Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.99

version 1.41.2.1, 2003/06/12 10:43:20 version 1.99, 2004/06/05 08:57:40
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.99  2004/06/05 08:57:40  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.98  2004/05/16 15:05:56  brouard
   first survey ("cross") where individuals from different ages are    New version 0.97 . First attempt to estimate force of mortality
   interviewed on their health status or degree of disability (in the    directly from the data i.e. without the need of knowing the health
   case of a health survey which is our main interest) -2- at least a    state at each age, but using a Gompertz model: log u =a + b*age .
   second wave of interviews ("longitudinal") which measure each change    This is the basic analysis of mortality and should be done before any
   (if any) in individual health status.  Health expectancies are    other analysis, in order to test if the mortality estimated from the
   computed from the time spent in each health state according to a    cross-longitudinal survey is different from the mortality estimated
   model. More health states you consider, more time is necessary to reach the    from other sources like vital statistic data.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    The same imach parameter file can be used but the option for mle should be -3.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Agnès, who wrote this part of the code, tried to keep most of the
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    former routines in order to include the new code within the former code.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    The output is very simple: only an estimate of the intercept and of
   where the markup *Covariates have to be included here again* invites    the slope with 95% confident intervals.
   you to do it.  More covariates you add, slower the  
   convergence.    Current limitations:
     A) Even if you enter covariates, i.e. with the
   The advantage of this computer programme, compared to a simple    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   multinomial logistic model, is clear when the delay between waves is not    B) There is no computation of Life Expectancy nor Life Table.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.97  2004/02/20 13:25:42  lievre
   account using an interpolation or extrapolation.      Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.96  2003/07/15 15:38:55  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   states. This elementary transition (by month or quarter trimester,    rewritten within the same printf. Workaround: many printfs.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.95  2003/07/08 07:54:34  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Repository):
   hPijx.    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.93  2003/06/25 16:33:55  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): On windows (cygwin) function asctime_r doesn't
   from the European Union.    exist so I changed back to asctime which exists.
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.96b
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.92  2003/06/25 16:30:45  brouard
   **********************************************************************/    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
 #include <math.h>  
 #include <stdio.h>    Revision 1.91  2003/06/25 15:30:29  brouard
 #include <stdlib.h>    * imach.c (Repository): Duplicated warning errors corrected.
 #include <unistd.h>    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define MAXLINE 256    is stamped in powell.  We created a new html file for the graphs
 #define GNUPLOTPROGRAM "wgnuplot"    concerning matrix of covariance. It has extension -cov.htm.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.90  2003/06/24 12:34:15  brouard
 /*#define DEBUG*/    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /*#define windows*/    of the covariance matrix to be input.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    of the covariance matrix to be input.
   
 #define NINTERVMAX 8    Revision 1.88  2003/06/23 17:54:56  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.87  2003/06/18 12:26:01  brouard
 #define MAXN 20000    Version 0.96
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.86  2003/06/17 20:04:08  brouard
 #define AGEBASE 40    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
   
 int erreur; /* Error number */    Revision 1.85  2003/06/17 13:12:43  brouard
 int nvar;    * imach.c (Repository): Check when date of death was earlier that
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    current date of interview. It may happen when the death was just
 int npar=NPARMAX;    prior to the death. In this case, dh was negative and likelihood
 int nlstate=2; /* Number of live states */    was wrong (infinity). We still send an "Error" but patch by
 int ndeath=1; /* Number of dead states */    assuming that the date of death was just one stepm after the
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    interview.
 int popbased=0;    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 int *wav; /* Number of waves for this individuual 0 is possible */    memory allocation. But we also truncated to 8 characters (left
 int maxwav; /* Maxim number of waves */    truncation)
 int jmin, jmax; /* min, max spacing between 2 waves */    (Repository): No more line truncation errors.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.84  2003/06/13 21:44:43  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Repository): Replace "freqsummary" at a correct
 double jmean; /* Mean space between 2 waves */    place. It differs from routine "prevalence" which may be called
 double **oldm, **newm, **savm; /* Working pointers to matrices */    many times. Probs is memory consuming and must be used with
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    parcimony.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.83  2003/06/10 13:39:11  lievre
   char filerese[FILENAMELENGTH];    *** empty log message ***
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.82  2003/06/05 15:57:20  brouard
  FILE  *ficresvpl;    Add log in  imach.c and  fullversion number is now printed.
   char fileresvpl[FILENAMELENGTH];  
   */
 #define NR_END 1  /*
 #define FREE_ARG char*     Interpolated Markov Chain
 #define FTOL 1.0e-10  
     Short summary of the programme:
 #define NRANSI    
 #define ITMAX 200    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define TOL 2.0e-4    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 #define CGOLD 0.3819660    case of a health survey which is our main interest) -2- at least a
 #define ZEPS 1.0e-10    second wave of interviews ("longitudinal") which measure each change
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 #define GOLD 1.618034    model. More health states you consider, more time is necessary to reach the
 #define GLIMIT 100.0    Maximum Likelihood of the parameters involved in the model.  The
 #define TINY 1.0e-20    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 static double maxarg1,maxarg2;    conditional to be observed in state i at the first wave. Therefore
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    'age' is age and 'sex' is a covariate. If you want to have a more
      complex model than "constant and age", you should modify the program
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    where the markup *Covariates have to be included here again* invites
 #define rint(a) floor(a+0.5)    you to do it.  More covariates you add, slower the
     convergence.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    The advantage of this computer programme, compared to a simple
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 int imx;    intermediate interview, the information is lost, but taken into
 int stepm;    account using an interpolation or extrapolation.  
 /* Stepm, step in month: minimum step interpolation*/  
     hPijx is the probability to be observed in state i at age x+h
 int estepm;    conditional to the observed state i at age x. The delay 'h' can be
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 int m,nb;    semester or year) is modelled as a multinomial logistic.  The hPx
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    matrix is simply the matrix product of nh*stepm elementary matrices
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    and the contribution of each individual to the likelihood is simply
 double **pmmij, ***probs, ***mobaverage;    hPijx.
 double dateintmean=0;  
     Also this programme outputs the covariance matrix of the parameters but also
 double *weight;    of the life expectancies. It also computes the stable prevalence. 
 int **s; /* Status */    
 double *agedc, **covar, idx;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    from the European Union.
 double ftolhess; /* Tolerance for computing hessian */    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /**************** split *************************/    can be accessed at http://euroreves.ined.fr/imach .
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    char *s;                             /* pointer */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    int  l1, l2;                         /* length counters */    
     **********************************************************************/
    l1 = strlen( path );                 /* length of path */  /*
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    main
 #ifdef windows    read parameterfile
    s = strrchr( path, '\\' );           /* find last / */    read datafile
 #else    concatwav
    s = strrchr( path, '/' );            /* find last / */    freqsummary
 #endif    if (mle >= 1)
    if ( s == NULL ) {                   /* no directory, so use current */      mlikeli
 #if     defined(__bsd__)                /* get current working directory */    print results files
       extern char       *getwd( );    if mle==1 
        computes hessian
       if ( getwd( dirc ) == NULL ) {    read end of parameter file: agemin, agemax, bage, fage, estepm
 #else        begin-prev-date,...
       extern char       *getcwd( );    open gnuplot file
     open html file
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    stable prevalence
 #endif     for age prevalim()
          return( GLOCK_ERROR_GETCWD );    h Pij x
       }    variance of p varprob
       strcpy( name, path );             /* we've got it */    forecasting if prevfcast==1 prevforecast call prevalence()
    } else {                             /* strip direcotry from path */    health expectancies
       s++;                              /* after this, the filename */    Variance-covariance of DFLE
       l2 = strlen( s );                 /* length of filename */    prevalence()
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );     movingaverage()
       strcpy( name, s );                /* save file name */    varevsij() 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    if popbased==1 varevsij(,popbased)
       dirc[l1-l2] = 0;                  /* add zero */    total life expectancies
    }    Variance of stable prevalence
    l1 = strlen( dirc );                 /* length of directory */   end
 #ifdef windows  */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif   
    s = strrchr( name, '.' );            /* find last / */  #include <math.h>
    s++;  #include <stdio.h>
    strcpy(ext,s);                       /* save extension */  #include <stdlib.h>
    l1= strlen( name);  #include <unistd.h>
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  /* #include <sys/time.h> */
    finame[l1-l2]= 0;  #include <time.h>
    return( 0 );                         /* we're done */  #include "timeval.h"
 }  
   /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /******************************************/  
   #define MAXLINE 256
 void replace(char *s, char*t)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int i;  #define FILENAMELENGTH 132
   int lg=20;  /*#define DEBUG*/
   i=0;  /*#define windows*/
   lg=strlen(t);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for(i=0; i<= lg; i++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 int nbocc(char *s, char occ)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int i,j=0;  #define NCOVMAX 8 /* Maximum number of covariates */
   int lg=20;  #define MAXN 20000
   i=0;  #define YEARM 12. /* Number of months per year */
   lg=strlen(s);  #define AGESUP 130
   for(i=0; i<= lg; i++) {  #define AGEBASE 40
   if  (s[i] == occ ) j++;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   }  #ifdef unix
   return j;  #define DIRSEPARATOR '/'
 }  #define ODIRSEPARATOR '\\'
   #else
 void cutv(char *u,char *v, char*t, char occ)  #define DIRSEPARATOR '\\'
 {  #define ODIRSEPARATOR '/'
   int i,lg,j,p=0;  #endif
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  /* $Id$ */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /* $State$ */
   }  
   char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   lg=strlen(t);  char fullversion[]="$Revision$ $Date$"; 
   for(j=0; j<p; j++) {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     (u[j] = t[j]);  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
      u[p]='\0';  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
    for(j=0; j<= lg; j++) {  int ndeath=1; /* Number of dead states */
     if (j>=(p+1))(v[j-p-1] = t[j]);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   }  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /********************** nrerror ********************/  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 void nrerror(char error_text[])  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   fprintf(stderr,"ERREUR ...\n");  int mle, weightopt;
   fprintf(stderr,"%s\n",error_text);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   exit(1);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /*********************** vector *******************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double *vector(int nl, int nh)  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double *v;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (!v) nrerror("allocation failure in vector");  FILE *ficlog, *ficrespow;
   return v-nl+NR_END;  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /************************ free vector ******************/  double sw; /* Sum of weights */
 void free_vector(double*v, int nl, int nh)  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /************************ivector *******************************/  FILE *fichtm, *fichtmcov; /* Html File */
 int *ivector(long nl,long nh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   int *v;  FILE  *ficresvij;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char fileresv[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  FILE  *ficresvpl;
   return v-nl+NR_END;  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /******************free ivector **************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char filelog[FILENAMELENGTH]; /* Log file */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char popfile[FILENAMELENGTH];
   int **m;  
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m) nrerror("allocation failure 1 in matrix()");  struct timezone tzp;
   m += NR_END;  extern int gettimeofday();
   m -= nrl;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
    long time_value;
    extern long time();
   /* allocate rows and set pointers to them */  char strcurr[80], strfor[80];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NR_END 1
   m[nrl] += NR_END;  #define FREE_ARG char*
   m[nrl] -= ncl;  #define FTOL 1.0e-10
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define NRANSI 
    #define ITMAX 200 
   /* return pointer to array of pointers to rows */  
   return m;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /****************** free_imatrix *************************/  #define ZEPS 1.0e-10 
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       int **m;  
       long nch,ncl,nrh,nrl;  #define GOLD 1.618034 
      /* free an int matrix allocated by imatrix() */  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /******************* matrix *******************************/    
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m) nrerror("allocation failure 1 in matrix()");  int agegomp= AGEGOMP;
   m += NR_END;  
   m -= nrl;  int imx; 
   int stepm=1;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* Stepm, step in month: minimum step interpolation*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int estepm;
   m[nrl] -= ncl;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int m,nb;
   return m;  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /*************************free matrix ************************/  double **pmmij, ***probs;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double *ageexmed,*agecens;
 {  double dateintmean=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /******************* ma3x *******************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double ftolhess; /* Tolerance for computing hessian */
   double ***m;  
   /**************** split *************************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   m -= nrl;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    char  *ss;                            /* pointer */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int   l1, l2;                         /* length counters */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl][ncl] += NR_END;      /* get current working directory */
   m[nrl][ncl] -= nll;      /*    extern  char* getcwd ( char *buf , int len);*/
   for (j=ncl+1; j<=nch; j++)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     m[nrl][j]=m[nrl][j-1]+nlay;        return( GLOCK_ERROR_GETCWD );
        }
   for (i=nrl+1; i<=nrh; i++) {      strcpy( name, path );               /* we've got it */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    } else {                              /* strip direcotry from path */
     for (j=ncl+1; j<=nch; j++)      ss++;                               /* after this, the filename */
       m[i][j]=m[i][j-1]+nlay;      l2 = strlen( ss );                  /* length of filename */
   }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return m;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /*************************free ma3x ************************/    }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    l1 = strlen( dirc );                  /* length of directory */
 {    /*#ifdef windows
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #else
   free((FREE_ARG)(m+nrl-NR_END));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 }  #endif
     */
 /***************** f1dim *************************/    ss = strrchr( name, '.' );            /* find last / */
 extern int ncom;    if (ss >0){
 extern double *pcom,*xicom;      ss++;
 extern double (*nrfunc)(double []);      strcpy(ext,ss);                     /* save extension */
        l1= strlen( name);
 double f1dim(double x)      l2= strlen(ss)+1;
 {      strncpy( finame, name, l1-l2);
   int j;      finame[l1-l2]= 0;
   double f;    }
   double *xt;    return( 0 );                          /* we're done */
    }
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /******************************************/
   free_vector(xt,1,ncom);  
   return f;  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /*****************brent *************************/    int lg=0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    i=0;
 {    lg=strlen(t);
   int iter;    for(i=0; i<= lg; i++) {
   double a,b,d,etemp;      (s[i] = t[i]);
   double fu,fv,fw,fx;      if (t[i]== '\\') s[i]='/';
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    int nbocc(char *s, char occ)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    int i,j=0;
   x=w=v=bx;    int lg=20;
   fw=fv=fx=(*f)(x);    i=0;
   for (iter=1;iter<=ITMAX;iter++) {    lg=strlen(s);
     xm=0.5*(a+b);    for(i=0; i<= lg; i++) {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if  (s[i] == occ ) j++;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    }
     printf(".");fflush(stdout);    return j;
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void cutv(char *u,char *v, char*t, char occ)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    /* cuts string t into u and v where u is ended by char occ excluding it
       *xmin=x;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
       return fx;       gives u="abcedf" and v="ghi2j" */
     }    int i,lg,j,p=0;
     ftemp=fu;    i=0;
     if (fabs(e) > tol1) {    for(j=0; j<=strlen(t)-1; j++) {
       r=(x-w)*(fx-fv);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       q=(x-v)*(fx-fw);    }
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    lg=strlen(t);
       if (q > 0.0) p = -p;    for(j=0; j<p; j++) {
       q=fabs(q);      (u[j] = t[j]);
       etemp=e;    }
       e=d;       u[p]='\0';
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     for(j=0; j<= lg; j++) {
       else {      if (j>=(p+1))(v[j-p-1] = t[j]);
         d=p/q;    }
         u=x+d;  }
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  /********************** nrerror ********************/
       }  
     } else {  void nrerror(char error_text[])
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    fprintf(stderr,"ERREUR ...\n");
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    fprintf(stderr,"%s\n",error_text);
     fu=(*f)(u);    exit(EXIT_FAILURE);
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  /*********************** vector *******************/
       SHFT(v,w,x,u)  double *vector(int nl, int nh)
         SHFT(fv,fw,fx,fu)  {
         } else {    double *v;
           if (u < x) a=u; else b=u;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
           if (fu <= fw || w == x) {    if (!v) nrerror("allocation failure in vector");
             v=w;    return v-nl+NR_END;
             w=u;  }
             fv=fw;  
             fw=fu;  /************************ free vector ******************/
           } else if (fu <= fv || v == x || v == w) {  void free_vector(double*v, int nl, int nh)
             v=u;  {
             fv=fu;    free((FREE_ARG)(v+nl-NR_END));
           }  }
         }  
   }  /************************ivector *******************************/
   nrerror("Too many iterations in brent");  int *ivector(long nl,long nh)
   *xmin=x;  {
   return fx;    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /****************** mnbrak ***********************/    return v-nl+NR_END;
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   double ulim,u,r,q, dum;  {
   double fu;    free((FREE_ARG)(v+nl-NR_END));
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  /************************lvector *******************************/
   if (*fb > *fa) {  long *lvector(long nl,long nh)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    long *v;
       }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!v) nrerror("allocation failure in ivector");
   *fc=(*func)(*cx);    return v-nl+NR_END;
   while (*fb > *fc) {  }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /******************free lvector **************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  void free_lvector(long *v, long nl, long nh)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    free((FREE_ARG)(v+nl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /******************* imatrix *******************************/
       fu=(*func)(u);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (fu < *fc) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  { 
           SHFT(*fb,*fc,fu,(*func)(u))    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           }    int **m; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    
       u=ulim;    /* allocate pointers to rows */ 
       fu=(*func)(u);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     } else {    if (!m) nrerror("allocation failure 1 in matrix()"); 
       u=(*cx)+GOLD*(*cx-*bx);    m += NR_END; 
       fu=(*func)(u);    m -= nrl; 
     }    
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)    /* allocate rows and set pointers to them */ 
       }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 /*************** linmin ************************/    m[nrl] -= ncl; 
     
 int ncom;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 double *pcom,*xicom;    
 double (*nrfunc)(double []);    /* return pointer to array of pointers to rows */ 
      return m; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  } 
 {  
   double brent(double ax, double bx, double cx,  /****************** free_imatrix *************************/
                double (*f)(double), double tol, double *xmin);  void free_imatrix(m,nrl,nrh,ncl,nch)
   double f1dim(double x);        int **m;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        long nch,ncl,nrh,nrl; 
               double *fc, double (*func)(double));       /* free an int matrix allocated by imatrix() */ 
   int j;  { 
   double xx,xmin,bx,ax;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double fx,fb,fa;    free((FREE_ARG) (m+nrl-NR_END)); 
    } 
   ncom=n;  
   pcom=vector(1,n);  /******************* matrix *******************************/
   xicom=vector(1,n);  double **matrix(long nrl, long nrh, long ncl, long nch)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     pcom[j]=p[j];    double **m;
     xicom[j]=xi[j];  
   }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   ax=0.0;    if (!m) nrerror("allocation failure 1 in matrix()");
   xx=1.0;    m += NR_END;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m -= nrl;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
   for (j=1;j<=n;j++) {    m[nrl] -= ncl;
     xi[j] *= xmin;  
     p[j] += xi[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }    return m;
   free_vector(xicom,1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   free_vector(pcom,1,n);     */
 }  }
   
 /*************** powell ************************/  /*************************free matrix ************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             double (*func)(double []))  {
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG)(m+nrl-NR_END));
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /******************* ma3x *******************************/
   double fp,fptt;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double *xits;  {
   pt=vector(1,n);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   ptt=vector(1,n);    double ***m;
   xit=vector(1,n);  
   xits=vector(1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fret=(*func)(p);    if (!m) nrerror("allocation failure 1 in matrix()");
   for (j=1;j<=n;j++) pt[j]=p[j];    m += NR_END;
   for (*iter=1;;++(*iter)) {    m -= nrl;
     fp=(*fret);  
     ibig=0;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     del=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl] += NR_END;
     for (i=1;i<=n;i++)    m[nrl] -= ncl;
       printf(" %d %.12f",i, p[i]);  
     printf("\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       fptt=(*fret);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #ifdef DEBUG    m[nrl][ncl] += NR_END;
       printf("fret=%lf \n",*fret);    m[nrl][ncl] -= nll;
 #endif    for (j=ncl+1; j<=nch; j++) 
       printf("%d",i);fflush(stdout);      m[nrl][j]=m[nrl][j-1]+nlay;
       linmin(p,xit,n,fret,func);    
       if (fabs(fptt-(*fret)) > del) {    for (i=nrl+1; i<=nrh; i++) {
         del=fabs(fptt-(*fret));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         ibig=i;      for (j=ncl+1; j<=nch; j++) 
       }        m[i][j]=m[i][j-1]+nlay;
 #ifdef DEBUG    }
       printf("%d %.12e",i,(*fret));    return m; 
       for (j=1;j<=n;j++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         printf(" x(%d)=%.12e",j,xit[j]);    */
       }  }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  /*************************free ma3x ************************/
       printf("\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #endif  {
     }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /*************** function subdirf ***********/
       printf("Max: %.12e",(*func)(p));  char *subdirf(char fileres[])
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    /* Caution optionfilefiname is hidden */
       printf("\n");    strcpy(tmpout,optionfilefiname);
       for(l=0;l<=1;l++) {    strcat(tmpout,"/"); /* Add to the right */
         for (j=1;j<=n;j++) {    strcat(tmpout,fileres);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return tmpout;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
 #endif  {
     
     /* Caution optionfilefiname is hidden */
       free_vector(xit,1,n);    strcpy(tmpout,optionfilefiname);
       free_vector(xits,1,n);    strcat(tmpout,"/");
       free_vector(ptt,1,n);    strcat(tmpout,preop);
       free_vector(pt,1,n);    strcat(tmpout,fileres);
       return;    return tmpout;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /*************** function subdirf3 ***********/
       ptt[j]=2.0*p[j]-pt[j];  char *subdirf3(char fileres[], char *preop, char *preop2)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    
     }    /* Caution optionfilefiname is hidden */
     fptt=(*func)(ptt);    strcpy(tmpout,optionfilefiname);
     if (fptt < fp) {    strcat(tmpout,"/");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcat(tmpout,preop);
       if (t < 0.0) {    strcat(tmpout,preop2);
         linmin(p,xit,n,fret,func);    strcat(tmpout,fileres);
         for (j=1;j<=n;j++) {    return tmpout;
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  /***************** f1dim *************************/
 #ifdef DEBUG  extern int ncom; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  extern double *pcom,*xicom;
         for(j=1;j<=n;j++)  extern double (*nrfunc)(double []); 
           printf(" %.12e",xit[j]);   
         printf("\n");  double f1dim(double x) 
 #endif  { 
       }    int j; 
     }    double f;
   }    double *xt; 
 }   
     xt=vector(1,ncom); 
 /**** Prevalence limit ****************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    free_vector(xt,1,ncom); 
 {    return f; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  } 
      matrix by transitions matrix until convergence is reached */  
   /*****************brent *************************/
   int i, ii,j,k;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double min, max, maxmin, maxmax,sumnew=0.;  { 
   double **matprod2();    int iter; 
   double **out, cov[NCOVMAX], **pmij();    double a,b,d,etemp;
   double **newm;    double fu,fv,fw,fx;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    double e=0.0; 
     for (j=1;j<=nlstate+ndeath;j++){   
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
    cov[1]=1.;    fw=fv=fx=(*f)(x); 
      for (iter=1;iter<=ITMAX;iter++) { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      xm=0.5*(a+b); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     newm=savm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     /* Covariates have to be included here again */      printf(".");fflush(stdout);
      cov[2]=agefin;      fprintf(ficlog,".");fflush(ficlog);
    #ifdef DEBUG
       for (k=1; k<=cptcovn;k++) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (k=1; k<=cptcovprod;k++)        *xmin=x; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        return fx; 
       } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      ftemp=fu;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      if (fabs(e) > tol1) { 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        r=(x-w)*(fx-fv); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
     savm=oldm;        q=2.0*(q-r); 
     oldm=newm;        if (q > 0.0) p = -p; 
     maxmax=0.;        q=fabs(q); 
     for(j=1;j<=nlstate;j++){        etemp=e; 
       min=1.;        e=d; 
       max=0.;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for(i=1; i<=nlstate; i++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         sumnew=0;        else { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          d=p/q; 
         prlim[i][j]= newm[i][j]/(1-sumnew);          u=x+d; 
         max=FMAX(max,prlim[i][j]);          if (u-a < tol2 || b-u < tol2) 
         min=FMIN(min,prlim[i][j]);            d=SIGN(tol1,xm-x); 
       }        } 
       maxmin=max-min;      } else { 
       maxmax=FMAX(maxmax,maxmin);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     if(maxmax < ftolpl){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       return prlim;      fu=(*f)(u); 
     }      if (fu <= fx) { 
   }        if (u >= x) a=x; else b=x; 
 }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 /*************** transition probabilities ***************/          } else { 
             if (u < x) a=u; else b=u; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            if (fu <= fw || w == x) { 
 {              v=w; 
   double s1, s2;              w=u; 
   /*double t34;*/              fv=fw; 
   int i,j,j1, nc, ii, jj;              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
     for(i=1; i<= nlstate; i++){              v=u; 
     for(j=1; j<i;j++){              fv=fu; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            } 
         /*s2 += param[i][j][nc]*cov[nc];*/          } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    nrerror("Too many iterations in brent"); 
       }    *xmin=x; 
       ps[i][j]=s2;    return fx; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /****************** mnbrak ***********************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/              double (*func)(double)) 
       }  { 
       ps[i][j]=s2;    double ulim,u,r,q, dum;
     }    double fu; 
   }   
     /*ps[3][2]=1;*/    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   for(i=1; i<= nlstate; i++){    if (*fb > *fa) { 
      s1=0;      SHFT(dum,*ax,*bx,dum) 
     for(j=1; j<i; j++)        SHFT(dum,*fb,*fa,dum) 
       s1+=exp(ps[i][j]);        } 
     for(j=i+1; j<=nlstate+ndeath; j++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       s1+=exp(ps[i][j]);    *fc=(*func)(*cx); 
     ps[i][i]=1./(s1+1.);    while (*fb > *fc) { 
     for(j=1; j<i; j++)      r=(*bx-*ax)*(*fb-*fc); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      q=(*bx-*cx)*(*fb-*fa); 
     for(j=i+1; j<=nlstate+ndeath; j++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   } /* end i */      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        fu=(*func)(u); 
       ps[ii][jj]=0;        if (fu < *fc) { 
       ps[ii][ii]=1;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else { 
      printf("%lf ",ps[ii][jj]);        u=(*cx)+GOLD*(*cx-*bx); 
    }        fu=(*func)(u); 
     printf("\n ");      } 
     }      SHFT(*ax,*bx,*cx,u) 
     printf("\n ");printf("%lf ",cov[2]);*/        SHFT(*fa,*fb,*fc,fu) 
 /*        } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  } 
   goto end;*/  
     return ps;  /*************** linmin ************************/
 }  
   int ncom; 
 /**************** Product of 2 matrices ******************/  double *pcom,*xicom;
   double (*nrfunc)(double []); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)   
 {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double brent(double ax, double bx, double cx, 
   /* in, b, out are matrice of pointers which should have been initialized                 double (*f)(double), double tol, double *xmin); 
      before: only the contents of out is modified. The function returns    double f1dim(double x); 
      a pointer to pointers identical to out */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   long i, j, k;                double *fc, double (*func)(double)); 
   for(i=nrl; i<= nrh; i++)    int j; 
     for(k=ncolol; k<=ncoloh; k++)    double xx,xmin,bx,ax; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double fx,fb,fa;
         out[i][k] +=in[i][j]*b[j][k];   
     ncom=n; 
   return out;    pcom=vector(1,n); 
 }    xicom=vector(1,n); 
     nrfunc=func; 
     for (j=1;j<=n;j++) { 
 /************* Higher Matrix Product ***************/      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    } 
 {    ax=0.0; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    xx=1.0; 
      duration (i.e. until    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #ifdef DEBUG
      (typically every 2 years instead of every month which is too big).    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      Model is determined by parameters x and covariates have to be    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      included manually here.  #endif
     for (j=1;j<=n;j++) { 
      */      xi[j] *= xmin; 
       p[j] += xi[j]; 
   int i, j, d, h, k;    } 
   double **out, cov[NCOVMAX];    free_vector(xicom,1,n); 
   double **newm;    free_vector(pcom,1,n); 
   } 
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  char *asc_diff_time(long time_sec, char ascdiff[])
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    long sec_left, days, hours, minutes;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    days = (time_sec) / (60*60*24);
     }    sec_left = (time_sec) % (60*60*24);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    hours = (sec_left) / (60*60) ;
   for(h=1; h <=nhstepm; h++){    sec_left = (sec_left) %(60*60);
     for(d=1; d <=hstepm; d++){    minutes = (sec_left) /60;
       newm=savm;    sec_left = (sec_left) % (60);
       /* Covariates have to be included here again */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       cov[1]=1.;    return ascdiff;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /*************** powell ************************/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (k=1; k<=cptcovprod;k++)              double (*func)(double [])) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  { 
     void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    int i,ibig,j; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double del,t,*pt,*ptt,*xit;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double fp,fptt;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double *xits;
       savm=oldm;    int niterf, itmp;
       oldm=newm;  
     }    pt=vector(1,n); 
     for(i=1; i<=nlstate+ndeath; i++)    ptt=vector(1,n); 
       for(j=1;j<=nlstate+ndeath;j++) {    xit=vector(1,n); 
         po[i][j][h]=newm[i][j];    xits=vector(1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    *fret=(*func)(p); 
          */    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
   } /* end h */      fp=(*fret); 
   return po;      ibig=0; 
 }      del=0.0; 
       last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
 /*************** log-likelihood *************/      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 double func( double *x)      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   int i, ii, j, k, mi, d, kk;      */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];     for (i=1;i<=n;i++) {
   double **out;        printf(" %d %.12f",i, p[i]);
   double sw; /* Sum of weights */        fprintf(ficlog," %d %.12lf",i, p[i]);
   double lli; /* Individual log likelihood */        fprintf(ficrespow," %.12lf", p[i]);
   long ipmx;      }
   /*extern weight */      printf("\n");
   /* We are differentiating ll according to initial status */      fprintf(ficlog,"\n");
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      fprintf(ficrespow,"\n");fflush(ficrespow);
   /*for(i=1;i<imx;i++)      if(*iter <=3){
     printf(" %d\n",s[4][i]);        tm = *localtime(&curr_time.tv_sec);
   */        strcpy(strcurr,asctime(&tmf));
   cov[1]=1.;  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        itmp = strlen(strcurr);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        if(strcurr[itmp-1]=='\n')
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          strcurr[itmp-1]='\0';
     for(mi=1; mi<= wav[i]-1; mi++){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(niterf=10;niterf<=30;niterf+=10){
       for(d=0; d<dh[mi][i]; d++){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         newm=savm;          tmf = *localtime(&forecast_time.tv_sec);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*      asctime_r(&tmf,strfor); */
         for (kk=1; kk<=cptcovage;kk++) {          strcpy(strfor,asctime(&tmf));
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          itmp = strlen(strfor);
         }          if(strfor[itmp-1]=='\n')
                  strfor[itmp-1]='\0';
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         savm=oldm;        }
         oldm=newm;      }
              for (i=1;i<=n;i++) { 
                for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       } /* end mult */        fptt=(*fret); 
        #ifdef DEBUG
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        printf("fret=%lf \n",*fret);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        fprintf(ficlog,"fret=%lf \n",*fret);
       ipmx +=1;  #endif
       sw += weight[i];        printf("%d",i);fflush(stdout);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fprintf(ficlog,"%d",i);fflush(ficlog);
     } /* end of wave */        linmin(p,xit,n,fret,func); 
   } /* end of individual */        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          ibig=i; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  #ifdef DEBUG
   return -l;        printf("%d %.12e",i,(*fret));
 }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 /*********** Maximum Likelihood Estimation ***************/          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        }
 {        for(j=1;j<=n;j++) {
   int i,j, iter;          printf(" p=%.12e",p[j]);
   double **xi,*delti;          fprintf(ficlog," p=%.12e",p[j]);
   double fret;        }
   xi=matrix(1,npar,1,npar);        printf("\n");
   for (i=1;i<=npar;i++)        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++)  #endif
       xi[i][j]=(i==j ? 1.0 : 0.0);      } 
   printf("Powell\n");      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   powell(p,xi,npar,ftol,&iter,&fret,func);  #ifdef DEBUG
         int k[2],l;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        k[0]=1;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
 /**** Computes Hessian and covariance matrix ***/          printf(" %.12e",p[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          fprintf(ficlog," %.12e",p[j]);
 {        }
   double  **a,**y,*x,pd;        printf("\n");
   double **hess;        fprintf(ficlog,"\n");
   int i, j,jk;        for(l=0;l<=1;l++) {
   int *indx;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double hessii(double p[], double delta, int theta, double delti[]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double hessij(double p[], double delti[], int i, int j);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          }
   void ludcmp(double **a, int npar, int *indx, double *d) ;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   hess=matrix(1,npar,1,npar);        }
   #endif
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);        free_vector(xit,1,n); 
     hess[i][i]=hessii(p,ftolhess,i,delti);        free_vector(xits,1,n); 
     /*printf(" %f ",p[i]);*/        free_vector(ptt,1,n); 
     /*printf(" %lf ",hess[i][i]);*/        free_vector(pt,1,n); 
   }        return; 
        } 
   for (i=1;i<=npar;i++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=npar;j++)  {      for (j=1;j<=n;j++) { 
       if (j>i) {        ptt[j]=2.0*p[j]-pt[j]; 
         printf(".%d%d",i,j);fflush(stdout);        xit[j]=p[j]-pt[j]; 
         hess[i][j]=hessij(p,delti,i,j);        pt[j]=p[j]; 
         hess[j][i]=hess[i][j];          } 
         /*printf(" %lf ",hess[i][j]);*/      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   }        if (t < 0.0) { 
   printf("\n");          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
   a=matrix(1,npar,1,npar);          }
   y=matrix(1,npar,1,npar);  #ifdef DEBUG
   x=vector(1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   indx=ivector(1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++)          for(j=1;j<=n;j++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            printf(" %.12e",xit[j]);
   ludcmp(a,npar,indx,&pd);            fprintf(ficlog," %.12e",xit[j]);
           }
   for (j=1;j<=npar;j++) {          printf("\n");
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog,"\n");
     x[j]=1;  #endif
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){      } 
       matcov[i][j]=x[i];    } 
     }  } 
   }  
   /**** Prevalence limit (stable prevalence)  ****************/
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for (j=1;j<=npar;j++) {  {
       printf("%.3e ",hess[i][j]);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
     printf("\n");  
   }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   /* Recompute Inverse */    double **matprod2();
   for (i=1;i<=npar;i++)    double **out, cov[NCOVMAX], **pmij();
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double **newm;
   ludcmp(a,npar,indx,&pd);    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   /*  printf("\n#Hessian matrix recomputed#\n");    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   for (j=1;j<=npar;j++) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++) x[i]=0;      }
     x[j]=1;  
     lubksb(a,npar,indx,x);     cov[1]=1.;
     for (i=1;i<=npar;i++){   
       y[i][j]=x[i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       printf("%.3e ",y[i][j]);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
     printf("\n");      /* Covariates have to be included here again */
   }       cov[2]=agefin;
   */    
         for (k=1; k<=cptcovn;k++) {
   free_matrix(a,1,npar,1,npar);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_matrix(y,1,npar,1,npar);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   free_vector(x,1,npar);        }
   free_ivector(indx,1,npar);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_matrix(hess,1,npar,1,npar);        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 /*************** hessian matrix ****************/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 double hessii( double x[], double delta, int theta, double delti[])      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 {  
   int i;      savm=oldm;
   int l=1, lmax=20;      oldm=newm;
   double k1,k2;      maxmax=0.;
   double p2[NPARMAX+1];      for(j=1;j<=nlstate;j++){
   double res;        min=1.;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        max=0.;
   double fx;        for(i=1; i<=nlstate; i++) {
   int k=0,kmax=10;          sumnew=0;
   double l1;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   fx=func(x);          max=FMAX(max,prlim[i][j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];          min=FMIN(min,prlim[i][j]);
   for(l=0 ; l <=lmax; l++){        }
     l1=pow(10,l);        maxmin=max-min;
     delts=delt;        maxmax=FMAX(maxmax,maxmin);
     for(k=1 ; k <kmax; k=k+1){      }
       delt = delta*(l1*k);      if(maxmax < ftolpl){
       p2[theta]=x[theta] +delt;        return prlim;
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;    }
       k2=func(p2)-fx;  }
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*************** transition probabilities ***************/ 
        
 #ifdef DEBUG  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    double s1, s2;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /*double t34;*/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    int i,j,j1, nc, ii, jj;
         k=kmax;  
       }      for(i=1; i<= nlstate; i++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for(j=1; j<i;j++){
         k=kmax; l=lmax*10.;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }            /*s2 += param[i][j][nc]*cov[nc];*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         delts=delt;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       }          }
     }          ps[i][j]=s2;
   }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   delti[theta]=delts;        }
   return res;        for(j=i+1; j<=nlstate+ndeath;j++){
            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 double hessij( double x[], double delti[], int thetai,int thetaj)          }
 {          ps[i][j]=s2;
   int i;        }
   int l=1, l1, lmax=20;      }
   double k1,k2,k3,k4,res,fx;      /*ps[3][2]=1;*/
   double p2[NPARMAX+1];      
   int k;      for(i=1; i<= nlstate; i++){
         s1=0;
   fx=func(x);        for(j=1; j<i; j++)
   for (k=1; k<=2; k++) {          s1+=exp(ps[i][j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetai]=x[thetai]+delti[thetai]/k;          s1+=exp(ps[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        ps[i][i]=1./(s1+1.);
     k1=func(p2)-fx;        for(j=1; j<i; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     k2=func(p2)-fx;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
        } /* end i */
     p2[thetai]=x[thetai]-delti[thetai]/k;      
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     k3=func(p2)-fx;        for(jj=1; jj<= nlstate+ndeath; jj++){
            ps[ii][jj]=0;
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[ii][ii]=1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 #endif  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   }  /*         printf("ddd %lf ",ps[ii][jj]); */
   return res;  /*       } */
 }  /*       printf("\n "); */
   /*        } */
 /************** Inverse of matrix **************/  /*        printf("\n ");printf("%lf ",cov[2]); */
 void ludcmp(double **a, int n, int *indx, double *d)         /*
 {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int i,imax,j,k;        goto end;*/
   double big,dum,sum,temp;      return ps;
   double *vv;  }
    
   vv=vector(1,n);  /**************** Product of 2 matrices ******************/
   *d=1.0;  
   for (i=1;i<=n;i++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     big=0.0;  {
     for (j=1;j<=n;j++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       if ((temp=fabs(a[i][j])) > big) big=temp;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    /* in, b, out are matrice of pointers which should have been initialized 
     vv[i]=1.0/big;       before: only the contents of out is modified. The function returns
   }       a pointer to pointers identical to out */
   for (j=1;j<=n;j++) {    long i, j, k;
     for (i=1;i<j;i++) {    for(i=nrl; i<= nrh; i++)
       sum=a[i][j];      for(k=ncolol; k<=ncoloh; k++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       a[i][j]=sum;          out[i][k] +=in[i][j]*b[j][k];
     }  
     big=0.0;    return out;
     for (i=j;i<=n;i++) {  }
       sum=a[i][j];  
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /************* Higher Matrix Product ***************/
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         big=dum;  {
         imax=i;    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
     }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     if (j != imax) {       nhstepm*hstepm matrices. 
       for (k=1;k<=n;k++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         dum=a[imax][k];       (typically every 2 years instead of every month which is too big 
         a[imax][k]=a[j][k];       for the memory).
         a[j][k]=dum;       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
       *d = -(*d);  
       vv[imax]=vv[j];       */
     }  
     indx[j]=imax;    int i, j, d, h, k;
     if (a[j][j] == 0.0) a[j][j]=TINY;    double **out, cov[NCOVMAX];
     if (j != n) {    double **newm;
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* Hstepm could be zero and should return the unit matrix */
     }    for (i=1;i<=nlstate+ndeath;i++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   free_vector(vv,1,n);  /* Doesn't work */        oldm[i][j]=(i==j ? 1.0 : 0.0);
 ;        po[i][j][0]=(i==j ? 1.0 : 0.0);
 }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 void lubksb(double **a, int n, int *indx, double b[])    for(h=1; h <=nhstepm; h++){
 {      for(d=1; d <=hstepm; d++){
   int i,ii=0,ip,j;        newm=savm;
   double sum;        /* Covariates have to be included here again */
          cov[1]=1.;
   for (i=1;i<=n;i++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     ip=indx[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     sum=b[ip];        for (k=1; k<=cptcovage;k++)
     b[ip]=b[i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if (ii)        for (k=1; k<=cptcovprod;k++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     else if (sum) ii=i;  
     b[i]=sum;  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (i=n;i>=1;i--) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     sum=b[i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     b[i]=sum/a[i][i];        savm=oldm;
   }        oldm=newm;
 }      }
       for(i=1; i<=nlstate+ndeath; i++)
 /************ Frequencies ********************/        for(j=1;j<=nlstate+ndeath;j++) {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          po[i][j][h]=newm[i][j];
 {  /* Some frequencies */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */    } /* end h */
   double *pp;    return po;
   double pos, k2, dateintsum=0,k2cpt=0;  }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  
    /*************** log-likelihood *************/
   pp=vector(1,nlstate);  double func( double *x)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   strcpy(fileresp,"p");    int i, ii, j, k, mi, d, kk;
   strcat(fileresp,fileres);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double **out;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double sw; /* Sum of weights */
     exit(0);    double lli; /* Individual log likelihood */
   }    int s1, s2;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double bbh, survp;
   j1=0;    long ipmx;
      /*extern weight */
   j=cptcoveff;    /* We are differentiating ll according to initial status */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   for(k1=1; k1<=j;k1++){      printf(" %d\n",s[4][i]);
     for(i1=1; i1<=ncodemax[k1];i1++){    */
       j1++;    cov[1]=1.;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      if(mle==1){
           for(m=agemin; m <= agemax+3; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             freq[i][jk][m]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       dateintsum=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       k2cpt=0;            for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)          for(d=0; d<dh[mi][i]; d++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            newm=savm;
               bool=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         if (bool==1) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if ((k2>=dateprev1) && (k2<=dateprev2)) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==0) agev[m][i]=agemax+1;            savm=oldm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            oldm=newm;
               if (m<lastpass) {          } /* end mult */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               }          /* But now since version 0.9 we anticipate for bias and large stepm.
                         * If stepm is larger than one month (smallest stepm) and if the exact delay 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 dateintsum=dateintsum+k2;           * the nearest (and in case of equal distance, to the lowest) interval but now
                 k2cpt++;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             }           * probability in order to take into account the bias as a fraction of the way
           }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
                   * For stepm > 1 the results are less biased than in previous versions. 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           */
           s1=s[mw[mi][i]][i];
       if  (cptcovn>0) {          s2=s[mw[mi+1][i]][i];
         fprintf(ficresp, "\n#********** Variable ");          bbh=(double)bh[mi][i]/(double)stepm; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /* bias is positive if real duration
         fprintf(ficresp, "**********\n#");           * is higher than the multiple of stepm and negative otherwise.
       }           */
       for(i=1; i<=nlstate;i++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          if( s2 > nlstate){ 
       fprintf(ficresp, "\n");            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                     to the likelihood is the probability to die between last step unit time and current 
       for(i=(int)agemin; i <= (int)agemax+3; i++){               step unit time, which is also the differences between probability to die before dh 
         if(i==(int)agemax+3)               and probability to die before dh-stepm . 
           printf("Total");               In version up to 0.92 likelihood was computed
         else          as if date of death was unknown. Death was treated as any other
           printf("Age %d", i);          health state: the date of the interview describes the actual state
         for(jk=1; jk <=nlstate ; jk++){          and not the date of a change in health state. The former idea was
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          to consider that at each interview the state was recorded
             pp[jk] += freq[jk][m][i];          (healthy, disable or death) and IMaCh was corrected; but when we
         }          introduced the exact date of death then we should have modified
         for(jk=1; jk <=nlstate ; jk++){          the contribution of an exact death to the likelihood. This new
           for(m=-1, pos=0; m <=0 ; m++)          contribution is smaller and very dependent of the step unit
             pos += freq[jk][m][i];          stepm. It is no more the probability to die between last interview
           if(pp[jk]>=1.e-10)          and month of death but the probability to survive from last
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          interview up to one month before death multiplied by the
           else          probability to die within a month. Thanks to Chris
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          Jackson for correcting this bug.  Former versions increased
         }          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
         for(jk=1; jk <=nlstate ; jk++){          lower mortality.
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            */
             pp[jk] += freq[jk][m][i];            lli=log(out[s1][s2] - savm[s1][s2]);
         }          }else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(jk=1,pos=0; jk <=nlstate ; jk++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           pos += pp[jk];          } 
         for(jk=1; jk <=nlstate ; jk++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           if(pos>=1.e-5)          /*if(lli ==000.0)*/
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           else          ipmx +=1;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          sw += weight[i];
           if( i <= (int) agemax){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if(pos>=1.e-5){        } /* end of wave */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      } /* end of individual */
               probs[i][jk][j1]= pp[jk]/pos;    }  else if(mle==2){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             else        for(mi=1; mi<= wav[i]-1; mi++){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=-1; jk <=nlstate+ndeath; jk++)            }
           for(m=-1; m <=nlstate+ndeath; m++)          for(d=0; d<=dh[mi][i]; d++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            newm=savm;
         if(i <= (int) agemax)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficresp,"\n");            for (kk=1; kk<=cptcovage;kk++) {
         printf("\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dateintmean=dateintsum/k2cpt;            savm=oldm;
              oldm=newm;
   fclose(ficresp);          } /* end mult */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        
   free_vector(pp,1,nlstate);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   /* End of Freq */          bbh=(double)bh[mi][i]/(double)stepm; 
 }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
 /************ Prevalence ********************/          sw += weight[i];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {  /* Some frequencies */        } /* end of wave */
        } /* end of individual */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    }  else if(mle==3){  /* exponential inter-extrapolation */
   double ***freq; /* Frequencies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *pp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double pos, k2;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   pp=vector(1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            }
   j1=0;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   j=cptcoveff;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for(k1=1; k1<=j;k1++){            }
     for(i1=1; i1<=ncodemax[k1];i1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       j1++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
       for (i=-1; i<=nlstate+ndeath; i++)              oldm=newm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            } /* end mult */
           for(m=agemin; m <= agemax+3; m++)        
             freq[i][jk][m]=0;          s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       for (i=1; i<=imx; i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
         bool=1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if  (cptcovn>0) {          ipmx +=1;
           for (z1=1; z1<=cptcoveff; z1++)          sw += weight[i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               bool=0;        } /* end of wave */
         }      } /* end of individual */
         if (bool==1) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           for(m=firstpass; m<=lastpass; m++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             k2=anint[m][i]+(mint[m][i]/12.);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(mi=1; mi<= wav[i]-1; mi++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (j=1;j<=nlstate+ndeath;j++){
               if (m<lastpass)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               else            }
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for(d=0; d<dh[mi][i]; d++){
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
         for(i=(int)agemin; i <= (int)agemax+3; i++){          
           for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               pp[jk] += freq[jk][m][i];            savm=oldm;
           }            oldm=newm;
           for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
             for(m=-1, pos=0; m <=0 ; m++)        
             pos += freq[jk][m][i];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
                  if( s2 > nlstate){ 
          for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          }else{
              pp[jk] += freq[jk][m][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
          }          }
                    ipmx +=1;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          for(jk=1; jk <=nlstate ; jk++){            /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            if( i <= (int) agemax){        } /* end of wave */
              if(pos>=1.e-5){      } /* end of individual */
                probs[i][jk][j1]= pp[jk]/pos;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
              }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          }        for(mi=1; mi<= wav[i]-1; mi++){
                    for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
            for(d=0; d<dh[mi][i]; d++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            newm=savm;
   free_vector(pp,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
 }  /* End of Freq */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /************* Waves Concatenation ***************/          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            oldm=newm;
      Death is a valid wave (if date is known).          } /* end mult */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          s1=s[mw[mi][i]][i];
      and mw[mi+1][i]. dh depends on stepm.          s2=s[mw[mi+1][i]][i];
      */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
   int i, mi, m;          sw += weight[i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      double sum=0., jmean=0.;*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
   int j, k=0,jk, ju, jl;      } /* end of individual */
   double sum=0.;    } /* End of if */
   jmin=1e+5;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   jmax=-1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   jmean=0.;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(i=1; i<=imx; i++){    return -l;
     mi=0;  }
     m=firstpass;  
     while(s[m][i] <= nlstate){  /*************** log-likelihood *************/
       if(s[m][i]>=1)  double funcone( double *x)
         mw[++mi][i]=m;  {
       if(m >=lastpass)    /* Same as likeli but slower because of a lot of printf and if */
         break;    int i, ii, j, k, mi, d, kk;
       else    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         m++;    double **out;
     }/* end while */    double lli; /* Individual log likelihood */
     if (s[m][i] > nlstate){    double llt;
       mi++;     /* Death is another wave */    int s1, s2;
       /* if(mi==0)  never been interviewed correctly before death */    double bbh, survp;
          /* Only death is a correct wave */    /*extern weight */
       mw[mi][i]=m;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     wav[i]=mi;      printf(" %d\n",s[4][i]);
     if(mi==0)    */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    cov[1]=1.;
   }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if (stepm <=0)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         dh[mi][i]=1;      for(mi=1; mi<= wav[i]-1; mi++){
       else{        for (ii=1;ii<=nlstate+ndeath;ii++)
         if (s[mw[mi+1][i]][i] > nlstate) {          for (j=1;j<=nlstate+ndeath;j++){
           if (agedc[i] < 2*AGESUP) {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(j==0) j=1;  /* Survives at least one month after exam */          }
           k=k+1;        for(d=0; d<dh[mi][i]; d++){
           if (j >= jmax) jmax=j;          newm=savm;
           if (j <= jmin) jmin=j;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           sum=sum+j;          for (kk=1; kk<=cptcovage;kk++) {
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }          }
         }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         else{                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          savm=oldm;
           k=k+1;          oldm=newm;
           if (j >= jmax) jmax=j;        } /* end mult */
           else if (j <= jmin)jmin=j;        
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        s1=s[mw[mi][i]][i];
           sum=sum+j;        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
         jk= j/stepm;        /* bias is positive if real duration
         jl= j -jk*stepm;         * is higher than the multiple of stepm and negative otherwise.
         ju= j -(jk+1)*stepm;         */
         if(jl <= -ju)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           dh[mi][i]=jk;          lli=log(out[s1][s2] - savm[s1][s2]);
         else        } else if (mle==1){
           dh[mi][i]=jk+1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         if(dh[mi][i]==0)        } else if(mle==2){
           dh[mi][i]=1; /* At least one step */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }        } else if(mle==3){  /* exponential inter-extrapolation */
     }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   jmean=sum/k;          lli=log(out[s1][s2]); /* Original formula */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
  }          lli=log(out[s1][s2]); /* Original formula */
 /*********** Tricode ****************************/        } /* End of if */
 void tricode(int *Tvar, int **nbcode, int imx)        ipmx +=1;
 {        sw += weight[i];
   int Ndum[20],ij=1, k, j, i;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int cptcode=0;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   cptcoveff=0;        if(globpr){
            fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   for (k=0; k<19; k++) Ndum[k]=0;   %10.6f %10.6f %10.6f ", \
   for (k=1; k<=7; k++) ncodemax[k]=0;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for (i=1; i<=imx; i++) {            llt +=ll[k]*gipmx/gsw;
       ij=(int)(covar[Tvar[j]][i]);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       Ndum[ij]++;          }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          fprintf(ficresilk," %10.6f\n", -llt);
       if (ij > cptcode) cptcode=ij;        }
     }      } /* end of wave */
     } /* end of individual */
     for (i=0; i<=cptcode; i++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if(Ndum[i]!=0) ncodemax[j]++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     ij=1;    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
       gsw=sw;
     for (i=1; i<=ncodemax[j]; i++) {    }
       for (k=0; k<=19; k++) {    return -l;
         if (Ndum[k] != 0) {  }
           nbcode[Tvar[j]][ij]=k;  
            
           ij++;  /*************** function likelione ***********/
         }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         if (ij > ncodemax[j]) break;  {
       }      /* This routine should help understanding what is done with 
     }       the selection of individuals/waves and
   }         to check the exact contribution to the likelihood.
        Plotting could be done.
  for (k=0; k<19; k++) Ndum[k]=0;     */
     int k;
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];    if(*globpri !=0){ /* Just counts and sums, no printings */
       Ndum[ij]++;      strcpy(fileresilk,"ilk"); 
     }      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
  ij=1;        printf("Problem with resultfile: %s\n", fileresilk);
  for (i=1; i<=10; i++) {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    if((Ndum[i]!=0) && (i<=ncovcol)){      }
      Tvaraff[ij]=i;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      ij++;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
    }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
  }      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     cptcoveff=ij-1;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 }    }
   
 /*********** Health Expectancies ****************/    *fretone=(*funcone)(p);
     if(*globpri !=0){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 {      fflush(fichtm); 
   /* Health expectancies */    } 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    return;
   double age, agelim, hf;  }
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;  
   double *xp;  /*********** Maximum Likelihood Estimation ***************/
   double **gp, **gm;  
   double ***gradg, ***trgradg;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   int theta;  {
     int i,j, iter;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    double **xi;
   xp=vector(1,npar);    double fret;
   dnewm=matrix(1,nlstate*2,1,npar);    double fretone; /* Only one call to likelihood */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    /*  char filerespow[FILENAMELENGTH];*/
      xi=matrix(1,npar,1,npar);
   fprintf(ficreseij,"# Health expectancies\n");    for (i=1;i<=npar;i++)
   fprintf(ficreseij,"# Age");      for (j=1;j<=npar;j++)
   for(i=1; i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    strcpy(filerespow,"pow"); 
   fprintf(ficreseij,"\n");    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   if(estepm < stepm){      printf("Problem with resultfile: %s\n", filerespow);
     printf ("Problem %d lower than %d\n",estepm, stepm);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }    }
   else  hstepm=estepm;      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   /* We compute the life expectancy from trapezoids spaced every estepm months    for (i=1;i<=nlstate;i++)
    * This is mainly to measure the difference between two models: for example      for(j=1;j<=nlstate+ndeath;j++)
    * if stepm=24 months pijx are given only every 2 years and by summing them        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
    * we are calculating an estimate of the Life Expectancy assuming a linear    fprintf(ficrespow,"\n");
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we    powell(p,xi,npar,ftol,&iter,&fret,func);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear    fclose(ficrespow);
    * hypothesis. A more precise result, taking into account a more precise    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
    * curvature will be obtained if estepm is as small as stepm. */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  }
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  /**** Computes Hessian and covariance matrix ***/
      Look at hpijx to understand the reason of that which relies in memory size  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      and note for a fixed period like estepm months */  {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double  **a,**y,*x,pd;
      survival function given by stepm (the optimization length). Unfortunately it    double **hess;
      means that if the survival funtion is printed only each two years of age and if    int i, j,jk;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    int *indx;
      results. So we changed our mind and took the option of the best precision.  
   */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   agelim=AGESUP;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double gompertz(double p[]);
     /* nhstepm age range expressed in number of stepm */    hess=matrix(1,npar,1,npar);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    printf("\nCalculation of the hessian matrix. Wait...\n");
     /* if (stepm >= YEARM) hstepm=1;*/    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (i=1;i<=npar;i++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("%d",i);fflush(stdout);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      fprintf(ficlog,"%d",i);fflush(ficlog);
     gp=matrix(0,nhstepm,1,nlstate*2);     
     gm=matrix(0,nhstepm,1,nlstate*2);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      /*  printf(" %f ",p[i]);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      }
      
     for (i=1;i<=npar;i++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=1;j<=npar;j++)  {
         if (j>i) { 
     /* Computing Variances of health expectancies */          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      for(theta=1; theta <=npar; theta++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
       for(i=1; i<=npar; i++){          
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
        }
       cptj=0;    }
       for(j=1; j<= nlstate; j++){    printf("\n");
         for(i=1; i<=nlstate; i++){    fprintf(ficlog,"\n");
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           }    
         }    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
          x=vector(1,npar);
          indx=ivector(1,npar);
       for(i=1; i<=npar; i++)    for (i=1;i<=npar;i++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      ludcmp(a,npar,indx,&pd);
        
       cptj=0;    for (j=1;j<=npar;j++) {
       for(j=1; j<= nlstate; j++){      for (i=1;i<=npar;i++) x[i]=0;
         for(i=1;i<=nlstate;i++){      x[j]=1;
           cptj=cptj+1;      lubksb(a,npar,indx,x);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for (i=1;i<=npar;i++){ 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        matcov[i][j]=x[i];
           }      }
         }    }
       }  
          printf("\n#Hessian matrix#\n");
        fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
       for(j=1; j<= nlstate*2; j++)      for (j=1;j<=npar;j++) { 
         for(h=0; h<=nhstepm-1; h++){        printf("%.3e ",hess[i][j]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        fprintf(ficlog,"%.3e ",hess[i][j]);
         }      }
       printf("\n");
      }      fprintf(ficlog,"\n");
        }
 /* End theta */  
     /* Recompute Inverse */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      for(h=0; h<=nhstepm-1; h++)    ludcmp(a,npar,indx,&pd);
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)    /*  printf("\n#Hessian matrix recomputed#\n");
         trgradg[h][j][theta]=gradg[h][theta][j];  
     for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
      for(i=1;i<=nlstate*2;i++)      x[j]=1;
       for(j=1;j<=nlstate*2;j++)      lubksb(a,npar,indx,x);
         varhe[i][j][(int)age] =0.;      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
     for(h=0;h<=nhstepm-1;h++){        printf("%.3e ",y[i][j]);
       for(k=0;k<=nhstepm-1;k++){        fprintf(ficlog,"%.3e ",y[i][j]);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      printf("\n");
         for(i=1;i<=nlstate*2;i++)      fprintf(ficlog,"\n");
           for(j=1;j<=nlstate*2;j++)    }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    */
       }  
     }    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
          free_vector(x,1,npar);
     /* Computing expectancies */    free_ivector(indx,1,npar);
     for(i=1; i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  }
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         }  {
     int i;
     fprintf(ficreseij,"%3.0f",age );    int l=1, lmax=20;
     cptj=0;    double k1,k2;
     for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
       for(j=1; j<=nlstate;j++){    double res;
         cptj++;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double fx;
       }    int k=0,kmax=10;
     fprintf(ficreseij,"\n");    double l1;
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);    fx=func(x);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++) p2[i]=x[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for(l=0 ; l <=lmax; l++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      l1=pow(10,l);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
   free_vector(xp,1,npar);        delt = delta*(l1*k);
   free_matrix(dnewm,1,nlstate*2,1,npar);        p2[theta]=x[theta] +delt;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        k1=func(p2)-fx;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        p2[theta]=x[theta]-delt;
 }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
 /************ Variance ******************/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        
 {  #ifdef DEBUG
   /* Variance of health expectancies */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **newm;  #endif
   double **dnewm,**doldm;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int i, j, nhstepm, hstepm, h, nstepm ;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int k, cptcode;          k=kmax;
   double *xp;        }
   double **gp, **gm;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double ***gradg, ***trgradg;          k=kmax; l=lmax*10.;
   double ***p3mat;        }
   double age,agelim, hf;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int theta;          delts=delt;
         }
    fprintf(ficresvij,"# Covariances of life expectancies\n");      }
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)    delti[theta]=delts;
     for(j=1; j<=nlstate;j++)    return res; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    
   fprintf(ficresvij,"\n");  }
   
   xp=vector(1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   dnewm=matrix(1,nlstate,1,npar);  {
   doldm=matrix(1,nlstate,1,nlstate);    int i;
      int l=1, l1, lmax=20;
   if(estepm < stepm){    double k1,k2,k3,k4,res,fx;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double p2[NPARMAX+1];
   }    int k;
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */    fx=func(x);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (k=1; k<=2; k++) {
      nhstepm is the number of hstepm from age to agelim      for (i=1;i<=npar;i++) p2[i]=x[i];
      nstepm is the number of stepm from age to agelin.      p2[thetai]=x[thetai]+delti[thetai]/k;
      Look at hpijx to understand the reason of that which relies in memory size      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      and note for a fixed period like k years */      k1=func(p2)-fx;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    
      survival function given by stepm (the optimization length). Unfortunately it      p2[thetai]=x[thetai]+delti[thetai]/k;
      means that if the survival funtion is printed only each two years of age and if      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      k2=func(p2)-fx;
      results. So we changed our mind and took the option of the best precision.    
   */      p2[thetai]=x[thetai]-delti[thetai]/k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   agelim = AGESUP;      k3=func(p2)-fx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      p2[thetai]=x[thetai]-delti[thetai]/k;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      k4=func(p2)-fx;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     gp=matrix(0,nhstepm,1,nlstate);  #ifdef DEBUG
     gm=matrix(0,nhstepm,1,nlstate);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(theta=1; theta <=npar; theta++){  #endif
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    return res;
       }  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
       if (popbased==1) {  { 
         for(i=1; i<=nlstate;i++)    int i,imax,j,k; 
           prlim[i][i]=probs[(int)age][i][ij];    double big,dum,sum,temp; 
       }    double *vv; 
     
       for(j=1; j<= nlstate; j++){    vv=vector(1,n); 
         for(h=0; h<=nhstepm; h++){    *d=1.0; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for (i=1;i<=n;i++) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      big=0.0; 
         }      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
          if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(i=1; i<=npar; i++) /* Computes gradient */      vv[i]=1.0/big; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (j=1;j<=n;j++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1;i<j;i++) { 
          sum=a[i][j]; 
       if (popbased==1) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         for(i=1; i<=nlstate;i++)        a[i][j]=sum; 
           prlim[i][i]=probs[(int)age][i][ij];      } 
       }      big=0.0; 
       for (i=j;i<=n;i++) { 
       for(j=1; j<= nlstate; j++){        sum=a[i][j]; 
         for(h=0; h<=nhstepm; h++){        for (k=1;k<j;k++) 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        a[i][j]=sum; 
         }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
           imax=i; 
       for(j=1; j<= nlstate; j++)        } 
         for(h=0; h<=nhstepm; h++){      } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      if (j != imax) { 
         }        for (k=1;k<=n;k++) { 
     } /* End theta */          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          a[j][k]=dum; 
         } 
     for(h=0; h<=nhstepm; h++)        *d = -(*d); 
       for(j=1; j<=nlstate;j++)        vv[imax]=vv[j]; 
         for(theta=1; theta <=npar; theta++)      } 
           trgradg[h][j][theta]=gradg[h][theta][j];      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      if (j != n) { 
     for(i=1;i<=nlstate;i++)        dum=1.0/(a[j][j]); 
       for(j=1;j<=nlstate;j++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         vareij[i][j][(int)age] =0.;      } 
     } 
     for(h=0;h<=nhstepm;h++){    free_vector(vv,1,n);  /* Doesn't work */
       for(k=0;k<=nhstepm;k++){  ;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  } 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
           for(j=1;j<=nlstate;j++)  { 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    int i,ii=0,ip,j; 
       }    double sum; 
     }   
     for (i=1;i<=n;i++) { 
     fprintf(ficresvij,"%.0f ",age );      ip=indx[i]; 
     for(i=1; i<=nlstate;i++)      sum=b[ip]; 
       for(j=1; j<=nlstate;j++){      b[ip]=b[i]; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     fprintf(ficresvij,"\n");      else if (sum) ii=i; 
     free_matrix(gp,0,nhstepm,1,nlstate);      b[i]=sum; 
     free_matrix(gm,0,nhstepm,1,nlstate);    } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for (i=n;i>=1;i--) { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      sum=b[i]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   } /* End age */      b[i]=sum/a[i][i]; 
      } 
   free_vector(xp,1,npar);  } 
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
 }  {  /* Some frequencies */
     
 /************ Variance of prevlim ******************/    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int first;
 {    double ***freq; /* Frequencies */
   /* Variance of prevalence limit */    double *pp, **prop;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double **newm;    FILE *ficresp;
   double **dnewm,**doldm;    char fileresp[FILENAMELENGTH];
   int i, j, nhstepm, hstepm;    
   int k, cptcode;    pp=vector(1,nlstate);
   double *xp;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double *gp, *gm;    strcpy(fileresp,"p");
   double **gradg, **trgradg;    strcat(fileresp,fileres);
   double age,agelim;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   int theta;      printf("Problem with prevalence resultfile: %s\n", fileresp);
          fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      exit(0);
   fprintf(ficresvpl,"# Age");    }
   for(i=1; i<=nlstate;i++)    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       fprintf(ficresvpl," %1d-%1d",i,i);    j1=0;
   fprintf(ficresvpl,"\n");    
     j=cptcoveff;
   xp=vector(1,npar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    first=1;
    
   hstepm=1*YEARM; /* Every year of age */    for(k1=1; k1<=j;k1++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for(i1=1; i1<=ncodemax[k1];i1++){
   agelim = AGESUP;        j1++;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          scanf("%d", i);*/
     if (stepm >= YEARM) hstepm=1;        for (i=-1; i<=nlstate+ndeath; i++)  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     gradg=matrix(1,npar,1,nlstate);            for(m=iagemin; m <= iagemax+3; m++)
     gp=vector(1,nlstate);              freq[i][jk][m]=0;
     gm=vector(1,nlstate);  
       for (i=1; i<=nlstate; i++)  
     for(theta=1; theta <=npar; theta++){        for(m=iagemin; m <= iagemax+3; m++)
       for(i=1; i<=npar; i++){ /* Computes gradient */          prop[i][m]=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        
       }        dateintsum=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        k2cpt=0;
       for(i=1;i<=nlstate;i++)        for (i=1; i<=imx; i++) {
         gp[i] = prlim[i][i];          bool=1;
              if  (cptcovn>0) {
       for(i=1; i<=npar; i++) /* Computes gradient */            for (z1=1; z1<=cptcoveff; z1++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                bool=0;
       for(i=1;i<=nlstate;i++)          }
         gm[i] = prlim[i][i];          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
       for(i=1;i<=nlstate;i++)              k2=anint[m][i]+(mint[m][i]/12.);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     } /* End theta */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     trgradg =matrix(1,nlstate,1,npar);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
     for(j=1; j<=nlstate;j++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for(theta=1; theta <=npar; theta++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         trgradg[j][theta]=gradg[theta][j];                }
                 
     for(i=1;i<=nlstate;i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       varpl[i][(int)age] =0.;                  dateintsum=dateintsum+k2;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                  k2cpt++;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                }
     for(i=1;i<=nlstate;i++)                /*}*/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            }
           }
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)         
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);        if  (cptcovn>0) {
     free_vector(gm,1,nlstate);          fprintf(ficresp, "\n#********** Variable "); 
     free_matrix(gradg,1,npar,1,nlstate);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_matrix(trgradg,1,nlstate,1,npar);          fprintf(ficresp, "**********\n#");
   } /* End age */        }
         for(i=1; i<=nlstate;i++) 
   free_vector(xp,1,npar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   free_matrix(doldm,1,nlstate,1,npar);        fprintf(ficresp, "\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);        
         for(i=iagemin; i <= iagemax+3; i++){
 }          if(i==iagemax+3){
             fprintf(ficlog,"Total");
 /************ Variance of one-step probabilities  ******************/          }else{
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            if(first==1){
 {              first=0;
   int i, j, i1, k1, j1, z1;              printf("See log file for details...\n");
   int k=0, cptcode;            }
   double **dnewm,**doldm;            fprintf(ficlog,"Age %d", i);
   double *xp;          }
   double *gp, *gm;          for(jk=1; jk <=nlstate ; jk++){
   double **gradg, **trgradg;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double age,agelim, cov[NCOVMAX];              pp[jk] += freq[jk][m][i]; 
   int theta;          }
   char fileresprob[FILENAMELENGTH];          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   strcpy(fileresprob,"prob");              pos += freq[jk][m][i];
   strcat(fileresprob,fileres);            if(pp[jk]>=1.e-10){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              if(first==1){
     printf("Problem with resultfile: %s\n", fileresprob);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }              }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
              }else{
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");              if(first==1)
   fprintf(ficresprob,"# Age");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   for(i=1; i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(j=1; j<=(nlstate+ndeath);j++)            }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          }
   
           for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresprob,"\n");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
           }       
   xp=vector(1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            pos += pp[jk];
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            posprop += prop[jk][i];
            }
   cov[1]=1;          for(jk=1; jk <=nlstate ; jk++){
   j=cptcoveff;            if(pos>=1.e-5){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              if(first==1)
   j1=0;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for(k1=1; k1<=1;k1++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(i1=1; i1<=ncodemax[k1];i1++){            }else{
     j1++;              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     if  (cptcovn>0) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresprob, "\n#********** Variable ");            }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            if( i <= iagemax){
       fprintf(ficresprob, "**********\n#");              if(pos>=1.e-5){
     }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                    /*probs[i][jk][j1]= pp[jk]/pos;*/
       for (age=bage; age<=fage; age ++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         cov[2]=age;              }
         for (k=1; k<=cptcovn;k++) {              else
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                      }
         }          }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          
         for (k=1; k<=cptcovprod;k++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            for(m=-1; m <=nlstate+ndeath; m++)
                      if(freq[jk][m][i] !=0 ) {
         gradg=matrix(1,npar,1,9);              if(first==1)
         trgradg=matrix(1,9,1,npar);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              }
              if(i <= iagemax)
         for(theta=1; theta <=npar; theta++){            fprintf(ficresp,"\n");
           for(i=1; i<=npar; i++)          if(first==1)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            printf("Others in log...\n");
                    fprintf(ficlog,"\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
                }
           k=0;    }
           for(i=1; i<= (nlstate+ndeath); i++){    dateintmean=dateintsum/k2cpt; 
             for(j=1; j<=(nlstate+ndeath);j++){   
               k=k+1;    fclose(ficresp);
               gp[k]=pmmij[i][j];    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
             }    free_vector(pp,1,nlstate);
           }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
              /* End of Freq */
           for(i=1; i<=npar; i++)  }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
      /************ Prevalence ********************/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           k=0;  {  
           for(i=1; i<=(nlstate+ndeath); i++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             for(j=1; j<=(nlstate+ndeath);j++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
               k=k+1;       We still use firstpass and lastpass as another selection.
               gm[k]=pmmij[i][j];    */
             }   
           }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
          double ***freq; /* Frequencies */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    double *pp, **prop;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double pos,posprop; 
         }    double  y2; /* in fractional years */
     int iagemin, iagemax;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)    iagemin= (int) agemin;
             trgradg[j][theta]=gradg[theta][j];    iagemax= (int) agemax;
            /*pp=vector(1,nlstate);*/
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
            j1=0;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    
            j=cptcoveff;
         k=0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(i=1; i<=(nlstate+ndeath); i++){    
           for(j=1; j<=(nlstate+ndeath);j++){    for(k1=1; k1<=j;k1++){
             k=k+1;      for(i1=1; i1<=ncodemax[k1];i1++){
             gm[k]=pmmij[i][j];        j1++;
           }        
         }        for (i=1; i<=nlstate; i++)  
                for(m=iagemin; m <= iagemax+3; m++)
      /*printf("\n%d ",(int)age);            prop[i][m]=0.0;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){       
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for (i=1; i<=imx; i++) { /* Each individual */
      }*/          bool=1;
           if  (cptcovn>0) {
         fprintf(ficresprob,"\n%d ",(int)age);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)                bool=0;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          } 
            if (bool==1) { 
       }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   free_vector(xp,1,npar);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   fclose(ficresprob);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i]; 
 }                } 
               }
 /******************* Printing html file ***********/            } /* end selection of waves */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          }
  int lastpass, int stepm, int weightopt, char model[],\        }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        for(i=iagemin; i <= iagemax+3; i++){  
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          
  char version[], int popforecast, int estepm ){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   int jj1, k1, i1, cpt;            posprop += prop[jk][i]; 
   FILE *fichtm;          } 
   /*char optionfilehtm[FILENAMELENGTH];*/  
           for(jk=1; jk <=nlstate ; jk++){     
   strcpy(optionfilehtm,optionfile);            if( i <=  iagemax){ 
   strcat(optionfilehtm,".htm");              if(posprop>=1.e-5){ 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                probs[i][jk][j1]= prop[jk][i]/posprop;
     printf("Problem with %s \n",optionfilehtm), exit(0);              } 
   }            } 
           }/* end jk */ 
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        }/* end i */ 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      } /* end i1 */
 \n    } /* end k1 */
 Total number of observations=%d <br>\n    
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 <hr  size=\"2\" color=\"#EC5E5E\">    /*free_vector(pp,1,nlstate);*/
  <ul><li>Outputs files<br>\n    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  }  /* End of prevalence */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  /************* Waves Concatenation ***************/
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  fprintf(fichtm,"\n       Death is a valid wave (if date is known).
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n       and mw[mi+1][i]. dh depends on stepm.
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n       */
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
     int i, mi, m;
  if(popforecast==1) fprintf(fichtm,"\n    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       double sum=0., jmean=0.;*/
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    int first;
         <br>",fileres,fileres,fileres,fileres);    int j, k=0,jk, ju, jl;
  else    double sum=0.;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    first=0;
 fprintf(fichtm," <li>Graphs</li><p>");    jmin=1e+5;
     jmax=-1;
  m=cptcoveff;    jmean=0.;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for(i=1; i<=imx; i++){
       mi=0;
  jj1=0;      m=firstpass;
  for(k1=1; k1<=m;k1++){      while(s[m][i] <= nlstate){
    for(i1=1; i1<=ncodemax[k1];i1++){        if(s[m][i]>=1)
        jj1++;          mw[++mi][i]=m;
        if (cptcovn > 0) {        if(m >=lastpass)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          break;
          for (cpt=1; cpt<=cptcoveff;cpt++)        else
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          m++;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      }/* end while */
        }      if (s[m][i] > nlstate){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        mi++;     /* Death is another wave */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            /* if(mi==0)  never been interviewed correctly before death */
        for(cpt=1; cpt<nlstate;cpt++){           /* Only death is a correct wave */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        mw[mi][i]=m;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {      wav[i]=mi;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      if(mi==0){
 interval) in state (%d): v%s%d%d.gif <br>        nbwarn++;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if(first==0){
      }          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
      for(cpt=1; cpt<=nlstate;cpt++) {          first=1;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        if(first==1){
      }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        }
 health expectancies in states (1) and (2): e%s%d.gif<br>      } /* end mi==0 */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    } /* End individuals */
 fprintf(fichtm,"\n</body>");  
    }    for(i=1; i<=imx; i++){
    }      for(mi=1; mi<wav[i];mi++){
 fclose(fichtm);        if (stepm <=0)
 }          dh[mi][i]=1;
         else{
 /******************* Gnuplot file **************/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   strcpy(optionfilegnuplot,optionfilefiname);                nberr++;
   strcat(optionfilegnuplot,".gp.txt");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                j=1; /* Temporary Dangerous patch */
     printf("Problem with file %s",optionfilegnuplot);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 #ifdef windows              }
     fprintf(ficgp,"cd \"%s\" \n",pathc);              k=k+1;
 #endif              if (j >= jmax) jmax=j;
 m=pow(2,cptcoveff);              if (j <= jmin) jmin=j;
                sum=sum+j;
  /* 1eme*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    for (k1=1; k1<= m ; k1 ++) {            }
           }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 for (i=1; i<= nlstate ; i ++) {            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            k=k+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if (j >= jmax) jmax=j;
 }            else if (j <= jmin)jmin=j;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for (i=1; i<= nlstate ; i ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(j<0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              nberr++;
 }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            jk= j/stepm;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
    }            if(jl==0){
   }              dh[mi][i]=jk;
   /*2 eme*/              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   for (k1=1; k1<= m ; k1 ++) {                    * at the price of an extra matrix product in likelihood */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;          }else{
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            if(jl <= -ju){
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=jk;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=jl;       /* bias is positive if real duration
   else fprintf(ficgp," \%%*lf (\%%*lf)");                                   * is higher than the multiple of stepm and negative otherwise.
 }                                     */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            else{
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk+1;
       for (j=1; j<= nlstate+1 ; j ++) {              bh[mi][i]=ju;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
         else fprintf(ficgp," \%%*lf (\%%*lf)");            if(dh[mi][i]==0){
 }                dh[mi][i]=1; /* At least one step */
       fprintf(ficgp,"\" t\"\" w l 0,");              bh[mi][i]=ju; /* At least one step */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          } /* end if mle */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }        } /* end wave */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    }
       else fprintf(ficgp,"\" t\"\" w l 0,");    jmean=sum/k;
     }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }   }
    
   /*3eme*/  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   for (k1=1; k1<= m ; k1 ++) {  {
     for (cpt=1; cpt<= nlstate ; cpt ++) {    
       k=2+nlstate*(2*cpt-2);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    int cptcode=0;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    cptcoveff=0; 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");   
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (k=0; k<maxncov; k++) Ndum[k]=0;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    for (k=1; k<=7; k++) ncodemax[k]=0;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 */                                 modality*/ 
       for (i=1; i< nlstate ; i ++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                                         Tvar[j]. If V=sex and male is 0 and 
     }                                         female is 1, then  cptcode=1.*/
     }      }
    
   /* CV preval stat */      for (i=0; i<=cptcode; i++) {
     for (k1=1; k1<= m ; k1 ++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for (cpt=1; cpt<nlstate ; cpt ++) {      }
       k=3;  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
       for (i=1; i< nlstate ; i ++)        for (k=0; k<= maxncov; k++) {
         fprintf(ficgp,"+$%d",k+i+1);          if (Ndum[k] != 0) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            nbcode[Tvar[j]][ij]=k; 
                  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       l=3+(nlstate+ndeath)*cpt;            
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            ij++;
       for (i=1; i< nlstate ; i ++) {          }
         l=3+(nlstate+ndeath)*cpt;          if (ij > ncodemax[j]) break; 
         fprintf(ficgp,"+$%d",l+i+1);        }  
       }      } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      }  
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }   for (k=0; k< maxncov; k++) Ndum[k]=0;
   }    
     for (i=1; i<=ncovmodel-2; i++) { 
   /* proba elementaires */     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    for(i=1,jk=1; i <=nlstate; i++){     ij=Tvar[i];
     for(k=1; k <=(nlstate+ndeath); k++){     Ndum[ij]++;
       if (k != i) {   }
         for(j=1; j <=ncovmodel; j++){  
           ij=1;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);   for (i=1; i<= maxncov; i++) {
           jk++;     if((Ndum[i]!=0) && (i<=ncovcol)){
           fprintf(ficgp,"\n");       Tvaraff[ij]=i; /*For printing */
         }       ij++;
       }     }
     }   }
     }   
    cptcoveff=ij-1; /*Number of simple covariates*/
     for(jk=1; jk <=m; jk++) {  }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
    i=1;  /*********** Health Expectancies ****************/
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){  {
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* Health expectancies */
 ij=1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         for(j=3; j <=ncovmodel; j++) {    double age, agelim, hf;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double ***p3mat,***varhe;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double **dnewm,**doldm;
             ij++;    double *xp;
           }    double **gp, **gm;
           else    double ***gradg, ***trgradg;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int theta;
         }  
           fprintf(ficgp,")/(1");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
            xp=vector(1,npar);
         for(k1=1; k1 <=nlstate; k1++){      dnewm=matrix(1,nlstate*nlstate,1,npar);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 ij=1;    
           for(j=3; j <=ncovmodel; j++){    fprintf(ficreseij,"# Health expectancies\n");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficreseij,"# Age");
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for(i=1; i<=nlstate;i++)
             ij++;      for(j=1; j<=nlstate;j++)
           }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
           else    fprintf(ficreseij,"\n");
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
           }    if(estepm < stepm){
           fprintf(ficgp,")");      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    else  hstepm=estepm;   
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    /* We compute the life expectancy from trapezoids spaced every estepm months
         i=i+ncovmodel;     * This is mainly to measure the difference between two models: for example
        }     * if stepm=24 months pijx are given only every 2 years and by summing them
      }     * we are calculating an estimate of the Life Expectancy assuming a linear 
    }     * progression in between and thus overestimating or underestimating according
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);     * to the curvature of the survival function. If, for the same date, we 
    }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
   fclose(ficgp);     * hypothesis. A more precise result, taking into account a more precise
 }  /* end gnuplot */     * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
 /*************** Moving average **************/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   int i, cpt, cptcod;       Look at hpijx to understand the reason of that which relies in memory size
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)       and note for a fixed period like estepm months */
       for (i=1; i<=nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)       survival function given by stepm (the optimization length). Unfortunately it
           mobaverage[(int)agedeb][i][cptcod]=0.;       means that if the survival funtion is printed only each two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       results. So we changed our mind and took the option of the best precision.
       for (i=1; i<=nlstate;i++){    */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    agelim=AGESUP;
           }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      /* nhstepm age range expressed in number of stepm */
         }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
          nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
 /************** Forecasting ******************/      gm=matrix(0,nhstepm,1,nlstate*nlstate);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   int *popage;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   
   double *popeffectif,*popcount;  
   double ***p3mat;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   char fileresf[FILENAMELENGTH];  
       /* Computing  Variances of health expectancies */
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(fileresf,"f");    
   strcat(fileresf,fileres);        cptj=0;
   if((ficresf=fopen(fileresf,"w"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with forecast resultfile: %s\n", fileresf);          for(i=1; i<=nlstate; i++){
   }            cptj=cptj+1;
   printf("Computing forecasting: result on file '%s' \n", fileresf);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            }
           }
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       
     movingaverage(agedeb, fage, ageminpar, mobaverage);       
   }        for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   stepsize=(int) (stepm+YEARM-1)/YEARM;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (stepm<=12) stepsize=1;        
          cptj=0;
   agelim=AGESUP;        for(j=1; j<= nlstate; j++){
            for(i=1;i<=nlstate;i++){
   hstepm=1;            cptj=cptj+1;
   hstepm=hstepm/stepm;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   yp2=modf((yp1*12),&yp);            }
   mprojmean=yp;          }
   yp1=modf((yp2*30.5),&yp);        }
   jprojmean=yp;        for(j=1; j<= nlstate*nlstate; j++)
   if(jprojmean==0) jprojmean=1;          for(h=0; h<=nhstepm-1; h++){
   if(mprojmean==0) jprojmean=1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       } 
       
   for(cptcov=1;cptcov<=i2;cptcov++){  /* End theta */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {       for(h=0; h<=nhstepm-1; h++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<=nlstate*nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
       fprintf(ficresf,"******\n");            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficresf,"# StartingAge FinalAge");       
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
             for(i=1;i<=nlstate*nlstate;i++)
              for(j=1;j<=nlstate*nlstate;j++)
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          varhe[i][j][(int)age] =0.;
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       for(h=0;h<=nhstepm-1;h++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(k=0;k<=nhstepm-1;k++){
           nhstepm = nhstepm/hstepm;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                    matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1;i<=nlstate*nlstate;i++)
           oldm=oldms;savm=savms;            for(j=1;j<=nlstate*nlstate;j++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedate+YEARM*cpt)) {      /* Computing expectancies */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      for(i=1; i<=nlstate;i++)
             }        for(j=1; j<=nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               kk1=0.;kk2=0;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               for(i=1; i<=nlstate;i++) {                          
                 if (mobilav==1)  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {          }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }      fprintf(ficreseij,"%3.0f",age );
                      cptj=0;
               }      for(i=1; i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){        for(j=1; j<=nlstate;j++){
                 fprintf(ficresf," %.3f", kk1);          cptj++;
                                  fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
               }        }
             }      fprintf(ficreseij,"\n");
           }     
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("\n");
     fprintf(ficlog,"\n");
   fclose(ficresf);  
 }    free_vector(xp,1,npar);
 /************** Forecasting ******************/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /************ Variance ******************/
   double *popeffectif,*popcount;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   double ***p3mat,***tabpop,***tabpopprev;  {
   char filerespop[FILENAMELENGTH];    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* double **newm;*/
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **dnewm,**doldm;
   agelim=AGESUP;    double **dnewmp,**doldmp;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    int i, j, nhstepm, hstepm, h, nstepm ;
      int k, cptcode;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double *xp;
      double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
   strcpy(filerespop,"pop");    double **gradgp, **trgradgp; /* for var p point j */
   strcat(filerespop,fileres);    double *gpp, *gmp; /* for var p point j */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     printf("Problem with forecast resultfile: %s\n", filerespop);    double ***p3mat;
   }    double age,agelim, hf;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    double ***mobaverage;
     int theta;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    char digit[4];
     char digitp[25];
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    char fileresprobmorprev[FILENAMELENGTH];
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    if(popbased==1){
       if(mobilav!=0)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        strcpy(digitp,"-populbased-mobilav-");
   if (stepm<=12) stepsize=1;      else strcpy(digitp,"-populbased-nomobil-");
      }
   agelim=AGESUP;    else 
        strcpy(digitp,"-stablbased-");
   hstepm=1;  
   hstepm=hstepm/stepm;    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (popforecast==1) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     if((ficpop=fopen(popfile,"r"))==NULL) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       printf("Problem with population file : %s\n",popfile);exit(0);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     }      }
     popage=ivector(0,AGESUP);    }
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);    strcpy(fileresprobmorprev,"prmorprev"); 
        sprintf(digit,"%-d",ij);
     i=1;      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
        strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     imx=i;    strcat(fileresprobmorprev,fileres);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   for(cptcov=1;cptcov<=i2;cptcov++){    }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       k=k+1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficrespop,"\n#******");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       }      fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficrespop,"******\n");      for(i=1; i<=nlstate;i++)
       fprintf(ficrespop,"# Age");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    }  
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficresprobmorprev,"\n");
          fprintf(ficgp,"\n# Routine varevsij");
       for (cpt=0; cpt<=0;cpt++) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
          /*   } */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
              fprintf(ficresvij,"# Age");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;      for(j=1; j<=nlstate;j++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
            fprintf(ficresvij,"\n");
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    xp=vector(1,npar);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    dnewm=matrix(1,nlstate,1,npar);
             }    doldm=matrix(1,nlstate,1,nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
               kk1=0.;kk2=0;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    gpp=vector(nlstate+1,nlstate+ndeath);
                 else {    gmp=vector(nlstate+1,nlstate+ndeath);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                 }    
               }    if(estepm < stepm){
               if (h==(int)(calagedate+12*cpt)){      printf ("Problem %d lower than %d\n",estepm, stepm);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    }
                   /*fprintf(ficrespop," %.3f", kk1);    else  hstepm=estepm;   
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /* For example we decided to compute the life expectancy with the smallest unit */
               }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             }       nhstepm is the number of hstepm from age to agelim 
             for(i=1; i<=nlstate;i++){       nstepm is the number of stepm from age to agelin. 
               kk1=0.;       Look at hpijx to understand the reason of that which relies in memory size
                 for(j=1; j<=nlstate;j++){       and note for a fixed period like k years */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 }       survival function given by stepm (the optimization length). Unfortunately it
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       means that if the survival funtion is printed every two years of age and if
             }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           }    agelim = AGESUP;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /******/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      gm=matrix(0,nhstepm,1,nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(theta=1; theta <=npar; theta++){
           nhstepm = nhstepm/hstepm;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                    xp[i] = x[i] + (i==theta ?delti[theta]:0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {        if (popbased==1) {
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if(mobilav ==0){
             }            for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {              prlim[i][i]=probs[(int)age][i][ij];
               kk1=0.;kk2=0;          }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++) {                          for(i=1; i<=nlstate;i++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  prlim[i][i]=mobaverage[(int)age][i][ij];
               }          }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }    
           }        for(j=1; j<= nlstate; j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(h=0; h<=nhstepm; h++){
         }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
    }          }
   }        }
          /* This for computing probability of death (h=1 means
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   if (popforecast==1) {        */
     free_ivector(popage,0,AGESUP);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_vector(popeffectif,0,AGESUP);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     free_vector(popcount,0,AGESUP);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* end probability of death */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /***********************************************/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /**************** Main Program *****************/   
 /***********************************************/        if (popbased==1) {
           if(mobilav ==0){
 int main(int argc, char *argv[])            for(i=1; i<=nlstate;i++)
 {              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            for(i=1; i<=nlstate;i++)
   double agedeb, agefin,hf;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          }
         }
   double fret;  
   double **xi,tmp,delta;        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   double dum; /* Dummy variable */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   double ***p3mat;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   int *indx;          }
   char line[MAXLINE], linepar[MAXLINE];        }
   char title[MAXLINE];        /* This for computing probability of death (h=1 means
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];           computed over hstepm matrices product = hstepm*stepm months) 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];           as a weighted average of prlim.
          */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
   char filerest[FILENAMELENGTH];           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   char fileregp[FILENAMELENGTH];        }    
   char popfile[FILENAMELENGTH];        /* end probability of death */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;        for(j=1; j<= nlstate; j++) /* vareij */
   int sdeb, sfin; /* Status at beginning and end */          for(h=0; h<=nhstepm; h++){
   int c,  h , cpt,l;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int ju,jl, mi;          }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   int mobilav=0,popforecast=0;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   int hstepm, nhstepm;        }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
       } /* End theta */
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   double **prlim;  
   double *severity;      for(h=0; h<=nhstepm; h++) /* veij */
   double ***param; /* Matrix of parameters */        for(j=1; j<=nlstate;j++)
   double  *p;          for(theta=1; theta <=npar; theta++)
   double **matcov; /* Matrix of covariance */            trgradg[h][j][theta]=gradg[h][theta][j];
   double ***delti3; /* Scale */  
   double *delti; /* Scale */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   double ***eij, ***vareij;        for(theta=1; theta <=npar; theta++)
   double **varpl; /* Variances of prevalence limits by age */          trgradgp[j][theta]=gradgp[theta][j];
   double *epj, vepp;    
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";          vareij[i][j][(int)age] =0.;
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
   char z[1]="c", occ;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 #include <sys/time.h>          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 #include <time.h>          for(i=1;i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   /* long total_usecs;        }
   struct timeval start_time, end_time;      }
      
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      /* pptj */
   getcwd(pathcd, size);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   printf("\n%s",version);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   if(argc <=1){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     printf("\nEnter the parameter file name: ");          varppt[j][i]=doldmp[j][i];
     scanf("%s",pathtot);      /* end ppptj */
   }      /*  x centered again */
   else{      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     strcpy(pathtot,argv[1]);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   }   
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      if (popbased==1) {
   /*cygwin_split_path(pathtot,path,optionfile);        if(mobilav ==0){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for(i=1; i<=nlstate;i++)
   /* cutv(path,optionfile,pathtot,'\\');*/            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          for(i=1; i<=nlstate;i++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            prlim[i][i]=mobaverage[(int)age][i][ij];
   chdir(path);        }
   replace(pathc,path);      }
                
 /*-------- arguments in the command line --------*/      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   strcpy(fileres,"r");         as a weighted average of prlim.
   strcat(fileres, optionfilefiname);      */
   strcat(fileres,".txt");    /* Other files have txt extension */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   /*---------arguments file --------*/          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      /* end probability of death */
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   strcpy(filereso,"o");        for(i=1; i<=nlstate;i++){
   strcat(filereso,fileres);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if((ficparo=fopen(filereso,"w"))==NULL) {        }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      } 
   }      fprintf(ficresprobmorprev,"\n");
   
   /* Reads comments: lines beginning with '#' */      fprintf(ficresvij,"%.0f ",age );
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
     fgets(line, MAXLINE, ficpar);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     puts(line);        }
     fputs(line,ficparo);      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    } /* End age */
 while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(gpp,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     puts(line);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fputs(line,ficparo);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   ungetc(c,ficpar);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   covar=matrix(0,NCOVMAX,1,n);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   cptcovn=0;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   ncovmodel=2+cptcovn;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   /* Read guess parameters */  */
   /* Reads comments: lines beginning with '#' */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    free_vector(xp,1,npar);
     puts(line);    free_matrix(doldm,1,nlstate,1,nlstate);
     fputs(line,ficparo);    free_matrix(dnewm,1,nlstate,1,npar);
   }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(i=1; i <=nlstate; i++)    fclose(ficresprobmorprev);
     for(j=1; j <=nlstate+ndeath-1; j++){    fflush(ficgp);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fflush(fichtm); 
       fprintf(ficparo,"%1d%1d",i1,j1);  }  /* end varevsij */
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){  /************ Variance of prevlim ******************/
         fscanf(ficpar," %lf",&param[i][j][k]);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
         printf(" %lf",param[i][j][k]);  {
         fprintf(ficparo," %lf",param[i][j][k]);    /* Variance of prevalence limit */
       }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       fscanf(ficpar,"\n");    double **newm;
       printf("\n");    double **dnewm,**doldm;
       fprintf(ficparo,"\n");    int i, j, nhstepm, hstepm;
     }    int k, cptcode;
      double *xp;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double *gp, *gm;
     double **gradg, **trgradg;
   p=param[1][1];    double age,agelim;
      int theta;
   /* Reads comments: lines beginning with '#' */     
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     ungetc(c,ficpar);    fprintf(ficresvpl,"# Age");
     fgets(line, MAXLINE, ficpar);    for(i=1; i<=nlstate;i++)
     puts(line);        fprintf(ficresvpl," %1d-%1d",i,i);
     fputs(line,ficparo);    fprintf(ficresvpl,"\n");
   }  
   ungetc(c,ficpar);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    doldm=matrix(1,nlstate,1,nlstate);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){    hstepm=1*YEARM; /* Every year of age */
     for(j=1; j <=nlstate+ndeath-1; j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    agelim = AGESUP;
       printf("%1d%1d",i,j);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficparo,"%1d%1d",i1,j1);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for(k=1; k<=ncovmodel;k++){      if (stepm >= YEARM) hstepm=1;
         fscanf(ficpar,"%le",&delti3[i][j][k]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         printf(" %le",delti3[i][j][k]);      gradg=matrix(1,npar,1,nlstate);
         fprintf(ficparo," %le",delti3[i][j][k]);      gp=vector(1,nlstate);
       }      gm=vector(1,nlstate);
       fscanf(ficpar,"\n");  
       printf("\n");      for(theta=1; theta <=npar; theta++){
       fprintf(ficparo,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   delti=delti3[1][1];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */          gp[i] = prlim[i][i];
   while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);        for(i=1; i<=npar; i++) /* Computes gradient */
     fgets(line, MAXLINE, ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     puts(line);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fputs(line,ficparo);        for(i=1;i<=nlstate;i++)
   }          gm[i] = prlim[i][i];
   ungetc(c,ficpar);  
          for(i=1;i<=nlstate;i++)
   matcov=matrix(1,npar,1,npar);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   for(i=1; i <=npar; i++){      } /* End theta */
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);      trgradg =matrix(1,nlstate,1,npar);
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){      for(j=1; j<=nlstate;j++)
       fscanf(ficpar," %le",&matcov[i][j]);        for(theta=1; theta <=npar; theta++)
       printf(" %.5le",matcov[i][j]);          trgradg[j][theta]=gradg[theta][j];
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }      for(i=1;i<=nlstate;i++)
     fscanf(ficpar,"\n");        varpl[i][(int)age] =0.;
     printf("\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     fprintf(ficparo,"\n");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   }      for(i=1;i<=nlstate;i++)
   for(i=1; i <=npar; i++)        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];      fprintf(ficresvpl,"%.0f ",age );
          for(i=1; i<=nlstate;i++)
   printf("\n");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
     /*-------- Rewriting paramater file ----------*/      free_vector(gm,1,nlstate);
      strcpy(rfileres,"r");    /* "Rparameterfile */      free_matrix(gradg,1,npar,1,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      free_matrix(trgradg,1,nlstate,1,npar);
      strcat(rfileres,".");    /* */    } /* End age */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {    free_vector(xp,1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    free_matrix(doldm,1,nlstate,1,npar);
     }    free_matrix(dnewm,1,nlstate,1,nlstate);
     fprintf(ficres,"#%s\n",version);  
      }
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {  /************ Variance of one-step probabilities  ******************/
       printf("Problem with datafile: %s\n", datafile);goto end;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     }  {
     int i, j=0,  i1, k1, l1, t, tj;
     n= lastobs;    int k2, l2, j1,  z1;
     severity = vector(1,maxwav);    int k=0,l, cptcode;
     outcome=imatrix(1,maxwav+1,1,n);    int first=1, first1;
     num=ivector(1,n);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     moisnais=vector(1,n);    double **dnewm,**doldm;
     annais=vector(1,n);    double *xp;
     moisdc=vector(1,n);    double *gp, *gm;
     andc=vector(1,n);    double **gradg, **trgradg;
     agedc=vector(1,n);    double **mu;
     cod=ivector(1,n);    double age,agelim, cov[NCOVMAX];
     weight=vector(1,n);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    int theta;
     mint=matrix(1,maxwav,1,n);    char fileresprob[FILENAMELENGTH];
     anint=matrix(1,maxwav,1,n);    char fileresprobcov[FILENAMELENGTH];
     s=imatrix(1,maxwav+1,1,n);    char fileresprobcor[FILENAMELENGTH];
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);    double ***varpij;
     ncodemax=ivector(1,8);  
     strcpy(fileresprob,"prob"); 
     i=1;    strcat(fileresprob,fileres);
     while (fgets(line, MAXLINE, fic) != NULL)    {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       if ((i >= firstobs) && (i <=lastobs)) {      printf("Problem with resultfile: %s\n", fileresprob);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         for (j=maxwav;j>=1;j--){    }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    strcpy(fileresprobcov,"probcov"); 
           strcpy(line,stra);    strcat(fileresprobcov,fileres);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with resultfile: %s\n", fileresprobcov);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
            }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    strcpy(fileresprobcor,"probcor"); 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with resultfile: %s\n", fileresprobcor);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         for (j=ncovcol;j>=1;j--){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         num[i]=atol(stra);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
         i=i+1;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       }    fprintf(ficresprobcov,"# Age");
     }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     /* printf("ii=%d", ij);    fprintf(ficresprobcov,"# Age");
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  
     for(i=1; i<=nlstate;i++)
   /* for (i=1; i<=imx; i++){      for(j=1; j<=(nlstate+ndeath);j++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }*/      }  
    /*  for (i=1; i<=imx; i++){   /* fprintf(ficresprob,"\n");
      if (s[4][i]==9)  s[4][i]=-1;    fprintf(ficresprobcov,"\n");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    fprintf(ficresprobcor,"\n");
     */
     xp=vector(1,npar);
   /* Calculation of the number of parameter from char model*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   Tvar=ivector(1,15);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   Tprod=ivector(1,15);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   Tvaraff=ivector(1,15);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   Tvard=imatrix(1,15,1,2);    first=1;
   Tage=ivector(1,15);          fprintf(ficgp,"\n# Routine varprob");
        fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   if (strlen(model) >1){    fprintf(fichtm,"\n");
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     j1=nbocc(model,'*');    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     cptcovn=j+1;    file %s<br>\n",optionfilehtmcov);
     cptcovprod=j1;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      and drawn. It helps understanding how is the covariance between two incidences.\
     strcpy(modelsav,model);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       printf("Error. Non available option model=%s ",model);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       goto end;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     }  standard deviations wide on each axis. <br>\
       Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     for(i=(j+1); i>=1;i--){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       cutv(stra,strb,modelsav,'+');  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    cov[1]=1;
       /*scanf("%d",i);*/    tj=cptcoveff;
       if (strchr(strb,'*')) {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         cutv(strd,strc,strb,'*');    j1=0;
         if (strcmp(strc,"age")==0) {    for(t=1; t<=tj;t++){
           cptcovprod--;      for(i1=1; i1<=ncodemax[t];i1++){ 
           cutv(strb,stre,strd,'V');        j1++;
           Tvar[i]=atoi(stre);        if  (cptcovn>0) {
           cptcovage++;          fprintf(ficresprob, "\n#********** Variable "); 
             Tage[cptcovage]=i;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             /*printf("stre=%s ", stre);*/          fprintf(ficresprob, "**********\n#\n");
         }          fprintf(ficresprobcov, "\n#********** Variable "); 
         else if (strcmp(strd,"age")==0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cptcovprod--;          fprintf(ficresprobcov, "**********\n#\n");
           cutv(strb,stre,strc,'V');          
           Tvar[i]=atoi(stre);          fprintf(ficgp, "\n#********** Variable "); 
           cptcovage++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           Tage[cptcovage]=i;          fprintf(ficgp, "**********\n#\n");
         }          
         else {          
           cutv(strb,stre,strc,'V');          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           Tvar[i]=ncovcol+k1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(strb,strc,strd,'V');          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           Tprod[k1]=i;          
           Tvard[k1][1]=atoi(strc);          fprintf(ficresprobcor, "\n#********** Variable ");    
           Tvard[k1][2]=atoi(stre);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           Tvar[cptcovn+k2]=Tvard[k1][1];          fprintf(ficresprobcor, "**********\n#");    
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        }
           for (k=1; k<=lastobs;k++)        
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for (age=bage; age<=fage; age ++){ 
           k1++;          cov[2]=age;
           k2=k2+2;          for (k=1; k<=cptcovn;k++) {
         }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       }          }
       else {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          for (k=1; k<=cptcovprod;k++)
        /*  scanf("%d",i);*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       cutv(strd,strc,strb,'V');          
       Tvar[i]=atoi(strc);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       strcpy(modelsav,stra);            gp=vector(1,(nlstate)*(nlstate+ndeath));
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          gm=vector(1,(nlstate)*(nlstate+ndeath));
         scanf("%d",i);*/      
     }          for(theta=1; theta <=npar; theta++){
 }            for(i=1; i<=npar; i++)
                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            
   printf("cptcovprod=%d ", cptcovprod);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   scanf("%d ",i);*/            
     fclose(fic);            k=0;
             for(i=1; i<= (nlstate); i++){
     /*  if(mle==1){*/              for(j=1; j<=(nlstate+ndeath);j++){
     if (weightopt != 1) { /* Maximisation without weights*/                k=k+1;
       for(i=1;i<=n;i++) weight[i]=1.0;                gp[k]=pmmij[i][j];
     }              }
     /*-calculation of age at interview from date of interview and age at death -*/            }
     agev=matrix(1,maxwav,1,imx);            
             for(i=1; i<=npar; i++)
     for (i=1; i<=imx; i++) {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       for(m=2; (m<= maxwav); m++) {      
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
          anint[m][i]=9999;            k=0;
          s[m][i]=-1;            for(i=1; i<=(nlstate); i++){
        }              for(j=1; j<=(nlstate+ndeath);j++){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                k=k+1;
       }                gm[k]=pmmij[i][j];
     }              }
             }
     for (i=1; i<=imx; i++)  {       
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       for(m=1; (m<= maxwav); m++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         if(s[m][i] >0){          }
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
               if(moisdc[i]!=99 && andc[i]!=9999)            for(theta=1; theta <=npar; theta++)
                 agev[m][i]=agedc[i];              trgradg[j][theta]=gradg[theta][j];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          
            else {          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
               if (andc[i]!=9999){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
               agev[m][i]=-1;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
               }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           }  
           else if(s[m][i] !=9){ /* Should no more exist */          pmij(pmmij,cov,ncovmodel,x,nlstate);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          
             if(mint[m][i]==99 || anint[m][i]==9999)          k=0;
               agev[m][i]=1;          for(i=1; i<=(nlstate); i++){
             else if(agev[m][i] <agemin){            for(j=1; j<=(nlstate+ndeath);j++){
               agemin=agev[m][i];              k=k+1;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              mu[k][(int) age]=pmmij[i][j];
             }            }
             else if(agev[m][i] >agemax){          }
               agemax=agev[m][i];          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             }              varpij[i][j][(int)age] = doldm[i][j];
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/          /*printf("\n%d ",(int)age);
           }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           else { /* =9 */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             agev[m][i]=1;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             s[m][i]=-1;            }*/
           }  
         }          fprintf(ficresprob,"\n%d ",(int)age);
         else /*= 0 Unknown */          fprintf(ficresprobcov,"\n%d ",(int)age);
           agev[m][i]=1;          fprintf(ficresprobcor,"\n%d ",(int)age);
       }  
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     for (i=1; i<=imx; i++)  {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       for(m=1; (m<= maxwav); m++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         if (s[m][i] > (nlstate+ndeath)) {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           printf("Error: Wrong value in nlstate or ndeath\n");            }
           goto end;          i=0;
         }          for (k=1; k<=(nlstate);k++){
       }            for (l=1; l<=(nlstate+ndeath);l++){ 
     }              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
     free_vector(severity,1,maxwav);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     free_imatrix(outcome,1,maxwav+1,1,n);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     free_vector(moisnais,1,n);              }
     free_vector(annais,1,n);            }
     /* free_matrix(mint,1,maxwav,1,n);          }/* end of loop for state */
        free_matrix(anint,1,maxwav,1,n);*/        } /* end of loop for age */
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);        /* Confidence intervalle of pij  */
         /*
              fprintf(ficgp,"\nset noparametric;unset label");
     wav=ivector(1,imx);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
              fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     /* Concatenates waves */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
       Tcode=ivector(1,100);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        first1=1;
       ncodemax[1]=1;        for (k2=1; k2<=(nlstate);k2++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                  if(l2==k2) continue;
    codtab=imatrix(1,100,1,10);            j=(k2-1)*(nlstate+ndeath)+l2;
    h=0;            for (k1=1; k1<=(nlstate);k1++){
    m=pow(2,cptcoveff);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                  if(l1==k1) continue;
    for(k=1;k<=cptcoveff; k++){                i=(k1-1)*(nlstate+ndeath)+l1;
      for(i=1; i <=(m/pow(2,k));i++){                if(i<=j) continue;
        for(j=1; j <= ncodemax[k]; j++){                for (age=bage; age<=fage; age ++){ 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                  if ((int)age %5==0){
            h++;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
          }                    mu1=mu[i][(int) age]/stepm*YEARM ;
        }                    mu2=mu[j][(int) age]/stepm*YEARM;
      }                    c12=cv12/sqrt(v1*v2);
    }                    /* Computing eigen value of matrix of covariance */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       codtab[1][2]=1;codtab[2][2]=2; */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    /* for(i=1; i <=m ;i++){                    /* Eigen vectors */
       for(k=1; k <=cptcovn; k++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    /*v21=sqrt(1.-v11*v11); *//* error */
       }                    v21=(lc1-v1)/cv12*v11;
       printf("\n");                    v12=-v21;
       }                    v22=v11;
       scanf("%d",i);*/                    tnalp=v21/v11;
                        if(first1==1){
    /* Calculates basic frequencies. Computes observed prevalence at single age                      first1=0;
        and prints on file fileres'p'. */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                        fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                        /*printf(fignu*/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    if(first==1){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      first=0;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                      fprintf(ficgp,"\nset parametric;unset label");
                            fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     /* For Powell, parameters are in a vector p[] starting at p[1]                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     if(mle==1){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                          fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     /*--------- results files --------------*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    jk=1;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    }else{
    for(i=1,jk=1; i <=nlstate; i++){                      first=0;
      for(k=1; k <=(nlstate+ndeath); k++){                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
        if (k != i)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
          {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
            printf("%d%d ",i,k);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
            fprintf(ficres,"%1d%1d ",i,k);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
            for(j=1; j <=ncovmodel; j++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
              printf("%f ",p[jk]);                    }/* if first */
              fprintf(ficres,"%f ",p[jk]);                  } /* age mod 5 */
              jk++;                } /* end loop age */
            }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            printf("\n");                first=1;
            fprintf(ficres,"\n");              } /*l12 */
          }            } /* k12 */
      }          } /*l1 */
    }        }/* k1 */
  if(mle==1){      } /* loop covariates */
     /* Computing hessian and covariance matrix */    }
     ftolhess=ftol; /* Usually correct */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     hesscov(matcov, p, npar, delti, ftolhess, func);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
  }    free_vector(xp,1,npar);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fclose(ficresprob);
     printf("# Scales (for hessian or gradient estimation)\n");    fclose(ficresprobcov);
      for(i=1,jk=1; i <=nlstate; i++){    fclose(ficresprobcor);
       for(j=1; j <=nlstate+ndeath; j++){    fflush(ficgp);
         if (j!=i) {    fflush(fichtmcov);
           fprintf(ficres,"%1d%1d",i,j);  }
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);  /******************* Printing html file ***********/
             fprintf(ficres," %.5e",delti[jk]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             jk++;                    int lastpass, int stepm, int weightopt, char model[],\
           }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           printf("\n");                    int popforecast, int estepm ,\
           fprintf(ficres,"\n");                    double jprev1, double mprev1,double anprev1, \
         }                    double jprev2, double mprev2,double anprev2){
       }    int jj1, k1, i1, cpt;
      }  
         fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     k=1;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     fprintf(fichtm,"\
     for(i=1;i<=npar;i++){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       /*  if (k>nlstate) k=1;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       i1=(i-1)/(ncovmodel*nlstate)+1;     fprintf(fichtm,"\
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       printf("%s%d%d",alph[k],i1,tab[i]);*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(ficres,"%3d",i);     fprintf(fichtm,"\
       printf("%3d",i);   - Life expectancies by age and initial health status (estepm=%2d months): \
       for(j=1; j<=i;j++){     <a href=\"%s\">%s</a> <br>\n</li>",
         fprintf(ficres," %.5e",matcov[i][j]);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         printf(" %.5e",matcov[i][j]);  
       }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       fprintf(ficres,"\n");  
       printf("\n");   m=cptcoveff;
       k++;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }  
       jj1=0;
     while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
       ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
       fgets(line, MAXLINE, ficpar);       jj1++;
       puts(line);       if (cptcovn > 0) {
       fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     }         for (cpt=1; cpt<=cptcoveff;cpt++) 
     ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     estepm=0;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);       }
     if (estepm==0 || estepm < stepm) estepm=stepm;       /* Pij */
     if (fage <= 2) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       bage = ageminpar;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       fage = agemaxpar;       /* Quasi-incidences */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);         /* Stable prevalence in each health state */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);         for(cpt=1; cpt<nlstate;cpt++){
             fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     ungetc(c,ficpar);         }
     fgets(line, MAXLINE, ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
     puts(line);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     fputs(line,ficparo);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   }       }
   ungetc(c,ficpar);     } /* end i1 */
     }/* End k1 */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   fprintf(fichtm,"</ul>");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
         fprintf(fichtm,"\
   while((c=getc(ficpar))=='#' && c!= EOF){  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     ungetc(c,ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     fgets(line, MAXLINE, ficpar);  
     puts(line);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fputs(line,ficparo);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   }   fprintf(fichtm,"\
   ungetc(c,ficpar);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   fprintf(fichtm,"\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   fscanf(ficpar,"pop_based=%d\n",&popbased);   fprintf(fichtm,"\
   fprintf(ficparo,"pop_based=%d\n",popbased);     - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   fprintf(ficres,"pop_based=%d\n",popbased);             estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     fprintf(fichtm,"\
   while((c=getc(ficpar))=='#' && c!= EOF){   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     ungetc(c,ficpar);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"\
     puts(line);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     fputs(line,ficparo);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   }  
   ungetc(c,ficpar);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*      <br>",fileres,fileres,fileres,fileres); */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
 while((c=getc(ficpar))=='#' && c!= EOF){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   m=cptcoveff;
     puts(line);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fputs(line,ficparo);  
   }   jj1=0;
   ungetc(c,ficpar);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       jj1++;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       if (cptcovn > 0) {
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 /*------------ gnuplot -------------*/       }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 /*------------ free_vector  -------------*/  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
  chdir(path);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }
  free_ivector(wav,1,imx);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  health expectancies in states (1) and (2): %s%d.png<br>\
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
  free_ivector(num,1,n);     } /* end i1 */
  free_vector(agedc,1,n);   }/* End k1 */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   fprintf(fichtm,"</ul>");
  fclose(ficparo);   fflush(fichtm);
  fclose(ficres);  }
   
 /*--------- index.htm --------*/  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  
     char dirfileres[132],optfileres[132];
      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   /*--------------- Prevalence limit --------------*/    int ng;
    /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   strcpy(filerespl,"pl");  /*     printf("Problem with file %s",optionfilegnuplot); */
   strcat(filerespl,fileres);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  /*   } */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }    /*#ifdef windows */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fprintf(ficrespl,"#Prevalence limit\n");      /*#endif */
   fprintf(ficrespl,"#Age ");    m=pow(2,cptcoveff);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");    strcpy(dirfileres,optionfilefiname);
      strcpy(optfileres,"vpl");
   prlim=matrix(1,nlstate,1,nlstate);   /* 1eme*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (cpt=1; cpt<= nlstate ; cpt ++) {
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for (k1=1; k1<= m ; k1 ++) {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       fprintf(ficgp,"set xlabel \"Age\" \n\
   k=0;  set ylabel \"Probability\" \n\
   agebase=ageminpar;  set ter png small\n\
   agelim=agemaxpar;  set size 0.65,0.65\n\
   ftolpl=1.e-10;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       }
         k=k+1;       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficrespl,"\n#******");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         for(j=1;j<=cptcoveff;j++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       } 
         fprintf(ficrespl,"******\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
               for (i=1; i<= nlstate ; i ++) {
         for (age=agebase; age<=agelim; age++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficrespl,"%.0f",age );       }  
           for(i=1; i<=nlstate;i++)       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
           fprintf(ficrespl," %.5f", prlim[i][i]);     }
           fprintf(ficrespl,"\n");    }
         }    /*2 eme*/
       }    
     }    for (k1=1; k1<= m ; k1 ++) { 
   fclose(ficrespl);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   /*------------- h Pij x at various ages ------------*/      
        for (i=1; i<= nlstate+1 ; i ++) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        k=2*i;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing pij: result on file '%s' \n", filerespij);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
   stepsize=(int) (stepm+YEARM-1)/YEARM;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   /*if (stepm<=24) stepsize=2;*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   agelim=AGESUP;        for (j=1; j<= nlstate+1 ; j ++) {
   hstepm=stepsize*YEARM; /* Every year of age */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
   k=0;        fprintf(ficgp,"\" t\"\" w l 0,");
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (j=1; j<= nlstate+1 ; j ++) {
       k=k+1;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrespij,"\n#****** ");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(j=1;j<=cptcoveff;j++)        }   
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         fprintf(ficrespij,"******\n");        else fprintf(ficgp,"\" t\"\" w l 0,");
              }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /*3eme*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    for (k1=1; k1<= m ; k1 ++) { 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficrespij,"# Age");        k=2+nlstate*(2*cpt-2);
           for(i=1; i<=nlstate;i++)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
             for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficgp,"set ter png small\n\
               fprintf(ficrespij," %1d-%1d",i,j);  set size 0.65,0.65\n\
           fprintf(ficrespij,"\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
            for (h=0; h<=nhstepm; h++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             for(i=1; i<=nlstate;i++)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficrespij,"\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
              }          
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        */
           fprintf(ficrespij,"\n");        for (i=1; i< nlstate ; i ++) {
         }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     }          
   }        } 
       }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    }
     
   fclose(ficrespij);    /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
   /*---------- Forecasting ------------------*/        k=3;
   if((stepm == 1) && (strcmp(model,".")==0)){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  set ter png small\nset size 0.65,0.65\n\
   }  unset log y\n\
   else{  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     erreur=108;        
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        for (i=1; i< nlstate ; i ++)
   }          fprintf(ficgp,"+$%d",k+i+1);
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
   /*---------- Health expectancies and variances ------------*/        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   strcpy(filerest,"t");        for (i=1; i< nlstate ; i ++) {
   strcat(filerest,fileres);          l=3+(nlstate+ndeath)*cpt;
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(ficgp,"+$%d",l+i+1);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        }
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      } 
     }  
     
   strcpy(filerese,"e");    /* proba elementaires */
   strcat(filerese,fileres);    for(i=1,jk=1; i <=nlstate; i++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {      for(k=1; k <=(nlstate+ndeath); k++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        if (k != i) {
   }          for(j=1; j <=ncovmodel; j++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
  strcpy(fileresv,"v");            fprintf(ficgp,"\n");
   strcat(fileresv,fileres);          }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      }
   }     }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   k=0;         if (ng==2)
   for(cptcov=1;cptcov<=i1;cptcov++){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         else
       k=k+1;           fprintf(ficgp,"\nset title \"Probability\"\n");
       fprintf(ficrest,"\n#****** ");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       for(j=1;j<=cptcoveff;j++)         i=1;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         for(k2=1; k2<=nlstate; k2++) {
       fprintf(ficrest,"******\n");           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
       fprintf(ficreseij,"\n#****** ");             if (k != k2){
       for(j=1;j<=cptcoveff;j++)               if(ng==2)
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       fprintf(ficreseij,"******\n");               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       fprintf(ficresvij,"\n#****** ");               ij=1;
       for(j=1;j<=cptcoveff;j++)               for(j=3; j <=ncovmodel; j++) {
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       fprintf(ficresvij,"******\n");                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                 }
       oldm=oldms;savm=savms;                 else
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                     fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                 }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);               fprintf(ficgp,")/(1");
       oldm=oldms;savm=savms;               
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);               for(k1=1; k1 <=nlstate; k1++){   
                     fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                   for(j=3; j <=ncovmodel; j++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fprintf(ficrest,"\n");                     ij++;
                    }
       epj=vector(1,nlstate+1);                   else
       for(age=bage; age <=fage ;age++){                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                 }
         if (popbased==1) {                 fprintf(ficgp,")");
           for(i=1; i<=nlstate;i++)               }
             prlim[i][i]=probs[(int)age][i][k];               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                       i=i+ncovmodel;
         fprintf(ficrest," %4.0f",age);             }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){           } /* end k */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {         } /* end k2 */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];       } /* end jk */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     } /* end ng */
           }     fflush(ficgp); 
           epj[nlstate+1] +=epj[j];  }  /* end gnuplot */
         }  
   
         for(i=1, vepp=0.;i <=nlstate;i++)  /*************** Moving average **************/
           for(j=1;j <=nlstate;j++)  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    int i, cpt, cptcod;
         for(j=1;j <=nlstate;j++){    int modcovmax =1;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    int mobilavrange, mob;
         }    double age;
         fprintf(ficrest,"\n");  
       }    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     }                             a covariate has 2 modalities */
   }    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     free_vector(weight,1,n);      if(mobilav==1) mobilavrange=5; /* default */
   fclose(ficreseij);      else mobilavrange=mobilav;
   fclose(ficresvij);      for (age=bage; age<=fage; age++)
   fclose(ficrest);        for (i=1; i<=nlstate;i++)
   fclose(ficpar);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   free_vector(epj,1,nlstate+1);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for 
   /*------- Variance limit prevalence------*/           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
   strcpy(fileresvpl,"vpl");      */ 
   strcat(fileresvpl,fileres);      for (mob=3;mob <=mobilavrange;mob=mob+2){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          for (i=1; i<=nlstate;i++){
     exit(0);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   k=0;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   for(cptcov=1;cptcov<=i1;cptcov++){                }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       k=k+1;            }
       fprintf(ficresvpl,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)        }/* end age */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }/* end mob */
       fprintf(ficresvpl,"******\n");    }else return -1;
          return 0;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  }/* End movingaverage */
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }  /************** Forecasting ******************/
  }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
   fclose(ficresvpl);       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
   /*---------- End : free ----------------*/       anproj2 year of en of projection (same day and month as proj1).
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    */
      int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int *popage;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double agec; /* generic age */
      double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
      double *popeffectif,*popcount;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double ***p3mat;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    double ***mobaverage;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    char fileresf[FILENAMELENGTH];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      agelim=AGESUP;
   free_matrix(matcov,1,npar,1,npar);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   free_vector(delti,1,npar);   
   free_matrix(agev,1,maxwav,1,imx);    strcpy(fileresf,"f"); 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
   if(erreur >0)      printf("Problem with forecast resultfile: %s\n", fileresf);
     printf("End of Imach with error or warning %d\n",erreur);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   else   printf("End of Imach\n");    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    printf("Computing forecasting: result on file '%s' \n", fileresf);
      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   /*------ End -----------*/  
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  end:      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /* chdir(pathcd);*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  /*system("wgnuplot graph.plt");*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      }
  /*system("cd ../gp37mgw");*/    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    stepsize=(int) (stepm+YEARM-1)/YEARM;
  strcat(plotcmd," ");    if (stepm<=12) stepsize=1;
  strcat(plotcmd,optionfilegnuplot);    if(estepm < stepm){
  system(plotcmd);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
  /*#ifdef windows*/    else  hstepm=estepm;   
   while (z[0] != 'q') {  
     /* chdir(path); */    hstepm=hstepm/stepm; 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     scanf("%s",z);                                 fractional in yp1 */
     if (z[0] == 'c') system("./imach");    anprojmean=yp;
     else if (z[0] == 'e') system(optionfilehtm);    yp2=modf((yp1*12),&yp);
     else if (z[0] == 'g') system(plotcmd);    mprojmean=yp;
     else if (z[0] == 'q') exit(0);    yp1=modf((yp2*30.5),&yp);
   }    jprojmean=yp;
   /*#endif */    if(jprojmean==0) jprojmean=1;
 }    if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.99


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>