Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.100

version 1.41.2.2, 2003/06/13 07:45:28 version 1.100, 2004/07/12 18:29:06
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.100  2004/07/12 18:29:06  brouard
      Add version for Mac OS X. Just define UNIX in Makefile
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.99  2004/06/05 08:57:40  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.98  2004/05/16 15:05:56  brouard
   second wave of interviews ("longitudinal") which measure each change    New version 0.97 . First attempt to estimate force of mortality
   (if any) in individual health status.  Health expectancies are    directly from the data i.e. without the need of knowing the health
   computed from the time spent in each health state according to a    state at each age, but using a Gompertz model: log u =a + b*age .
   model. More health states you consider, more time is necessary to reach the    This is the basic analysis of mortality and should be done before any
   Maximum Likelihood of the parameters involved in the model.  The    other analysis, in order to test if the mortality estimated from the
   simplest model is the multinomial logistic model where pij is the    cross-longitudinal survey is different from the mortality estimated
   probability to be observed in state j at the second wave    from other sources like vital statistic data.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    The same imach parameter file can be used but the option for mle should be -3.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Agnès, who wrote this part of the code, tried to keep most of the
   where the markup *Covariates have to be included here again* invites    former routines in order to include the new code within the former code.
   you to do it.  More covariates you add, slower the  
   convergence.    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Current limitations:
   identical for each individual. Also, if a individual missed an    A) Even if you enter covariates, i.e. with the
   intermediate interview, the information is lost, but taken into    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   account using an interpolation or extrapolation.      B) There is no computation of Life Expectancy nor Life Table.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.97  2004/02/20 13:25:42  lievre
   conditional to the observed state i at age x. The delay 'h' can be    Version 0.96d. Population forecasting command line is (temporarily)
   split into an exact number (nh*stepm) of unobserved intermediate    suppressed.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.96  2003/07/15 15:38:55  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   and the contribution of each individual to the likelihood is simply    rewritten within the same printf. Workaround: many printfs.
   hPijx.  
     Revision 1.95  2003/07/08 07:54:34  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Repository):
   of the life expectancies. It also computes the prevalence limits.    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.94  2003/06/27 13:00:02  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Just cleaning
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.93  2003/06/25 16:33:55  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): On windows (cygwin) function asctime_r doesn't
   can be accessed at http://euroreves.ined.fr/imach .    exist so I changed back to asctime which exists.
   **********************************************************************/    (Module): Version 0.96b
    
 #include <math.h>    Revision 1.92  2003/06/25 16:30:45  brouard
 #include <stdio.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <stdlib.h>    exist so I changed back to asctime which exists.
 #include <unistd.h>  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define MAXLINE 256    * imach.c (Repository): Duplicated warning errors corrected.
 #define GNUPLOTPROGRAM "wgnuplot"    (Repository): Elapsed time after each iteration is now output. It
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    helps to forecast when convergence will be reached. Elapsed time
 #define FILENAMELENGTH 80    is stamped in powell.  We created a new html file for the graphs
 /*#define DEBUG*/    concerning matrix of covariance. It has extension -cov.htm.
   
 /*#define windows*/    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Some bugs corrected for windows. Also, when
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define NINTERVMAX 8    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    of the covariance matrix to be input.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.88  2003/06/23 17:54:56  brouard
 #define MAXN 20000    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.87  2003/06/18 12:26:01  brouard
 #define AGEBASE 40    Version 0.96
   
     Revision 1.86  2003/06/17 20:04:08  brouard
 int erreur; /* Error number */    (Module): Change position of html and gnuplot routines and added
 int nvar;    routine fileappend.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.85  2003/06/17 13:12:43  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Repository): Check when date of death was earlier that
 int ndeath=1; /* Number of dead states */    current date of interview. It may happen when the death was just
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    prior to the death. In this case, dh was negative and likelihood
 int popbased=0;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 int *wav; /* Number of waves for this individuual 0 is possible */    interview.
 int maxwav; /* Maxim number of waves */    (Repository): Because some people have very long ID (first column)
 int jmin, jmax; /* min, max spacing between 2 waves */    we changed int to long in num[] and we added a new lvector for
 int mle, weightopt;    memory allocation. But we also truncated to 8 characters (left
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    truncation)
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Repository): No more line truncation errors.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.84  2003/06/13 21:44:43  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Repository): Replace "freqsummary" at a correct
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    place. It differs from routine "prevalence" which may be called
 FILE *ficgp,*ficresprob,*ficpop;    many times. Probs is memory consuming and must be used with
 FILE *ficreseij;    parcimony.
   char filerese[FILENAMELENGTH];    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.83  2003/06/10 13:39:11  lievre
  FILE  *ficresvpl;    *** empty log message ***
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define NR_END 1    Add log in  imach.c and  fullversion number is now printed.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10  */
   /*
 #define NRANSI     Interpolated Markov Chain
 #define ITMAX 200  
     Short summary of the programme:
 #define TOL 2.0e-4    
     This program computes Healthy Life Expectancies from
 #define CGOLD 0.3819660    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define ZEPS 1.0e-10    first survey ("cross") where individuals from different ages are
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 #define GOLD 1.618034    second wave of interviews ("longitudinal") which measure each change
 #define GLIMIT 100.0    (if any) in individual health status.  Health expectancies are
 #define TINY 1.0e-20    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 static double maxarg1,maxarg2;    Maximum Likelihood of the parameters involved in the model.  The
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    simplest model is the multinomial logistic model where pij is the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define rint(a) floor(a+0.5)    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 static double sqrarg;    where the markup *Covariates have to be included here again* invites
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    you to do it.  More covariates you add, slower the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    convergence.
   
 int imx;    The advantage of this computer programme, compared to a simple
 int stepm;    multinomial logistic model, is clear when the delay between waves is not
 /* Stepm, step in month: minimum step interpolation*/    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 int estepm;    account using an interpolation or extrapolation.  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     hPijx is the probability to be observed in state i at age x+h
 int m,nb;    conditional to the observed state i at age x. The delay 'h' can be
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    split into an exact number (nh*stepm) of unobserved intermediate
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    states. This elementary transition (by month, quarter,
 double **pmmij, ***probs, ***mobaverage;    semester or year) is modelled as a multinomial logistic.  The hPx
 double dateintmean=0;    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 double *weight;    hPijx.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Also this programme outputs the covariance matrix of the parameters but also
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    of the life expectancies. It also computes the stable prevalence. 
     
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double ftolhess; /* Tolerance for computing hessian */             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /**************** split *************************/    from the European Union.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
    char *s;                             /* pointer */    can be accessed at http://euroreves.ined.fr/imach .
    int  l1, l2;                         /* length counters */  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    l1 = strlen( path );                 /* length of path */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    
 #ifdef windows    **********************************************************************/
    s = strrchr( path, '\\' );           /* find last / */  /*
 #else    main
    s = strrchr( path, '/' );            /* find last / */    read parameterfile
 #endif    read datafile
    if ( s == NULL ) {                   /* no directory, so use current */    concatwav
 #if     defined(__bsd__)                /* get current working directory */    freqsummary
       extern char       *getwd( );    if (mle >= 1)
       mlikeli
       if ( getwd( dirc ) == NULL ) {    print results files
 #else    if mle==1 
       extern char       *getcwd( );       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {        begin-prev-date,...
 #endif    open gnuplot file
          return( GLOCK_ERROR_GETCWD );    open html file
       }    stable prevalence
       strcpy( name, path );             /* we've got it */     for age prevalim()
    } else {                             /* strip direcotry from path */    h Pij x
       s++;                              /* after this, the filename */    variance of p varprob
       l2 = strlen( s );                 /* length of filename */    forecasting if prevfcast==1 prevforecast call prevalence()
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    health expectancies
       strcpy( name, s );                /* save file name */    Variance-covariance of DFLE
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    prevalence()
       dirc[l1-l2] = 0;                  /* add zero */     movingaverage()
    }    varevsij() 
    l1 = strlen( dirc );                 /* length of directory */    if popbased==1 varevsij(,popbased)
 #ifdef windows    total life expectancies
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Variance of stable prevalence
 #else   end
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  */
 #endif  
    s = strrchr( name, '.' );            /* find last / */  
    s++;  
    strcpy(ext,s);                       /* save extension */   
    l1= strlen( name);  #include <math.h>
    l2= strlen( s)+1;  #include <stdio.h>
    strncpy( finame, name, l1-l2);  #include <stdlib.h>
    finame[l1-l2]= 0;  #include <unistd.h>
    return( 0 );                         /* we're done */  
 }  /* #include <sys/time.h> */
   #include <time.h>
   #include "timeval.h"
 /******************************************/  
   /* #include <libintl.h> */
 void replace(char *s, char*t)  /* #define _(String) gettext (String) */
 {  
   int i;  #define MAXLINE 256
   int lg=20;  #define GNUPLOTPROGRAM "gnuplot"
   i=0;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   lg=strlen(t);  #define FILENAMELENGTH 132
   for(i=0; i<= lg; i++) {  /*#define DEBUG*/
     (s[i] = t[i]);  /*#define windows*/
     if (t[i]== '\\') s[i]='/';  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int nbocc(char *s, char occ)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   int i,j=0;  #define NINTERVMAX 8
   int lg=20;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   i=0;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   lg=strlen(s);  #define NCOVMAX 8 /* Maximum number of covariates */
   for(i=0; i<= lg; i++) {  #define MAXN 20000
   if  (s[i] == occ ) j++;  #define YEARM 12. /* Number of months per year */
   }  #define AGESUP 130
   return j;  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 void cutv(char *u,char *v, char*t, char occ)  #define DIRSEPARATOR '/'
 {  #define ODIRSEPARATOR '\\'
   int i,lg,j,p=0;  #else
   i=0;  #define DIRSEPARATOR '\\'
   for(j=0; j<=strlen(t)-1; j++) {  #define ODIRSEPARATOR '/'
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #endif
   }  
   /* $Id$ */
   lg=strlen(t);  /* $State$ */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   }  char fullversion[]="$Revision$ $Date$"; 
      u[p]='\0';  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
    for(j=0; j<= lg; j++) {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int npar=NPARMAX;
   }  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /********************** nrerror ********************/  int popbased=0;
   
 void nrerror(char error_text[])  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   fprintf(stderr,"ERREUR ...\n");  int jmin, jmax; /* min, max spacing between 2 waves */
   fprintf(stderr,"%s\n",error_text);  int gipmx, gsw; /* Global variables on the number of contributions 
   exit(1);                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
 /*********************** vector *******************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double *vector(int nl, int nh)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double *v;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double jmean; /* Mean space between 2 waves */
   if (!v) nrerror("allocation failure in vector");  double **oldm, **newm, **savm; /* Working pointers to matrices */
   return v-nl+NR_END;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /************************ free vector ******************/  int globpr; /* Global variable for printing or not */
 void free_vector(double*v, int nl, int nh)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   free((FREE_ARG)(v+nl-NR_END));  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /************************ivector *******************************/  FILE *ficresilk;
 int *ivector(long nl,long nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   int *v;  FILE *fichtm, *fichtmcov; /* Html File */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  FILE *ficreseij;
   if (!v) nrerror("allocation failure in ivector");  char filerese[FILENAMELENGTH];
   return v-nl+NR_END;  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /******************free ivector **************************/  char fileresvpl[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************* imatrix *******************************/  int  outcmd=0;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char filelog[FILENAMELENGTH]; /* Log file */
   int **m;  char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
   /* allocate pointers to rows */  char popfile[FILENAMELENGTH];
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m += NR_END;  
   m -= nrl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
    extern int gettimeofday();
   /* allocate rows and set pointers to them */  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  long time_value;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  extern long time();
   m[nrl] += NR_END;  char strcurr[80], strfor[80];
   m[nrl] -= ncl;  
    #define NR_END 1
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define FREE_ARG char*
    #define FTOL 1.0e-10
   /* return pointer to array of pointers to rows */  
   return m;  #define NRANSI 
 }  #define ITMAX 200 
   
 /****************** free_imatrix *************************/  #define TOL 2.0e-4 
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  #define CGOLD 0.3819660 
       long nch,ncl,nrh,nrl;  #define ZEPS 1.0e-10 
      /* free an int matrix allocated by imatrix() */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define GOLD 1.618034 
   free((FREE_ARG) (m+nrl-NR_END));  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /******************* matrix *******************************/  static double maxarg1,maxarg2;
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    
   double **m;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double sqrarg;
   m += NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m -= nrl;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int imx; 
   m[nrl] += NR_END;  int stepm=1;
   m[nrl] -= ncl;  /* Stepm, step in month: minimum step interpolation*/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int estepm;
   return m;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /*************************free matrix ************************/  long *num;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double **pmmij, ***probs;
   free((FREE_ARG)(m+nrl-NR_END));  double *ageexmed,*agecens;
 }  double dateintmean=0;
   
 /******************* ma3x *******************************/  double *weight;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double ***m;  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double ftolhess; /* Tolerance for computing hessian */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /**************** split *************************/
   m -= nrl;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl] += NR_END;    */ 
   m[nrl] -= ncl;    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     l1 = strlen(path );                   /* length of path */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl][ncl] += NR_END;    if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl][ncl] -= nll;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (j=ncl+1; j<=nch; j++)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     m[nrl][j]=m[nrl][j-1]+nlay;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
   for (i=nrl+1; i<=nrh; i++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;        return( GLOCK_ERROR_GETCWD );
     for (j=ncl+1; j<=nch; j++)      }
       m[i][j]=m[i][j-1]+nlay;      strcpy( name, path );               /* we've got it */
   }    } else {                              /* strip direcotry from path */
   return m;      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*************************free ma3x ************************/      strcpy( name, ss );         /* save file name */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    l1 = strlen( dirc );                  /* length of directory */
   free((FREE_ARG)(m+nrl-NR_END));    /*#ifdef windows
 }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
 /***************** f1dim *************************/    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 extern int ncom;  #endif
 extern double *pcom,*xicom;    */
 extern double (*nrfunc)(double []);    ss = strrchr( name, '.' );            /* find last / */
      if (ss >0){
 double f1dim(double x)      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   int j;      l1= strlen( name);
   double f;      l2= strlen(ss)+1;
   double *xt;      strncpy( finame, name, l1-l2);
        finame[l1-l2]= 0;
   xt=vector(1,ncom);    }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    return( 0 );                          /* we're done */
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  
 }  /******************************************/
   
 /*****************brent *************************/  void replace_back_to_slash(char *s, char*t)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    int i;
   int iter;    int lg=0;
   double a,b,d,etemp;    i=0;
   double fu,fv,fw,fx;    lg=strlen(t);
   double ftemp;    for(i=0; i<= lg; i++) {
   double p,q,r,tol1,tol2,u,v,w,x,xm;      (s[i] = t[i]);
   double e=0.0;      if (t[i]== '\\') s[i]='/';
      }
   a=(ax < cx ? ax : cx);  }
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  int nbocc(char *s, char occ)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    int i,j=0;
     xm=0.5*(a+b);    int lg=20;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    i=0;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    lg=strlen(s);
     printf(".");fflush(stdout);    for(i=0; i<= lg; i++) {
 #ifdef DEBUG    if  (s[i] == occ ) j++;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return j;
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  void cutv(char *u,char *v, char*t, char occ)
       return fx;  {
     }    /* cuts string t into u and v where u is ended by char occ excluding it
     ftemp=fu;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     if (fabs(e) > tol1) {       gives u="abcedf" and v="ghi2j" */
       r=(x-w)*(fx-fv);    int i,lg,j,p=0;
       q=(x-v)*(fx-fw);    i=0;
       p=(x-v)*q-(x-w)*r;    for(j=0; j<=strlen(t)-1; j++) {
       q=2.0*(q-r);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       if (q > 0.0) p = -p;    }
       q=fabs(q);  
       etemp=e;    lg=strlen(t);
       e=d;    for(j=0; j<p; j++) {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      (u[j] = t[j]);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    }
       else {       u[p]='\0';
         d=p/q;  
         u=x+d;     for(j=0; j<= lg; j++) {
         if (u-a < tol2 || b-u < tol2)      if (j>=(p+1))(v[j-p-1] = t[j]);
           d=SIGN(tol1,xm-x);    }
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /********************** nrerror ********************/
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  void nrerror(char error_text[])
     fu=(*f)(u);  {
     if (fu <= fx) {    fprintf(stderr,"ERREUR ...\n");
       if (u >= x) a=x; else b=x;    fprintf(stderr,"%s\n",error_text);
       SHFT(v,w,x,u)    exit(EXIT_FAILURE);
         SHFT(fv,fw,fx,fu)  }
         } else {  /*********************** vector *******************/
           if (u < x) a=u; else b=u;  double *vector(int nl, int nh)
           if (fu <= fw || w == x) {  {
             v=w;    double *v;
             w=u;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
             fv=fw;    if (!v) nrerror("allocation failure in vector");
             fw=fu;    return v-nl+NR_END;
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  /************************ free vector ******************/
           }  void free_vector(double*v, int nl, int nh)
         }  {
   }    free((FREE_ARG)(v+nl-NR_END));
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
 /****************** mnbrak ***********************/    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!v) nrerror("allocation failure in ivector");
             double (*func)(double))    return v-nl+NR_END;
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    free((FREE_ARG)(v+nl-NR_END));
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /************************lvector *******************************/
       }  long *lvector(long nl,long nh)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    long *v;
   while (*fb > *fc) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     r=(*bx-*ax)*(*fb-*fc);    if (!v) nrerror("allocation failure in ivector");
     q=(*bx-*cx)*(*fb-*fa);    return v-nl+NR_END;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /******************free lvector **************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  void free_lvector(long *v, long nl, long nh)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /******************* imatrix *******************************/
           SHFT(*fb,*fc,fu,(*func)(u))  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  { 
       u=ulim;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       fu=(*func)(u);    int **m; 
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);    /* allocate pointers to rows */ 
       fu=(*func)(u);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     SHFT(*ax,*bx,*cx,u)    m += NR_END; 
       SHFT(*fa,*fb,*fc,fu)    m -= nrl; 
       }    
 }    
     /* allocate rows and set pointers to them */ 
 /*************** linmin ************************/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 int ncom;    m[nrl] += NR_END; 
 double *pcom,*xicom;    m[nrl] -= ncl; 
 double (*nrfunc)(double []);    
      for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    
 {    /* return pointer to array of pointers to rows */ 
   double brent(double ax, double bx, double cx,    return m; 
                double (*f)(double), double tol, double *xmin);  } 
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /****************** free_imatrix *************************/
               double *fc, double (*func)(double));  void free_imatrix(m,nrl,nrh,ncl,nch)
   int j;        int **m;
   double xx,xmin,bx,ax;        long nch,ncl,nrh,nrl; 
   double fx,fb,fa;       /* free an int matrix allocated by imatrix() */ 
    { 
   ncom=n;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   pcom=vector(1,n);    free((FREE_ARG) (m+nrl-NR_END)); 
   xicom=vector(1,n);  } 
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /******************* matrix *******************************/
     pcom[j]=p[j];  double **matrix(long nrl, long nrh, long ncl, long nch)
     xicom[j]=xi[j];  {
   }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   ax=0.0;    double **m;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m -= nrl;
 #endif  
   for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     xi[j] *= xmin;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     p[j] += xi[j];    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 /*************** powell ************************/     */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  }
             double (*func)(double []))  
 {  /*************************free matrix ************************/
   void linmin(double p[], double xi[], int n, double *fret,  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
               double (*func)(double []));  {
   int i,ibig,j;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double del,t,*pt,*ptt,*xit;    free((FREE_ARG)(m+nrl-NR_END));
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  /******************* ma3x *******************************/
   ptt=vector(1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   xit=vector(1,n);  {
   xits=vector(1,n);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   *fret=(*func)(p);    double ***m;
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     fp=(*fret);    if (!m) nrerror("allocation failure 1 in matrix()");
     ibig=0;    m += NR_END;
     del=0.0;    m -= nrl;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf(" %d %.12f",i, p[i]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\n");    m[nrl] += NR_END;
     for (i=1;i<=n;i++) {    m[nrl] -= ncl;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 #endif    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       printf("%d",i);fflush(stdout);    m[nrl][ncl] += NR_END;
       linmin(p,xit,n,fret,func);    m[nrl][ncl] -= nll;
       if (fabs(fptt-(*fret)) > del) {    for (j=ncl+1; j<=nch; j++) 
         del=fabs(fptt-(*fret));      m[nrl][j]=m[nrl][j-1]+nlay;
         ibig=i;    
       }    for (i=nrl+1; i<=nrh; i++) {
 #ifdef DEBUG      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       printf("%d %.12e",i,(*fret));      for (j=ncl+1; j<=nch; j++) 
       for (j=1;j<=n;j++) {        m[i][j]=m[i][j-1]+nlay;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    }
         printf(" x(%d)=%.12e",j,xit[j]);    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for(j=1;j<=n;j++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         printf(" p=%.12e",p[j]);    */
       printf("\n");  }
 #endif  
     }  /*************************free ma3x ************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #ifdef DEBUG  {
       int k[2],l;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       k[0]=1;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       k[1]=-1;    free((FREE_ARG)(m+nrl-NR_END));
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /*************** function subdirf ***********/
       printf("\n");  char *subdirf(char fileres[])
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcpy(tmpout,optionfilefiname);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,"/"); /* Add to the right */
         }    strcat(tmpout,fileres);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return tmpout;
       }  }
 #endif  
   /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);    /* Caution optionfilefiname is hidden */
       free_vector(pt,1,n);    strcpy(tmpout,optionfilefiname);
       return;    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    strcat(tmpout,fileres);
     for (j=1;j<=n;j++) {    return tmpout;
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /* Caution optionfilefiname is hidden */
       if (t < 0.0) {    strcpy(tmpout,optionfilefiname);
         linmin(p,xit,n,fret,func);    strcat(tmpout,"/");
         for (j=1;j<=n;j++) {    strcat(tmpout,preop);
           xi[j][ibig]=xi[j][n];    strcat(tmpout,preop2);
           xi[j][n]=xit[j];    strcat(tmpout,fileres);
         }    return tmpout;
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /***************** f1dim *************************/
           printf(" %.12e",xit[j]);  extern int ncom; 
         printf("\n");  extern double *pcom,*xicom;
 #endif  extern double (*nrfunc)(double []); 
       }   
     }  double f1dim(double x) 
   }  { 
 }    int j; 
     double f;
 /**** Prevalence limit ****************/    double *xt; 
    
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    xt=vector(1,ncom); 
 {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    f=(*nrfunc)(xt); 
      matrix by transitions matrix until convergence is reached */    free_vector(xt,1,ncom); 
     return f; 
   int i, ii,j,k;  } 
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /*****************brent *************************/
   double **out, cov[NCOVMAX], **pmij();  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double **newm;  { 
   double agefin, delaymax=50 ; /* Max number of years to converge */    int iter; 
     double a,b,d,etemp;
   for (ii=1;ii<=nlstate+ndeath;ii++)    double fu,fv,fw,fx;
     for (j=1;j<=nlstate+ndeath;j++){    double ftemp;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
    
    cov[1]=1.;    a=(ax < cx ? ax : cx); 
      b=(ax > cx ? ax : cx); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    x=w=v=bx; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    fw=fv=fx=(*f)(x); 
     newm=savm;    for (iter=1;iter<=ITMAX;iter++) { 
     /* Covariates have to be included here again */      xm=0.5*(a+b); 
      cov[2]=agefin;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (k=1; k<=cptcovn;k++) {      printf(".");fflush(stdout);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficlog,".");fflush(ficlog);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #ifdef DEBUG
       }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1; k<=cptcovprod;k++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        *xmin=x; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        return fx; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      ftemp=fu;
       if (fabs(e) > tol1) { 
     savm=oldm;        r=(x-w)*(fx-fv); 
     oldm=newm;        q=(x-v)*(fx-fw); 
     maxmax=0.;        p=(x-v)*q-(x-w)*r; 
     for(j=1;j<=nlstate;j++){        q=2.0*(q-r); 
       min=1.;        if (q > 0.0) p = -p; 
       max=0.;        q=fabs(q); 
       for(i=1; i<=nlstate; i++) {        etemp=e; 
         sumnew=0;        e=d; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         prlim[i][j]= newm[i][j]/(1-sumnew);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         max=FMAX(max,prlim[i][j]);        else { 
         min=FMIN(min,prlim[i][j]);          d=p/q; 
       }          u=x+d; 
       maxmin=max-min;          if (u-a < tol2 || b-u < tol2) 
       maxmax=FMAX(maxmax,maxmin);            d=SIGN(tol1,xm-x); 
     }        } 
     if(maxmax < ftolpl){      } else { 
       return prlim;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
 /*************** transition probabilities ***************/        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          SHFT(fv,fw,fx,fu) 
 {          } else { 
   double s1, s2;            if (u < x) a=u; else b=u; 
   /*double t34;*/            if (fu <= fw || w == x) { 
   int i,j,j1, nc, ii, jj;              v=w; 
               w=u; 
     for(i=1; i<= nlstate; i++){              fv=fw; 
     for(j=1; j<i;j++){              fw=fu; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            } else if (fu <= fv || v == x || v == w) { 
         /*s2 += param[i][j][nc]*cov[nc];*/              v=u; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              fv=fu; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/            } 
       }          } 
       ps[i][j]=s2;    } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
     for(j=i+1; j<=nlstate+ndeath;j++){    return fx; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /****************** mnbrak ***********************/
       }  
       ps[i][j]=s2;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
   }  { 
     /*ps[3][2]=1;*/    double ulim,u,r,q, dum;
     double fu; 
   for(i=1; i<= nlstate; i++){   
      s1=0;    *fa=(*func)(*ax); 
     for(j=1; j<i; j++)    *fb=(*func)(*bx); 
       s1+=exp(ps[i][j]);    if (*fb > *fa) { 
     for(j=i+1; j<=nlstate+ndeath; j++)      SHFT(dum,*ax,*bx,dum) 
       s1+=exp(ps[i][j]);        SHFT(dum,*fb,*fa,dum) 
     ps[i][i]=1./(s1+1.);        } 
     for(j=1; j<i; j++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fc=(*func)(*cx); 
     for(j=i+1; j<=nlstate+ndeath; j++)    while (*fb > *fc) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      r=(*bx-*ax)*(*fb-*fc); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      q=(*bx-*cx)*(*fb-*fa); 
   } /* end i */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      if ((*bx-u)*(u-*cx) > 0.0) { 
       ps[ii][jj]=0;        fu=(*func)(u); 
       ps[ii][ii]=1;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     }        fu=(*func)(u); 
   }        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            } 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      printf("%lf ",ps[ii][jj]);        u=ulim; 
    }        fu=(*func)(u); 
     printf("\n ");      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
     printf("\n ");printf("%lf ",cov[2]);*/        fu=(*func)(u); 
 /*      } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      SHFT(*ax,*bx,*cx,u) 
   goto end;*/        SHFT(*fa,*fb,*fc,fu) 
     return ps;        } 
 }  } 
   
 /**************** Product of 2 matrices ******************/  /*************** linmin ************************/
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  int ncom; 
 {  double *pcom,*xicom;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  double (*nrfunc)(double []); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   
   /* in, b, out are matrice of pointers which should have been initialized  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
      before: only the contents of out is modified. The function returns  { 
      a pointer to pointers identical to out */    double brent(double ax, double bx, double cx, 
   long i, j, k;                 double (*f)(double), double tol, double *xmin); 
   for(i=nrl; i<= nrh; i++)    double f1dim(double x); 
     for(k=ncolol; k<=ncoloh; k++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)                double *fc, double (*func)(double)); 
         out[i][k] +=in[i][j]*b[j][k];    int j; 
     double xx,xmin,bx,ax; 
   return out;    double fx,fb,fa;
 }   
     ncom=n; 
     pcom=vector(1,n); 
 /************* Higher Matrix Product ***************/    xicom=vector(1,n); 
     nrfunc=func; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for (j=1;j<=n;j++) { 
 {      pcom[j]=p[j]; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      xicom[j]=xi[j]; 
      duration (i.e. until    } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    ax=0.0; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    xx=1.0; 
      (typically every 2 years instead of every month which is too big).    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      Model is determined by parameters x and covariates have to be    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
      included manually here.  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   int i, j, d, h, k;    for (j=1;j<=n;j++) { 
   double **out, cov[NCOVMAX];      xi[j] *= xmin; 
   double **newm;      p[j] += xi[j]; 
     } 
   /* Hstepm could be zero and should return the unit matrix */    free_vector(xicom,1,n); 
   for (i=1;i<=nlstate+ndeath;i++)    free_vector(pcom,1,n); 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    long sec_left, days, hours, minutes;
   for(h=1; h <=nhstepm; h++){    days = (time_sec) / (60*60*24);
     for(d=1; d <=hstepm; d++){    sec_left = (time_sec) % (60*60*24);
       newm=savm;    hours = (sec_left) / (60*60) ;
       /* Covariates have to be included here again */    sec_left = (sec_left) %(60*60);
       cov[1]=1.;    minutes = (sec_left) /60;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    sec_left = (sec_left) % (60);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       for (k=1; k<=cptcovage;k++)    return ascdiff;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    void linmin(double p[], double xi[], int n, double *fret, 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,                double (*func)(double [])); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    int i,ibig,j; 
       savm=oldm;    double del,t,*pt,*ptt,*xit;
       oldm=newm;    double fp,fptt;
     }    double *xits;
     for(i=1; i<=nlstate+ndeath; i++)    int niterf, itmp;
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];    pt=vector(1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    ptt=vector(1,n); 
          */    xit=vector(1,n); 
       }    xits=vector(1,n); 
   } /* end h */    *fret=(*func)(p); 
   return po;    for (j=1;j<=n;j++) pt[j]=p[j]; 
 }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
       ibig=0; 
 /*************** log-likelihood *************/      del=0.0; 
 double func( double *x)      last_time=curr_time;
 {      (void) gettimeofday(&curr_time,&tzp);
   int i, ii, j, k, mi, d, kk;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   double **out;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double sw; /* Sum of weights */      */
   double lli; /* Individual log likelihood */     for (i=1;i<=n;i++) {
   int s1, s2;        printf(" %d %.12f",i, p[i]);
   long ipmx;        fprintf(ficlog," %d %.12lf",i, p[i]);
   /*extern weight */        fprintf(ficrespow," %.12lf", p[i]);
   /* We are differentiating ll according to initial status */      }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      printf("\n");
   /*for(i=1;i<imx;i++)      fprintf(ficlog,"\n");
     printf(" %d\n",s[4][i]);      fprintf(ficrespow,"\n");fflush(ficrespow);
   */      if(*iter <=3){
   cov[1]=1.;        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tmf));
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*       asctime_r(&tm,strcurr); */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        forecast_time=curr_time;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        itmp = strlen(strcurr);
     for(mi=1; mi<= wav[i]-1; mi++){        if(strcurr[itmp-1]=='\n')
       for (ii=1;ii<=nlstate+ndeath;ii++)          strcurr[itmp-1]='\0';
         for (j=1;j<=nlstate+ndeath;j++){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(niterf=10;niterf<=30;niterf+=10){
         }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       for(d=0; d<dh[mi][i]; d++){          tmf = *localtime(&forecast_time.tv_sec);
         newm=savm;  /*      asctime_r(&tmf,strfor); */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          strcpy(strfor,asctime(&tmf));
         for (kk=1; kk<=cptcovage;kk++) {          itmp = strlen(strfor);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          if(strfor[itmp-1]=='\n')
         }          strfor[itmp-1]='\0';
                  printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
         savm=oldm;      }
         oldm=newm;      for (i=1;i<=n;i++) { 
                for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                fptt=(*fret); 
       } /* end mult */  #ifdef DEBUG
              printf("fret=%lf \n",*fret);
       s1=s[mw[mi][i]][i];        fprintf(ficlog,"fret=%lf \n",*fret);
       s2=s[mw[mi+1][i]][i];  #endif
       if( s2 > nlstate){        printf("%d",i);fflush(stdout);
         /* i.e. if s2 is a death state and if the date of death is known then the contribution        fprintf(ficlog,"%d",i);fflush(ficlog);
            to the likelihood is the probability to die between last step unit time and current        linmin(p,xit,n,fret,func); 
            step unit time, which is also the differences between probability to die before dh        if (fabs(fptt-(*fret)) > del) { 
            and probability to die before dh-stepm .          del=fabs(fptt-(*fret)); 
            In version up to 0.92 likelihood was computed          ibig=i; 
            as if date of death was unknown. Death was treated as any other        } 
            health state: the date of the interview describes the actual state  #ifdef DEBUG
            and not the date of a change in health state. The former idea was        printf("%d %.12e",i,(*fret));
            to consider that at each interview the state was recorded        fprintf(ficlog,"%d %.12e",i,(*fret));
            (healthy, disable or death) and IMaCh was corrected; but when we        for (j=1;j<=n;j++) {
            introduced the exact date of death then we should have modified          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
            the contribution of an exact death to the likelihood. This new          printf(" x(%d)=%.12e",j,xit[j]);
            contribution is smaller and very dependent of the step unit          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
            stepm. It is no more the probability to die between last interview        }
            and month of death but the probability to survive from last        for(j=1;j<=n;j++) {
            interview up to one month before death multiplied by the          printf(" p=%.12e",p[j]);
            probability to die within a month. Thanks to Chris          fprintf(ficlog," p=%.12e",p[j]);
            Jackson for correcting this bug.  Former versions increased        }
            mortality artificially. The bad side is that we add another loop        printf("\n");
            which slows down the processing. The difference can be up to 10%        fprintf(ficlog,"\n");
            lower mortality.  #endif
         */      } 
         lli=log(out[s1][s2] - savm[s1][s2]);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       }else{  #ifdef DEBUG
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */        int k[2],l;
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        k[0]=1;
       }        k[1]=-1;
       ipmx +=1;        printf("Max: %.12e",(*func)(p));
       sw += weight[i];        fprintf(ficlog,"Max: %.12e",(*func)(p));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for (j=1;j<=n;j++) {
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/          printf(" %.12e",p[j]);
     } /* end of wave */          fprintf(ficlog," %.12e",p[j]);
   } /* end of individual */        }
         printf("\n");
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fprintf(ficlog,"\n");
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for(l=0;l<=1;l++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          for (j=1;j<=n;j++) {
   /*exit(0);*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   return -l;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /*********** Maximum Likelihood Estimation ***************/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  #endif
 {  
   int i,j, iter;  
   double **xi,*delti;        free_vector(xit,1,n); 
   double fret;        free_vector(xits,1,n); 
   xi=matrix(1,npar,1,npar);        free_vector(ptt,1,n); 
   for (i=1;i<=npar;i++)        free_vector(pt,1,n); 
     for (j=1;j<=npar;j++)        return; 
       xi[i][j]=(i==j ? 1.0 : 0.0);      } 
   printf("Powell\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        xit[j]=p[j]-pt[j]; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        pt[j]=p[j]; 
       } 
 }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 /**** Computes Hessian and covariance matrix ***/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        if (t < 0.0) { 
 {          linmin(p,xit,n,fret,func); 
   double  **a,**y,*x,pd;          for (j=1;j<=n;j++) { 
   double **hess;            xi[j][ibig]=xi[j][n]; 
   int i, j,jk;            xi[j][n]=xit[j]; 
   int *indx;          }
   #ifdef DEBUG
   double hessii(double p[], double delta, int theta, double delti[]);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double hessij(double p[], double delti[], int i, int j);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          for(j=1;j<=n;j++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   hess=matrix(1,npar,1,npar);          }
           printf("\n");
   printf("\nCalculation of the hessian matrix. Wait...\n");          fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++){  #endif
     printf("%d",i);fflush(stdout);        }
     hess[i][i]=hessii(p,ftolhess,i,delti);      } 
     /*printf(" %f ",p[i]);*/    } 
     /*printf(" %lf ",hess[i][i]);*/  } 
   }  
    /**** Prevalence limit (stable prevalence)  ****************/
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       if (j>i) {  {
         printf(".%d%d",i,j);fflush(stdout);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         hess[i][j]=hessij(p,delti,i,j);       matrix by transitions matrix until convergence is reached */
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/    int i, ii,j,k;
       }    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
   printf("\n");    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
      for (ii=1;ii<=nlstate+ndeath;ii++)
   a=matrix(1,npar,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   y=matrix(1,npar,1,npar);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   x=vector(1,npar);      }
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)     cov[1]=1.;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];   
   ludcmp(a,npar,indx,&pd);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for (j=1;j<=npar;j++) {      newm=savm;
     for (i=1;i<=npar;i++) x[i]=0;      /* Covariates have to be included here again */
     x[j]=1;       cov[2]=agefin;
     lubksb(a,npar,indx,x);    
     for (i=1;i<=npar;i++){        for (k=1; k<=cptcovn;k++) {
       matcov[i][j]=x[i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("\n#Hessian matrix#\n");        for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=npar;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     printf("\n");        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   /* Recompute Inverse */      savm=oldm;
   for (i=1;i<=npar;i++)      oldm=newm;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      maxmax=0.;
   ludcmp(a,npar,indx,&pd);      for(j=1;j<=nlstate;j++){
         min=1.;
   /*  printf("\n#Hessian matrix recomputed#\n");        max=0.;
         for(i=1; i<=nlstate; i++) {
   for (j=1;j<=npar;j++) {          sumnew=0;
     for (i=1;i<=npar;i++) x[i]=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     x[j]=1;          prlim[i][j]= newm[i][j]/(1-sumnew);
     lubksb(a,npar,indx,x);          max=FMAX(max,prlim[i][j]);
     for (i=1;i<=npar;i++){          min=FMIN(min,prlim[i][j]);
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
     printf("\n");      }
   }      if(maxmax < ftolpl){
   */        return prlim;
       }
   free_matrix(a,1,npar,1,npar);    }
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /*************** transition probabilities ***************/ 
   free_matrix(hess,1,npar,1,npar);  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 }    double s1, s2;
     /*double t34;*/
 /*************** hessian matrix ****************/    int i,j,j1, nc, ii, jj;
 double hessii( double x[], double delta, int theta, double delti[])  
 {      for(i=1; i<= nlstate; i++){
   int i;        for(j=1; j<i;j++){
   int l=1, lmax=20;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double k1,k2;            /*s2 += param[i][j][nc]*cov[nc];*/
   double p2[NPARMAX+1];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double res;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          }
   double fx;          ps[i][j]=s2;
   int k=0,kmax=10;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double l1;        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   fx=func(x);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=npar;i++) p2[i]=x[i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for(l=0 ; l <=lmax; l++){  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     l1=pow(10,l);          }
     delts=delt;          ps[i][j]=s2;
     for(k=1 ; k <kmax; k=k+1){        }
       delt = delta*(l1*k);      }
       p2[theta]=x[theta] +delt;      /*ps[3][2]=1;*/
       k1=func(p2)-fx;      
       p2[theta]=x[theta]-delt;      for(i=1; i<= nlstate; i++){
       k2=func(p2)-fx;        s1=0;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for(j=1; j<i; j++)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          s1+=exp(ps[i][j]);
              for(j=i+1; j<=nlstate+ndeath; j++)
 #ifdef DEBUG          s1+=exp(ps[i][j]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        ps[i][i]=1./(s1+1.);
 #endif        for(j=1; j<i; j++)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for(j=i+1; j<=nlstate+ndeath; j++)
         k=kmax;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      } /* end i */
         k=kmax; l=lmax*10.;      
       }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for(jj=1; jj<= nlstate+ndeath; jj++){
         delts=delt;          ps[ii][jj]=0;
       }          ps[ii][ii]=1;
     }        }
   }      }
   delti[theta]=delts;      
   return res;  
    /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
 double hessij( double x[], double delti[], int thetai,int thetaj)  /*       } */
 {  /*       printf("\n "); */
   int i;  /*        } */
   int l=1, l1, lmax=20;  /*        printf("\n ");printf("%lf ",cov[2]); */
   double k1,k2,k3,k4,res,fx;         /*
   double p2[NPARMAX+1];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int k;        goto end;*/
       return ps;
   fx=func(x);  }
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /**************** Product of 2 matrices ******************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     k1=func(p2)-fx;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     p2[thetai]=x[thetai]+delti[thetai]/k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* in, b, out are matrice of pointers which should have been initialized 
     k2=func(p2)-fx;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
     p2[thetai]=x[thetai]-delti[thetai]/k;    long i, j, k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for(i=nrl; i<= nrh; i++)
     k3=func(p2)-fx;      for(k=ncolol; k<=ncoloh; k++)
          for(j=ncl,out[i][k]=0.; j<=nch; j++)
     p2[thetai]=x[thetai]-delti[thetai]/k;          out[i][k] +=in[i][j]*b[j][k];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;    return out;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  }
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /************* Higher Matrix Product ***************/
   }  
   return res;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 }  {
     /* Computes the transition matrix starting at age 'age' over 
 /************** Inverse of matrix **************/       'nhstepm*hstepm*stepm' months (i.e. until
 void ludcmp(double **a, int n, int *indx, double *d)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 {       nhstepm*hstepm matrices. 
   int i,imax,j,k;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double big,dum,sum,temp;       (typically every 2 years instead of every month which is too big 
   double *vv;       for the memory).
         Model is determined by parameters x and covariates have to be 
   vv=vector(1,n);       included manually here. 
   *d=1.0;  
   for (i=1;i<=n;i++) {       */
     big=0.0;  
     for (j=1;j<=n;j++)    int i, j, d, h, k;
       if ((temp=fabs(a[i][j])) > big) big=temp;    double **out, cov[NCOVMAX];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double **newm;
     vv[i]=1.0/big;  
   }    /* Hstepm could be zero and should return the unit matrix */
   for (j=1;j<=n;j++) {    for (i=1;i<=nlstate+ndeath;i++)
     for (i=1;i<j;i++) {      for (j=1;j<=nlstate+ndeath;j++){
       sum=a[i][j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        po[i][j][0]=(i==j ? 1.0 : 0.0);
       a[i][j]=sum;      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     big=0.0;    for(h=1; h <=nhstepm; h++){
     for (i=j;i<=n;i++) {      for(d=1; d <=hstepm; d++){
       sum=a[i][j];        newm=savm;
       for (k=1;k<j;k++)        /* Covariates have to be included here again */
         sum -= a[i][k]*a[k][j];        cov[1]=1.;
       a[i][j]=sum;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         big=dum;        for (k=1; k<=cptcovage;k++)
         imax=i;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     if (j != imax) {  
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         a[imax][k]=a[j][k];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         a[j][k]=dum;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       *d = -(*d);        savm=oldm;
       vv[imax]=vv[j];        oldm=newm;
     }      }
     indx[j]=imax;      for(i=1; i<=nlstate+ndeath; i++)
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(j=1;j<=nlstate+ndeath;j++) {
     if (j != n) {          po[i][j][h]=newm[i][j];
       dum=1.0/(a[j][j]);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           */
     }        }
   }    } /* end h */
   free_vector(vv,1,n);  /* Doesn't work */    return po;
 ;  }
 }  
   
 void lubksb(double **a, int n, int *indx, double b[])  /*************** log-likelihood *************/
 {  double func( double *x)
   int i,ii=0,ip,j;  {
   double sum;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=1;i<=n;i++) {    double **out;
     ip=indx[i];    double sw; /* Sum of weights */
     sum=b[ip];    double lli; /* Individual log likelihood */
     b[ip]=b[i];    int s1, s2;
     if (ii)    double bbh, survp;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    long ipmx;
     else if (sum) ii=i;    /*extern weight */
     b[i]=sum;    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (i=n;i>=1;i--) {    /*for(i=1;i<imx;i++) 
     sum=b[i];      printf(" %d\n",s[4][i]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    */
     b[i]=sum/a[i][i];    cov[1]=1.;
   }  
 }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /************ Frequencies ********************/    if(mle==1){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {  /* Some frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***freq; /* Frequencies */            for (j=1;j<=nlstate+ndeath;j++){
   double *pp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2, dateintsum=0,k2cpt=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   FILE *ficresp;            }
   char fileresp[FILENAMELENGTH];          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   pp=vector(1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (kk=1; kk<=cptcovage;kk++) {
   strcpy(fileresp,"p");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcat(fileresp,fileres);            }
   if((ficresp=fopen(fileresp,"w"))==NULL) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("Problem with prevalence resultfile: %s\n", fileresp);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     exit(0);            savm=oldm;
   }            oldm=newm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          } /* end mult */
   j1=0;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   j=cptcoveff;          /* But now since version 0.9 we anticipate for bias and large stepm.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   for(k1=1; k1<=j;k1++){           * the nearest (and in case of equal distance, to the lowest) interval but now
     for(i1=1; i1<=ncodemax[k1];i1++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       j1++;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * probability in order to take into account the bias as a fraction of the way
         scanf("%d", i);*/           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       for (i=-1; i<=nlstate+ndeath; i++)             * -stepm/2 to stepm/2 .
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * For stepm=1 the results are the same as for previous versions of Imach.
           for(m=agemin; m <= agemax+3; m++)           * For stepm > 1 the results are less biased than in previous versions. 
             freq[i][jk][m]=0;           */
                s1=s[mw[mi][i]][i];
       dateintsum=0;          s2=s[mw[mi+1][i]][i];
       k2cpt=0;          bbh=(double)bh[mi][i]/(double)stepm; 
       for (i=1; i<=imx; i++) {          /* bias is positive if real duration
         bool=1;           * is higher than the multiple of stepm and negative otherwise.
         if  (cptcovn>0) {           */
           for (z1=1; z1<=cptcoveff; z1++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          if( s2 > nlstate){ 
               bool=0;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         }               to the likelihood is the probability to die between last step unit time and current 
         if (bool==1) {               step unit time, which is also the differences between probability to die before dh 
           for(m=firstpass; m<=lastpass; m++){               and probability to die before dh-stepm . 
             k2=anint[m][i]+(mint[m][i]/12.);               In version up to 0.92 likelihood was computed
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          as if date of death was unknown. Death was treated as any other
               if(agev[m][i]==0) agev[m][i]=agemax+1;          health state: the date of the interview describes the actual state
               if(agev[m][i]==1) agev[m][i]=agemax+2;          and not the date of a change in health state. The former idea was
               if (m<lastpass) {          to consider that at each interview the state was recorded
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          (healthy, disable or death) and IMaCh was corrected; but when we
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          introduced the exact date of death then we should have modified
               }          the contribution of an exact death to the likelihood. This new
                        contribution is smaller and very dependent of the step unit
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          stepm. It is no more the probability to die between last interview
                 dateintsum=dateintsum+k2;          and month of death but the probability to survive from last
                 k2cpt++;          interview up to one month before death multiplied by the
               }          probability to die within a month. Thanks to Chris
             }          Jackson for correcting this bug.  Former versions increased
           }          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
                    */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
       if  (cptcovn>0) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         fprintf(ficresp, "\n#********** Variable ");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } 
         fprintf(ficresp, "**********\n#");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       }          /*if(lli ==000.0)*/
       for(i=1; i<=nlstate;i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ipmx +=1;
       fprintf(ficresp, "\n");          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=(int)agemin; i <= (int)agemax+3; i++){        } /* end of wave */
         if(i==(int)agemax+3)      } /* end of individual */
           printf("Total");    }  else if(mle==2){
         else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           printf("Age %d", i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          for(d=0; d<=dh[mi][i]; d++){
           if(pp[jk]>=1.e-10)            newm=savm;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else            for (kk=1; kk<=cptcovage;kk++) {
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
         
         for(jk=1,pos=0; jk <=nlstate ; jk++)          s1=s[mw[mi][i]][i];
           pos += pp[jk];          s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
           if(pos>=1.e-5)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          ipmx +=1;
           else          sw += weight[i];
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if( i <= (int) agemax){        } /* end of wave */
             if(pos>=1.e-5){      } /* end of individual */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    }  else if(mle==3){  /* exponential inter-extrapolation */
               probs[i][jk][j1]= pp[jk]/pos;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
             else          for (ii=1;ii<=nlstate+ndeath;ii++)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
         for(jk=-1; jk <=nlstate+ndeath; jk++)          for(d=0; d<dh[mi][i]; d++){
           for(m=-1; m <=nlstate+ndeath; m++)            newm=savm;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(i <= (int) agemax)            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficresp,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         printf("\n");            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   dateintmean=dateintsum/k2cpt;            oldm=newm;
            } /* end mult */
   fclose(ficresp);        
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s1=s[mw[mi][i]][i];
   free_vector(pp,1,nlstate);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   /* End of Freq */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 }          ipmx +=1;
           sw += weight[i];
 /************ Prevalence ********************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        } /* end of wave */
 {  /* Some frequencies */      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *pp;        for(mi=1; mi<= wav[i]-1; mi++){
   double pos, k2;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   pp=vector(1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for(d=0; d<dh[mi][i]; d++){
   j1=0;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j=cptcoveff;            for (kk=1; kk<=cptcovage;kk++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
  for(k1=1; k1<=j;k1++){          
     for(i1=1; i1<=ncodemax[k1];i1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       j1++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
       for (i=-1; i<=nlstate+ndeath; i++)              oldm=newm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            } /* end mult */
           for(m=agemin; m <= agemax+3; m++)        
             freq[i][jk][m]=0;          s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       for (i=1; i<=imx; i++) {          if( s2 > nlstate){ 
         bool=1;            lli=log(out[s1][s2] - savm[s1][s2]);
         if  (cptcovn>0) {          }else{
           for (z1=1; z1<=cptcoveff; z1++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          }
               bool=0;          ipmx +=1;
         }          sw += weight[i];
         if (bool==1) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=firstpass; m<=lastpass; m++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             k2=anint[m][i]+(mint[m][i]/12.);        } /* end of wave */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } /* end of individual */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if (m<lastpass)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
               else          for (ii=1;ii<=nlstate+ndeath;ii++)
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
         for(i=(int)agemin; i <= (int)agemax+3; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               pp[jk] += freq[jk][m][i];            }
           }          
           for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for(m=-1, pos=0; m <=0 ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             pos += freq[jk][m][i];            savm=oldm;
         }            oldm=newm;
                  } /* end mult */
          for(jk=1; jk <=nlstate ; jk++){        
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
              pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
          }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                    ipmx +=1;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          for(jk=1; jk <=nlstate ; jk++){                    /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
            if( i <= (int) agemax){        } /* end of wave */
              if(pos>=1.e-5){      } /* end of individual */
                probs[i][jk][j1]= pp[jk]/pos;    } /* End of if */
              }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
            }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
          }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
              return -l;
         }  }
     }  
   }  /*************** log-likelihood *************/
   double funcone( double *x)
    {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* Same as likeli but slower because of a lot of printf and if */
   free_vector(pp,1,nlstate);    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
 }  /* End of Freq */    double **out;
     double lli; /* Individual log likelihood */
 /************* Waves Concatenation ***************/    double llt;
     int s1, s2;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double bbh, survp;
 {    /*extern weight */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* We are differentiating ll according to initial status */
      Death is a valid wave (if date is known).    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    /*for(i=1;i<imx;i++) 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      printf(" %d\n",s[4][i]);
      and mw[mi+1][i]. dh depends on stepm.    */
      */    cov[1]=1.;
   
   int i, mi, m;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int j, k=0,jk, ju, jl;      for(mi=1; mi<= wav[i]-1; mi++){
   double sum=0.;        for (ii=1;ii<=nlstate+ndeath;ii++)
   jmin=1e+5;          for (j=1;j<=nlstate+ndeath;j++){
   jmax=-1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmean=0.;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){          }
     mi=0;        for(d=0; d<dh[mi][i]; d++){
     m=firstpass;          newm=savm;
     while(s[m][i] <= nlstate){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(s[m][i]>=1)          for (kk=1; kk<=cptcovage;kk++) {
         mw[++mi][i]=m;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(m >=lastpass)          }
         break;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       else                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         m++;          savm=oldm;
     }/* end while */          oldm=newm;
     if (s[m][i] > nlstate){        } /* end mult */
       mi++;     /* Death is another wave */        
       /* if(mi==0)  never been interviewed correctly before death */        s1=s[mw[mi][i]][i];
          /* Only death is a correct wave */        s2=s[mw[mi+1][i]][i];
       mw[mi][i]=m;        bbh=(double)bh[mi][i]/(double)stepm; 
     }        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
     wav[i]=mi;         */
     if(mi==0)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          lli=log(out[s1][s2] - savm[s1][s2]);
   }        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for(i=1; i<=imx; i++){        } else if(mle==2){
     for(mi=1; mi<wav[i];mi++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       if (stepm <=0)        } else if(mle==3){  /* exponential inter-extrapolation */
         dh[mi][i]=1;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       else{        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         if (s[mw[mi+1][i]][i] > nlstate) {          lli=log(out[s1][s2]); /* Original formula */
           if (agedc[i] < 2*AGESUP) {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          lli=log(out[s1][s2]); /* Original formula */
           if(j==0) j=1;  /* Survives at least one month after exam */        } /* End of if */
           k=k+1;        ipmx +=1;
           if (j >= jmax) jmax=j;        sw += weight[i];
           if (j <= jmin) jmin=j;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           sum=sum+j;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        if(globpr){
           }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         }   %10.6f %10.6f %10.6f ", \
         else{                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           k=k+1;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           if (j >= jmax) jmax=j;            llt +=ll[k]*gipmx/gsw;
           else if (j <= jmin)jmin=j;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          }
           sum=sum+j;          fprintf(ficresilk," %10.6f\n", -llt);
         }        }
         jk= j/stepm;      } /* end of wave */
         jl= j -jk*stepm;    } /* end of individual */
         ju= j -(jk+1)*stepm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         if(jl <= -ju)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           dh[mi][i]=jk;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         else    if(globpr==0){ /* First time we count the contributions and weights */
           dh[mi][i]=jk+1;      gipmx=ipmx;
         if(dh[mi][i]==0)      gsw=sw;
           dh[mi][i]=1; /* At least one step */    }
       }    return -l;
     }  }
   }  
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /*************** function likelione ***********/
  }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 /*********** Tricode ****************************/  {
 void tricode(int *Tvar, int **nbcode, int imx)    /* This routine should help understanding what is done with 
 {       the selection of individuals/waves and
   int Ndum[20],ij=1, k, j, i;       to check the exact contribution to the likelihood.
   int cptcode=0;       Plotting could be done.
   cptcoveff=0;     */
      int k;
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      strcat(fileresilk,fileres);
     for (i=1; i<=imx; i++) {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       ij=(int)(covar[Tvar[j]][i]);        printf("Problem with resultfile: %s\n", fileresilk);
       Ndum[ij]++;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      }
       if (ij > cptcode) cptcode=ij;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for (i=0; i<=cptcode; i++) {      for(k=1; k<=nlstate; k++) 
       if(Ndum[i]!=0) ncodemax[j]++;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     ij=1;    }
   
     *fretone=(*funcone)(p);
     for (i=1; i<=ncodemax[j]; i++) {    if(*globpri !=0){
       for (k=0; k<=19; k++) {      fclose(ficresilk);
         if (Ndum[k] != 0) {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           nbcode[Tvar[j]][ij]=k;      fflush(fichtm); 
              } 
           ij++;    return;
         }  }
         if (ij > ncodemax[j]) break;  
       }    
     }  /*********** Maximum Likelihood Estimation ***************/
   }    
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
  for (k=0; k<19; k++) Ndum[k]=0;  {
     int i,j, iter;
  for (i=1; i<=ncovmodel-2; i++) {    double **xi;
       ij=Tvar[i];    double fret;
       Ndum[ij]++;    double fretone; /* Only one call to likelihood */
     }    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
  ij=1;    for (i=1;i<=npar;i++)
  for (i=1; i<=10; i++) {      for (j=1;j<=npar;j++)
    if((Ndum[i]!=0) && (i<=ncovcol)){        xi[i][j]=(i==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      ij++;    strcpy(filerespow,"pow"); 
    }    strcat(filerespow,fileres);
  }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", filerespow);
     cptcoveff=ij-1;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 /*********** Health Expectancies ****************/    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
 {  
   /* Health expectancies */    powell(p,xi,npar,ftol,&iter,&fret,func);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;    fclose(ficrespow);
   double ***p3mat,***varhe;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double **dnewm,**doldm;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double *xp;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double **gp, **gm;  
   double ***gradg, ***trgradg;  }
   int theta;  
   /**** Computes Hessian and covariance matrix ***/
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate*2,1,npar);    double  **a,**y,*x,pd;
   doldm=matrix(1,nlstate*2,1,nlstate*2);    double **hess;
      int i, j,jk;
   fprintf(ficreseij,"# Health expectancies\n");    int *indx;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     for(j=1; j<=nlstate;j++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   fprintf(ficreseij,"\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
   if(estepm < stepm){    hess=matrix(1,npar,1,npar);
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    printf("\nCalculation of the hessian matrix. Wait...\n");
   else  hstepm=estepm;      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months    for (i=1;i<=npar;i++){
    * This is mainly to measure the difference between two models: for example      printf("%d",i);fflush(stdout);
    * if stepm=24 months pijx are given only every 2 years and by summing them      fprintf(ficlog,"%d",i);fflush(ficlog);
    * we are calculating an estimate of the Life Expectancy assuming a linear     
    * progression inbetween and thus overestimating or underestimating according       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
    * to the curvature of the survival function. If, for the same date, we      
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      /*  printf(" %f ",p[i]);
    * to compare the new estimate of Life expectancy with the same linear          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
    * hypothesis. A more precise result, taking into account a more precise    }
    * curvature will be obtained if estepm is as small as stepm. */    
     for (i=1;i<=npar;i++) {
   /* For example we decided to compute the life expectancy with the smallest unit */      for (j=1;j<=npar;j++)  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        if (j>i) { 
      nhstepm is the number of hstepm from age to agelim          printf(".%d%d",i,j);fflush(stdout);
      nstepm is the number of stepm from age to agelin.          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      Look at hpijx to understand the reason of that which relies in memory size          hess[i][j]=hessij(p,delti,i,j,func,npar);
      and note for a fixed period like estepm months */          
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          hess[j][i]=hess[i][j];    
      survival function given by stepm (the optimization length). Unfortunately it          /*printf(" %lf ",hess[i][j]);*/
      means that if the survival funtion is printed only each two years of age and if        }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      }
      results. So we changed our mind and took the option of the best precision.    }
   */    printf("\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    fprintf(ficlog,"\n");
   
   agelim=AGESUP;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     /* nhstepm age range expressed in number of stepm */    
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    a=matrix(1,npar,1,npar);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    y=matrix(1,npar,1,npar);
     /* if (stepm >= YEARM) hstepm=1;*/    x=vector(1,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    indx=ivector(1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     gp=matrix(0,nhstepm,1,nlstate*2);    ludcmp(a,npar,indx,&pd);
     gm=matrix(0,nhstepm,1,nlstate*2);  
     for (j=1;j<=npar;j++) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (i=1;i<=npar;i++) x[i]=0;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      x[j]=1;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     }
     /* Computing Variances of health expectancies */  
     printf("\n#Hessian matrix#\n");
      for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"\n#Hessian matrix#\n");
       for(i=1; i<=npar; i++){    for (i=1;i<=npar;i++) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++) { 
       }        printf("%.3e ",hess[i][j]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          fprintf(ficlog,"%.3e ",hess[i][j]);
        }
       cptj=0;      printf("\n");
       for(j=1; j<= nlstate; j++){      fprintf(ficlog,"\n");
         for(i=1; i<=nlstate; i++){    }
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    /* Recompute Inverse */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         }    ludcmp(a,npar,indx,&pd);
       }  
          /*  printf("\n#Hessian matrix recomputed#\n");
        
       for(i=1; i<=npar; i++)    for (j=1;j<=npar;j++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++) x[i]=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        x[j]=1;
            lubksb(a,npar,indx,x);
       cptj=0;      for (i=1;i<=npar;i++){ 
       for(j=1; j<= nlstate; j++){        y[i][j]=x[i];
         for(i=1;i<=nlstate;i++){        printf("%.3e ",y[i][j]);
           cptj=cptj+1;        fprintf(ficlog,"%.3e ",y[i][j]);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      printf("\n");
           }      fprintf(ficlog,"\n");
         }    }
       }    */
        
        free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
       for(j=1; j<= nlstate*2; j++)    free_vector(x,1,npar);
         for(h=0; h<=nhstepm-1; h++){    free_ivector(indx,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    free_matrix(hess,1,npar,1,npar);
         }  
   
      }  }
      
 /* End theta */  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  {
     int i;
      for(h=0; h<=nhstepm-1; h++)    int l=1, lmax=20;
       for(j=1; j<=nlstate*2;j++)    double k1,k2;
         for(theta=1; theta <=npar; theta++)    double p2[NPARMAX+1];
         trgradg[h][j][theta]=gradg[h][theta][j];    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
      for(i=1;i<=nlstate*2;i++)    int k=0,kmax=10;
       for(j=1;j<=nlstate*2;j++)    double l1;
         varhe[i][j][(int)age] =0.;  
     fx=func(x);
     for(h=0;h<=nhstepm-1;h++){    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(k=0;k<=nhstepm-1;k++){    for(l=0 ; l <=lmax; l++){
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      l1=pow(10,l);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      delts=delt;
         for(i=1;i<=nlstate*2;i++)      for(k=1 ; k <kmax; k=k+1){
           for(j=1;j<=nlstate*2;j++)        delt = delta*(l1*k);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;
     }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
              /*res= (k1-2.0*fx+k2)/delt/delt; */
     /* Computing expectancies */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     for(i=1; i<=nlstate;i++)        
       for(j=1; j<=nlstate;j++)  #ifdef DEBUG
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            #endif
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }          k=kmax;
         }
     fprintf(ficreseij,"%3.0f",age );        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     cptj=0;          k=kmax; l=lmax*10.;
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         cptj++;          delts=delt;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        }
       }      }
     fprintf(ficreseij,"\n");    }
        delti[theta]=delts;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    return res; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   }  {
   free_vector(xp,1,npar);    int i;
   free_matrix(dnewm,1,nlstate*2,1,npar);    int l=1, l1, lmax=20;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    double k1,k2,k3,k4,res,fx;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    double p2[NPARMAX+1];
 }    int k;
   
 /************ Variance ******************/    fx=func(x);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    for (k=1; k<=2; k++) {
 {      for (i=1;i<=npar;i++) p2[i]=x[i];
   /* Variance of health expectancies */      p2[thetai]=x[thetai]+delti[thetai]/k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double **newm;      k1=func(p2)-fx;
   double **dnewm,**doldm;    
   int i, j, nhstepm, hstepm, h, nstepm ;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int k, cptcode;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double *xp;      k2=func(p2)-fx;
   double **gp, **gm;    
   double ***gradg, ***trgradg;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double ***p3mat;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double age,agelim, hf;      k3=func(p2)-fx;
   int theta;    
       p2[thetai]=x[thetai]-delti[thetai]/k;
    fprintf(ficresvij,"# Covariances of life expectancies\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresvij,"# Age");      k4=func(p2)-fx;
   for(i=1; i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(j=1; j<=nlstate;j++)  #ifdef DEBUG
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresvij,"\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);    return res;
   doldm=matrix(1,nlstate,1,nlstate);  }
    
   if(estepm < stepm){  /************** Inverse of matrix **************/
     printf ("Problem %d lower than %d\n",estepm, stepm);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
   else  hstepm=estepm;      int i,imax,j,k; 
   /* For example we decided to compute the life expectancy with the smallest unit */    double big,dum,sum,temp; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double *vv; 
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.    vv=vector(1,n); 
      Look at hpijx to understand the reason of that which relies in memory size    *d=1.0; 
      and note for a fixed period like k years */    for (i=1;i<=n;i++) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      big=0.0; 
      survival function given by stepm (the optimization length). Unfortunately it      for (j=1;j<=n;j++) 
      means that if the survival funtion is printed only each two years of age and if        if ((temp=fabs(a[i][j])) > big) big=temp; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
      results. So we changed our mind and took the option of the best precision.      vv[i]=1.0/big; 
   */    } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (j=1;j<=n;j++) { 
   agelim = AGESUP;      for (i=1;i<j;i++) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        sum=a[i][j]; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        a[i][j]=sum; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      big=0.0; 
     gp=matrix(0,nhstepm,1,nlstate);      for (i=j;i<=n;i++) { 
     gm=matrix(0,nhstepm,1,nlstate);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
     for(theta=1; theta <=npar; theta++){          sum -= a[i][k]*a[k][j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        a[i][j]=sum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            imax=i; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } 
       } 
       if (popbased==1) {      if (j != imax) { 
         for(i=1; i<=nlstate;i++)        for (k=1;k<=n;k++) { 
           prlim[i][i]=probs[(int)age][i][ij];          dum=a[imax][k]; 
       }          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
       for(j=1; j<= nlstate; j++){        } 
         for(h=0; h<=nhstepm; h++){        *d = -(*d); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        vv[imax]=vv[j]; 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      } 
         }      indx[j]=imax; 
       }      if (a[j][j] == 0.0) a[j][j]=TINY; 
          if (j != n) { 
       for(i=1; i<=npar; i++) /* Computes gradient */        dum=1.0/(a[j][j]); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    } 
      free_vector(vv,1,n);  /* Doesn't work */
       if (popbased==1) {  ;
         for(i=1; i<=nlstate;i++)  } 
           prlim[i][i]=probs[(int)age][i][ij];  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
       for(j=1; j<= nlstate; j++){    int i,ii=0,ip,j; 
         for(h=0; h<=nhstepm; h++){    double sum; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)   
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=n;i++) { 
         }      ip=indx[i]; 
       }      sum=b[ip]; 
       b[ip]=b[i]; 
       for(j=1; j<= nlstate; j++)      if (ii) 
         for(h=0; h<=nhstepm; h++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      else if (sum) ii=i; 
         }      b[i]=sum; 
     } /* End theta */    } 
     for (i=n;i>=1;i--) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for(h=0; h<=nhstepm; h++)      b[i]=sum/a[i][i]; 
       for(j=1; j<=nlstate;j++)    } 
         for(theta=1; theta <=npar; theta++)  } 
           trgradg[h][j][theta]=gradg[h][theta][j];  
   /************ Frequencies ********************/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     for(i=1;i<=nlstate;i++)  {  /* Some frequencies */
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
     for(h=0;h<=nhstepm;h++){    double ***freq; /* Frequencies */
       for(k=0;k<=nhstepm;k++){    double *pp, **prop;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    FILE *ficresp;
         for(i=1;i<=nlstate;i++)    char fileresp[FILENAMELENGTH];
           for(j=1;j<=nlstate;j++)    
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    pp=vector(1,nlstate);
       }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
     fprintf(ficresvij,"%.0f ",age );    if((ficresp=fopen(fileresp,"w"))==NULL) {
     for(i=1; i<=nlstate;i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(j=1; j<=nlstate;j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      exit(0);
       }    }
     fprintf(ficresvij,"\n");    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     free_matrix(gp,0,nhstepm,1,nlstate);    j1=0;
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    j=cptcoveff;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    first=1;
    
   free_vector(xp,1,npar);    for(k1=1; k1<=j;k1++){
   free_matrix(doldm,1,nlstate,1,npar);      for(i1=1; i1<=ncodemax[k1];i1++){
   free_matrix(dnewm,1,nlstate,1,nlstate);        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 }          scanf("%d", i);*/
         for (i=-1; i<=nlstate+ndeath; i++)  
 /************ Variance of prevlim ******************/          for (jk=-1; jk<=nlstate+ndeath; jk++)  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            for(m=iagemin; m <= iagemax+3; m++)
 {              freq[i][jk][m]=0;
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=1; i<=nlstate; i++)  
   double **newm;        for(m=iagemin; m <= iagemax+3; m++)
   double **dnewm,**doldm;          prop[i][m]=0;
   int i, j, nhstepm, hstepm;        
   int k, cptcode;        dateintsum=0;
   double *xp;        k2cpt=0;
   double *gp, *gm;        for (i=1; i<=imx; i++) {
   double **gradg, **trgradg;          bool=1;
   double age,agelim;          if  (cptcovn>0) {
   int theta;            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");                bool=0;
   fprintf(ficresvpl,"# Age");          }
   for(i=1; i<=nlstate;i++)          if (bool==1){
       fprintf(ficresvpl," %1d-%1d",i,i);            for(m=firstpass; m<=lastpass; m++){
   fprintf(ficresvpl,"\n");              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   xp=vector(1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   dnewm=matrix(1,nlstate,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   doldm=matrix(1,nlstate,1,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                  if (m<lastpass) {
   hstepm=1*YEARM; /* Every year of age */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   agelim = AGESUP;                }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     if (stepm >= YEARM) hstepm=1;                  dateintsum=dateintsum+k2;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                  k2cpt++;
     gradg=matrix(1,npar,1,nlstate);                }
     gp=vector(1,nlstate);                /*}*/
     gm=vector(1,nlstate);            }
           }
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */         
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if  (cptcovn>0) {
       for(i=1;i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
         gp[i] = prlim[i][i];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresp, "**********\n#");
       for(i=1; i<=npar; i++) /* Computes gradient */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(i=1; i<=nlstate;i++) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for(i=1;i<=nlstate;i++)        fprintf(ficresp, "\n");
         gm[i] = prlim[i][i];        
         for(i=iagemin; i <= iagemax+3; i++){
       for(i=1;i<=nlstate;i++)          if(i==iagemax+3){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            fprintf(ficlog,"Total");
     } /* End theta */          }else{
             if(first==1){
     trgradg =matrix(1,nlstate,1,npar);              first=0;
               printf("See log file for details...\n");
     for(j=1; j<=nlstate;j++)            }
       for(theta=1; theta <=npar; theta++)            fprintf(ficlog,"Age %d", i);
         trgradg[j][theta]=gradg[theta][j];          }
           for(jk=1; jk <=nlstate ; jk++){
     for(i=1;i<=nlstate;i++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       varpl[i][(int)age] =0.;              pp[jk] += freq[jk][m][i]; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          for(jk=1; jk <=nlstate ; jk++){
     for(i=1;i<=nlstate;i++)            for(m=-1, pos=0; m <=0 ; m++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
     fprintf(ficresvpl,"%.0f ",age );              if(first==1){
     for(i=1; i<=nlstate;i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              }
     fprintf(ficresvpl,"\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     free_vector(gp,1,nlstate);            }else{
     free_vector(gm,1,nlstate);              if(first==1)
     free_matrix(gradg,1,npar,1,nlstate);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(trgradg,1,nlstate,1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   } /* End age */            }
           }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
 }          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 /************ Variance of one-step probabilities  ******************/            pos += pp[jk];
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            posprop += prop[jk][i];
 {          }
   int i, j, i1, k1, j1, z1;          for(jk=1; jk <=nlstate ; jk++){
   int k=0, cptcode;            if(pos>=1.e-5){
   double **dnewm,**doldm;              if(first==1)
   double *xp;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double *gp, *gm;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double **gradg, **trgradg;            }else{
   double age,agelim, cov[NCOVMAX];              if(first==1)
   int theta;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   char fileresprob[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   strcpy(fileresprob,"prob");            if( i <= iagemax){
   strcat(fileresprob,fileres);              if(pos>=1.e-5){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     printf("Problem with resultfile: %s\n", fileresprob);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              }
                else
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficresprob,"# Age");            }
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=(nlstate+ndeath);j++)          
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
   fprintf(ficresprob,"\n");              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   xp=vector(1,npar);              }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          if(i <= iagemax)
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            fprintf(ficresp,"\n");
            if(first==1)
   cov[1]=1;            printf("Others in log...\n");
   j=cptcoveff;          fprintf(ficlog,"\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
   j1=0;      }
   for(k1=1; k1<=1;k1++){    }
     for(i1=1; i1<=ncodemax[k1];i1++){    dateintmean=dateintsum/k2cpt; 
     j1++;   
     fclose(ficresp);
     if  (cptcovn>0) {    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       fprintf(ficresprob, "\n#********** Variable ");    free_vector(pp,1,nlstate);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficresprob, "**********\n#");    /* End of Freq */
     }  }
      
       for (age=bage; age<=fage; age ++){  /************ Prevalence ********************/
         cov[2]=age;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         for (k=1; k<=cptcovn;k++) {  {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                 in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    */
         for (k=1; k<=cptcovprod;k++)   
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
            double ***freq; /* Frequencies */
         gradg=matrix(1,npar,1,9);    double *pp, **prop;
         trgradg=matrix(1,9,1,npar);    double pos,posprop; 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double  y2; /* in fractional years */
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    int iagemin, iagemax;
      
         for(theta=1; theta <=npar; theta++){    iagemin= (int) agemin;
           for(i=1; i<=npar; i++)    iagemax= (int) agemax;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*pp=vector(1,nlstate);*/
              prop=matrix(1,nlstate,iagemin,iagemax+3); 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
              j1=0;
           k=0;    
           for(i=1; i<= (nlstate+ndeath); i++){    j=cptcoveff;
             for(j=1; j<=(nlstate+ndeath);j++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               k=k+1;    
               gp[k]=pmmij[i][j];    for(k1=1; k1<=j;k1++){
             }      for(i1=1; i1<=ncodemax[k1];i1++){
           }        j1++;
                  
           for(i=1; i<=npar; i++)        for (i=1; i<=nlstate; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       
           k=0;        for (i=1; i<=imx; i++) { /* Each individual */
           for(i=1; i<=(nlstate+ndeath); i++){          bool=1;
             for(j=1; j<=(nlstate+ndeath);j++){          if  (cptcovn>0) {
               k=k+1;            for (z1=1; z1<=cptcoveff; z1++) 
               gm[k]=pmmij[i][j];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             }                bool=0;
           }          } 
                if (bool==1) { 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           for(theta=1; theta <=npar; theta++)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             trgradg[j][theta]=gradg[theta][j];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                          /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                        } 
         pmij(pmmij,cov,ncovmodel,x,nlstate);              }
                    } /* end selection of waves */
         k=0;          }
         for(i=1; i<=(nlstate+ndeath); i++){        }
           for(j=1; j<=(nlstate+ndeath);j++){        for(i=iagemin; i <= iagemax+3; i++){  
             k=k+1;          
             gm[k]=pmmij[i][j];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           }            posprop += prop[jk][i]; 
         }          } 
        
      /*printf("\n%d ",(int)age);          for(jk=1; jk <=nlstate ; jk++){     
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            if( i <=  iagemax){ 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              if(posprop>=1.e-5){ 
      }*/                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
         fprintf(ficresprob,"\n%d ",(int)age);            } 
           }/* end jk */ 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        }/* end i */ 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));      } /* end i1 */
      } /* end k1 */
       }    
     }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /*free_vector(pp,1,nlstate);*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  }  /* End of prevalence */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }  /************* Waves Concatenation ***************/
   free_vector(xp,1,npar);  
   fclose(ficresprob);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
 }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
 /******************* Printing html file ***********/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  int lastpass, int stepm, int weightopt, char model[],\       and mw[mi+1][i]. dh depends on stepm.
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \       */
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast, int estepm ){    int i, mi, m;
   int jj1, k1, i1, cpt;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   FILE *fichtm;       double sum=0., jmean=0.;*/
   /*char optionfilehtm[FILENAMELENGTH];*/    int first;
     int j, k=0,jk, ju, jl;
   strcpy(optionfilehtm,optionfile);    double sum=0.;
   strcat(optionfilehtm,".htm");    first=0;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    jmin=1e+5;
     printf("Problem with %s \n",optionfilehtm), exit(0);    jmax=-1;
   }    jmean=0.;
     for(i=1; i<=imx; i++){
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      mi=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      m=firstpass;
 \n      while(s[m][i] <= nlstate){
 Total number of observations=%d <br>\n        if(s[m][i]>=1)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          mw[++mi][i]=m;
 <hr  size=\"2\" color=\"#EC5E5E\">        if(m >=lastpass)
  <ul><li>Outputs files<br>\n          break;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        else
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          m++;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      }/* end while */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      if (s[m][i] > nlstate){
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        mi++;     /* Death is another wave */
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
  fprintf(fichtm,"\n        mw[mi][i]=m;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      }
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      wav[i]=mi;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      if(mi==0){
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        nbwarn++;
         if(first==0){
  if(popforecast==1) fprintf(fichtm,"\n          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          first=1;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        }
         <br>",fileres,fileres,fileres,fileres);        if(first==1){
  else          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        }
 fprintf(fichtm," <li>Graphs</li><p>");      } /* end mi==0 */
     } /* End individuals */
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
  jj1=0;        if (stepm <=0)
  for(k1=1; k1<=m;k1++){          dh[mi][i]=1;
    for(i1=1; i1<=ncodemax[k1];i1++){        else{
        jj1++;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
        if (cptcovn > 0) {            if (agedc[i] < 2*AGESUP) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
          for (cpt=1; cpt<=cptcoveff;cpt++)              if(j==0) j=1;  /* Survives at least one month after exam */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              else if(j<0){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                nberr++;
        }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                j=1; /* Temporary Dangerous patch */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
        for(cpt=1; cpt<nlstate;cpt++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              }
        }              k=k+1;
     for(cpt=1; cpt<=nlstate;cpt++) {              if (j >= jmax) jmax=j;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              if (j <= jmin) jmin=j;
 interval) in state (%d): v%s%d%d.gif <br>              sum=sum+j;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for(cpt=1; cpt<=nlstate;cpt++) {            }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          else{
      }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 health expectancies in states (1) and (2): e%s%d.gif<br>            k=k+1;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            if (j >= jmax) jmax=j;
 fprintf(fichtm,"\n</body>");            else if (j <= jmin)jmin=j;
    }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
    }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 fclose(fichtm);            if(j<0){
 }              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 /******************* Gnuplot file **************/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            }
             sum=sum+j;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          }
           jk= j/stepm;
   strcpy(optionfilegnuplot,optionfilefiname);          jl= j -jk*stepm;
   strcat(optionfilegnuplot,".gp.txt");          ju= j -(jk+1)*stepm;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     printf("Problem with file %s",optionfilegnuplot);            if(jl==0){
   }              dh[mi][i]=jk;
               bh[mi][i]=0;
 #ifdef windows            }else{ /* We want a negative bias in order to only have interpolation ie
     fprintf(ficgp,"cd \"%s\" \n",pathc);                    * at the price of an extra matrix product in likelihood */
 #endif              dh[mi][i]=jk+1;
 m=pow(2,cptcoveff);              bh[mi][i]=ju;
              }
  /* 1eme*/          }else{
   for (cpt=1; cpt<= nlstate ; cpt ++) {            if(jl <= -ju){
    for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
 for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=jk+1;
 }              bh[mi][i]=ju;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
     for (i=1; i<= nlstate ; i ++) {            if(dh[mi][i]==0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              dh[mi][i]=1; /* At least one step */
   else fprintf(ficgp," \%%*lf (\%%*lf)");              bh[mi][i]=ju; /* At least one step */
 }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
      for (i=1; i<= nlstate ; i ++) {          } /* end if mle */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } /* end wave */
 }      }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }   }
   }  
   /*2 eme*/  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   for (k1=1; k1<= m ; k1 ++) {  {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    
        int Ndum[20],ij=1, k, j, i, maxncov=19;
     for (i=1; i<= nlstate+1 ; i ++) {    int cptcode=0;
       k=2*i;    cptcoveff=0; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (k=1; k<=7; k++) ncodemax[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                                 modality*/ 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for (j=1; j<= nlstate+1 ; j ++) {        Ndum[ij]++; /*store the modality */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 }                                           Tvar[j]. If V=sex and male is 0 and 
       fprintf(ficgp,"\" t\"\" w l 0,");                                         female is 1, then  cptcode=1.*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=0; i<=cptcode; i++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 }        }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");      ij=1; 
     }      for (i=1; i<=ncodemax[j]; i++) {
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        for (k=0; k<= maxncov; k++) {
   }          if (Ndum[k] != 0) {
              nbcode[Tvar[j]][ij]=k; 
   /*3eme*/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
   for (k1=1; k1<= m ; k1 ++) {            ij++;
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(2*cpt-2);          if (ij > ncodemax[j]) break; 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        }  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      } 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    }  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 */     ij=Tvar[i];
       for (i=1; i< nlstate ; i ++) {     Ndum[ij]++;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);   }
   
       }   ij=1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);   for (i=1; i<= maxncov; i++) {
     }     if((Ndum[i]!=0) && (i<=ncovcol)){
     }       Tvaraff[ij]=i; /*For printing */
         ij++;
   /* CV preval stat */     }
     for (k1=1; k1<= m ; k1 ++) {   }
     for (cpt=1; cpt<nlstate ; cpt ++) {   
       k=3;   cptcoveff=ij-1; /*Number of simple covariates*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  }
   
       for (i=1; i< nlstate ; i ++)  /*********** Health Expectancies ****************/
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
        
       l=3+(nlstate+ndeath)*cpt;  {
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* Health expectancies */
       for (i=1; i< nlstate ; i ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         l=3+(nlstate+ndeath)*cpt;    double age, agelim, hf;
         fprintf(ficgp,"+$%d",l+i+1);    double ***p3mat,***varhe;
       }    double **dnewm,**doldm;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      double *xp;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double **gp, **gm;
     }    double ***gradg, ***trgradg;
   }      int theta;
    
   /* proba elementaires */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    for(i=1,jk=1; i <=nlstate; i++){    xp=vector(1,npar);
     for(k=1; k <=(nlstate+ndeath); k++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
       if (k != i) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         for(j=1; j <=ncovmodel; j++){    
            fprintf(ficreseij,"# Health expectancies\n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fprintf(ficreseij,"# Age");
           jk++;    for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"\n");      for(j=1; j<=nlstate;j++)
         }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       }    fprintf(ficreseij,"\n");
     }  
     }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     for(jk=1; jk <=m; jk++) {    }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    else  hstepm=estepm;   
    i=1;    /* We compute the life expectancy from trapezoids spaced every estepm months
    for(k2=1; k2<=nlstate; k2++) {     * This is mainly to measure the difference between two models: for example
      k3=i;     * if stepm=24 months pijx are given only every 2 years and by summing them
      for(k=1; k<=(nlstate+ndeath); k++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
        if (k != k2){     * progression in between and thus overestimating or underestimating according
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);     * to the curvature of the survival function. If, for the same date, we 
 ij=1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         for(j=3; j <=ncovmodel; j++) {     * to compare the new estimate of Life expectancy with the same linear 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * hypothesis. A more precise result, taking into account a more precise
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     * curvature will be obtained if estepm is as small as stepm. */
             ij++;  
           }    /* For example we decided to compute the life expectancy with the smallest unit */
           else    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
           fprintf(ficgp,")/(1");       Look at hpijx to understand the reason of that which relies in memory size
               and note for a fixed period like estepm months */
         for(k1=1; k1 <=nlstate; k1++){      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       survival function given by stepm (the optimization length). Unfortunately it
 ij=1;       means that if the survival funtion is printed only each two years of age and if
           for(j=3; j <=ncovmodel; j++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       results. So we changed our mind and took the option of the best precision.
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    */
             ij++;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           }  
           else    agelim=AGESUP;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           }      /* nhstepm age range expressed in number of stepm */
           fprintf(ficgp,")");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      /* if (stepm >= YEARM) hstepm=1;*/
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         i=i+ncovmodel;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
    }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
    }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fclose(ficgp);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 }  /* end gnuplot */   
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      /* Computing  Variances of health expectancies */
   
   int i, cpt, cptcod;       for(theta=1; theta <=npar; theta++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        for(i=1; i<=npar; i++){ 
       for (i=1; i<=nlstate;i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        cptj=0;
       for (i=1; i<=nlstate;i++){        for(j=1; j<= nlstate; j++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for(i=1; i<=nlstate; i++){
           for (cpt=0;cpt<=4;cpt++){            cptj=cptj+1;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            }
         }          }
       }        }
     }       
           
 }        for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /************** Forecasting ******************/        
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        cptj=0;
          for(j=1; j<= nlstate; j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          for(i=1;i<=nlstate;i++){
   int *popage;            cptj=cptj+1;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   double *popeffectif,*popcount;  
   double ***p3mat;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   char fileresf[FILENAMELENGTH];            }
           }
  agelim=AGESUP;        }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
         } 
   strcpy(fileresf,"f");     
   strcat(fileresf,fileres);  /* End theta */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   if (mobilav==1) {       
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);       for(i=1;i<=nlstate*nlstate;i++)
   }        for(j=1;j<=nlstate*nlstate;j++)
           varhe[i][j][(int)age] =0.;
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   agelim=AGESUP;       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   hstepm=1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   hstepm=hstepm/stepm;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   yp1=modf(dateintmean,&yp);          for(i=1;i<=nlstate*nlstate;i++)
   anprojmean=yp;            for(j=1;j<=nlstate*nlstate;j++)
   yp2=modf((yp1*12),&yp);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   mprojmean=yp;        }
   yp1=modf((yp2*30.5),&yp);      }
   jprojmean=yp;      /* Computing expectancies */
   if(jprojmean==0) jprojmean=1;      for(i=1; i<=nlstate;i++)
   if(mprojmean==0) jprojmean=1;        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   for(cptcov=1;cptcov<=i2;cptcov++){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;          }
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {      fprintf(ficreseij,"%3.0f",age );
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      cptj=0;
       }      for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"******\n");        for(j=1; j<=nlstate;j++){
       fprintf(ficresf,"# StartingAge FinalAge");          cptj++;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
              }
            fprintf(ficreseij,"\n");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {     
         fprintf(ficresf,"\n");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           nhstepm = nhstepm/hstepm;    }
              printf("\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n");
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_vector(xp,1,npar);
            free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           for (h=0; h<=nhstepm; h++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {  /************ Variance ******************/
               kk1=0.;kk2=0;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
               for(i=1; i<=nlstate;i++) {                {
                 if (mobilav==1)    /* Variance of health expectancies */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                 else {    /* double **newm;*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double **dnewm,**doldm;
                 }    double **dnewmp,**doldmp;
                    int i, j, nhstepm, hstepm, h, nstepm ;
               }    int k, cptcode;
               if (h==(int)(calagedate+12*cpt)){    double *xp;
                 fprintf(ficresf," %.3f", kk1);    double **gp, **gm;  /* for var eij */
                            double ***gradg, ***trgradg; /*for var eij */
               }    double **gradgp, **trgradgp; /* for var p point j */
             }    double *gpp, *gmp; /* for var p point j */
           }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***p3mat;
         }    double age,agelim, hf;
       }    double ***mobaverage;
     }    int theta;
   }    char digit[4];
            char digitp[25];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     char fileresprobmorprev[FILENAMELENGTH];
   fclose(ficresf);  
 }    if(popbased==1){
 /************** Forecasting ******************/      if(mobilav!=0)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        strcpy(digitp,"-populbased-mobilav-");
        else strcpy(digitp,"-populbased-nomobil-");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }
   int *popage;    else 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      strcpy(digitp,"-stablbased-");
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;    if (mobilav!=0) {
   char filerespop[FILENAMELENGTH];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   agelim=AGESUP;      }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    }
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   strcpy(filerespop,"pop");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   strcat(filerespop,fileres);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    strcat(fileresprobmorprev,fileres);
     printf("Problem with forecast resultfile: %s\n", filerespop);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   printf("Computing forecasting: result on file '%s' \n", filerespop);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (mobilav==1) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if (stepm<=12) stepsize=1;    }  
      fprintf(ficresprobmorprev,"\n");
   agelim=AGESUP;    fprintf(ficgp,"\n# Routine varevsij");
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   hstepm=1;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   hstepm=hstepm/stepm;  /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       printf("Problem with population file : %s\n",popfile);exit(0);    fprintf(ficresvij,"# Age");
     }    for(i=1; i<=nlstate;i++)
     popage=ivector(0,AGESUP);      for(j=1; j<=nlstate;j++)
     popeffectif=vector(0,AGESUP);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     popcount=vector(0,AGESUP);    fprintf(ficresvij,"\n");
      
     i=1;      xp=vector(1,npar);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    dnewm=matrix(1,nlstate,1,npar);
        doldm=matrix(1,nlstate,1,nlstate);
     imx=i;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   for(cptcov=1;cptcov<=i2;cptcov++){    gpp=vector(nlstate+1,nlstate+ndeath);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    gmp=vector(nlstate+1,nlstate+ndeath);
       k=k+1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficrespop,"\n#******");    
       for(j=1;j<=cptcoveff;j++) {    if(estepm < stepm){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
       fprintf(ficrespop,"******\n");    else  hstepm=estepm;   
       fprintf(ficrespop,"# Age");    /* For example we decided to compute the life expectancy with the smallest unit */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       if (popforecast==1)  fprintf(ficrespop," [Population]");       nhstepm is the number of hstepm from age to agelim 
             nstepm is the number of stepm from age to agelin. 
       for (cpt=0; cpt<=0;cpt++) {       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         and note for a fixed period like k years */
            /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       survival function given by stepm (the optimization length). Unfortunately it
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       means that if the survival funtion is printed every two years of age and if
           nhstepm = nhstepm/hstepm;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 results. So we changed our mind and took the option of the best precision.
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
           oldm=oldms;savm=savms;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      agelim = AGESUP;
            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for (h=0; h<=nhstepm; h++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             if (h==(int) (calagedate+YEARM*cpt)) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {      gp=matrix(0,nhstepm,1,nlstate);
               kk1=0.;kk2=0;      gm=matrix(0,nhstepm,1,nlstate);
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(theta=1; theta <=npar; theta++){
                 else {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                 }        }
               }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               if (h==(int)(calagedate+12*cpt)){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);        if (popbased==1) {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          if(mobilav ==0){
               }            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
             for(i=1; i<=nlstate;i++){          }else{ /* mobilav */ 
               kk1=0.;            for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate;j++){              prlim[i][i]=mobaverage[(int)age][i][ij];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          }
                 }        }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    
             }        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }        /* This for computing probability of death (h=1 means
       }           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   /******/        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              gpp[j] += prlim[i][i]*p3mat[i][j][1];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        /* end probability of death */
           nhstepm = nhstepm/hstepm;  
                  for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           oldm=oldms;savm=savms;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for (h=0; h<=nhstepm; h++){   
             if (h==(int) (calagedate+YEARM*cpt)) {        if (popbased==1) {
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if(mobilav ==0){
             }            for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {              prlim[i][i]=probs[(int)age][i][ij];
               kk1=0.;kk2=0;          }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++) {                          for(i=1; i<=nlstate;i++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  prlim[i][i]=mobaverage[(int)age][i][ij];
               }          }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }  
           }        for(j=1; j<= nlstate; j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(h=0; h<=nhstepm; h++){
         }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
    }          }
   }        }
          /* This for computing probability of death (h=1 means
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   if (popforecast==1) {        */
     free_ivector(popage,0,AGESUP);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_vector(popeffectif,0,AGESUP);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     free_vector(popcount,0,AGESUP);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* end probability of death */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);        for(j=1; j<= nlstate; j++) /* vareij */
 }          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 /***********************************************/          }
 /**************** Main Program *****************/  
 /***********************************************/        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 int main(int argc, char *argv[])        }
 {  
       } /* End theta */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
       for(h=0; h<=nhstepm; h++) /* veij */
   double fret;        for(j=1; j<=nlstate;j++)
   double **xi,tmp,delta;          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   double dum; /* Dummy variable */  
   double ***p3mat;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   int *indx;        for(theta=1; theta <=npar; theta++)
   char line[MAXLINE], linepar[MAXLINE];          trgradgp[j][theta]=gradgp[theta][j];
   char title[MAXLINE];    
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];      for(h=0;h<=nhstepm;h++){
   char popfile[FILENAMELENGTH];        for(k=0;k<=nhstepm;k++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   int firstobs=1, lastobs=10;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   int sdeb, sfin; /* Status at beginning and end */          for(i=1;i<=nlstate;i++)
   int c,  h , cpt,l;            for(j=1;j<=nlstate;j++)
   int ju,jl, mi;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      }
   int mobilav=0,popforecast=0;    
   int hstepm, nhstepm;      /* pptj */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   double bage, fage, age, agelim, agebase;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   double ftolpl=FTOL;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double **prlim;          varppt[j][i]=doldmp[j][i];
   double *severity;      /* end ppptj */
   double ***param; /* Matrix of parameters */      /*  x centered again */
   double  *p;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   double **matcov; /* Matrix of covariance */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   double ***delti3; /* Scale */   
   double *delti; /* Scale */      if (popbased==1) {
   double ***eij, ***vareij;        if(mobilav ==0){
   double **varpl; /* Variances of prevalence limits by age */          for(i=1; i<=nlstate;i++)
   double *epj, vepp;            prlim[i][i]=probs[(int)age][i][ij];
   double kk1, kk2;        }else{ /* mobilav */ 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";      }
   char *alph[]={"a","a","b","c","d","e"}, str[4];               
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   char z[1]="c", occ;         as a weighted average of prlim.
 #include <sys/time.h>      */
 #include <time.h>      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   /* long total_usecs;      }    
   struct timeval start_time, end_time;      /* end probability of death */
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   getcwd(pathcd, size);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   printf("\n%s",version);        for(i=1; i<=nlstate;i++){
   if(argc <=1){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     printf("\nEnter the parameter file name: ");        }
     scanf("%s",pathtot);      } 
   }      fprintf(ficresprobmorprev,"\n");
   else{  
     strcpy(pathtot,argv[1]);      fprintf(ficresvij,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        for(j=1; j<=nlstate;j++){
   /*cygwin_split_path(pathtot,path,optionfile);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        }
   /* cutv(path,optionfile,pathtot,'\\');*/      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      free_matrix(gm,0,nhstepm,1,nlstate);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   chdir(path);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   replace(pathc,path);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
 /*-------- arguments in the command line --------*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
   strcpy(fileres,"r");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   strcat(fileres, optionfilefiname);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   /*---------arguments file --------*/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("Problem with optionfile %s\n",optionfile);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     goto end;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   strcpy(filereso,"o");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   strcat(filereso,fileres);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if((ficparo=fopen(filereso,"w"))==NULL) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  */
   }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(xp,1,npar);
     ungetc(c,ficpar);    free_matrix(doldm,1,nlstate,1,nlstate);
     fgets(line, MAXLINE, ficpar);    free_matrix(dnewm,1,nlstate,1,npar);
     puts(line);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fflush(ficgp);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fflush(fichtm); 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  }  /* end varevsij */
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance of prevlim ******************/
     fgets(line, MAXLINE, ficpar);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     puts(line);  {
     fputs(line,ficparo);    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   ungetc(c,ficpar);    double **newm;
      double **dnewm,**doldm;
        int i, j, nhstepm, hstepm;
   covar=matrix(0,NCOVMAX,1,n);    int k, cptcode;
   cptcovn=0;    double *xp;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    double *gp, *gm;
     double **gradg, **trgradg;
   ncovmodel=2+cptcovn;    double age,agelim;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int theta;
       
   /* Read guess parameters */    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficresvpl,"# Age");
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresvpl,"\n");
     puts(line);  
     fputs(line,ficparo);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   ungetc(c,ficpar);    doldm=matrix(1,nlstate,1,nlstate);
      
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    hstepm=1*YEARM; /* Every year of age */
     for(i=1; i <=nlstate; i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     for(j=1; j <=nlstate+ndeath-1; j++){    agelim = AGESUP;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficparo,"%1d%1d",i1,j1);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       printf("%1d%1d",i,j);      if (stepm >= YEARM) hstepm=1;
       for(k=1; k<=ncovmodel;k++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         fscanf(ficpar," %lf",&param[i][j][k]);      gradg=matrix(1,npar,1,nlstate);
         printf(" %lf",param[i][j][k]);      gp=vector(1,nlstate);
         fprintf(ficparo," %lf",param[i][j][k]);      gm=vector(1,nlstate);
       }  
       fscanf(ficpar,"\n");      for(theta=1; theta <=npar; theta++){
       printf("\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
       fprintf(ficparo,"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   p=param[1][1];      
          for(i=1; i<=npar; i++) /* Computes gradient */
   /* Reads comments: lines beginning with '#' */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);          gm[i] = prlim[i][i];
     puts(line);  
     fputs(line,ficparo);        for(i=1;i<=nlstate;i++)
   }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   ungetc(c,ficpar);      } /* End theta */
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      trgradg =matrix(1,nlstate,1,npar);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){      for(j=1; j<=nlstate;j++)
     for(j=1; j <=nlstate+ndeath-1; j++){        for(theta=1; theta <=npar; theta++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);          trgradg[j][theta]=gradg[theta][j];
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);      for(i=1;i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){        varpl[i][(int)age] =0.;
         fscanf(ficpar,"%le",&delti3[i][j][k]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         printf(" %le",delti3[i][j][k]);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         fprintf(ficparo," %le",delti3[i][j][k]);      for(i=1;i<=nlstate;i++)
       }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       fscanf(ficpar,"\n");  
       printf("\n");      fprintf(ficresvpl,"%.0f ",age );
       fprintf(ficparo,"\n");      for(i=1; i<=nlstate;i++)
     }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   }      fprintf(ficresvpl,"\n");
   delti=delti3[1][1];      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
   /* Reads comments: lines beginning with '#' */      free_matrix(gradg,1,npar,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_matrix(trgradg,1,nlstate,1,npar);
     ungetc(c,ficpar);    } /* End age */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    free_vector(xp,1,npar);
     fputs(line,ficparo);    free_matrix(doldm,1,nlstate,1,npar);
   }    free_matrix(dnewm,1,nlstate,1,nlstate);
   ungetc(c,ficpar);  
    }
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){  /************ Variance of one-step probabilities  ******************/
     fscanf(ficpar,"%s",&str);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     printf("%s",str);  {
     fprintf(ficparo,"%s",str);    int i, j=0,  i1, k1, l1, t, tj;
     for(j=1; j <=i; j++){    int k2, l2, j1,  z1;
       fscanf(ficpar," %le",&matcov[i][j]);    int k=0,l, cptcode;
       printf(" %.5le",matcov[i][j]);    int first=1, first1;
       fprintf(ficparo," %.5le",matcov[i][j]);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     }    double **dnewm,**doldm;
     fscanf(ficpar,"\n");    double *xp;
     printf("\n");    double *gp, *gm;
     fprintf(ficparo,"\n");    double **gradg, **trgradg;
   }    double **mu;
   for(i=1; i <=npar; i++)    double age,agelim, cov[NCOVMAX];
     for(j=i+1;j<=npar;j++)    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       matcov[i][j]=matcov[j][i];    int theta;
        char fileresprob[FILENAMELENGTH];
   printf("\n");    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     /*-------- Rewriting paramater file ----------*/    double ***varpij;
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    strcpy(fileresprob,"prob"); 
      strcat(rfileres,".");    /* */    strcat(fileresprob,fileres);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     if((ficres =fopen(rfileres,"w"))==NULL) {      printf("Problem with resultfile: %s\n", fileresprob);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }    }
     fprintf(ficres,"#%s\n",version);    strcpy(fileresprobcov,"probcov"); 
        strcat(fileresprobcov,fileres);
     /*-------- data file ----------*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     if((fic=fopen(datafile,"r"))==NULL)    {      printf("Problem with resultfile: %s\n", fileresprobcov);
       printf("Problem with datafile: %s\n", datafile);goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }    }
     strcpy(fileresprobcor,"probcor"); 
     n= lastobs;    strcat(fileresprobcor,fileres);
     severity = vector(1,maxwav);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     outcome=imatrix(1,maxwav+1,1,n);      printf("Problem with resultfile: %s\n", fileresprobcor);
     num=ivector(1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     moisnais=vector(1,n);    }
     annais=vector(1,n);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     moisdc=vector(1,n);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     andc=vector(1,n);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     agedc=vector(1,n);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     cod=ivector(1,n);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     weight=vector(1,n);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     anint=matrix(1,maxwav,1,n);    fprintf(ficresprob,"# Age");
     s=imatrix(1,maxwav+1,1,n);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     adl=imatrix(1,maxwav+1,1,n);        fprintf(ficresprobcov,"# Age");
     tab=ivector(1,NCOVMAX);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     ncodemax=ivector(1,8);    fprintf(ficresprobcov,"# Age");
   
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {    for(i=1; i<=nlstate;i++)
       if ((i >= firstobs) && (i <=lastobs)) {      for(j=1; j<=(nlstate+ndeath);j++){
                fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         for (j=maxwav;j>=1;j--){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           strcpy(line,stra);      }  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   /* fprintf(ficresprob,"\n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobcov,"\n");
         }    fprintf(ficresprobcor,"\n");
           */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   xp=vector(1,npar);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n# Routine varprob");
         for (j=ncovcol;j>=1;j--){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n");
         }  
         num[i]=atol(stra);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
            fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    file %s<br>\n",optionfilehtmcov);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
         i=i+1;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     /* printf("ii=%d", ij);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
        scanf("%d",i);*/  standard deviations wide on each axis. <br>\
   imx=i-1; /* Number of individuals */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   /* for (i=1; i<=imx; i++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    cov[1]=1;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    tj=cptcoveff;
     }*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
    /*  for (i=1; i<=imx; i++){    j1=0;
      if (s[4][i]==9)  s[4][i]=-1;    for(t=1; t<=tj;t++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      for(i1=1; i1<=ncodemax[t];i1++){ 
          j1++;
          if  (cptcovn>0) {
   /* Calculation of the number of parameter from char model*/          fprintf(ficresprob, "\n#********** Variable "); 
   Tvar=ivector(1,15);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   Tprod=ivector(1,15);          fprintf(ficresprob, "**********\n#\n");
   Tvaraff=ivector(1,15);          fprintf(ficresprobcov, "\n#********** Variable "); 
   Tvard=imatrix(1,15,1,2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   Tage=ivector(1,15);                fprintf(ficresprobcov, "**********\n#\n");
              
   if (strlen(model) >1){          fprintf(ficgp, "\n#********** Variable "); 
     j=0, j1=0, k1=1, k2=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     j=nbocc(model,'+');          fprintf(ficgp, "**********\n#\n");
     j1=nbocc(model,'*');          
     cptcovn=j+1;          
     cptcovprod=j1;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     strcpy(modelsav,model);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          
       printf("Error. Non available option model=%s ",model);          fprintf(ficresprobcor, "\n#********** Variable ");    
       goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresprobcor, "**********\n#");    
            }
     for(i=(j+1); i>=1;i--){        
       cutv(stra,strb,modelsav,'+');        for (age=bage; age<=fage; age ++){ 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          cov[2]=age;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          for (k=1; k<=cptcovn;k++) {
       /*scanf("%d",i);*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       if (strchr(strb,'*')) {          }
         cutv(strd,strc,strb,'*');          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if (strcmp(strc,"age")==0) {          for (k=1; k<=cptcovprod;k++)
           cptcovprod--;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           cutv(strb,stre,strd,'V');          
           Tvar[i]=atoi(stre);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           cptcovage++;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             Tage[cptcovage]=i;          gp=vector(1,(nlstate)*(nlstate+ndeath));
             /*printf("stre=%s ", stre);*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
         }      
         else if (strcmp(strd,"age")==0) {          for(theta=1; theta <=npar; theta++){
           cptcovprod--;            for(i=1; i<=npar; i++)
           cutv(strb,stre,strc,'V');              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           Tvar[i]=atoi(stre);            
           cptcovage++;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           Tage[cptcovage]=i;            
         }            k=0;
         else {            for(i=1; i<= (nlstate); i++){
           cutv(strb,stre,strc,'V');              for(j=1; j<=(nlstate+ndeath);j++){
           Tvar[i]=ncovcol+k1;                k=k+1;
           cutv(strb,strc,strd,'V');                gp[k]=pmmij[i][j];
           Tprod[k1]=i;              }
           Tvard[k1][1]=atoi(strc);            }
           Tvard[k1][2]=atoi(stre);            
           Tvar[cptcovn+k2]=Tvard[k1][1];            for(i=1; i<=npar; i++)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           for (k=1; k<=lastobs;k++)      
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           k1++;            k=0;
           k2=k2+2;            for(i=1; i<=(nlstate); i++){
         }              for(j=1; j<=(nlstate+ndeath);j++){
       }                k=k+1;
       else {                gm[k]=pmmij[i][j];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              }
        /*  scanf("%d",i);*/            }
       cutv(strd,strc,strb,'V');       
       Tvar[i]=atoi(strc);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       strcpy(modelsav,stra);            }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     }            for(theta=1; theta <=npar; theta++)
 }              trgradg[j][theta]=gradg[theta][j];
            
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   printf("cptcovprod=%d ", cptcovprod);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   scanf("%d ",i);*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     fclose(fic);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     /*  if(mle==1){*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;          pmij(pmmij,cov,ncovmodel,x,nlstate);
     }          
     /*-calculation of age at interview from date of interview and age at death -*/          k=0;
     agev=matrix(1,maxwav,1,imx);          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
     for (i=1; i<=imx; i++) {              k=k+1;
       for(m=2; (m<= maxwav); m++) {              mu[k][(int) age]=pmmij[i][j];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            }
          anint[m][i]=9999;          }
          s[m][i]=-1;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
        }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              varpij[i][j][(int)age] = doldm[i][j];
       }  
     }          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     for (i=1; i<=imx; i++)  {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       for(m=1; (m<= maxwav); m++){            }*/
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {          fprintf(ficresprob,"\n%d ",(int)age);
             if(agedc[i]>0)          fprintf(ficresprobcov,"\n%d ",(int)age);
               if(moisdc[i]!=99 && andc[i]!=9999)          fprintf(ficresprobcor,"\n%d ",(int)age);
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
            else {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
               if (andc[i]!=9999){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
               agev[m][i]=-1;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
               }          }
             }          i=0;
           }          for (k=1; k<=(nlstate);k++){
           else if(s[m][i] !=9){ /* Should no more exist */            for (l=1; l<=(nlstate+ndeath);l++){ 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              i=i++;
             if(mint[m][i]==99 || anint[m][i]==9999)              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               agev[m][i]=1;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
             else if(agev[m][i] <agemin){              for (j=1; j<=i;j++){
               agemin=agev[m][i];                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
             }              }
             else if(agev[m][i] >agemax){            }
               agemax=agev[m][i];          }/* end of loop for state */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        } /* end of loop for age */
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/        /* Confidence intervalle of pij  */
             /*   agev[m][i] = age[i]+2*m;*/        /*
           }          fprintf(ficgp,"\nset noparametric;unset label");
           else { /* =9 */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             agev[m][i]=1;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             s[m][i]=-1;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         else /*= 0 Unknown */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           agev[m][i]=1;        */
       }  
            /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     }        first1=1;
     for (i=1; i<=imx; i++)  {        for (k2=1; k2<=(nlstate);k2++){
       for(m=1; (m<= maxwav); m++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         if (s[m][i] > (nlstate+ndeath)) {            if(l2==k2) continue;
           printf("Error: Wrong value in nlstate or ndeath\n");              j=(k2-1)*(nlstate+ndeath)+l2;
           goto end;            for (k1=1; k1<=(nlstate);k1++){
         }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       }                if(l1==k1) continue;
     }                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
     free_vector(severity,1,maxwav);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     free_imatrix(outcome,1,maxwav+1,1,n);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     free_vector(moisnais,1,n);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     free_vector(annais,1,n);                    mu1=mu[i][(int) age]/stepm*YEARM ;
     /* free_matrix(mint,1,maxwav,1,n);                    mu2=mu[j][(int) age]/stepm*YEARM;
        free_matrix(anint,1,maxwav,1,n);*/                    c12=cv12/sqrt(v1*v2);
     free_vector(moisdc,1,n);                    /* Computing eigen value of matrix of covariance */
     free_vector(andc,1,n);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                        /* Eigen vectors */
     wav=ivector(1,imx);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                    /*v21=sqrt(1.-v11*v11); *//* error */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                    v21=(lc1-v1)/cv12*v11;
                        v12=-v21;
     /* Concatenates waves */                    v22=v11;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
       Tcode=ivector(1,100);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                    }
       ncodemax[1]=1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                    /*printf(fignu*/
                          /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
    codtab=imatrix(1,100,1,10);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
    h=0;                    if(first==1){
    m=pow(2,cptcoveff);                      first=0;
                        fprintf(ficgp,"\nset parametric;unset label");
    for(k=1;k<=cptcoveff; k++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
      for(i=1; i <=(m/pow(2,k));i++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
        for(j=1; j <= ncodemax[k]; j++){                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
            h++;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
      }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       codtab[1][2]=1;codtab[2][2]=2; */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    /* for(i=1; i <=m ;i++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(k=1; k <=cptcovn; k++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    }else{
       }                      first=0;
       printf("\n");                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       scanf("%d",i);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                          fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    /* Calculates basic frequencies. Computes observed prevalence at single age                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
        and prints on file fileres'p'. */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                      } /* age mod 5 */
                    } /* end loop age */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                first=1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              } /*l12 */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            } /* k12 */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          } /*l1 */
              }/* k1 */
     /* For Powell, parameters are in a vector p[] starting at p[1]      } /* loop covariates */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     if(mle==1){    free_vector(xp,1,npar);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fclose(ficresprob);
     }    fclose(ficresprobcov);
        fclose(ficresprobcor);
     /*--------- results files --------------*/    fflush(ficgp);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    fflush(fichtmcov);
    }
   
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /******************* Printing html file ***********/
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    for(i=1,jk=1; i <=nlstate; i++){                    int lastpass, int stepm, int weightopt, char model[],\
      for(k=1; k <=(nlstate+ndeath); k++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
        if (k != i)                    int popforecast, int estepm ,\
          {                    double jprev1, double mprev1,double anprev1, \
            printf("%d%d ",i,k);                    double jprev2, double mprev2,double anprev2){
            fprintf(ficres,"%1d%1d ",i,k);    int jj1, k1, i1, cpt;
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
              fprintf(ficres,"%f ",p[jk]);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jk++;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
            }     fprintf(fichtm,"\
            printf("\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
            fprintf(ficres,"\n");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
          }     fprintf(fichtm,"\
      }   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
    }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  if(mle==1){     fprintf(fichtm,"\
     /* Computing hessian and covariance matrix */   - Life expectancies by age and initial health status (estepm=%2d months): \
     ftolhess=ftol; /* Usually correct */     <a href=\"%s\">%s</a> <br>\n</li>",
     hesscov(matcov, p, npar, delti, ftolhess, func);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){   m=cptcoveff;
       for(j=1; j <=nlstate+ndeath; j++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);   jj1=0;
           printf("%1d%1d",i,j);   for(k1=1; k1<=m;k1++){
           for(k=1; k<=ncovmodel;k++){     for(i1=1; i1<=ncodemax[k1];i1++){
             printf(" %.5e",delti[jk]);       jj1++;
             fprintf(ficres," %.5e",delti[jk]);       if (cptcovn > 0) {
             jk++;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           }         for (cpt=1; cpt<=cptcoveff;cpt++) 
           printf("\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(ficres,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }       }
       }       /* Pij */
      }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
      <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     k=1;       /* Quasi-incidences */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     for(i=1;i<=npar;i++){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       /*  if (k>nlstate) k=1;         /* Stable prevalence in each health state */
       i1=(i-1)/(ncovmodel*nlstate)+1;         for(cpt=1; cpt<nlstate;cpt++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       printf("%s%d%d",alph[k],i1,tab[i]);*/  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fprintf(ficres,"%3d",i);         }
       printf("%3d",i);       for(cpt=1; cpt<=nlstate;cpt++) {
       for(j=1; j<=i;j++){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
         fprintf(ficres," %.5e",matcov[i][j]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         printf(" %.5e",matcov[i][j]);       }
       }     } /* end i1 */
       fprintf(ficres,"\n");   }/* End k1 */
       printf("\n");   fprintf(fichtm,"</ul>");
       k++;  
     }  
       fprintf(fichtm,"\
     while((c=getc(ficpar))=='#' && c!= EOF){  \n<br><li><h4> Result files (second order: variances)</h4>\n\
       ungetc(c,ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       fgets(line, MAXLINE, ficpar);  
       puts(line);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fputs(line,ficparo);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     }   fprintf(fichtm,"\
     ungetc(c,ficpar);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     estepm=0;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;   fprintf(fichtm,"\
     if (fage <= 2) {   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       bage = ageminpar;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       fage = agemaxpar;   fprintf(fichtm,"\
     }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
               estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   fprintf(fichtm,"\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     fprintf(fichtm,"\
     while((c=getc(ficpar))=='#' && c!= EOF){   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     ungetc(c,ficpar);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     fputs(line,ficparo);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   ungetc(c,ficpar);  /*      <br>",fileres,fileres,fileres,fileres); */
    /*  else  */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   fflush(fichtm);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
        
   while((c=getc(ficpar))=='#' && c!= EOF){   m=cptcoveff;
     ungetc(c,ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fgets(line, MAXLINE, ficpar);  
     puts(line);   jj1=0;
     fputs(line,ficparo);   for(k1=1; k1<=m;k1++){
   }     for(i1=1; i1<=ncodemax[k1];i1++){
   ungetc(c,ficpar);       jj1++;
         if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         for (cpt=1; cpt<=cptcoveff;cpt++) 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   fscanf(ficpar,"pop_based=%d\n",&popbased);       }
   fprintf(ficparo,"pop_based=%d\n",popbased);         for(cpt=1; cpt<=nlstate;cpt++) {
   fprintf(ficres,"pop_based=%d\n",popbased);           fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
    prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     puts(line);  health expectancies in states (1) and (2): %s%d.png<br>\
     fputs(line,ficparo);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   }     } /* end i1 */
   ungetc(c,ficpar);   }/* End k1 */
    fprintf(fichtm,"</ul>");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);   fflush(fichtm);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    char dirfileres[132],optfileres[132];
     fgets(line, MAXLINE, ficpar);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     puts(line);    int ng;
     fputs(line,ficparo);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   }  /*     printf("Problem with file %s",optionfilegnuplot); */
   ungetc(c,ficpar);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /*#ifdef windows */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    m=pow(2,cptcoveff);
   
 /*------------ gnuplot -------------*/    strcpy(dirfileres,optionfilefiname);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    strcpy(optfileres,"vpl");
     /* 1eme*/
 /*------------ free_vector  -------------*/    for (cpt=1; cpt<= nlstate ; cpt ++) {
  chdir(path);     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
  free_ivector(wav,1,imx);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       fprintf(ficgp,"set xlabel \"Age\" \n\
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    set ylabel \"Probability\" \n\
  free_ivector(num,1,n);  set ter png small\n\
  free_vector(agedc,1,n);  set size 0.65,0.65\n\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
  fclose(ficparo);  
  fclose(ficres);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 /*--------- index.htm --------*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*--------------- Prevalence limit --------------*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
   strcpy(filerespl,"pl");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   strcat(filerespl,fileres);       for (i=1; i<= nlstate ; i ++) {
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fprintf(ficrespl,"#Prevalence limit\n");     }
   fprintf(ficrespl,"#Age ");    }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    /*2 eme*/
   fprintf(ficrespl,"\n");    
      for (k1=1; k1<= m ; k1 ++) { 
   prlim=matrix(1,nlstate,1,nlstate);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=1; i<= nlstate+1 ; i ++) {
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        k=2*i;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   k=0;        for (j=1; j<= nlstate+1 ; j ++) {
   agebase=ageminpar;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   agelim=agemaxpar;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   ftolpl=1.e-10;        }   
   i1=cptcoveff;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   if (cptcovn < 1){i1=1;}        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   for(cptcov=1;cptcov<=i1;cptcov++){        for (j=1; j<= nlstate+1 ; j ++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         k=k+1;          else fprintf(ficgp," \%%*lf (\%%*lf)");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        }   
         fprintf(ficrespl,"\n#******");        fprintf(ficgp,"\" t\"\" w l 0,");
         for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficrespl,"******\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                  else fprintf(ficgp," \%%*lf (\%%*lf)");
         for (age=agebase; age<=agelim; age++){        }   
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           fprintf(ficrespl,"%.0f",age );        else fprintf(ficgp,"\" t\"\" w l 0,");
           for(i=1; i<=nlstate;i++)      }
           fprintf(ficrespl," %.5f", prlim[i][i]);    }
           fprintf(ficrespl,"\n");    
         }    /*3eme*/
       }    
     }    for (k1=1; k1<= m ; k1 ++) { 
   fclose(ficrespl);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
   /*------------- h Pij x at various ages ------------*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          fprintf(ficgp,"set ter png small\n\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  set size 0.65,0.65\n\
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   /*if (stepm<=24) stepsize=2;*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
   agelim=AGESUP;        */
   hstepm=stepsize*YEARM; /* Every year of age */        for (i=1; i< nlstate ; i ++) {
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
            
   k=0;        } 
   for(cptcov=1;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    
         fprintf(ficrespij,"\n#****** ");    /* CV preval stable (period) */
         for(j=1;j<=cptcoveff;j++)    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         fprintf(ficrespij,"******\n");        k=3;
                fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  set ter png small\nset size 0.65,0.65\n\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  unset log y\n\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
           oldm=oldms;savm=savms;        
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (i=1; i< nlstate ; i ++)
           fprintf(ficrespij,"# Age");          fprintf(ficgp,"+$%d",k+i+1);
           for(i=1; i<=nlstate;i++)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
             for(j=1; j<=nlstate+ndeath;j++)        
               fprintf(ficrespij," %1d-%1d",i,j);        l=3+(nlstate+ndeath)*cpt;
           fprintf(ficrespij,"\n");        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
            for (h=0; h<=nhstepm; h++){        for (i=1; i< nlstate ; i ++) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          l=3+(nlstate+ndeath)*cpt;
             for(i=1; i<=nlstate;i++)          fprintf(ficgp,"+$%d",l+i+1);
               for(j=1; j<=nlstate+ndeath;j++)        }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
             fprintf(ficrespij,"\n");      } 
              }    }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           fprintf(ficrespij,"\n");    /* proba elementaires */
         }    for(i=1,jk=1; i <=nlstate; i++){
     }      for(k=1; k <=(nlstate+ndeath); k++){
   }        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
   fclose(ficrespij);            fprintf(ficgp,"\n");
           }
         }
   /*---------- Forecasting ------------------*/      }
   if((stepm == 1) && (strcmp(model,".")==0)){     }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   }       for(jk=1; jk <=m; jk++) {
   else{         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
     erreur=108;         if (ng==2)
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   }         else
             fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   /*---------- Health expectancies and variances ------------*/         i=1;
          for(k2=1; k2<=nlstate; k2++) {
   strcpy(filerest,"t");           k3=i;
   strcat(filerest,fileres);           for(k=1; k<=(nlstate+ndeath); k++) {
   if((ficrest=fopen(filerest,"w"))==NULL) {             if (k != k2){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
   strcpy(filerese,"e");               for(j=3; j <=ncovmodel; j++) {
   strcat(filerese,fileres);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   if((ficreseij=fopen(filerese,"w"))==NULL) {                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                   ij++;
   }                 }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  strcpy(fileresv,"v");               }
   strcat(fileresv,fileres);               fprintf(ficgp,")/(1");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {               
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);               for(k1=1; k1 <=nlstate; k1++){   
   }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                 ij=1;
   calagedate=-1;                 for(j=3; j <=ncovmodel; j++){
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   k=0;                     ij++;
   for(cptcov=1;cptcov<=i1;cptcov++){                   }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                   else
       k=k+1;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       fprintf(ficrest,"\n#****** ");                 }
       for(j=1;j<=cptcoveff;j++)                 fprintf(ficgp,")");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               }
       fprintf(ficrest,"******\n");               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       fprintf(ficreseij,"\n#****** ");               i=i+ncovmodel;
       for(j=1;j<=cptcoveff;j++)             }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           } /* end k */
       fprintf(ficreseij,"******\n");         } /* end k2 */
        } /* end jk */
       fprintf(ficresvij,"\n#****** ");     } /* end ng */
       for(j=1;j<=cptcoveff;j++)     fflush(ficgp); 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }  /* end gnuplot */
       fprintf(ficresvij,"******\n");  
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*************** Moving average **************/
       oldm=oldms;savm=savms;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
      int i, cpt, cptcod;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int modcovmax =1;
       oldm=oldms;savm=savms;    int mobilavrange, mob;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    double age;
      
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                               a covariate has 2 modalities */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       epj=vector(1,nlstate+1);      else mobilavrange=mobilav;
       for(age=bage; age <=fage ;age++){      for (age=bage; age<=fage; age++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for (i=1; i<=nlstate;i++)
         if (popbased==1) {          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           for(i=1; i<=nlstate;i++)            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             prlim[i][i]=probs[(int)age][i][k];      /* We keep the original values on the extreme ages bage, fage and for 
         }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                 we use a 5 terms etc. until the borders are no more concerned. 
         fprintf(ficrest," %4.0f",age);      */ 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for (i=1; i<=nlstate;i++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           epj[nlstate+1] +=epj[j];                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         for(i=1, vepp=0.;i <=nlstate;i++)                }
           for(j=1;j <=nlstate;j++)              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             vepp += vareij[i][j][(int)age];            }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          }
         for(j=1;j <=nlstate;j++){        }/* end age */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      }/* end mob */
         }    }else return -1;
         fprintf(ficrest,"\n");    return 0;
       }  }/* End movingaverage */
     }  
   }  
 free_matrix(mint,1,maxwav,1,n);  /************** Forecasting ******************/
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     free_vector(weight,1,n);    /* proj1, year, month, day of starting projection 
   fclose(ficreseij);       agemin, agemax range of age
   fclose(ficresvij);       dateprev1 dateprev2 range of dates during which prevalence is computed
   fclose(ficrest);       anproj2 year of en of projection (same day and month as proj1).
   fclose(ficpar);    */
   free_vector(epj,1,nlstate+1);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      int *popage;
   /*------- Variance limit prevalence------*/      double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   strcpy(fileresvpl,"vpl");    double *popeffectif,*popcount;
   strcat(fileresvpl,fileres);    double ***p3mat;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double ***mobaverage;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    char fileresf[FILENAMELENGTH];
     exit(0);  
   }    agelim=AGESUP;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
   k=0;    strcpy(fileresf,"f"); 
   for(cptcov=1;cptcov<=i1;cptcov++){    strcat(fileresf,fileres);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
       k=k+1;      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficresvpl,"\n#****** ");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing forecasting: result on file '%s' \n", fileresf);
       fprintf(ficresvpl,"******\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    if (mobilav!=0) {
     }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficresvpl);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   /*---------- End : free ----------------*/    }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      stepsize=(int) (stepm+YEARM-1)/YEARM;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if (stepm<=12) stepsize=1;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    else  hstepm=estepm;   
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    hstepm=hstepm/stepm; 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                   fractional in yp1 */
   free_matrix(matcov,1,npar,1,npar);    anprojmean=yp;
   free_vector(delti,1,npar);    yp2=modf((yp1*12),&yp);
   free_matrix(agev,1,maxwav,1,imx);    mprojmean=yp;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
   if(erreur >0)    if(jprojmean==0) jprojmean=1;
     printf("End of Imach with error or warning %d\n",erreur);    if(mprojmean==0) jprojmean=1;
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    i1=cptcoveff;
      if (cptcovn < 1){i1=1;}
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   /*------ End -----------*/    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
  end:  /*            if (h==(int)(YEARM*yearp)){ */
   /* chdir(pathcd);*/    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
  /*system("wgnuplot graph.plt");*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/        k=k+1;
  /*system("cd ../gp37mgw");*/        fprintf(ficresf,"\n#******");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        for(j=1;j<=cptcoveff;j++) {
  strcpy(plotcmd,GNUPLOTPROGRAM);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  strcat(plotcmd," ");        }
  strcat(plotcmd,optionfilegnuplot);        fprintf(ficresf,"******\n");
  system(plotcmd);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
  /*#ifdef windows*/          for(i=1; i<=nlstate;i++)              
   while (z[0] != 'q') {            fprintf(ficresf," p%d%d",i,j);
     /* chdir(path); */          fprintf(ficresf," p.%d",j);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        }
     scanf("%s",z);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     if (z[0] == 'c') system("./imach");          fprintf(ficresf,"\n");
     else if (z[0] == 'e') system(optionfilehtm);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   }            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   /*#endif */            nhstepm = nhstepm/hstepm; 
 }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.100


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>