Diff for /imach/src/imach.c between versions 1.45 and 1.106

version 1.45, 2002/05/24 16:34:18 version 1.106, 2006/01/19 13:24:36
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.106  2006/01/19 13:24:36  brouard
      Some cleaning and links added in html output
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.105  2006/01/05 20:23:19  lievre
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.104  2005/09/30 16:11:43  lievre
   second wave of interviews ("longitudinal") which measure each change    (Module): sump fixed, loop imx fixed, and simplifications.
   (if any) in individual health status.  Health expectancies are    (Module): If the status is missing at the last wave but we know
   computed from the time spent in each health state according to a    that the person is alive, then we can code his/her status as -2
   model. More health states you consider, more time is necessary to reach the    (instead of missing=-1 in earlier versions) and his/her
   Maximum Likelihood of the parameters involved in the model.  The    contributions to the likelihood is 1 - Prob of dying from last
   simplest model is the multinomial logistic model where pij is the    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   probability to be observed in state j at the second wave    the healthy state at last known wave). Version is 0.98
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.103  2005/09/30 15:54:49  lievre
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): sump fixed, loop imx fixed, and simplifications.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.102  2004/09/15 17:31:30  brouard
   you to do it.  More covariates you add, slower the    Add the possibility to read data file including tab characters.
   convergence.  
     Revision 1.101  2004/09/15 10:38:38  brouard
   The advantage of this computer programme, compared to a simple    Fix on curr_time
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.100  2004/07/12 18:29:06  brouard
   intermediate interview, the information is lost, but taken into    Add version for Mac OS X. Just define UNIX in Makefile
   account using an interpolation or extrapolation.    
     Revision 1.99  2004/06/05 08:57:40  brouard
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.98  2004/05/16 15:05:56  brouard
   states. This elementary transition (by month or quarter trimester,    New version 0.97 . First attempt to estimate force of mortality
   semester or year) is model as a multinomial logistic.  The hPx    directly from the data i.e. without the need of knowing the health
   matrix is simply the matrix product of nh*stepm elementary matrices    state at each age, but using a Gompertz model: log u =a + b*age .
   and the contribution of each individual to the likelihood is simply    This is the basic analysis of mortality and should be done before any
   hPijx.    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   Also this programme outputs the covariance matrix of the parameters but also    from other sources like vital statistic data.
   of the life expectancies. It also computes the prevalence limits.  
      The same imach parameter file can be used but the option for mle should be -3.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Agnès, who wrote this part of the code, tried to keep most of the
   This software have been partly granted by Euro-REVES, a concerted action    former routines in order to include the new code within the former code.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    The output is very simple: only an estimate of the intercept and of
   software can be distributed freely for non commercial use. Latest version    the slope with 95% confident intervals.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Current limitations:
      A) Even if you enter covariates, i.e. with the
 #include <math.h>    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #include <stdio.h>    B) There is no computation of Life Expectancy nor Life Table.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 #define MAXLINE 256    suppressed.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.96  2003/07/15 15:38:55  brouard
 #define FILENAMELENGTH 80    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /*#define DEBUG*/    rewritten within the same printf. Workaround: many printfs.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    matrix (cov(a12,c31) instead of numbers.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define NINTERVMAX 8    Just cleaning
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.93  2003/06/25 16:33:55  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): On windows (cygwin) function asctime_r doesn't
 #define MAXN 20000    exist so I changed back to asctime which exists.
 #define YEARM 12. /* Number of months per year */    (Module): Version 0.96b
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 int erreur; /* Error number */  
 int nvar;    Revision 1.91  2003/06/25 15:30:29  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    * imach.c (Repository): Duplicated warning errors corrected.
 int npar=NPARMAX;    (Repository): Elapsed time after each iteration is now output. It
 int nlstate=2; /* Number of live states */    helps to forecast when convergence will be reached. Elapsed time
 int ndeath=1; /* Number of dead states */    is stamped in powell.  We created a new html file for the graphs
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    concerning matrix of covariance. It has extension -cov.htm.
 int popbased=0;  
     Revision 1.90  2003/06/24 12:34:15  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Some bugs corrected for windows. Also, when
 int maxwav; /* Maxim number of waves */    mle=-1 a template is output in file "or"mypar.txt with the design
 int jmin, jmax; /* min, max spacing between 2 waves */    of the covariance matrix to be input.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.89  2003/06/24 12:30:52  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Some bugs corrected for windows. Also, when
 double jmean; /* Mean space between 2 waves */    mle=-1 a template is output in file "or"mypar.txt with the design
 double **oldm, **newm, **savm; /* Working pointers to matrices */    of the covariance matrix to be input.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.88  2003/06/23 17:54:56  brouard
 FILE *ficgp,*ficresprob,*ficpop;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.87  2003/06/18 12:26:01  brouard
  FILE  *ficresvij;    Version 0.96
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.86  2003/06/17 20:04:08  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.85  2003/06/17 13:12:43  brouard
 #define FTOL 1.0e-10    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 #define NRANSI    prior to the death. In this case, dh was negative and likelihood
 #define ITMAX 200    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 #define TOL 2.0e-4    interview.
     (Repository): Because some people have very long ID (first column)
 #define CGOLD 0.3819660    we changed int to long in num[] and we added a new lvector for
 #define ZEPS 1.0e-10    memory allocation. But we also truncated to 8 characters (left
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    truncation)
     (Repository): No more line truncation errors.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.84  2003/06/13 21:44:43  brouard
 #define TINY 1.0e-20    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 static double maxarg1,maxarg2;    many times. Probs is memory consuming and must be used with
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    parcimony.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.83  2003/06/10 13:39:11  lievre
 #define rint(a) floor(a+0.5)    *** empty log message ***
   
 static double sqrarg;    Revision 1.82  2003/06/05 15:57:20  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Add log in  imach.c and  fullversion number is now printed.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   */
 int imx;  /*
 int stepm;     Interpolated Markov Chain
 /* Stepm, step in month: minimum step interpolation*/  
     Short summary of the programme:
 int estepm;    
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int m,nb;    first survey ("cross") where individuals from different ages are
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    interviewed on their health status or degree of disability (in the
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    case of a health survey which is our main interest) -2- at least a
 double **pmmij, ***probs, ***mobaverage;    second wave of interviews ("longitudinal") which measure each change
 double dateintmean=0;    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 double *weight;    model. More health states you consider, more time is necessary to reach the
 int **s; /* Status */    Maximum Likelihood of the parameters involved in the model.  The
 double *agedc, **covar, idx;    simplest model is the multinomial logistic model where pij is the
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double ftolhess; /* Tolerance for computing hessian */    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /**************** split *************************/    where the markup *Covariates have to be included here again* invites
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    you to do it.  More covariates you add, slower the
 {    convergence.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
    l1 = strlen( path );                 /* length of path */    identical for each individual. Also, if a individual missed an
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    intermediate interview, the information is lost, but taken into
 #ifdef windows    account using an interpolation or extrapolation.  
    s = strrchr( path, '\\' );           /* find last / */  
 #else    hPijx is the probability to be observed in state i at age x+h
    s = strrchr( path, '/' );            /* find last / */    conditional to the observed state i at age x. The delay 'h' can be
 #endif    split into an exact number (nh*stepm) of unobserved intermediate
    if ( s == NULL ) {                   /* no directory, so use current */    states. This elementary transition (by month, quarter,
 #if     defined(__bsd__)                /* get current working directory */    semester or year) is modelled as a multinomial logistic.  The hPx
       extern char       *getwd( );    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
       if ( getwd( dirc ) == NULL ) {    hPijx.
 #else  
       extern char       *getcwd( );    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    
 #endif    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
          return( GLOCK_ERROR_GETCWD );             Institut national d'études démographiques, Paris.
       }    This software have been partly granted by Euro-REVES, a concerted action
       strcpy( name, path );             /* we've got it */    from the European Union.
    } else {                             /* strip direcotry from path */    It is copyrighted identically to a GNU software product, ie programme and
       s++;                              /* after this, the filename */    software can be distributed freely for non commercial use. Latest version
       l2 = strlen( s );                 /* length of filename */    can be accessed at http://euroreves.ined.fr/imach .
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       dirc[l1-l2] = 0;                  /* add zero */    
    }    **********************************************************************/
    l1 = strlen( dirc );                 /* length of directory */  /*
 #ifdef windows    main
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    read parameterfile
 #else    read datafile
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    concatwav
 #endif    freqsummary
    s = strrchr( name, '.' );            /* find last / */    if (mle >= 1)
    s++;      mlikeli
    strcpy(ext,s);                       /* save extension */    print results files
    l1= strlen( name);    if mle==1 
    l2= strlen( s)+1;       computes hessian
    strncpy( finame, name, l1-l2);    read end of parameter file: agemin, agemax, bage, fage, estepm
    finame[l1-l2]= 0;        begin-prev-date,...
    return( 0 );                         /* we're done */    open gnuplot file
 }    open html file
     stable prevalence
      for age prevalim()
 /******************************************/    h Pij x
     variance of p varprob
 void replace(char *s, char*t)    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   int i;    Variance-covariance of DFLE
   int lg=20;    prevalence()
   i=0;     movingaverage()
   lg=strlen(t);    varevsij() 
   for(i=0; i<= lg; i++) {    if popbased==1 varevsij(,popbased)
     (s[i] = t[i]);    total life expectancies
     if (t[i]== '\\') s[i]='/';    Variance of stable prevalence
   }   end
 }  */
   
 int nbocc(char *s, char occ)  
 {  
   int i,j=0;   
   int lg=20;  #include <math.h>
   i=0;  #include <stdio.h>
   lg=strlen(s);  #include <stdlib.h>
   for(i=0; i<= lg; i++) {  #include <string.h>
   if  (s[i] == occ ) j++;  #include <unistd.h>
   }  
   return j;  /* #include <sys/time.h> */
 }  #include <time.h>
   #include "timeval.h"
 void cutv(char *u,char *v, char*t, char occ)  
 {  /* #include <libintl.h> */
   int i,lg,j,p=0;  /* #define _(String) gettext (String) */
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  #define MAXLINE 256
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define GNUPLOTPROGRAM "gnuplot"
   }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   lg=strlen(t);  /*#define DEBUG*/
   for(j=0; j<p; j++) {  /*#define windows*/
     (u[j] = t[j]);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
      u[p]='\0';  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    for(j=0; j<= lg; j++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /********************** nrerror ********************/  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 void nrerror(char error_text[])  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   fprintf(stderr,"ERREUR ...\n");  #define AGEBASE 40
   fprintf(stderr,"%s\n",error_text);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   exit(1);  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
 /*********************** vector *******************/  #define ODIRSEPARATOR '\\'
 double *vector(int nl, int nh)  #else
 {  #define DIRSEPARATOR '\\'
   double *v;  #define ODIRSEPARATOR '/'
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #endif
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  /* $Id$ */
 }  /* $State$ */
   
 /************************ free vector ******************/  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
 void free_vector(double*v, int nl, int nh)  char fullversion[]="$Revision$ $Date$"; 
 {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   free((FREE_ARG)(v+nl-NR_END));  int nvar;
 }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 /************************ivector *******************************/  int nlstate=2; /* Number of live states */
 int *ivector(long nl,long nh)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int *v;  int popbased=0;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  int *wav; /* Number of waves for this individuual 0 is possible */
   return v-nl+NR_END;  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
 /******************free ivector **************************/                     to the likelihood and the sum of weights (done by funcone)*/
 void free_ivector(int *v, long nl, long nh)  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG)(v+nl-NR_END));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /******************* imatrix *******************************/  double jmean; /* Mean space between 2 waves */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double **oldm, **newm, **savm; /* Working pointers to matrices */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  FILE *ficlog, *ficrespow;
   int **m;  int globpr; /* Global variable for printing or not */
    double fretone; /* Only one call to likelihood */
   /* allocate pointers to rows */  long ipmx; /* Number of contributions */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double sw; /* Sum of weights */
   if (!m) nrerror("allocation failure 1 in matrix()");  char filerespow[FILENAMELENGTH];
   m += NR_END;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m -= nrl;  FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    FILE *ficresprobmorprev;
   /* allocate rows and set pointers to them */  FILE *fichtm, *fichtmcov; /* Html File */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  FILE *ficreseij;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filerese[FILENAMELENGTH];
   m[nrl] += NR_END;  FILE  *ficresvij;
   m[nrl] -= ncl;  char fileresv[FILENAMELENGTH];
    FILE  *ficresvpl;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char fileresvpl[FILENAMELENGTH];
    char title[MAXLINE];
   /* return pointer to array of pointers to rows */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /****************** free_imatrix *************************/  int  outcmd=0;
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char fileregp[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  extern int gettimeofday();
   double **m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  extern long time();
   if (!m) nrerror("allocation failure 1 in matrix()");  char strcurr[80], strfor[80];
   m += NR_END;  
   m -= nrl;  #define NR_END 1
   #define FREE_ARG char*
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FTOL 1.0e-10
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define NRANSI 
   m[nrl] -= ncl;  #define ITMAX 200 
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define TOL 2.0e-4 
   return m;  
 }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /*************************free matrix ************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define GOLD 1.618034 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GLIMIT 100.0 
   free((FREE_ARG)(m+nrl-NR_END));  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /******************* ma3x *******************************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double ***m;  #define rint(a) floor(a+0.5)
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  static double sqrarg;
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m += NR_END;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m -= nrl;  int agegomp= AGEGOMP;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int imx; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int stepm=1;
   m[nrl] += NR_END;  /* Stepm, step in month: minimum step interpolation*/
   m[nrl] -= ncl;  
   int estepm;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int m,nb;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  long *num;
   m[nrl][ncl] += NR_END;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   m[nrl][ncl] -= nll;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (j=ncl+1; j<=nch; j++)  double **pmmij, ***probs;
     m[nrl][j]=m[nrl][j-1]+nlay;  double *ageexmed,*agecens;
    double dateintmean=0;
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  double *weight;
     for (j=ncl+1; j<=nch; j++)  int **s; /* Status */
       m[i][j]=m[i][j-1]+nlay;  double *agedc, **covar, idx;
   }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   return m;  double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /*************************free ma3x ************************/  double ftolhess; /* Tolerance for computing hessian */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  /**************** split *************************/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
 }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 /***************** f1dim *************************/    char  *ss;                            /* pointer */
 extern int ncom;    int   l1, l2;                         /* length counters */
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 double f1dim(double x)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so use current */
   int j;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double f;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double *xt;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
   xt=vector(1,ncom);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];        return( GLOCK_ERROR_GETCWD );
   f=(*nrfunc)(xt);      }
   free_vector(xt,1,ncom);      strcpy( name, path );               /* we've got it */
   return f;    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /*****************brent *************************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   int iter;      dirc[l1-l2] = 0;                    /* add zero */
   double a,b,d,etemp;    }
   double fu,fv,fw,fx;    l1 = strlen( dirc );                  /* length of directory */
   double ftemp;    /*#ifdef windows
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   double e=0.0;  #else
      if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   a=(ax < cx ? ax : cx);  #endif
   b=(ax > cx ? ax : cx);    */
   x=w=v=bx;    ss = strrchr( name, '.' );            /* find last / */
   fw=fv=fx=(*f)(x);    if (ss >0){
   for (iter=1;iter<=ITMAX;iter++) {      ss++;
     xm=0.5*(a+b);      strcpy(ext,ss);                     /* save extension */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      l1= strlen( name);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      l2= strlen(ss)+1;
     printf(".");fflush(stdout);      strncpy( finame, name, l1-l2);
 #ifdef DEBUG      finame[l1-l2]= 0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return( 0 );                          /* we're done */
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  
       return fx;  /******************************************/
     }  
     ftemp=fu;  void replace_back_to_slash(char *s, char*t)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    int i;
       q=(x-v)*(fx-fw);    int lg=0;
       p=(x-v)*q-(x-w)*r;    i=0;
       q=2.0*(q-r);    lg=strlen(t);
       if (q > 0.0) p = -p;    for(i=0; i<= lg; i++) {
       q=fabs(q);      (s[i] = t[i]);
       etemp=e;      if (t[i]== '\\') s[i]='/';
       e=d;    }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  int nbocc(char *s, char occ)
         d=p/q;  {
         u=x+d;    int i,j=0;
         if (u-a < tol2 || b-u < tol2)    int lg=20;
           d=SIGN(tol1,xm-x);    i=0;
       }    lg=strlen(s);
     } else {    for(i=0; i<= lg; i++) {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if  (s[i] == occ ) j++;
     }    }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    return j;
     fu=(*f)(u);  }
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  void cutv(char *u,char *v, char*t, char occ)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         } else {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
           if (u < x) a=u; else b=u;       gives u="abcedf" and v="ghi2j" */
           if (fu <= fw || w == x) {    int i,lg,j,p=0;
             v=w;    i=0;
             w=u;    for(j=0; j<=strlen(t)-1; j++) {
             fv=fw;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    lg=strlen(t);
             fv=fu;    for(j=0; j<p; j++) {
           }      (u[j] = t[j]);
         }    }
   }       u[p]='\0';
   nrerror("Too many iterations in brent");  
   *xmin=x;     for(j=0; j<= lg; j++) {
   return fx;      if (j>=(p+1))(v[j-p-1] = t[j]);
 }    }
   }
 /****************** mnbrak ***********************/  
   /********************** nrerror ********************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  void nrerror(char error_text[])
 {  {
   double ulim,u,r,q, dum;    fprintf(stderr,"ERREUR ...\n");
   double fu;    fprintf(stderr,"%s\n",error_text);
      exit(EXIT_FAILURE);
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  /*********************** vector *******************/
   if (*fb > *fa) {  double *vector(int nl, int nh)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!v) nrerror("allocation failure in vector");
   *fc=(*func)(*cx);    return v-nl+NR_END;
   while (*fb > *fc) {  }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /************************ free vector ******************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  void free_vector(double*v, int nl, int nh)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    free((FREE_ARG)(v+nl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /************************ivector *******************************/
       fu=(*func)(u);  int *ivector(long nl,long nh)
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int *v;
           SHFT(*fb,*fc,fu,(*func)(u))    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           }    if (!v) nrerror("allocation failure in ivector");
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    return v-nl+NR_END;
       u=ulim;  }
       fu=(*func)(u);  
     } else {  /******************free ivector **************************/
       u=(*cx)+GOLD*(*cx-*bx);  void free_ivector(int *v, long nl, long nh)
       fu=(*func)(u);  {
     }    free((FREE_ARG)(v+nl-NR_END));
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  /************************lvector *******************************/
 }  long *lvector(long nl,long nh)
   {
 /*************** linmin ************************/    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 int ncom;    if (!v) nrerror("allocation failure in ivector");
 double *pcom,*xicom;    return v-nl+NR_END;
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /******************free lvector **************************/
 {  void free_lvector(long *v, long nl, long nh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    free((FREE_ARG)(v+nl-NR_END));
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /******************* imatrix *******************************/
   int j;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double xx,xmin,bx,ax;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double fx,fb,fa;  { 
      long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   ncom=n;    int **m; 
   pcom=vector(1,n);    
   xicom=vector(1,n);    /* allocate pointers to rows */ 
   nrfunc=func;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
     pcom[j]=p[j];    m += NR_END; 
     xicom[j]=xi[j];    m -= nrl; 
   }    
   ax=0.0;    
   xx=1.0;    /* allocate rows and set pointers to them */ 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 #ifdef DEBUG    m[nrl] += NR_END; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl] -= ncl; 
 #endif    
   for (j=1;j<=n;j++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     xi[j] *= xmin;    
     p[j] += xi[j];    /* return pointer to array of pointers to rows */ 
   }    return m; 
   free_vector(xicom,1,n);  } 
   free_vector(pcom,1,n);  
 }  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /*************** powell ************************/        int **m;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        long nch,ncl,nrh,nrl; 
             double (*func)(double []))       /* free an int matrix allocated by imatrix() */ 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
               double (*func)(double []));    free((FREE_ARG) (m+nrl-NR_END)); 
   int i,ibig,j;  } 
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************* matrix *******************************/
   double *xits;  double **matrix(long nrl, long nrh, long ncl, long nch)
   pt=vector(1,n);  {
   ptt=vector(1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   xit=vector(1,n);    double **m;
   xits=vector(1,n);  
   *fret=(*func)(p);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (j=1;j<=n;j++) pt[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()");
   for (*iter=1;;++(*iter)) {    m += NR_END;
     fp=(*fret);    m -= nrl;
     ibig=0;  
     del=0.0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (i=1;i<=n;i++)    m[nrl] += NR_END;
       printf(" %d %.12f",i, p[i]);    m[nrl] -= ncl;
     printf("\n");  
     for (i=1;i<=n;i++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    return m;
       fptt=(*fret);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /*************************free matrix ************************/
       linmin(p,xit,n,fret,func);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         ibig=i;    free((FREE_ARG)(m+nrl-NR_END));
       }  }
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /******************* ma3x *******************************/
       for (j=1;j<=n;j++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }    double ***m;
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
 #endif    m += NR_END;
     }    m -= nrl;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       int k[2],l;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       k[0]=1;    m[nrl] += NR_END;
       k[1]=-1;    m[nrl] -= ncl;
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf(" %.12e",p[j]);  
       printf("\n");    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for(l=0;l<=1;l++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         for (j=1;j<=n;j++) {    m[nrl][ncl] += NR_END;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl][ncl] -= nll;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (j=ncl+1; j<=nch; j++) 
         }      m[nrl][j]=m[nrl][j-1]+nlay;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    
       }    for (i=nrl+1; i<=nrh; i++) {
 #endif      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
       free_vector(xit,1,n);    }
       free_vector(xits,1,n);    return m; 
       free_vector(ptt,1,n);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       free_vector(pt,1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       return;    */
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /*************************free ma3x ************************/
       ptt[j]=2.0*p[j]-pt[j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     fptt=(*func)(ptt);    free((FREE_ARG)(m+nrl-NR_END));
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /*************** function subdirf ***********/
         linmin(p,xit,n,fret,func);  char *subdirf(char fileres[])
         for (j=1;j<=n;j++) {  {
           xi[j][ibig]=xi[j][n];    /* Caution optionfilefiname is hidden */
           xi[j][n]=xit[j];    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/"); /* Add to the right */
 #ifdef DEBUG    strcat(tmpout,fileres);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return tmpout;
         for(j=1;j<=n;j++)  }
           printf(" %.12e",xit[j]);  
         printf("\n");  /*************** function subdirf2 ***********/
 #endif  char *subdirf2(char fileres[], char *preop)
       }  {
     }    
   }    /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /**** Prevalence limit ****************/    strcat(tmpout,preop);
     strcat(tmpout,fileres);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return tmpout;
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    /* Caution optionfilefiname is hidden */
   double **out, cov[NCOVMAX], **pmij();    strcpy(tmpout,optionfilefiname);
   double **newm;    strcat(tmpout,"/");
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,fileres);
     for (j=1;j<=nlstate+ndeath;j++){    return tmpout;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /***************** f1dim *************************/
    cov[1]=1.;  extern int ncom; 
    extern double *pcom,*xicom;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  extern double (*nrfunc)(double []); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){   
     newm=savm;  double f1dim(double x) 
     /* Covariates have to be included here again */  { 
      cov[2]=agefin;    int j; 
      double f;
       for (k=1; k<=cptcovn;k++) {    double *xt; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];   
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    xt=vector(1,ncom); 
       }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    f=(*nrfunc)(xt); 
       for (k=1; k<=cptcovprod;k++)    free_vector(xt,1,ncom); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return f; 
   } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /*****************brent *************************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  { 
     int iter; 
     savm=oldm;    double a,b,d,etemp;
     oldm=newm;    double fu,fv,fw,fx;
     maxmax=0.;    double ftemp;
     for(j=1;j<=nlstate;j++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       min=1.;    double e=0.0; 
       max=0.;   
       for(i=1; i<=nlstate; i++) {    a=(ax < cx ? ax : cx); 
         sumnew=0;    b=(ax > cx ? ax : cx); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    x=w=v=bx; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    fw=fv=fx=(*f)(x); 
         max=FMAX(max,prlim[i][j]);    for (iter=1;iter<=ITMAX;iter++) { 
         min=FMIN(min,prlim[i][j]);      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       maxmin=max-min;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       maxmax=FMAX(maxmax,maxmin);      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
     if(maxmax < ftolpl){  #ifdef DEBUG
       return prlim;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 /*************** transition probabilities ***************/        *xmin=x; 
         return fx; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      } 
 {      ftemp=fu;
   double s1, s2;      if (fabs(e) > tol1) { 
   /*double t34;*/        r=(x-w)*(fx-fv); 
   int i,j,j1, nc, ii, jj;        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
     for(i=1; i<= nlstate; i++){        q=2.0*(q-r); 
     for(j=1; j<i;j++){        if (q > 0.0) p = -p; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        q=fabs(q); 
         /*s2 += param[i][j][nc]*cov[nc];*/        etemp=e; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        e=d; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[i][j]=s2;        else { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          d=p/q; 
     }          u=x+d; 
     for(j=i+1; j<=nlstate+ndeath;j++){          if (u-a < tol2 || b-u < tol2) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            d=SIGN(tol1,xm-x); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[i][j]=s2;      } 
     }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   }      fu=(*f)(u); 
     /*ps[3][2]=1;*/      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   for(i=1; i<= nlstate; i++){        SHFT(v,w,x,u) 
      s1=0;          SHFT(fv,fw,fx,fu) 
     for(j=1; j<i; j++)          } else { 
       s1+=exp(ps[i][j]);            if (u < x) a=u; else b=u; 
     for(j=i+1; j<=nlstate+ndeath; j++)            if (fu <= fw || w == x) { 
       s1+=exp(ps[i][j]);              v=w; 
     ps[i][i]=1./(s1+1.);              w=u; 
     for(j=1; j<i; j++)              fv=fw; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];              fw=fu; 
     for(j=i+1; j<=nlstate+ndeath; j++)            } else if (fu <= fv || v == x || v == w) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];              v=u; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */              fv=fu; 
   } /* end i */            } 
           } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    nrerror("Too many iterations in brent"); 
       ps[ii][jj]=0;    *xmin=x; 
       ps[ii][ii]=1;    return fx; 
     }  } 
   }  
   /****************** mnbrak ***********************/
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(jj=1; jj<= nlstate+ndeath; jj++){              double (*func)(double)) 
      printf("%lf ",ps[ii][jj]);  { 
    }    double ulim,u,r,q, dum;
     printf("\n ");    double fu; 
     }   
     printf("\n ");printf("%lf ",cov[2]);*/    *fa=(*func)(*ax); 
 /*    *fb=(*func)(*bx); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if (*fb > *fa) { 
   goto end;*/      SHFT(dum,*ax,*bx,dum) 
     return ps;        SHFT(dum,*fb,*fa,dum) 
 }        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 /**************** Product of 2 matrices ******************/    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      r=(*bx-*ax)*(*fb-*fc); 
 {      q=(*bx-*cx)*(*fb-*fa); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /* in, b, out are matrice of pointers which should have been initialized      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      before: only the contents of out is modified. The function returns      if ((*bx-u)*(u-*cx) > 0.0) { 
      a pointer to pointers identical to out */        fu=(*func)(u); 
   long i, j, k;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for(i=nrl; i<= nrh; i++)        fu=(*func)(u); 
     for(k=ncolol; k<=ncoloh; k++)        if (fu < *fc) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         out[i][k] +=in[i][j]*b[j][k];            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   return out;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 }        u=ulim; 
         fu=(*func)(u); 
       } else { 
 /************* Higher Matrix Product ***************/        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      } 
 {      SHFT(*ax,*bx,*cx,u) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        SHFT(*fa,*fb,*fc,fu) 
      duration (i.e. until        } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /*************** linmin ************************/
      Model is determined by parameters x and covariates have to be  
      included manually here.  int ncom; 
   double *pcom,*xicom;
      */  double (*nrfunc)(double []); 
    
   int i, j, d, h, k;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double **out, cov[NCOVMAX];  { 
   double **newm;    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   /* Hstepm could be zero and should return the unit matrix */    double f1dim(double x); 
   for (i=1;i<=nlstate+ndeath;i++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for (j=1;j<=nlstate+ndeath;j++){                double *fc, double (*func)(double)); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    int j; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */   
   for(h=1; h <=nhstepm; h++){    ncom=n; 
     for(d=1; d <=hstepm; d++){    pcom=vector(1,n); 
       newm=savm;    xicom=vector(1,n); 
       /* Covariates have to be included here again */    nrfunc=func; 
       cov[1]=1.;    for (j=1;j<=n;j++) { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      pcom[j]=p[j]; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      xicom[j]=xi[j]; 
       for (k=1; k<=cptcovage;k++)    } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    ax=0.0; 
       for (k=1; k<=cptcovprod;k++)    xx=1.0; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (j=1;j<=n;j++) { 
       savm=oldm;      xi[j] *= xmin; 
       oldm=newm;      p[j] += xi[j]; 
     }    } 
     for(i=1; i<=nlstate+ndeath; i++)    free_vector(xicom,1,n); 
       for(j=1;j<=nlstate+ndeath;j++) {    free_vector(pcom,1,n); 
         po[i][j][h]=newm[i][j];  } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  char *asc_diff_time(long time_sec, char ascdiff[])
       }  {
   } /* end h */    long sec_left, days, hours, minutes;
   return po;    days = (time_sec) / (60*60*24);
 }    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
 /*************** log-likelihood *************/    minutes = (sec_left) /60;
 double func( double *x)    sec_left = (sec_left) % (60);
 {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   int i, ii, j, k, mi, d, kk;    return ascdiff;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  }
   double **out;  
   double sw; /* Sum of weights */  /*************** powell ************************/
   double lli; /* Individual log likelihood */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   long ipmx;              double (*func)(double [])) 
   /*extern weight */  { 
   /* We are differentiating ll according to initial status */    void linmin(double p[], double xi[], int n, double *fret, 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/                double (*func)(double [])); 
   /*for(i=1;i<imx;i++)    int i,ibig,j; 
     printf(" %d\n",s[4][i]);    double del,t,*pt,*ptt,*xit;
   */    double fp,fptt;
   cov[1]=1.;    double *xits;
     int niterf, itmp;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    pt=vector(1,n); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    ptt=vector(1,n); 
     for(mi=1; mi<= wav[i]-1; mi++){    xit=vector(1,n); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    xits=vector(1,n); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    *fret=(*func)(p); 
       for(d=0; d<dh[mi][i]; d++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
         newm=savm;    for (*iter=1;;++(*iter)) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      fp=(*fret); 
         for (kk=1; kk<=cptcovage;kk++) {      ibig=0; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      del=0.0; 
         }      last_time=curr_time;
              (void) gettimeofday(&curr_time,&tzp);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
         savm=oldm;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
         oldm=newm;      */
             for (i=1;i<=n;i++) {
                printf(" %d %.12f",i, p[i]);
       } /* end mult */        fprintf(ficlog," %d %.12lf",i, p[i]);
              fprintf(ficrespow," %.12lf", p[i]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      printf("\n");
       ipmx +=1;      fprintf(ficlog,"\n");
       sw += weight[i];      fprintf(ficrespow,"\n");fflush(ficrespow);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      if(*iter <=3){
     } /* end of wave */        tm = *localtime(&curr_time.tv_sec);
   } /* end of individual */        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        forecast_time=curr_time; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        itmp = strlen(strcurr);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   return -l;          strcurr[itmp-1]='\0';
 }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
 /*********** Maximum Likelihood Estimation ***************/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*      asctime_r(&tmf,strfor); */
 {          strcpy(strfor,asctime(&tmf));
   int i,j, iter;          itmp = strlen(strfor);
   double **xi,*delti;          if(strfor[itmp-1]=='\n')
   double fret;          strfor[itmp-1]='\0';
   xi=matrix(1,npar,1,npar);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=npar;j++)        }
       xi[i][j]=(i==j ? 1.0 : 0.0);      }
   printf("Powell\n");      for (i=1;i<=n;i++) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  #ifdef DEBUG
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog,"%d",i);fflush(ficlog);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        linmin(p,xit,n,fret,func); 
 {        if (fabs(fptt-(*fret)) > del) { 
   double  **a,**y,*x,pd;          del=fabs(fptt-(*fret)); 
   double **hess;          ibig=i; 
   int i, j,jk;        } 
   int *indx;  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   double hessii(double p[], double delta, int theta, double delti[]);        fprintf(ficlog,"%d %.12e",i,(*fret));
   double hessij(double p[], double delti[], int i, int j);        for (j=1;j<=n;j++) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   hess=matrix(1,npar,1,npar);        }
         for(j=1;j<=n;j++) {
   printf("\nCalculation of the hessian matrix. Wait...\n");          printf(" p=%.12e",p[j]);
   for (i=1;i<=npar;i++){          fprintf(ficlog," p=%.12e",p[j]);
     printf("%d",i);fflush(stdout);        }
     hess[i][i]=hessii(p,ftolhess,i,delti);        printf("\n");
     /*printf(" %f ",p[i]);*/        fprintf(ficlog,"\n");
     /*printf(" %lf ",hess[i][i]);*/  #endif
   }      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for (i=1;i<=npar;i++) {  #ifdef DEBUG
     for (j=1;j<=npar;j++)  {        int k[2],l;
       if (j>i) {        k[0]=1;
         printf(".%d%d",i,j);fflush(stdout);        k[1]=-1;
         hess[i][j]=hessij(p,delti,i,j);        printf("Max: %.12e",(*func)(p));
         hess[j][i]=hess[i][j];            fprintf(ficlog,"Max: %.12e",(*func)(p));
         /*printf(" %lf ",hess[i][j]);*/        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
   }        }
   printf("\n");        printf("\n");
         fprintf(ficlog,"\n");
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for(l=0;l<=1;l++) {
            for (j=1;j<=n;j++) {
   a=matrix(1,npar,1,npar);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   y=matrix(1,npar,1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   x=vector(1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   indx=ivector(1,npar);          }
   for (i=1;i<=npar;i++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   ludcmp(a,npar,indx,&pd);        }
   #endif
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;        free_vector(xit,1,n); 
     lubksb(a,npar,indx,x);        free_vector(xits,1,n); 
     for (i=1;i<=npar;i++){        free_vector(ptt,1,n); 
       matcov[i][j]=x[i];        free_vector(pt,1,n); 
     }        return; 
   }      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   printf("\n#Hessian matrix#\n");      for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++) {        ptt[j]=2.0*p[j]-pt[j]; 
     for (j=1;j<=npar;j++) {        xit[j]=p[j]-pt[j]; 
       printf("%.3e ",hess[i][j]);        pt[j]=p[j]; 
     }      } 
     printf("\n");      fptt=(*func)(ptt); 
   }      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   /* Recompute Inverse */        if (t < 0.0) { 
   for (i=1;i<=npar;i++)          linmin(p,xit,n,fret,func); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          for (j=1;j<=n;j++) { 
   ludcmp(a,npar,indx,&pd);            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   /*  printf("\n#Hessian matrix recomputed#\n");          }
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     x[j]=1;          for(j=1;j<=n;j++){
     lubksb(a,npar,indx,x);            printf(" %.12e",xit[j]);
     for (i=1;i<=npar;i++){            fprintf(ficlog," %.12e",xit[j]);
       y[i][j]=x[i];          }
       printf("%.3e ",y[i][j]);          printf("\n");
     }          fprintf(ficlog,"\n");
     printf("\n");  #endif
   }        }
   */      } 
     } 
   free_matrix(a,1,npar,1,npar);  } 
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  /**** Prevalence limit (stable prevalence)  ****************/
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 }       matrix by transitions matrix until convergence is reached */
   
 /*************** hessian matrix ****************/    int i, ii,j,k;
 double hessii( double x[], double delta, int theta, double delti[])    double min, max, maxmin, maxmax,sumnew=0.;
 {    double **matprod2();
   int i;    double **out, cov[NCOVMAX], **pmij();
   int l=1, lmax=20;    double **newm;
   double k1,k2;    double agefin, delaymax=50 ; /* Max number of years to converge */
   double p2[NPARMAX+1];  
   double res;    for (ii=1;ii<=nlstate+ndeath;ii++)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for (j=1;j<=nlstate+ndeath;j++){
   double fx;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k=0,kmax=10;      }
   double l1;  
      cov[1]=1.;
   fx=func(x);   
   for (i=1;i<=npar;i++) p2[i]=x[i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(l=0 ; l <=lmax; l++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     l1=pow(10,l);      newm=savm;
     delts=delt;      /* Covariates have to be included here again */
     for(k=1 ; k <kmax; k=k+1){       cov[2]=agefin;
       delt = delta*(l1*k);    
       p2[theta]=x[theta] +delt;        for (k=1; k<=cptcovn;k++) {
       k1=func(p2)-fx;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       p2[theta]=x[theta]-delt;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       k2=func(p2)-fx;        }
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        for (k=1; k<=cptcovprod;k++)
                cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 #endif        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         k=kmax;  
       }      savm=oldm;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      oldm=newm;
         k=kmax; l=lmax*10.;      maxmax=0.;
       }      for(j=1;j<=nlstate;j++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        min=1.;
         delts=delt;        max=0.;
       }        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   delti[theta]=delts;          prlim[i][j]= newm[i][j]/(1-sumnew);
   return res;          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
 }        }
         maxmin=max-min;
 double hessij( double x[], double delti[], int thetai,int thetaj)        maxmax=FMAX(maxmax,maxmin);
 {      }
   int i;      if(maxmax < ftolpl){
   int l=1, l1, lmax=20;        return prlim;
   double k1,k2,k3,k4,res,fx;      }
   double p2[NPARMAX+1];    }
   int k;  }
   
   fx=func(x);  /*************** transition probabilities ***************/ 
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double s1, s2;
     k1=func(p2)-fx;    /*double t34;*/
      int i,j,j1, nc, ii, jj;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(i=1; i<= nlstate; i++){
     k2=func(p2)-fx;        for(j=1; j<i;j++){
            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     p2[thetai]=x[thetai]-delti[thetai]/k;            /*s2 += param[i][j][nc]*cov[nc];*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     k3=func(p2)-fx;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
            }
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[i][j]=s2;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     k4=func(p2)-fx;        }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for(j=i+1; j<=nlstate+ndeath;j++){
 #ifdef DEBUG          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 #endif  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   }          }
   return res;          ps[i][j]=s2;
 }        }
       }
 /************** Inverse of matrix **************/      /*ps[3][2]=1;*/
 void ludcmp(double **a, int n, int *indx, double *d)      
 {      for(i=1; i<= nlstate; i++){
   int i,imax,j,k;        s1=0;
   double big,dum,sum,temp;        for(j=1; j<i; j++)
   double *vv;          s1+=exp(ps[i][j]);
          for(j=i+1; j<=nlstate+ndeath; j++)
   vv=vector(1,n);          s1+=exp(ps[i][j]);
   *d=1.0;        ps[i][i]=1./(s1+1.);
   for (i=1;i<=n;i++) {        for(j=1; j<i; j++)
     big=0.0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (j=1;j<=n;j++)        for(j=i+1; j<=nlstate+ndeath; j++)
       if ((temp=fabs(a[i][j])) > big) big=temp;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     vv[i]=1.0/big;      } /* end i */
   }      
   for (j=1;j<=n;j++) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (i=1;i<j;i++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
       sum=a[i][j];          ps[ii][jj]=0;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          ps[ii][ii]=1;
       a[i][j]=sum;        }
     }      }
     big=0.0;      
     for (i=j;i<=n;i++) {  
       sum=a[i][j];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for (k=1;k<j;k++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         sum -= a[i][k]*a[k][j];  /*         printf("ddd %lf ",ps[ii][jj]); */
       a[i][j]=sum;  /*       } */
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*       printf("\n "); */
         big=dum;  /*        } */
         imax=i;  /*        printf("\n ");printf("%lf ",cov[2]); */
       }         /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     if (j != imax) {        goto end;*/
       for (k=1;k<=n;k++) {      return ps;
         dum=a[imax][k];  }
         a[imax][k]=a[j][k];  
         a[j][k]=dum;  /**************** Product of 2 matrices ******************/
       }  
       *d = -(*d);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       vv[imax]=vv[j];  {
     }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     indx[j]=imax;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     if (a[j][j] == 0.0) a[j][j]=TINY;    /* in, b, out are matrice of pointers which should have been initialized 
     if (j != n) {       before: only the contents of out is modified. The function returns
       dum=1.0/(a[j][j]);       a pointer to pointers identical to out */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    long i, j, k;
     }    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
   free_vector(vv,1,n);  /* Doesn't work */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 ;          out[i][k] +=in[i][j]*b[j][k];
 }  
     return out;
 void lubksb(double **a, int n, int *indx, double b[])  }
 {  
   int i,ii=0,ip,j;  
   double sum;  /************* Higher Matrix Product ***************/
    
   for (i=1;i<=n;i++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     ip=indx[i];  {
     sum=b[ip];    /* Computes the transition matrix starting at age 'age' over 
     b[ip]=b[i];       'nhstepm*hstepm*stepm' months (i.e. until
     if (ii)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       nhstepm*hstepm matrices. 
     else if (sum) ii=i;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     b[i]=sum;       (typically every 2 years instead of every month which is too big 
   }       for the memory).
   for (i=n;i>=1;i--) {       Model is determined by parameters x and covariates have to be 
     sum=b[i];       included manually here. 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];       */
   }  
 }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
 /************ Frequencies ********************/    double **newm;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for (j=1;j<=nlstate+ndeath;j++){
   double ***freq; /* Frequencies */        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double *pp;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double pos, k2, dateintsum=0,k2cpt=0;      }
   FILE *ficresp;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   char fileresp[FILENAMELENGTH];    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   pp=vector(1,nlstate);        newm=savm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* Covariates have to be included here again */
   strcpy(fileresp,"p");        cov[1]=1.;
   strcat(fileresp,fileres);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for (k=1; k<=cptcovage;k++)
     exit(0);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   j1=0;  
    
   j=cptcoveff;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   for(k1=1; k1<=j;k1++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i1=1; i1<=ncodemax[k1];i1++){        savm=oldm;
       j1++;        oldm=newm;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      }
         scanf("%d", i);*/      for(i=1; i<=nlstate+ndeath; i++)
       for (i=-1; i<=nlstate+ndeath; i++)          for(j=1;j<=nlstate+ndeath;j++) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)            po[i][j][h]=newm[i][j];
           for(m=agemin; m <= agemax+3; m++)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             freq[i][jk][m]=0;           */
              }
       dateintsum=0;    } /* end h */
       k2cpt=0;    return po;
       for (i=1; i<=imx; i++) {  }
         bool=1;  
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  /*************** log-likelihood *************/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  double func( double *x)
               bool=0;  {
         }    int i, ii, j, k, mi, d, kk;
         if (bool==1) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for(m=firstpass; m<=lastpass; m++){    double **out;
             k2=anint[m][i]+(mint[m][i]/12.);    double sw; /* Sum of weights */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double lli; /* Individual log likelihood */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    int s1, s2;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double bbh, survp;
               if (m<lastpass) {    long ipmx;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /*extern weight */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* We are differentiating ll according to initial status */
               }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                  /*for(i=1;i<imx;i++) 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      printf(" %d\n",s[4][i]);
                 dateintsum=dateintsum+k2;    */
                 k2cpt++;    cov[1]=1.;
               }  
             }    for(k=1; k<=nlstate; k++) ll[k]=0.;
           }  
         }    if(mle==1){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       if  (cptcovn>0) {            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresp, "\n#********** Variable ");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresp, "**********\n#");            }
       }          for(d=0; d<dh[mi][i]; d++){
       for(i=1; i<=nlstate;i++)            newm=savm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficresp, "\n");            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=(int)agemin; i <= (int)agemax+3; i++){            }
         if(i==(int)agemax+3)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           printf("Total");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         else            savm=oldm;
           printf("Age %d", i);            oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        
             pp[jk] += freq[jk][m][i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
         for(jk=1; jk <=nlstate ; jk++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           for(m=-1, pos=0; m <=0 ; m++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
             pos += freq[jk][m][i];           * the nearest (and in case of equal distance, to the lowest) interval but now
           if(pp[jk]>=1.e-10)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           else           * probability in order to take into account the bias as a fraction of the way
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
         for(jk=1; jk <=nlstate ; jk++){           * For stepm > 1 the results are less biased than in previous versions. 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           */
             pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=1,pos=0; jk <=nlstate ; jk++)          /* bias bh is positive if real duration
           pos += pp[jk];           * is higher than the multiple of stepm and negative otherwise.
         for(jk=1; jk <=nlstate ; jk++){           */
           if(pos>=1.e-5)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          if( s2 > nlstate){ 
           else            /* i.e. if s2 is a death state and if the date of death is known 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);               then the contribution to the likelihood is the probability to 
           if( i <= (int) agemax){               die between last step unit time and current  step unit time, 
             if(pos>=1.e-5){               which is also equal to probability to die before dh 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);               minus probability to die before dh-stepm . 
               probs[i][jk][j1]= pp[jk]/pos;               In version up to 0.92 likelihood was computed
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          as if date of death was unknown. Death was treated as any other
             }          health state: the date of the interview describes the actual state
             else          and not the date of a change in health state. The former idea was
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          to consider that at each interview the state was recorded
           }          (healthy, disable or death) and IMaCh was corrected; but when we
         }          introduced the exact date of death then we should have modified
                  the contribution of an exact death to the likelihood. This new
         for(jk=-1; jk <=nlstate+ndeath; jk++)          contribution is smaller and very dependent of the step unit
           for(m=-1; m <=nlstate+ndeath; m++)          stepm. It is no more the probability to die between last interview
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          and month of death but the probability to survive from last
         if(i <= (int) agemax)          interview up to one month before death multiplied by the
           fprintf(ficresp,"\n");          probability to die within a month. Thanks to Chris
         printf("\n");          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
     }          which slows down the processing. The difference can be up to 10%
   }          lower mortality.
   dateintmean=dateintsum/k2cpt;            */
              lli=log(out[s1][s2] - savm[s1][s2]);
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);          } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
   /* End of Freq */              survp += out[s1][j];
 }            lli= survp;
           }
 /************ Prevalence ********************/          
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          else if  (s2==-4) {
 {  /* Some frequencies */            for (j=3,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            lli= survp;
   double ***freq; /* Frequencies */          }
   double *pp;          
   double pos, k2;          else if  (s2==-5) {
             for (j=1,survp=0. ; j<=2; j++) 
   pp=vector(1,nlstate);              survp += out[s1][j];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            lli= survp;
            }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  
            else{
   j=cptcoveff;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
   for(k1=1; k1<=j;k1++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for(i1=1; i1<=ncodemax[k1];i1++){          /*if(lli ==000.0)*/
       j1++;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                ipmx +=1;
       for (i=-1; i<=nlstate+ndeath; i++)            sw += weight[i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=agemin; m <= agemax+3; m++)        } /* end of wave */
             freq[i][jk][m]=0;      } /* end of individual */
          }  else if(mle==2){
       for (i=1; i<=imx; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         bool=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if  (cptcovn>0) {        for(mi=1; mi<= wav[i]-1; mi++){
           for (z1=1; z1<=cptcoveff; z1++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (j=1;j<=nlstate+ndeath;j++){
               bool=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {            }
           for(m=firstpass; m<=lastpass; m++){          for(d=0; d<=dh[mi][i]; d++){
             k2=anint[m][i]+(mint[m][i]/12.);            newm=savm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if (m<lastpass) {            }
                 if (calagedate>0)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 else            savm=oldm;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            oldm=newm;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          } /* end mult */
               }        
             }          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             pp[jk] += freq[jk][m][i];        } /* end of wave */
         }      } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){    }  else if(mle==3){  /* exponential inter-extrapolation */
           for(m=-1, pos=0; m <=0 ; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pos += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
                  for(d=0; d<dh[mi][i]; d++){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){                for (kk=1; kk<=cptcovage;kk++) {
           if( i <= (int) agemax){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(pos>=1.e-5){            }
               probs[i][jk][j1]= pp[jk]/pos;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
                  } /* end mult */
       }        
     }          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ipmx +=1;
   free_vector(pp,1,nlstate);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /* End of Freq */        } /* end of wave */
       } /* end of individual */
 /************* Waves Concatenation ***************/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          for (ii=1;ii<=nlstate+ndeath;ii++)
      Death is a valid wave (if date is known).            for (j=1;j<=nlstate+ndeath;j++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.            }
      */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   int i, mi, m;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for (kk=1; kk<=cptcovage;kk++) {
      double sum=0., jmean=0.;*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   int j, k=0,jk, ju, jl;          
   double sum=0.;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmin=1e+5;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmax=-1;            savm=oldm;
   jmean=0.;            oldm=newm;
   for(i=1; i<=imx; i++){          } /* end mult */
     mi=0;        
     m=firstpass;          s1=s[mw[mi][i]][i];
     while(s[m][i] <= nlstate){          s2=s[mw[mi+1][i]][i];
       if(s[m][i]>=1)          if( s2 > nlstate){ 
         mw[++mi][i]=m;            lli=log(out[s1][s2] - savm[s1][s2]);
       if(m >=lastpass)          }else{
         break;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       else          }
         m++;          ipmx +=1;
     }/* end while */          sw += weight[i];
     if (s[m][i] > nlstate){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       mi++;     /* Death is another wave */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       /* if(mi==0)  never been interviewed correctly before death */        } /* end of wave */
          /* Only death is a correct wave */      } /* end of individual */
       mw[mi][i]=m;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     wav[i]=mi;        for(mi=1; mi<= wav[i]-1; mi++){
     if(mi==0)          for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){            }
     for(mi=1; mi<wav[i];mi++){          for(d=0; d<dh[mi][i]; d++){
       if (stepm <=0)            newm=savm;
         dh[mi][i]=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else{            for (kk=1; kk<=cptcovage;kk++) {
         if (s[mw[mi+1][i]][i] > nlstate) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (agedc[i] < 2*AGESUP) {            }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          
           if(j==0) j=1;  /* Survives at least one month after exam */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           k=k+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j >= jmax) jmax=j;            savm=oldm;
           if (j <= jmin) jmin=j;            oldm=newm;
           sum=sum+j;          } /* end mult */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         else{          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          ipmx +=1;
           k=k+1;          sw += weight[i];
           if (j >= jmax) jmax=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           else if (j <= jmin)jmin=j;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        } /* end of wave */
           sum=sum+j;      } /* end of individual */
         }    } /* End of if */
         jk= j/stepm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         jl= j -jk*stepm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         ju= j -(jk+1)*stepm;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         if(jl <= -ju)    return -l;
           dh[mi][i]=jk;  }
         else  
           dh[mi][i]=jk+1;  /*************** log-likelihood *************/
         if(dh[mi][i]==0)  double funcone( double *x)
           dh[mi][i]=1; /* At least one step */  {
       }    /* Same as likeli but slower because of a lot of printf and if */
     }    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   jmean=sum/k;    double **out;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double lli; /* Individual log likelihood */
  }    double llt;
 /*********** Tricode ****************************/    int s1, s2;
 void tricode(int *Tvar, int **nbcode, int imx)    double bbh, survp;
 {    /*extern weight */
   int Ndum[20],ij=1, k, j, i;    /* We are differentiating ll according to initial status */
   int cptcode=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   cptcoveff=0;    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   for (k=0; k<19; k++) Ndum[k]=0;    */
   for (k=1; k<=7; k++) ncodemax[k]=0;    cov[1]=1.;
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       Ndum[ij]++;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for(mi=1; mi<= wav[i]-1; mi++){
       if (ij > cptcode) cptcode=ij;        for (ii=1;ii<=nlstate+ndeath;ii++)
     }          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=0; i<=cptcode; i++) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(Ndum[i]!=0) ncodemax[j]++;          }
     }        for(d=0; d<dh[mi][i]; d++){
     ij=1;          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
     for (i=1; i<=ncodemax[j]; i++) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (k=0; k<=19; k++) {          }
         if (Ndum[k] != 0) {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           nbcode[Tvar[j]][ij]=k;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                    savm=oldm;
           ij++;          oldm=newm;
         }        } /* end mult */
         if (ij > ncodemax[j]) break;        
       }          s1=s[mw[mi][i]][i];
     }        s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
  for (k=0; k<19; k++) Ndum[k]=0;         * is higher than the multiple of stepm and negative otherwise.
          */
  for (i=1; i<=ncovmodel-2; i++) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       ij=Tvar[i];          lli=log(out[s1][s2] - savm[s1][s2]);
       Ndum[ij]++;        } else if (mle==1){
     }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
  ij=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  for (i=1; i<=10; i++) {        } else if(mle==3){  /* exponential inter-extrapolation */
    if((Ndum[i]!=0) && (i<=ncovcol)){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      Tvaraff[ij]=i;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      ij++;          lli=log(out[s1][s2]); /* Original formula */
    }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
  }          lli=log(out[s1][s2]); /* Original formula */
          } /* End of if */
     cptcoveff=ij-1;        ipmx +=1;
 }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Health Expectancies ****************/  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
 {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /* Health expectancies */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double age, agelim, hf;            llt +=ll[k]*gipmx/gsw;
   double ***p3mat,***varhe;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double **dnewm,**doldm;          }
   double *xp;          fprintf(ficresilk," %10.6f\n", -llt);
   double **gp, **gm;        }
   double ***gradg, ***trgradg;      } /* end of wave */
   int theta;    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   xp=vector(1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   dnewm=matrix(1,nlstate*2,1,npar);    if(globpr==0){ /* First time we count the contributions and weights */
   doldm=matrix(1,nlstate*2,1,nlstate*2);      gipmx=ipmx;
        gsw=sw;
   fprintf(ficreseij,"# Health expectancies\n");    }
   fprintf(ficreseij,"# Age");    return -l;
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   if(estepm < stepm){  {
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* This routine should help understanding what is done with 
   }       the selection of individuals/waves and
   else  hstepm=estepm;         to check the exact contribution to the likelihood.
   /* We compute the life expectancy from trapezoids spaced every estepm months       Plotting could be done.
    * This is mainly to measure the difference between two models: for example     */
    * if stepm=24 months pijx are given only every 2 years and by summing them    int k;
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression inbetween and thus overestimating or underestimating according    if(*globpri !=0){ /* Just counts and sums, no printings */
    * to the curvature of the survival function. If, for the same date, we      strcpy(fileresilk,"ilk"); 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      strcat(fileresilk,fileres);
    * to compare the new estimate of Life expectancy with the same linear      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    * hypothesis. A more precise result, taking into account a more precise        printf("Problem with resultfile: %s\n", fileresilk);
    * curvature will be obtained if estepm is as small as stepm. */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      nhstepm is the number of hstepm from age to agelim      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      nstepm is the number of stepm from age to agelin.      for(k=1; k<=nlstate; k++) 
      Look at hpijx to understand the reason of that which relies in memory size        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      and note for a fixed period like estepm months */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    *fretone=(*funcone)(p);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    if(*globpri !=0){
      results. So we changed our mind and took the option of the best precision.      fclose(ficresilk);
   */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      fflush(fichtm); 
     } 
   agelim=AGESUP;    return;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  /*********** Maximum Likelihood Estimation ***************/
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    int i,j, iter;
     gp=matrix(0,nhstepm,1,nlstate*2);    double **xi;
     gm=matrix(0,nhstepm,1,nlstate*2);    double fret;
     double fretone; /* Only one call to likelihood */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /*  char filerespow[FILENAMELENGTH];*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    xi=matrix(1,npar,1,npar);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     /* Computing Variances of health expectancies */    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
      for(theta=1; theta <=npar; theta++){      printf("Problem with resultfile: %s\n", filerespow);
       for(i=1; i<=npar; i++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
       }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
       cptj=0;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(j=1; j<= nlstate; j++){    fprintf(ficrespow,"\n");
         for(i=1; i<=nlstate; i++){  
           cptj=cptj+1;    powell(p,xi,npar,ftol,&iter,&fret,func);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fclose(ficrespow);
           }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        
        }
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /**** Computes Hessian and covariance matrix ***/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
        {
       cptj=0;    double  **a,**y,*x,pd;
       for(j=1; j<= nlstate; j++){    double **hess;
         for(i=1;i<=nlstate;i++){    int i, j,jk;
           cptj=cptj+1;    int *indx;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         }    void lubksb(double **a, int npar, int *indx, double b[]) ;
       }    void ludcmp(double **a, int npar, int *indx, double *d) ;
          double gompertz(double p[]);
        hess=matrix(1,npar,1,npar);
   
       for(j=1; j<= nlstate*2; j++)    printf("\nCalculation of the hessian matrix. Wait...\n");
         for(h=0; h<=nhstepm-1; h++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (i=1;i<=npar;i++){
         }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
      }     
           hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 /* End theta */      
       /*  printf(" %f ",p[i]);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
      for(h=0; h<=nhstepm-1; h++)    
       for(j=1; j<=nlstate*2;j++)    for (i=1;i<=npar;i++) {
         for(theta=1; theta <=npar; theta++)      for (j=1;j<=npar;j++)  {
         trgradg[h][j][theta]=gradg[h][theta][j];        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      for(i=1;i<=nlstate*2;i++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
       for(j=1;j<=nlstate*2;j++)          
         varhe[i][j][(int)age] =0.;          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
      printf("%d|",(int)age);fflush(stdout);        }
     for(h=0;h<=nhstepm-1;h++){      }
       for(k=0;k<=nhstepm-1;k++){    }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    printf("\n");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    fprintf(ficlog,"\n");
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    
     }    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
          x=vector(1,npar);
     /* Computing expectancies */    indx=ivector(1,npar);
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    ludcmp(a,npar,indx,&pd);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
              for (j=1;j<=npar;j++) {
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
         }      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     fprintf(ficreseij,"%3.0f",age );        matcov[i][j]=x[i];
     cptj=0;      }
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){  
         cptj++;    printf("\n#Hessian matrix#\n");
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
     fprintf(ficreseij,"\n");      for (j=1;j<=npar;j++) { 
            printf("%.3e ",hess[i][j]);
     free_matrix(gm,0,nhstepm,1,nlstate*2);        fprintf(ficlog,"%.3e ",hess[i][j]);
     free_matrix(gp,0,nhstepm,1,nlstate*2);      }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      printf("\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      fprintf(ficlog,"\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   }  
   free_vector(xp,1,npar);    /* Recompute Inverse */
   free_matrix(dnewm,1,nlstate*2,1,npar);    for (i=1;i<=npar;i++)
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    ludcmp(a,npar,indx,&pd);
 }  
     /*  printf("\n#Hessian matrix recomputed#\n");
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    for (j=1;j<=npar;j++) {
 {      for (i=1;i<=npar;i++) x[i]=0;
   /* Variance of health expectancies */      x[j]=1;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      lubksb(a,npar,indx,x);
   double **newm;      for (i=1;i<=npar;i++){ 
   double **dnewm,**doldm;        y[i][j]=x[i];
   int i, j, nhstepm, hstepm, h, nstepm ;        printf("%.3e ",y[i][j]);
   int k, cptcode;        fprintf(ficlog,"%.3e ",y[i][j]);
   double *xp;      }
   double **gp, **gm;      printf("\n");
   double ***gradg, ***trgradg;      fprintf(ficlog,"\n");
   double ***p3mat;    }
   double age,agelim, hf;    */
   int theta;  
     free_matrix(a,1,npar,1,npar);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    free_matrix(y,1,npar,1,npar);
   fprintf(ficresvij,"# Age");    free_vector(x,1,npar);
   for(i=1; i<=nlstate;i++)    free_ivector(indx,1,npar);
     for(j=1; j<=nlstate;j++)    free_matrix(hess,1,npar,1,npar);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  
   }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  /*************** hessian matrix ****************/
   doldm=matrix(1,nlstate,1,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
   if(estepm < stepm){    int i;
     printf ("Problem %d lower than %d\n",estepm, stepm);    int l=1, lmax=20;
   }    double k1,k2;
   else  hstepm=estepm;      double p2[NPARMAX+1];
   /* For example we decided to compute the life expectancy with the smallest unit */    double res;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      nhstepm is the number of hstepm from age to agelim    double fx;
      nstepm is the number of stepm from age to agelin.    int k=0,kmax=10;
      Look at hpijx to understand the reason of that which relies in memory size    double l1;
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fx=func(x);
      survival function given by stepm (the optimization length). Unfortunately it    for (i=1;i<=npar;i++) p2[i]=x[i];
      means that if the survival funtion is printed only each two years of age and if    for(l=0 ; l <=lmax; l++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      l1=pow(10,l);
      results. So we changed our mind and took the option of the best precision.      delts=delt;
   */      for(k=1 ; k <kmax; k=k+1){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        delt = delta*(l1*k);
   agelim = AGESUP;        p2[theta]=x[theta] +delt;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        k1=func(p2)-fx;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        p2[theta]=x[theta]-delt;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        k2=func(p2)-fx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     gp=matrix(0,nhstepm,1,nlstate);        
     gm=matrix(0,nhstepm,1,nlstate);  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(theta=1; theta <=npar; theta++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1; i<=npar; i++){ /* Computes gradient */  #endif
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            k=kmax;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       if (popbased==1) {          k=kmax; l=lmax*10.;
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=probs[(int)age][i][ij];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       }          delts=delt;
          }
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    delti[theta]=delts;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    return res; 
         }    
       }  }
      
       for(i=1; i<=npar; i++) /* Computes gradient */  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int l=1, l1, lmax=20;
      double k1,k2,k3,k4,res,fx;
       if (popbased==1) {    double p2[NPARMAX+1];
         for(i=1; i<=nlstate;i++)    int k;
           prlim[i][i]=probs[(int)age][i][ij];  
       }    fx=func(x);
     for (k=1; k<=2; k++) {
       for(j=1; j<= nlstate; j++){      for (i=1;i<=npar;i++) p2[i]=x[i];
         for(h=0; h<=nhstepm; h++){      p2[thetai]=x[thetai]+delti[thetai]/k;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      k1=func(p2)-fx;
         }    
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(j=1; j<= nlstate; j++)      k2=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){    
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      p2[thetai]=x[thetai]-delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     } /* End theta */      k3=func(p2)-fx;
     
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(h=0; h<=nhstepm; h++)      k4=func(p2)-fx;
       for(j=1; j<=nlstate;j++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         for(theta=1; theta <=npar; theta++)  #ifdef DEBUG
           trgradg[h][j][theta]=gradg[h][theta][j];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  #endif
     for(i=1;i<=nlstate;i++)    }
       for(j=1;j<=nlstate;j++)    return res;
         vareij[i][j][(int)age] =0.;  }
   
     for(h=0;h<=nhstepm;h++){  /************** Inverse of matrix **************/
       for(k=0;k<=nhstepm;k++){  void ludcmp(double **a, int n, int *indx, double *d) 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  { 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int i,imax,j,k; 
         for(i=1;i<=nlstate;i++)    double big,dum,sum,temp; 
           for(j=1;j<=nlstate;j++)    double *vv; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;   
       }    vv=vector(1,n); 
     }    *d=1.0; 
     for (i=1;i<=n;i++) { 
     fprintf(ficresvij,"%.0f ",age );      big=0.0; 
     for(i=1; i<=nlstate;i++)      for (j=1;j<=n;j++) 
       for(j=1; j<=nlstate;j++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       }      vv[i]=1.0/big; 
     fprintf(ficresvij,"\n");    } 
     free_matrix(gp,0,nhstepm,1,nlstate);    for (j=1;j<=n;j++) { 
     free_matrix(gm,0,nhstepm,1,nlstate);      for (i=1;i<j;i++) { 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        sum=a[i][j]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        a[i][j]=sum; 
   } /* End age */      } 
        big=0.0; 
   free_vector(xp,1,npar);      for (i=j;i<=n;i++) { 
   free_matrix(doldm,1,nlstate,1,npar);        sum=a[i][j]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
 }        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
 /************ Variance of prevlim ******************/          big=dum; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          imax=i; 
 {        } 
   /* Variance of prevalence limit */      } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      if (j != imax) { 
   double **newm;        for (k=1;k<=n;k++) { 
   double **dnewm,**doldm;          dum=a[imax][k]; 
   int i, j, nhstepm, hstepm;          a[imax][k]=a[j][k]; 
   int k, cptcode;          a[j][k]=dum; 
   double *xp;        } 
   double *gp, *gm;        *d = -(*d); 
   double **gradg, **trgradg;        vv[imax]=vv[j]; 
   double age,agelim;      } 
   int theta;      indx[j]=imax; 
          if (a[j][j] == 0.0) a[j][j]=TINY; 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      if (j != n) { 
   fprintf(ficresvpl,"# Age");        dum=1.0/(a[j][j]); 
   for(i=1; i<=nlstate;i++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       fprintf(ficresvpl," %1d-%1d",i,i);      } 
   fprintf(ficresvpl,"\n");    } 
     free_vector(vv,1,n);  /* Doesn't work */
   xp=vector(1,npar);  ;
   dnewm=matrix(1,nlstate,1,npar);  } 
   doldm=matrix(1,nlstate,1,nlstate);  
    void lubksb(double **a, int n, int *indx, double b[]) 
   hstepm=1*YEARM; /* Every year of age */  { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    int i,ii=0,ip,j; 
   agelim = AGESUP;    double sum; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (i=1;i<=n;i++) { 
     if (stepm >= YEARM) hstepm=1;      ip=indx[i]; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      sum=b[ip]; 
     gradg=matrix(1,npar,1,nlstate);      b[ip]=b[i]; 
     gp=vector(1,nlstate);      if (ii) 
     gm=vector(1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     for(theta=1; theta <=npar; theta++){      b[i]=sum; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(i=1;i<=nlstate;i++)      b[i]=sum/a[i][i]; 
         gp[i] = prlim[i][i];    } 
      } 
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /************ Frequencies ********************/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       for(i=1;i<=nlstate;i++)  {  /* Some frequencies */
         gm[i] = prlim[i][i];    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       for(i=1;i<=nlstate;i++)    int first;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double ***freq; /* Frequencies */
     } /* End theta */    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     trgradg =matrix(1,nlstate,1,npar);    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
     for(j=1; j<=nlstate;j++)    
       for(theta=1; theta <=npar; theta++)    pp=vector(1,nlstate);
         trgradg[j][theta]=gradg[theta][j];    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     for(i=1;i<=nlstate;i++)    strcat(fileresp,fileres);
       varpl[i][(int)age] =0.;    if((ficresp=fopen(fileresp,"w"))==NULL) {
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     for(i=1;i<=nlstate;i++)      exit(0);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     fprintf(ficresvpl,"%.0f ",age );    j1=0;
     for(i=1; i<=nlstate;i++)    
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    j=cptcoveff;
     fprintf(ficresvpl,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    first=1;
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    for(k1=1; k1<=j;k1++){
   } /* End age */      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   free_vector(xp,1,npar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   free_matrix(doldm,1,nlstate,1,npar);          scanf("%d", i);*/
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
 }            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      for (i=1; i<=nlstate; i++)  
 {        for(m=iagemin; m <= iagemax+3; m++)
   int i, j, i1, k1, j1, z1;          prop[i][m]=0;
   int k=0, cptcode;        
   double **dnewm,**doldm;        dateintsum=0;
   double *xp;        k2cpt=0;
   double *gp, *gm;        for (i=1; i<=imx; i++) {
   double **gradg, **trgradg;          bool=1;
   double age,agelim, cov[NCOVMAX];          if  (cptcovn>0) {
   int theta;            for (z1=1; z1<=cptcoveff; z1++) 
   char fileresprob[FILENAMELENGTH];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   strcpy(fileresprob,"prob");          }
   strcat(fileresprob,fileres);          if (bool==1){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            for(m=firstpass; m<=lastpass; m++){
     printf("Problem with resultfile: %s\n", fileresprob);              k2=anint[m][i]+(mint[m][i]/12.);
   }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresprob,"# Age");                if (m<lastpass) {
   for(i=1; i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for(j=1; j<=(nlstate+ndeath);j++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                }
                 
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficresprob,"\n");                  dateintsum=dateintsum+k2;
                   k2cpt++;
                 }
   xp=vector(1,npar);                /*}*/
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          }
          }
   cov[1]=1;         
   j=cptcoveff;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  fprintf(ficresp, "#Local time at start: %s", strstart);
   j1=0;        if  (cptcovn>0) {
   for(k1=1; k1<=1;k1++){          fprintf(ficresp, "\n#********** Variable "); 
     for(i1=1; i1<=ncodemax[k1];i1++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     j1++;          fprintf(ficresp, "**********\n#");
         }
     if  (cptcovn>0) {        for(i=1; i<=nlstate;i++) 
       fprintf(ficresprob, "\n#********** Variable ");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficresp, "\n");
       fprintf(ficresprob, "**********\n#");        
     }        for(i=iagemin; i <= iagemax+3; i++){
              if(i==iagemax+3){
       for (age=bage; age<=fage; age ++){            fprintf(ficlog,"Total");
         cov[2]=age;          }else{
         for (k=1; k<=cptcovn;k++) {            if(first==1){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              first=0;
                        printf("See log file for details...\n");
         }            }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            fprintf(ficlog,"Age %d", i);
         for (k=1; k<=cptcovprod;k++)          }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         gradg=matrix(1,npar,1,9);              pp[jk] += freq[jk][m][i]; 
         trgradg=matrix(1,9,1,npar);          }
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=1; jk <=nlstate ; jk++){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=-1, pos=0; m <=0 ; m++)
                  pos += freq[jk][m][i];
         for(theta=1; theta <=npar; theta++){            if(pp[jk]>=1.e-10){
           for(i=1; i<=npar; i++)              if(first==1){
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                        }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                      }else{
           k=0;              if(first==1)
           for(i=1; i<= (nlstate+ndeath); i++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             for(j=1; j<=(nlstate+ndeath);j++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               k=k+1;            }
               gp[k]=pmmij[i][j];          }
             }  
           }          for(jk=1; jk <=nlstate ; jk++){
                      for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           for(i=1; i<=npar; i++)              pp[jk] += freq[jk][m][i];
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          }       
              for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            pos += pp[jk];
           k=0;            posprop += prop[jk][i];
           for(i=1; i<=(nlstate+ndeath); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){          for(jk=1; jk <=nlstate ; jk++){
               k=k+1;            if(pos>=1.e-5){
               gm[k]=pmmij[i][j];              if(first==1)
             }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                  }else{
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              if(first==1)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            if( i <= iagemax){
           for(theta=1; theta <=npar; theta++)              if(pos>=1.e-5){
             trgradg[j][theta]=gradg[theta][j];                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                        /*probs[i][jk][j1]= pp[jk]/pos;*/
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);              }
                      else
         pmij(pmmij,cov,ncovmodel,x,nlstate);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                    }
         k=0;          }
         for(i=1; i<=(nlstate+ndeath); i++){          
           for(j=1; j<=(nlstate+ndeath);j++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
             k=k+1;            for(m=-1; m <=nlstate+ndeath; m++)
             gm[k]=pmmij[i][j];              if(freq[jk][m][i] !=0 ) {
           }              if(first==1)
         }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
      /*printf("\n%d ",(int)age);              }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          if(i <= iagemax)
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            fprintf(ficresp,"\n");
      }*/          if(first==1)
             printf("Others in log...\n");
         fprintf(ficresprob,"\n%d ",(int)age);          fprintf(ficlog,"\n");
         }
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      }
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    }
      dateintmean=dateintsum/k2cpt; 
       }   
     }    fclose(ficresp);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    free_vector(pp,1,nlstate);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* End of Freq */
   }  }
   free_vector(xp,1,npar);  
   fclose(ficresprob);  /************ Prevalence ********************/
    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 }  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
 /******************* Printing html file ***********/       We still use firstpass and lastpass as another selection.
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    */
                   int lastpass, int stepm, int weightopt, char model[],\   
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    double ***freq; /* Frequencies */
                   char version[], int popforecast, int estepm ,\    double *pp, **prop;
                   double jprev1, double mprev1,double anprev1, \    double pos,posprop; 
                   double jprev2, double mprev2,double anprev2){    double  y2; /* in fractional years */
   int jj1, k1, i1, cpt;    int iagemin, iagemax;
   FILE *fichtm;  
   /*char optionfilehtm[FILENAMELENGTH];*/    iagemin= (int) agemin;
     iagemax= (int) agemax;
   strcpy(optionfilehtm,optionfile);    /*pp=vector(1,nlstate);*/
   strcat(optionfilehtm,".htm");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);    j1=0;
   }    
     j=cptcoveff;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    
 \n    for(k1=1; k1<=j;k1++){
 Total number of observations=%d <br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        j1++;
 <hr  size=\"2\" color=\"#EC5E5E\">        
  <ul><li>Parameter files<br>\n        for (i=1; i<=nlstate; i++)  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          for(m=iagemin; m <= iagemax+3; m++)
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);            prop[i][m]=0.0;
        
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          bool=1;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          if  (cptcovn>0) {
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Life expectancies by age and initial health status (estepm=%2d months):              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    <a href=\"e%s\">e%s</a> <br>\n</li>", \                bool=0;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          } 
           if (bool==1) { 
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
  if(popforecast==1) fprintf(fichtm,"\n                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                  prop[s[m][i]][iagemax+3] += weight[i]; 
         <br>",fileres,fileres,fileres,fileres);                } 
  else              }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            } /* end selection of waves */
 fprintf(fichtm," <li>Graphs</li><p>");          }
         }
  m=cptcoveff;        for(i=iagemin; i <= iagemax+3; i++){  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
  jj1=0;            posprop += prop[jk][i]; 
  for(k1=1; k1<=m;k1++){          } 
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;          for(jk=1; jk <=nlstate ; jk++){     
      if (cptcovn > 0) {            if( i <=  iagemax){ 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              if(posprop>=1.e-5){ 
        for (cpt=1; cpt<=cptcoveff;cpt++)                probs[i][jk][j1]= prop[jk][i]/posprop;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              } 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            } 
      }          }/* end jk */ 
      /* Pij */        }/* end i */ 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      } /* end i1 */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        } /* end k1 */
      /* Quasi-incidences */    
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /*free_vector(pp,1,nlstate);*/
        /* Stable prevalence in each health state */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
        for(cpt=1; cpt<nlstate;cpt++){  }  /* End of prevalence */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /************* Waves Concatenation ***************/
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  {
 interval) in state (%d): v%s%d%d.png <br>    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         Death is a valid wave (if date is known).
      }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      for(cpt=1; cpt<=nlstate;cpt++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>       and mw[mi+1][i]. dh depends on stepm.
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       */
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    int i, mi, m;
 health expectancies in states (1) and (2): e%s%d.png<br>    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       double sum=0., jmean=0.;*/
 fprintf(fichtm,"\n</body>");    int first;
    }    int j, k=0,jk, ju, jl;
  }    double sum=0.;
 fclose(fichtm);    first=0;
 }    jmin=1e+5;
     jmax=-1;
 /******************* Gnuplot file **************/    jmean=0.;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    for(i=1; i<=imx; i++){
       mi=0;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      m=firstpass;
   int ng;      while(s[m][i] <= nlstate){
   strcpy(optionfilegnuplot,optionfilefiname);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   strcat(optionfilegnuplot,".gp.txt");          mw[++mi][i]=m;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        if(m >=lastpass)
     printf("Problem with file %s",optionfilegnuplot);          break;
   }        else
           m++;
 #ifdef windows      }/* end while */
     fprintf(ficgp,"cd \"%s\" \n",pathc);      if (s[m][i] > nlstate){
 #endif        mi++;     /* Death is another wave */
 m=pow(2,cptcoveff);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
  /* 1eme*/        mw[mi][i]=m;
   for (cpt=1; cpt<= nlstate ; cpt ++) {      }
    for (k1=1; k1<= m ; k1 ++) {  
       wav[i]=mi;
 #ifdef windows      if(mi==0){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        nbwarn++;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        if(first==0){
 #endif          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 #ifdef unix          first=1;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        if(first==1){
 #endif          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
 for (i=1; i<= nlstate ; i ++) {      } /* end mi==0 */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } /* End individuals */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    for(i=1; i<=imx; i++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      for(mi=1; mi<wav[i];mi++){
     for (i=1; i<= nlstate ; i ++) {        if (stepm <=0)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          dh[mi][i]=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        else{
 }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            if (agedc[i] < 2*AGESUP) {
      for (i=1; i<= nlstate ; i ++) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(j==0) j=1;  /* Survives at least one month after exam */
   else fprintf(ficgp," \%%*lf (\%%*lf)");              else if(j<0){
 }                  nberr++;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #ifdef unix                j=1; /* Temporary Dangerous patch */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 #endif                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }              }
   /*2 eme*/              k=k+1;
               if (j >= jmax) jmax=j;
   for (k1=1; k1<= m ; k1 ++) {              if (j <= jmin) jmin=j;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);              sum=sum+j;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                  /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;          }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          else{
       for (j=1; j<= nlstate+1 ; j ++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }              k=k+1;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            if (j >= jmax) jmax=j;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            else if (j <= jmin)jmin=j;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       for (j=1; j<= nlstate+1 ; j ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if(j<0){
         else fprintf(ficgp," \%%*lf (\%%*lf)");              nberr++;
 }                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\" t\"\" w l 0,");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            sum=sum+j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          jk= j/stepm;
 }            jl= j -jk*stepm;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          ju= j -(jk+1)*stepm;
       else fprintf(ficgp,"\" t\"\" w l 0,");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     }            if(jl==0){
   }              dh[mi][i]=jk;
                bh[mi][i]=0;
   /*3eme*/            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk+1;
     for (cpt=1; cpt<= nlstate ; cpt ++) {              bh[mi][i]=ju;
       k=2+nlstate*(2*cpt-2);            }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }else{
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            if(jl <= -ju){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              dh[mi][i]=jk;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              bh[mi][i]=jl;       /* bias is positive if real duration
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                                   * is higher than the multiple of stepm and negative otherwise.
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                                   */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            else{
               dh[mi][i]=jk+1;
 */              bh[mi][i]=ju;
       for (i=1; i< nlstate ; i ++) {            }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
       }              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   }            }
            } /* end if mle */
   /* CV preval stat */        }
     for (k1=1; k1<= m ; k1 ++) {      } /* end wave */
     for (cpt=1; cpt<nlstate ; cpt ++) {    }
       k=3;    jmean=sum/k;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);  /*********** Tricode ****************************/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  void tricode(int *Tvar, int **nbcode, int imx)
        {
       l=3+(nlstate+ndeath)*cpt;    
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       for (i=1; i< nlstate ; i ++) {    int cptcode=0;
         l=3+(nlstate+ndeath)*cpt;    cptcoveff=0; 
         fprintf(ficgp,"+$%d",l+i+1);   
       }    for (k=0; k<maxncov; k++) Ndum[k]=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for (k=1; k<=7; k++) ncodemax[k]=0;
     }  
   }      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   /* proba elementaires */                                 modality*/ 
    for(i=1,jk=1; i <=nlstate; i++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     for(k=1; k <=(nlstate+ndeath); k++){        Ndum[ij]++; /*store the modality */
       if (k != i) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         for(j=1; j <=ncovmodel; j++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                                 Tvar[j]. If V=sex and male is 0 and 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                                         female is 1, then  cptcode=1.*/
           jk++;      }
           fprintf(ficgp,"\n");  
         }      for (i=0; i<=cptcode; i++) {
       }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     }      }
    }  
       ij=1; 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      for (i=1; i<=ncodemax[j]; i++) {
      for(jk=1; jk <=m; jk++) {        for (k=0; k<= maxncov; k++) {
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          if (Ndum[k] != 0) {
        if (ng==2)            nbcode[Tvar[j]][ij]=k; 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
        else            
          fprintf(ficgp,"\nset title \"Probability\"\n");            ij++;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          }
        i=1;          if (ij > ncodemax[j]) break; 
        for(k2=1; k2<=nlstate; k2++) {        }  
          k3=i;      } 
          for(k=1; k<=(nlstate+ndeath); k++) {    }  
            if (k != k2){  
              if(ng==2)   for (k=0; k< maxncov; k++) Ndum[k]=0;
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);  
              else   for (i=1; i<=ncovmodel-2; i++) { 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
              ij=1;     ij=Tvar[i];
              for(j=3; j <=ncovmodel; j++) {     Ndum[ij]++;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;   ij=1;
                }   for (i=1; i<= maxncov; i++) {
                else     if((Ndum[i]!=0) && (i<=ncovcol)){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       Tvaraff[ij]=i; /*For printing */
              }       ij++;
              fprintf(ficgp,")/(1");     }
                 }
              for(k1=1; k1 <=nlstate; k1++){     
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   cptcoveff=ij-1; /*Number of simple covariates*/
                ij=1;  }
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*********** Health Expectancies ****************/
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
                  }  
                  else  {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* Health expectancies */
                }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
                fprintf(ficgp,")");    double age, agelim, hf;
              }    double ***p3mat,***varhe;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double **dnewm,**doldm;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    double *xp;
              i=i+ncovmodel;    double **gp, **gm;
            }    double ***gradg, ***trgradg;
          }    int theta;
        }  
      }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    }    xp=vector(1,npar);
    fclose(ficgp);    dnewm=matrix(1,nlstate*nlstate,1,npar);
 }  /* end gnuplot */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     fprintf(ficreseij,"# Local time at start: %s", strstart);
 /*************** Moving average **************/    fprintf(ficreseij,"# Health expectancies\n");
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
   int i, cpt, cptcod;      for(j=1; j<=nlstate;j++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       for (i=1; i<=nlstate;i++)    fprintf(ficreseij,"\n");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    }
       for (i=1; i<=nlstate;i++){    else  hstepm=estepm;   
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* We compute the life expectancy from trapezoids spaced every estepm months
           for (cpt=0;cpt<=4;cpt++){     * This is mainly to measure the difference between two models: for example
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];     * if stepm=24 months pijx are given only every 2 years and by summing them
           }     * we are calculating an estimate of the Life Expectancy assuming a linear 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
         * hypothesis. A more precise result, taking into account a more precise
 }     * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
 /************** Forecasting ******************/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       Look at hpijx to understand the reason of that which relies in memory size
   int *popage;       and note for a fixed period like estepm months */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double *popeffectif,*popcount;       survival function given by stepm (the optimization length). Unfortunately it
   double ***p3mat;       means that if the survival funtion is printed only each two years of age and if
   char fileresf[FILENAMELENGTH];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
  agelim=AGESUP;    */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    agelim=AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        /* nhstepm age range expressed in number of stepm */
   strcpy(fileresf,"f");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   strcat(fileresf,fileres);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if((ficresf=fopen(fileresf,"w"))==NULL) {      /* if (stepm >= YEARM) hstepm=1;*/
     printf("Problem with forecast resultfile: %s\n", fileresf);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   if (mobilav==1) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     movingaverage(agedeb, fage, ageminpar, mobaverage);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   }   
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (stepm<=12) stepsize=1;  
        /* Computing  Variances of health expectancies */
   agelim=AGESUP;  
         for(theta=1; theta <=npar; theta++){
   hstepm=1;        for(i=1; i<=npar; i++){ 
   hstepm=hstepm/stepm;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   yp1=modf(dateintmean,&yp);        }
   anprojmean=yp;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   yp2=modf((yp1*12),&yp);    
   mprojmean=yp;        cptj=0;
   yp1=modf((yp2*30.5),&yp);        for(j=1; j<= nlstate; j++){
   jprojmean=yp;          for(i=1; i<=nlstate; i++){
   if(jprojmean==0) jprojmean=1;            cptj=cptj+1;
   if(mprojmean==0) jprojmean=1;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            }
            }
   for(cptcov=1;cptcov<=i2;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       
       k=k+1;       
       fprintf(ficresf,"\n#******");        for(i=1; i<=npar; i++) 
       for(j=1;j<=cptcoveff;j++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        
       fprintf(ficresf,"******\n");        cptj=0;
       fprintf(ficresf,"# StartingAge FinalAge");        for(j=1; j<= nlstate; j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          for(i=1;i<=nlstate;i++){
                  cptj=cptj+1;
                  for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              }
           }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=1; j<= nlstate*nlstate; j++)
           nhstepm = nhstepm/hstepm;          for(h=0; h<=nhstepm-1; h++){
                      gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;       } 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       
          /* End theta */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }       for(h=0; h<=nhstepm-1; h++)
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<=nlstate*nlstate;j++)
               kk1=0.;kk2=0;          for(theta=1; theta <=npar; theta++)
               for(i=1; i<=nlstate;i++) {                          trgradg[h][j][theta]=gradg[h][theta][j];
                 if (mobilav==1)       
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {       for(i=1;i<=nlstate*nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=1;j<=nlstate*nlstate;j++)
                 }          varhe[i][j][(int)age] =0.;
                  
               }       printf("%d|",(int)age);fflush(stdout);
               if (h==(int)(calagedate+12*cpt)){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                 fprintf(ficresf," %.3f", kk1);       for(h=0;h<=nhstepm-1;h++){
                                for(k=0;k<=nhstepm-1;k++){
               }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           }          for(i=1;i<=nlstate*nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(j=1;j<=nlstate*nlstate;j++)
         }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
     }      }
   }      /* Computing expectancies */
              for(i=1; i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fclose(ficresf);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 }            
 /************** Forecasting ******************/  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
            }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;      fprintf(ficreseij,"%3.0f",age );
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      cptj=0;
   double *popeffectif,*popcount;      for(i=1; i<=nlstate;i++)
   double ***p3mat,***tabpop,***tabpopprev;        for(j=1; j<=nlstate;j++){
   char filerespop[FILENAMELENGTH];          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficreseij,"\n");
   agelim=AGESUP;     
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerespop,"pop");    }
   strcat(filerespop,fileres);    printf("\n");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(ficlog,"\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }    free_vector(xp,1,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************ Variance ******************/
     movingaverage(agedeb, fage, ageminpar, mobaverage);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   }  {
     /* Variance of health expectancies */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   if (stepm<=12) stepsize=1;    /* double **newm;*/
      double **dnewm,**doldm;
   agelim=AGESUP;    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   hstepm=1;    int k, cptcode;
   hstepm=hstepm/stepm;    double *xp;
      double **gp, **gm;  /* for var eij */
   if (popforecast==1) {    double ***gradg, ***trgradg; /*for var eij */
     if((ficpop=fopen(popfile,"r"))==NULL) {    double **gradgp, **trgradgp; /* for var p point j */
       printf("Problem with population file : %s\n",popfile);exit(0);    double *gpp, *gmp; /* for var p point j */
     }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     popage=ivector(0,AGESUP);    double ***p3mat;
     popeffectif=vector(0,AGESUP);    double age,agelim, hf;
     popcount=vector(0,AGESUP);    double ***mobaverage;
        int theta;
     i=1;      char digit[4];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    char digitp[25];
      
     imx=i;    char fileresprobmorprev[FILENAMELENGTH];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }    if(popbased==1){
       if(mobilav!=0)
   for(cptcov=1;cptcov<=i2;cptcov++){        strcpy(digitp,"-populbased-mobilav-");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      else strcpy(digitp,"-populbased-nomobil-");
       k=k+1;    }
       fprintf(ficrespop,"\n#******");    else 
       for(j=1;j<=cptcoveff;j++) {      strcpy(digitp,"-stablbased-");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    if (mobilav!=0) {
       fprintf(ficrespop,"******\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficrespop,"# Age");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       if (popforecast==1)  fprintf(ficrespop," [Population]");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
            }
       for (cpt=0; cpt<=0;cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
            strcpy(fileresprobmorprev,"prmorprev"); 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    sprintf(digit,"%-d",ij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           nhstepm = nhstepm/hstepm;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
              strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprobmorprev,fileres);
           oldm=oldms;savm=savms;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with resultfile: %s\n", fileresprobmorprev);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   
             }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
               kk1=0.;kk2=0;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               for(i=1; i<=nlstate;i++) {                  fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                 if (mobilav==1)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      fprintf(ficresprobmorprev," p.%-d SE",j);
                 else {      for(i=1; i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                 }    }  
               }    fprintf(ficresprobmorprev,"\n");
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficgp,"\n# Routine varevsij");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               }  /*   } */
             }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             for(i=1; i<=nlstate;i++){   fprintf(ficresvij, "#Local time at start: %s", strstart);
               kk1=0.;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                 for(j=1; j<=nlstate;j++){    fprintf(ficresvij,"# Age");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    for(i=1; i<=nlstate;i++)
                 }      for(j=1; j<=nlstate;j++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
             }    fprintf(ficresvij,"\n");
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    xp=vector(1,npar);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    dnewm=matrix(1,nlstate,1,npar);
           }    doldm=matrix(1,nlstate,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   /******/    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    if(estepm < stepm){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
           nhstepm = nhstepm/hstepm;    }
              else  hstepm=estepm;   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* For example we decided to compute the life expectancy with the smallest unit */
           oldm=oldms;savm=savms;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         nhstepm is the number of hstepm from age to agelim 
           for (h=0; h<=nhstepm; h++){       nstepm is the number of stepm from age to agelin. 
             if (h==(int) (calagedate+YEARM*cpt)) {       Look at hpijx to understand the reason of that which relies in memory size
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       and note for a fixed period like k years */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             for(j=1; j<=nlstate+ndeath;j++) {       survival function given by stepm (the optimization length). Unfortunately it
               kk1=0.;kk2=0;       means that if the survival funtion is printed every two years of age and if
               for(i=1; i<=nlstate;i++) {                     you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           results. So we changed our mind and took the option of the best precision.
               }    */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             }    agelim = AGESUP;
           }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   
   if (popforecast==1) {      for(theta=1; theta <=npar; theta++){
     free_ivector(popage,0,AGESUP);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     free_vector(popeffectif,0,AGESUP);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_vector(popcount,0,AGESUP);        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);        if (popbased==1) {
 }          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
 /***********************************************/              prlim[i][i]=probs[(int)age][i][ij];
 /**************** Main Program *****************/          }else{ /* mobilav */ 
 /***********************************************/            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
 int main(int argc, char *argv[])          }
 {        }
     
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for(j=1; j<= nlstate; j++){
   double agedeb, agefin,hf;          for(h=0; h<=nhstepm; h++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   double fret;          }
   double **xi,tmp,delta;        }
         /* This for computing probability of death (h=1 means
   double dum; /* Dummy variable */           computed over hstepm matrices product = hstepm*stepm months) 
   double ***p3mat;           as a weighted average of prlim.
   int *indx;        */
   char line[MAXLINE], linepar[MAXLINE];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char title[MAXLINE];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        }    
          /* end probability of death */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   char filerest[FILENAMELENGTH];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char fileregp[FILENAMELENGTH];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   char popfile[FILENAMELENGTH];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];   
   int firstobs=1, lastobs=10;        if (popbased==1) {
   int sdeb, sfin; /* Status at beginning and end */          if(mobilav ==0){
   int c,  h , cpt,l;            for(i=1; i<=nlstate;i++)
   int ju,jl, mi;              prlim[i][i]=probs[(int)age][i][ij];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          }else{ /* mobilav */ 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            for(i=1; i<=nlstate;i++)
   int mobilav=0,popforecast=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
   int hstepm, nhstepm;          }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        }
   
   double bage, fage, age, agelim, agebase;        for(j=1; j<= nlstate; j++){
   double ftolpl=FTOL;          for(h=0; h<=nhstepm; h++){
   double **prlim;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   double *severity;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   double ***param; /* Matrix of parameters */          }
   double  *p;        }
   double **matcov; /* Matrix of covariance */        /* This for computing probability of death (h=1 means
   double ***delti3; /* Scale */           computed over hstepm matrices product = hstepm*stepm months) 
   double *delti; /* Scale */           as a weighted average of prlim.
   double ***eij, ***vareij;        */
   double **varpl; /* Variances of prevalence limits by age */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double *epj, vepp;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   double kk1, kk2;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        }    
          /* end probability of death */
   
   char version[80]="Imach version 0.8f, May 2002, INED-EUROREVES ";        for(j=1; j<= nlstate; j++) /* vareij */
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   char z[1]="c", occ;  
 #include <sys/time.h>        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 #include <time.h>          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }
    
   /* long total_usecs;      } /* End theta */
   struct timeval start_time, end_time;  
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
   printf("\n%s",version);          for(theta=1; theta <=npar; theta++)
   if(argc <=1){            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
   else{          trgradgp[j][theta]=gradgp[theta][j];
     strcpy(pathtot,argv[1]);    
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /*cygwin_split_path(pathtot,path,optionfile);      for(i=1;i<=nlstate;i++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        for(j=1;j<=nlstate;j++)
   /* cutv(path,optionfile,pathtot,'\\');*/          vareij[i][j][(int)age] =0.;
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      for(h=0;h<=nhstepm;h++){
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for(k=0;k<=nhstepm;k++){
   chdir(path);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   replace(pathc,path);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
 /*-------- arguments in the command line --------*/            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcpy(fileres,"r");        }
   strcat(fileres, optionfilefiname);      }
   strcat(fileres,".txt");    /* Other files have txt extension */    
       /* pptj */
   /*---------arguments file --------*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     printf("Problem with optionfile %s\n",optionfile);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     goto end;          varppt[j][i]=doldmp[j][i];
   }      /* end ppptj */
       /*  x centered again */
   strcpy(filereso,"o");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   strcat(filereso,fileres);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   if((ficparo=fopen(filereso,"w"))==NULL) {   
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      if (popbased==1) {
   }        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */            prlim[i][i]=probs[(int)age][i][ij];
   while((c=getc(ficpar))=='#' && c!= EOF){        }else{ /* mobilav */ 
     ungetc(c,ficpar);          for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);            prlim[i][i]=mobaverage[(int)age][i][ij];
     puts(line);        }
     fputs(line,ficparo);      }
   }               
   ungetc(c,ficpar);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);         as a weighted average of prlim.
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
 while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     ungetc(c,ficpar);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     fgets(line, MAXLINE, ficpar);      }    
     puts(line);      /* end probability of death */
     fputs(line,ficparo);  
   }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   ungetc(c,ficpar);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
            for(i=1; i<=nlstate;i++){
   covar=matrix(0,NCOVMAX,1,n);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   cptcovn=0;        }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      } 
       fprintf(ficresprobmorprev,"\n");
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   /* Read guess parameters */        for(j=1; j<=nlstate;j++){
   /* Reads comments: lines beginning with '#' */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      fprintf(ficresvij,"\n");
     fgets(line, MAXLINE, ficpar);      free_matrix(gp,0,nhstepm,1,nlstate);
     puts(line);      free_matrix(gm,0,nhstepm,1,nlstate);
     fputs(line,ficparo);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   ungetc(c,ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     for(i=1; i <=nlstate; i++)    free_vector(gmp,nlstate+1,nlstate+ndeath);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       printf("%1d%1d",i,j);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         fscanf(ficpar," %lf",&param[i][j][k]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         printf(" %lf",param[i][j][k]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficparo," %lf",param[i][j][k]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       fscanf(ficpar,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       printf("\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficparo,"\n");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   p=param[1][1];    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    
   /* Reads comments: lines beginning with '#' */    free_vector(xp,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(doldm,1,nlstate,1,nlstate);
     ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     puts(line);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     fputs(line,ficparo);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);    fclose(ficresprobmorprev);
     fflush(ficgp);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fflush(fichtm); 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  }  /* end varevsij */
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){  /************ Variance of prevlim ******************/
       fscanf(ficpar,"%1d%1d",&i1,&j1);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       printf("%1d%1d",i,j);  {
       fprintf(ficparo,"%1d%1d",i1,j1);    /* Variance of prevalence limit */
       for(k=1; k<=ncovmodel;k++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double **newm;
         printf(" %le",delti3[i][j][k]);    double **dnewm,**doldm;
         fprintf(ficparo," %le",delti3[i][j][k]);    int i, j, nhstepm, hstepm;
       }    int k, cptcode;
       fscanf(ficpar,"\n");    double *xp;
       printf("\n");    double *gp, *gm;
       fprintf(ficparo,"\n");    double **gradg, **trgradg;
     }    double age,agelim;
   }    int theta;
   delti=delti3[1][1];    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
      fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficresvpl,"# Age");
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresvpl,"\n");
     puts(line);  
     fputs(line,ficparo);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   ungetc(c,ficpar);    doldm=matrix(1,nlstate,1,nlstate);
      
   matcov=matrix(1,npar,1,npar);    hstepm=1*YEARM; /* Every year of age */
   for(i=1; i <=npar; i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fscanf(ficpar,"%s",&str);    agelim = AGESUP;
     printf("%s",str);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficparo,"%s",str);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for(j=1; j <=i; j++){      if (stepm >= YEARM) hstepm=1;
       fscanf(ficpar," %le",&matcov[i][j]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       printf(" %.5le",matcov[i][j]);      gradg=matrix(1,npar,1,nlstate);
       fprintf(ficparo," %.5le",matcov[i][j]);      gp=vector(1,nlstate);
     }      gm=vector(1,nlstate);
     fscanf(ficpar,"\n");  
     printf("\n");      for(theta=1; theta <=npar; theta++){
     fprintf(ficparo,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for(i=1; i <=npar; i++)        }
     for(j=i+1;j<=npar;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       matcov[i][j]=matcov[j][i];        for(i=1;i<=nlstate;i++)
              gp[i] = prlim[i][i];
   printf("\n");      
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     /*-------- Rewriting paramater file ----------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      strcpy(rfileres,"r");    /* "Rparameterfile */        for(i=1;i<=nlstate;i++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          gm[i] = prlim[i][i];
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(i=1;i<=nlstate;i++)
     if((ficres =fopen(rfileres,"w"))==NULL) {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      } /* End theta */
     }  
     fprintf(ficres,"#%s\n",version);      trgradg =matrix(1,nlstate,1,npar);
      
     /*-------- data file ----------*/      for(j=1; j<=nlstate;j++)
     if((fic=fopen(datafile,"r"))==NULL)    {        for(theta=1; theta <=npar; theta++)
       printf("Problem with datafile: %s\n", datafile);goto end;          trgradg[j][theta]=gradg[theta][j];
     }  
       for(i=1;i<=nlstate;i++)
     n= lastobs;        varpl[i][(int)age] =0.;
     severity = vector(1,maxwav);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     outcome=imatrix(1,maxwav+1,1,n);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     num=ivector(1,n);      for(i=1;i<=nlstate;i++)
     moisnais=vector(1,n);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     annais=vector(1,n);  
     moisdc=vector(1,n);      fprintf(ficresvpl,"%.0f ",age );
     andc=vector(1,n);      for(i=1; i<=nlstate;i++)
     agedc=vector(1,n);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     cod=ivector(1,n);      fprintf(ficresvpl,"\n");
     weight=vector(1,n);      free_vector(gp,1,nlstate);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      free_vector(gm,1,nlstate);
     mint=matrix(1,maxwav,1,n);      free_matrix(gradg,1,npar,1,nlstate);
     anint=matrix(1,maxwav,1,n);      free_matrix(trgradg,1,nlstate,1,npar);
     s=imatrix(1,maxwav+1,1,n);    } /* End age */
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);    free_vector(xp,1,npar);
     ncodemax=ivector(1,8);    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {  }
       if ((i >= firstobs) && (i <=lastobs)) {  
          /************ Variance of one-step probabilities  ******************/
         for (j=maxwav;j>=1;j--){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  {
           strcpy(line,stra);    int i, j=0,  i1, k1, l1, t, tj;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int k2, l2, j1,  z1;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int k=0,l, cptcode;
         }    int first=1, first1;
            double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double **dnewm,**doldm;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double *xp;
     double *gp, *gm;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double **gradg, **trgradg;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double **mu;
     double age,agelim, cov[NCOVMAX];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         for (j=ncovcol;j>=1;j--){    int theta;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    char fileresprob[FILENAMELENGTH];
         }    char fileresprobcov[FILENAMELENGTH];
         num[i]=atol(stra);    char fileresprobcor[FILENAMELENGTH];
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    double ***varpij;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
     strcpy(fileresprob,"prob"); 
         i=i+1;    strcat(fileresprob,fileres);
       }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprob);
     /* printf("ii=%d", ij);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        scanf("%d",i);*/    }
   imx=i-1; /* Number of individuals */    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   /* for (i=1; i<=imx; i++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      printf("Problem with resultfile: %s\n", fileresprobcov);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    }
     }*/    strcpy(fileresprobcor,"probcor"); 
    /*  for (i=1; i<=imx; i++){    strcat(fileresprobcor,fileres);
      if (s[4][i]==9)  s[4][i]=-1;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
   /* Calculation of the number of parameter from char model*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   Tvar=ivector(1,15);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   Tprod=ivector(1,15);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   Tvaraff=ivector(1,15);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   Tvard=imatrix(1,15,1,2);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   Tage=ivector(1,15);          fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        fprintf(ficresprob, "#Local time at start: %s", strstart);
   if (strlen(model) >1){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     j=0, j1=0, k1=1, k2=1;    fprintf(ficresprob,"# Age");
     j=nbocc(model,'+');    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     j1=nbocc(model,'*');    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     cptcovn=j+1;    fprintf(ficresprobcov,"# Age");
     cptcovprod=j1;    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
        fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     strcpy(modelsav,model);    fprintf(ficresprobcov,"# Age");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);  
       goto end;    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     for(i=(j+1); i>=1;i--){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       cutv(stra,strb,modelsav,'+');        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      }  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   /* fprintf(ficresprob,"\n");
       /*scanf("%d",i);*/    fprintf(ficresprobcov,"\n");
       if (strchr(strb,'*')) {    fprintf(ficresprobcor,"\n");
         cutv(strd,strc,strb,'*');   */
         if (strcmp(strc,"age")==0) {   xp=vector(1,npar);
           cptcovprod--;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           cutv(strb,stre,strd,'V');    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           Tvar[i]=atoi(stre);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           cptcovage++;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
             Tage[cptcovage]=i;    first=1;
             /*printf("stre=%s ", stre);*/    fprintf(ficgp,"\n# Routine varprob");
         }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         else if (strcmp(strd,"age")==0) {    fprintf(fichtm,"\n");
           cptcovprod--;  
           cutv(strb,stre,strc,'V');    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           Tvar[i]=atoi(stre);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           cptcovage++;    file %s<br>\n",optionfilehtmcov);
           Tage[cptcovage]=i;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         }  and drawn. It helps understanding how is the covariance between two incidences.\
         else {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           cutv(strb,stre,strc,'V');    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           Tvar[i]=ncovcol+k1;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           cutv(strb,strc,strd,'V');  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           Tprod[k1]=i;  standard deviations wide on each axis. <br>\
           Tvard[k1][1]=atoi(strc);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           Tvard[k1][2]=atoi(stre);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           Tvar[cptcovn+k2]=Tvard[k1][1];  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    cov[1]=1;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    tj=cptcoveff;
           k1++;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           k2=k2+2;    j1=0;
         }    for(t=1; t<=tj;t++){
       }      for(i1=1; i1<=ncodemax[t];i1++){ 
       else {        j1++;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        if  (cptcovn>0) {
        /*  scanf("%d",i);*/          fprintf(ficresprob, "\n#********** Variable "); 
       cutv(strd,strc,strb,'V');          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       Tvar[i]=atoi(strc);          fprintf(ficresprob, "**********\n#\n");
       }          fprintf(ficresprobcov, "\n#********** Variable "); 
       strcpy(modelsav,stra);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          fprintf(ficresprobcov, "**********\n#\n");
         scanf("%d",i);*/          
     }          fprintf(ficgp, "\n#********** Variable "); 
 }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficgp, "**********\n#\n");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          
   printf("cptcovprod=%d ", cptcovprod);          
   scanf("%d ",i);*/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     fclose(fic);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     /*  if(mle==1){*/          
     if (weightopt != 1) { /* Maximisation without weights*/          fprintf(ficresprobcor, "\n#********** Variable ");    
       for(i=1;i<=n;i++) weight[i]=1.0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresprobcor, "**********\n#");    
     /*-calculation of age at interview from date of interview and age at death -*/        }
     agev=matrix(1,maxwav,1,imx);        
         for (age=bage; age<=fage; age ++){ 
     for (i=1; i<=imx; i++) {          cov[2]=age;
       for(m=2; (m<= maxwav); m++) {          for (k=1; k<=cptcovn;k++) {
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
          anint[m][i]=9999;          }
          s[m][i]=-1;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
        }          for (k=1; k<=cptcovprod;k++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }          
     }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for (i=1; i<=imx; i++)  {          gp=vector(1,(nlstate)*(nlstate+ndeath));
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          gm=vector(1,(nlstate)*(nlstate+ndeath));
       for(m=1; (m<= maxwav); m++){      
         if(s[m][i] >0){          for(theta=1; theta <=npar; theta++){
           if (s[m][i] >= nlstate+1) {            for(i=1; i<=npar; i++)
             if(agedc[i]>0)              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
               if(moisdc[i]!=99 && andc[i]!=9999)            
                 agev[m][i]=agedc[i];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            
            else {            k=0;
               if (andc[i]!=9999){            for(i=1; i<= (nlstate); i++){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              for(j=1; j<=(nlstate+ndeath);j++){
               agev[m][i]=-1;                k=k+1;
               }                gp[k]=pmmij[i][j];
             }              }
           }            }
           else if(s[m][i] !=9){ /* Should no more exist */            
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            for(i=1; i<=npar; i++)
             if(mint[m][i]==99 || anint[m][i]==9999)              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
               agev[m][i]=1;      
             else if(agev[m][i] <agemin){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               agemin=agev[m][i];            k=0;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            for(i=1; i<=(nlstate); i++){
             }              for(j=1; j<=(nlstate+ndeath);j++){
             else if(agev[m][i] >agemax){                k=k+1;
               agemax=agev[m][i];                gm[k]=pmmij[i][j];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              }
             }            }
             /*agev[m][i]=anint[m][i]-annais[i];*/       
             /*   agev[m][i] = age[i]+2*m;*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           else { /* =9 */          }
             agev[m][i]=1;  
             s[m][i]=-1;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           }            for(theta=1; theta <=npar; theta++)
         }              trgradg[j][theta]=gradg[theta][j];
         else /*= 0 Unknown */          
           agev[m][i]=1;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
              free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     for (i=1; i<=imx; i++)  {          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for(m=1; (m<= maxwav); m++){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");            pmij(pmmij,cov,ncovmodel,x,nlstate);
           goto end;          
         }          k=0;
       }          for(i=1; i<=(nlstate); i++){
     }            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              mu[k][(int) age]=pmmij[i][j];
             }
     free_vector(severity,1,maxwav);          }
     free_imatrix(outcome,1,maxwav+1,1,n);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     free_vector(moisnais,1,n);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     free_vector(annais,1,n);              varpij[i][j][(int)age] = doldm[i][j];
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/          /*printf("\n%d ",(int)age);
     free_vector(moisdc,1,n);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     free_vector(andc,1,n);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                }*/
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(ficresprob,"\n%d ",(int)age);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(ficresprobcov,"\n%d ",(int)age);
              fprintf(ficresprobcor,"\n%d ",(int)age);
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       Tcode=ivector(1,100);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       ncodemax[1]=1;          }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          i=0;
                for (k=1; k<=(nlstate);k++){
    codtab=imatrix(1,100,1,10);            for (l=1; l<=(nlstate+ndeath);l++){ 
    h=0;              i=i++;
    m=pow(2,cptcoveff);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    for(k=1;k<=cptcoveff; k++){              for (j=1; j<=i;j++){
      for(i=1; i <=(m/pow(2,k));i++){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
        for(j=1; j <= ncodemax[k]; j++){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              }
            h++;            }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          }/* end of loop for state */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        } /* end of loop for age */
          }  
        }        /* Confidence intervalle of pij  */
      }        /*
    }          fprintf(ficgp,"\nset noparametric;unset label");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    /* for(i=1; i <=m ;i++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       for(k=1; k <=cptcovn; k++){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       printf("\n");        */
       }  
       scanf("%d",i);*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
            first1=1;
    /* Calculates basic frequencies. Computes observed prevalence at single age        for (k2=1; k2<=(nlstate);k2++){
        and prints on file fileres'p'. */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
                j=(k2-1)*(nlstate+ndeath)+l2;
                for (k1=1; k1<=(nlstate);k1++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                if(l1==k1) continue;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                i=(k1-1)*(nlstate+ndeath)+l1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                if(i<=j) continue;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                for (age=bage; age<=fage; age ++){ 
                        if ((int)age %5==0){
     /* For Powell, parameters are in a vector p[] starting at p[1]                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
     if(mle==1){                    mu2=mu[j][(int) age]/stepm*YEARM;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                    c12=cv12/sqrt(v1*v2);
     }                    /* Computing eigen value of matrix of covariance */
                        lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     /*--------- results files --------------*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                    /* Eigen vectors */
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
    jk=1;                    v21=(lc1-v1)/cv12*v11;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    v12=-v21;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    v22=v11;
    for(i=1,jk=1; i <=nlstate; i++){                    tnalp=v21/v11;
      for(k=1; k <=(nlstate+ndeath); k++){                    if(first1==1){
        if (k != i)                      first1=0;
          {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
            printf("%d%d ",i,k);                    }
            fprintf(ficres,"%1d%1d ",i,k);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
            for(j=1; j <=ncovmodel; j++){                    /*printf(fignu*/
              printf("%f ",p[jk]);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
              fprintf(ficres,"%f ",p[jk]);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
              jk++;                    if(first==1){
            }                      first=0;
            printf("\n");                      fprintf(ficgp,"\nset parametric;unset label");
            fprintf(ficres,"\n");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
          }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
  if(mle==1){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     /* Computing hessian and covariance matrix */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     ftolhess=ftol; /* Usually correct */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     hesscov(matcov, p, npar, delti, ftolhess, func);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("# Scales (for hessian or gradient estimation)\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      for(i=1,jk=1; i <=nlstate; i++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       for(j=1; j <=nlstate+ndeath; j++){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         if (j!=i) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           fprintf(ficres,"%1d%1d",i,j);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           printf("%1d%1d",i,j);                    }else{
           for(k=1; k<=ncovmodel;k++){                      first=0;
             printf(" %.5e",delti[jk]);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
             fprintf(ficres," %.5e",delti[jk]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             jk++;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           printf("\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           fprintf(ficres,"\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         }                    }/* if first */
       }                  } /* age mod 5 */
      }                } /* end loop age */
                    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     k=1;                first=1;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              } /*l12 */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            } /* k12 */
     for(i=1;i<=npar;i++){          } /*l1 */
       /*  if (k>nlstate) k=1;        }/* k1 */
       i1=(i-1)/(ncovmodel*nlstate)+1;      } /* loop covariates */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    }
       printf("%s%d%d",alph[k],i1,tab[i]);*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       fprintf(ficres,"%3d",i);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       printf("%3d",i);    free_vector(xp,1,npar);
       for(j=1; j<=i;j++){    fclose(ficresprob);
         fprintf(ficres," %.5e",matcov[i][j]);    fclose(ficresprobcov);
         printf(" %.5e",matcov[i][j]);    fclose(ficresprobcor);
       }    fflush(ficgp);
       fprintf(ficres,"\n");    fflush(fichtmcov);
       printf("\n");  }
       k++;  
     }  
      /******************* Printing html file ***********/
     while((c=getc(ficpar))=='#' && c!= EOF){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       ungetc(c,ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
       fgets(line, MAXLINE, ficpar);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       puts(line);                    int popforecast, int estepm ,\
       fputs(line,ficparo);                    double jprev1, double mprev1,double anprev1, \
     }                    double jprev2, double mprev2,double anprev2){
     ungetc(c,ficpar);    int jj1, k1, i1, cpt;
     estepm=0;  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     fprintf(fichtm,"<ul><li><a> href="#firstorder">Result files (first order: no variance)</a>\n \
     if (estepm==0 || estepm < stepm) estepm=stepm;     <li><a> href="#secondorder">Result files (second order (variance)</a>\n \
     if (fage <= 2) {  </ul>");
       bage = ageminpar;     fprintf(fichtm,"<ul><li><h4><a name="firstorder">Result files (first order: no variance)</a></h4>\n \
       fage = agemaxpar;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         fprintf(fichtm,"\
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     fprintf(fichtm,"\
     - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     while((c=getc(ficpar))=='#' && c!= EOF){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     ungetc(c,ficpar);     fprintf(fichtm,"\
     fgets(line, MAXLINE, ficpar);   - Life expectancies by age and initial health status (estepm=%2d months): \
     puts(line);     <a href=\"%s\">%s</a> <br>\n</li>",
     fputs(line,ficparo);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   }  
   ungetc(c,ficpar);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   m=cptcoveff;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
         jj1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
     ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     fgets(line, MAXLINE, ficpar);       jj1++;
     puts(line);       if (cptcovn > 0) {
     fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       /* Pij */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   fscanf(ficpar,"pop_based=%d\n",&popbased);       /* Quasi-incidences */
   fprintf(ficparo,"pop_based=%d\n",popbased);         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   fprintf(ficres,"pop_based=%d\n",popbased);     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
    <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   while((c=getc(ficpar))=='#' && c!= EOF){         /* Stable prevalence in each health state */
     ungetc(c,ficpar);         for(cpt=1; cpt<nlstate;cpt++){
     fgets(line, MAXLINE, ficpar);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     puts(line);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     fputs(line,ficparo);         }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
   ungetc(c,ficpar);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);       }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     } /* end i1 */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   }/* End k1 */
    fprintf(fichtm,"</ul>");
   
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   fprintf(fichtm,"\
     fgets(line, MAXLINE, ficpar);  \n<br><li><h4> <a name="secondorder">Result files (second order: variances)</a></h4>\n\
     puts(line);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     fputs(line,ficparo);  
   }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   ungetc(c,ficpar);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
    fprintf(fichtm,"\
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 /*------------ gnuplot -------------*/   fprintf(fichtm,"\
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
             estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 /*------------ free_vector  -------------*/   fprintf(fichtm,"\
  chdir(path);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"t"),subdirf2(fileres,"t"));
  free_ivector(wav,1,imx);   fprintf(fichtm,"\
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);             subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);  /*  if(popforecast==1) fprintf(fichtm,"\n */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
  fclose(ficparo);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
  fclose(ficres);  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
 /*--------- index.htm --------*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
     m=cptcoveff;
   /*--------------- Prevalence limit --------------*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
   strcpy(filerespl,"pl");   jj1=0;
   strcat(filerespl,fileres);   for(k1=1; k1<=m;k1++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {     for(i1=1; i1<=ncodemax[k1];i1++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       jj1++;
   }       if (cptcovn > 0) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   fprintf(ficrespl,"#Prevalence limit\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
   fprintf(ficrespl,"#Age ");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   fprintf(ficrespl,"\n");       }
         for(cpt=1; cpt<=nlstate;cpt++) {
   prlim=matrix(1,nlstate,1,nlstate);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  health expectancies in states (1) and (2): %s%d.png<br>\
   k=0;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   agebase=ageminpar;     } /* end i1 */
   agelim=agemaxpar;   }/* End k1 */
   ftolpl=1.e-10;   fprintf(fichtm,"</ul>");
   i1=cptcoveff;   fflush(fichtm);
   if (cptcovn < 1){i1=1;}  }
   
   for(cptcov=1;cptcov<=i1;cptcov++){  /******************* Gnuplot file **************/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    char dirfileres[132],optfileres[132];
         fprintf(ficrespl,"\n#******");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         for(j=1;j<=cptcoveff;j++)    int ng;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         fprintf(ficrespl,"******\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
          /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
         for (age=agebase; age<=agelim; age++){  /*   } */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    /*#ifdef windows */
           for(i=1; i<=nlstate;i++)    fprintf(ficgp,"cd \"%s\" \n",pathc);
           fprintf(ficrespl," %.5f", prlim[i][i]);      /*#endif */
           fprintf(ficrespl,"\n");    m=pow(2,cptcoveff);
         }  
       }    strcpy(dirfileres,optionfilefiname);
     }    strcpy(optfileres,"vpl");
   fclose(ficrespl);   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
   /*------------- h Pij x at various ages ------------*/     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       fprintf(ficgp,"set xlabel \"Age\" \n\
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  set ylabel \"Probability\" \n\
   }  set ter png small\n\
   printf("Computing pij: result on file '%s' \n", filerespij);  set size 0.65,0.65\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   agelim=AGESUP;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   hstepm=stepsize*YEARM; /* Every year of age */       }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         for (i=1; i<= nlstate ; i ++) {
   k=0;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       } 
       k=k+1;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         fprintf(ficrespij,"\n#****** ");       for (i=1; i<= nlstate ; i ++) {
         for(j=1;j<=cptcoveff;j++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrespij,"******\n");       }  
               fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /*2 eme*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    for (k1=1; k1<= m ; k1 ++) { 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           fprintf(ficrespij,"# Age");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
           for(i=1; i<=nlstate;i++)      
             for(j=1; j<=nlstate+ndeath;j++)      for (i=1; i<= nlstate+1 ; i ++) {
               fprintf(ficrespij," %1d-%1d",i,j);        k=2*i;
           fprintf(ficrespij,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
            for (h=0; h<=nhstepm; h++){        for (j=1; j<= nlstate+1 ; j ++) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             for(i=1; i<=nlstate;i++)          else fprintf(ficgp," \%%*lf (\%%*lf)");
               for(j=1; j<=nlstate+ndeath;j++)        }   
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
             fprintf(ficrespij,"\n");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
              }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (j=1; j<= nlstate+1 ; j ++) {
           fprintf(ficrespij,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         }          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
   }        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficrespij);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   /*---------- Forecasting ------------------*/        else fprintf(ficgp,"\" t\"\" w l 0,");
   if((stepm == 1) && (strcmp(model,".")==0)){      }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    
   }    /*3eme*/
   else{    
     erreur=108;    for (k1=1; k1<= m ; k1 ++) { 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   }        k=2+nlstate*(2*cpt-2);
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   /*---------- Health expectancies and variances ------------*/  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   strcpy(filerest,"t");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   strcat(filerest,fileres);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
   strcpy(filerese,"e");        for (i=1; i< nlstate ; i ++) {
   strcat(filerese,fileres);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   if((ficreseij=fopen(filerese,"w"))==NULL) {          
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        } 
   }      }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    }
     
  strcpy(fileresv,"v");    /* CV preval stable (period) */
   strcat(fileresv,fileres);    for (k1=1; k1<= m ; k1 ++) { 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      for (cpt=1; cpt<=nlstate ; cpt ++) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        k=3;
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   calagedate=-1;  set ter png small\nset size 0.65,0.65\n\
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   k=0;        
   for(cptcov=1;cptcov<=i1;cptcov++){        for (i=1; i< nlstate ; i ++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,"+$%d",k+i+1);
       k=k+1;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       fprintf(ficrest,"\n#****** ");        
       for(j=1;j<=cptcoveff;j++)        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
       fprintf(ficrest,"******\n");        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
       fprintf(ficreseij,"\n#****** ");          fprintf(ficgp,"+$%d",l+i+1);
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       fprintf(ficreseij,"******\n");      } 
     }  
       fprintf(ficresvij,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    /* proba elementaires */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficresvij,"******\n");      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for(j=1; j <=ncovmodel; j++){
       oldm=oldms;savm=savms;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              jk++; 
              fprintf(ficgp,"\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
       oldm=oldms;savm=savms;        }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);      }
         }
   
       for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       for(jk=1; jk <=m; jk++) {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
       fprintf(ficrest,"\n");         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       epj=vector(1,nlstate+1);         else
       for(age=bage; age <=fage ;age++){           fprintf(ficgp,"\nset title \"Probability\"\n");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         if (popbased==1) {         i=1;
           for(i=1; i<=nlstate;i++)         for(k2=1; k2<=nlstate; k2++) {
             prlim[i][i]=probs[(int)age][i][k];           k3=i;
         }           for(k=1; k<=(nlstate+ndeath); k++) {
                     if (k != k2){
         fprintf(ficrest," %4.0f",age);               if(ng==2)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {               else
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/               ij=1;
           }               for(j=3; j <=ncovmodel; j++) {
           epj[nlstate+1] +=epj[j];                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
         for(i=1, vepp=0.;i <=nlstate;i++)                 }
           for(j=1;j <=nlstate;j++)                 else
             vepp += vareij[i][j][(int)age];                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));               }
         for(j=1;j <=nlstate;j++){               fprintf(ficgp,")/(1");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));               
         }               for(k1=1; k1 <=nlstate; k1++){   
         fprintf(ficrest,"\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       }                 ij=1;
     }                 for(j=3; j <=ncovmodel; j++){
   }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 free_matrix(mint,1,maxwav,1,n);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                     ij++;
     free_vector(weight,1,n);                   }
   fclose(ficreseij);                   else
   fclose(ficresvij);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   fclose(ficrest);                 }
   fclose(ficpar);                 fprintf(ficgp,")");
   free_vector(epj,1,nlstate+1);               }
                 fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   /*------- Variance limit prevalence------*/                 if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
   strcpy(fileresvpl,"vpl");             }
   strcat(fileresvpl,fileres);           } /* end k */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {         } /* end k2 */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);       } /* end jk */
     exit(0);     } /* end ng */
   }     fflush(ficgp); 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  }  /* end gnuplot */
   
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  /*************** Moving average **************/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");    int i, cpt, cptcod;
       for(j=1;j<=cptcoveff;j++)    int modcovmax =1;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int mobilavrange, mob;
       fprintf(ficresvpl,"******\n");    double age;
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       oldm=oldms;savm=savms;                             a covariate has 2 modalities */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     }  
  }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
   fclose(ficresvpl);      else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
   /*---------- End : free ----------------*/        for (i=1; i<=nlstate;i++)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /* We keep the original values on the extreme ages bage, fage and for 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
        */ 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      for (mob=3;mob <=mobilavrange;mob=mob+2){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<=nlstate;i++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   free_matrix(matcov,1,npar,1,npar);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   free_vector(delti,1,npar);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   free_matrix(agev,1,maxwav,1,imx);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   if(erreur >0)            }
     printf("End of Imach with error or warning %d\n",erreur);          }
   else   printf("End of Imach\n");        }/* end age */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      }/* end mob */
      }else return -1;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    return 0;
   /*printf("Total time was %d uSec.\n", total_usecs);*/  }/* End movingaverage */
   /*------ End -----------*/  
   
   /************** Forecasting ******************/
  end:  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 #ifdef windows    /* proj1, year, month, day of starting projection 
   /* chdir(pathcd);*/       agemin, agemax range of age
 #endif       dateprev1 dateprev2 range of dates during which prevalence is computed
  /*system("wgnuplot graph.plt");*/       anproj2 year of en of projection (same day and month as proj1).
  /*system("../gp37mgw/wgnuplot graph.plt");*/    */
  /*system("cd ../gp37mgw");*/    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    int *popage;
  strcpy(plotcmd,GNUPLOTPROGRAM);    double agec; /* generic age */
  strcat(plotcmd," ");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
  strcat(plotcmd,optionfilegnuplot);    double *popeffectif,*popcount;
  system(plotcmd);    double ***p3mat;
     double ***mobaverage;
 #ifdef windows    char fileresf[FILENAMELENGTH];
   while (z[0] != 'q') {  
     /* chdir(path); */    agelim=AGESUP;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     scanf("%s",z);   
     if (z[0] == 'c') system("./imach");    strcpy(fileresf,"f"); 
     else if (z[0] == 'e') system(optionfilehtm);    strcat(fileresf,fileres);
     else if (z[0] == 'g') system(plotcmd);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     else if (z[0] == 'q') exit(0);      printf("Problem with forecast resultfile: %s\n", fileresf);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 #endif    }
 }    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.45  
changed lines
  Added in v.1.106


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>