\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficresvij,"\n#****** ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for(j=1;j<=cptcoveff;j++)      }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficresvij,"******\n");  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if (stepm<=12) stepsize=1;
       oldm=oldms;savm=savms;    if(estepm < stepm){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        printf ("Problem %d lower than %d\n",estepm, stepm);
      }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    else  hstepm=estepm;   
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    hstepm=hstepm/stepm; 
        yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
      anprojmean=yp;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    yp2=modf((yp1*12),&yp);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    mprojmean=yp;
       fprintf(ficrest,"\n");    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
       epj=vector(1,nlstate+1);    if(jprojmean==0) jprojmean=1;
       for(age=bage; age <=fage ;age++){    if(mprojmean==0) jprojmean=1;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    i1=cptcoveff;
           for(i=1; i<=nlstate;i++)    if (cptcovn < 1){i1=1;}
             prlim[i][i]=probs[(int)age][i][k];    
         }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
            
         fprintf(ficrest," %4.0f",age);    fprintf(ficresf,"#****** Routine prevforecast **\n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  /*            if (h==(int)(YEARM*yearp)){ */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           }        k=k+1;
           epj[nlstate+1] +=epj[j];        fprintf(ficresf,"\n#******");
         }        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         for(i=1, vepp=0.;i <=nlstate;i++)        }
           for(j=1;j <=nlstate;j++)        fprintf(ficresf,"******\n");
             vepp += vareij[i][j][(int)age];        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        for(j=1; j<=nlstate+ndeath;j++){ 
         for(j=1;j <=nlstate;j++){          for(i=1; i<=nlstate;i++)              
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            fprintf(ficresf," p%d%d",i,j);
         }          fprintf(ficresf," p.%d",j);
         fprintf(ficrest,"\n");        }
       }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     }          fprintf(ficresf,"\n");
   }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     free_vector(weight,1,n);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   fclose(ficreseij);            nhstepm = nhstepm/hstepm; 
   fclose(ficresvij);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrest);            oldm=oldms;savm=savms;
   fclose(ficpar);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_vector(epj,1,nlstate+1);          
              for (h=0; h<=nhstepm; h++){
   /*------- Variance limit prevalence------*/                if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   strcpy(fileresvpl,"vpl");                for(j=1;j<=cptcoveff;j++) 
   strcat(fileresvpl,fileres);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              } 
     exit(0);              for(j=1; j<=nlstate+ndeath;j++) {
   }                ppij=0.;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
   k=0;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   for(cptcov=1;cptcov<=i1;cptcov++){                  else {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       k=k+1;                  }
       fprintf(ficresvpl,"\n#****** ");                  if (h*hstepm/YEARM*stepm== yearp) {
       for(j=1;j<=cptcoveff;j++)                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  }
       fprintf(ficresvpl,"******\n");                } /* end i */
                      if (h*hstepm/YEARM*stepm==yearp) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                  fprintf(ficresf," %.3f", ppij);
       oldm=oldms;savm=savms;                }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              }/* end j */
     }            } /* end h */
  }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
   fclose(ficresvpl);        } /* end yearp */
       } /* end cptcod */
   /*---------- End : free ----------------*/    } /* end  cptcov */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fclose(ficresf);
    }
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  /************** Forecasting *****not tested NB*************/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      int *popage;
   free_matrix(matcov,1,npar,1,npar);    double calagedatem, agelim, kk1, kk2;
   free_vector(delti,1,npar);    double *popeffectif,*popcount;
   free_matrix(agev,1,maxwav,1,imx);    double ***p3mat,***tabpop,***tabpopprev;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   else   printf("End of Imach\n");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    agelim=AGESUP;
      calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    
   /*printf("Total time was %d uSec.\n", total_usecs);*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   /*------ End -----------*/    
     
     strcpy(filerespop,"pop"); 
  end:    strcat(filerespop,fileres);
   /* chdir(pathcd);*/    if((ficrespop=fopen(filerespop,"w"))==NULL) {
  /*system("wgnuplot graph.plt");*/      printf("Problem with forecast resultfile: %s\n", filerespop);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
  /*system("cd ../gp37mgw");*/    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
  strcpy(plotcmd,GNUPLOTPROGRAM);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
  system(plotcmd);  
     if (mobilav!=0) {
  /*#ifdef windows*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while (z[0] != 'q') {      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     /* chdir(path); */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     scanf("%s",z);      }
     if (z[0] == 'c') system("./imach");    }
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     else if (z[0] == 'q') exit(0);    if (stepm<=12) stepsize=1;
   }    
   /*#endif */    agelim=AGESUP;
 }    
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.89


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>